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In the context of the recent interest in solvable models of scattering mediated by non-Hermitian

Hamiltonians (cf. H. F. Jones, Phys. Rev. D 76, 125003 (2007)) we show that the well-known variability of

the ad hoc choice of the metric � which defines the physical Hilbert space of states can help us to clarify

several apparent paradoxes. We argue that with a suitable �, a fully plausible physical picture of the

scattering can be recovered. Quantitatively, our new recipe is illustrated on an exactly solvable toy model.
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I. INTRODUCTION

Whenever one considers the one-dimensional differen-
tial Schrödinger equation�

� d2

dx2
þ VðxÞ

�
 ðxÞ ¼ E ðxÞ; x 2 ð�1;1Þ (1)

in the scattering regime, i.e., with the boundary conditions
describing the transmitted and reflected waves,

 ðxÞ ¼
�
ei�x þ Ce�i�x; x� �1;
Dei�x; x� 1

; (2)

one usually assumes that the flow of probability is con-
served, jCj2 þ jDj2 ¼ 1. Recently, Jones [1] pointed out
that several serious conceptual difficulties can arise when
certain current tacit assumptions (demanding, typically, the
reality of the potential VðxÞ) are, tentatively, weakened. He
also presented several persuasive arguments why one
should try to weaken these assumptions.

Among the latter arguments, the most persuasive sup-
port of theoretical, as well as conceptual, innovations
would certainly lie in the undeniable success of the recent,
phenomenologically motivated transition to certain mani-
festly non-Hermitian Hamiltonians generating real and
observable spectra of bound states [2]. The idea (well-
known to mathematicians [3]) found, recently, several
interesting applications in nuclear physics [4] and in field
theory [5].

Of course, there exists an obvious difference between
the bound-state problem (for which wave functions  ðxÞ
are localized) and the scattering scenario (where all the
waves remain non-negligible all along the whole real axis).
Jones [1] even came to a rather sceptical conclusion that
the preservation of a sensible probabilistic interpretation of
a generic non-Hermitian model of scattering may be quite
costly and difficult even when the tentative introduction of
a suitable non-Hermiticity in the Hamiltonian itself re-
mains restricted to a very small domain of x. Similar
observations have also been made in a few older scattering

models where the violation of the rule jCj2 þ jDj2 ¼ 1 has
been explained and interpreted as a phenomenologically
acceptable manifestation of the presence of some ‘‘hid-
den’’ degrees of freedom in the model [6].
Being unsatisfied by these ‘‘effective’’ theories, the au-

thor of Ref. [1] formulated a much more ambitious project
where the physical picture of scattering would parallel the
above-mentioned ‘‘fundamental’’ theory of bound states
based on non-Hermitian Hamiltonians [4,5]. Unfor-
tunately, the quantitative results of Ref. [1] were not too
encouraging (cf. also their recent completion [7]). In es-
sence, the sensible probabilistic interpretation of the mod-
els under consideration seemed to require that the above-
mentioned standard boundary conditions should be modi-
fied to read

 ðxÞ ¼
�
ei�x þ Ce�i�x; x� �1;
Dei�x þD0e�i�x; x� 1

: (3)

Unfortunately, this formula contains a strongly counter-
intuitive ‘‘backwards-running’’ component proportional to
D0 � 0 in the scattered solution.
In what follows, we intend to weaken the resulting

skepticism. We shall start from the same basic theoretical
premise and postulate that the effective theories of
Refs. [6] are in fact not too interesting since they just
mimic the presence of certain unknown dynamical mecha-
nisms admitting, e.g., an annihilation and/or creation dur-
ing the scattering. In this sense, we intend to search now for
a new quantitative support for the possible feasibility and
consistency of the alternative fundamental approach where
one tries to reestablish the conservation of the probability.
In Sec. II we shall commence our considerations by a

brief and compact review of the most relevant results of
Ref. [1]. We summarize there the overall philosophy of the
fundamental theory where the input Hamiltonian H [of
Eq. (1)] is interpreted as a mere auxiliary operator. One
assumes that with this auxiliary operator the formal calcu-
lations become exceptionally simple. At the same time, the
‘‘correct’’ physics is assumed to be defined, via an inver-
tible map �, in terms of a certain ‘‘true’’ physical
Hamiltonian*znojil@ujf.cas.cz
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h ¼ �H��1 (4)

which is expected to be prohibitively complicated. For
illustration, one can recollect the ‘‘true nuclear physics’’
of Ref. [4] where h was a full-fledged Hamiltonian of an
atomic nucleus while H has been constructed as its much
more easily tractable map.

In all of the similar scenarios, the similarity mapping �
must be assumed nonunitary—otherwise, one would return
to the mere traditional, Hermitian class of Hamiltonians. In
order to suppress or circumvent the related, mostly purely
technical obstacles we decided to employ our recent
bound-state experience [8] and to restrict our attention to
a fairly restricted class of the solvable illustrative dynami-
cal models. They are introduced and described in Sec. III.

The manifestly nonperturbative character of our present
class of models will enable us to make use of the flexibility
of the mappings� and to draw several consequences from
the exact solvability of our models. In Sec. IV, we shall
show how some of the apparently unavoidable paradoxes
of Ref. [1] can find their explanation and resolution. In
particular, for our manifestly non-Hermitian set of specific
Hamiltonian-representing operators H � Hy we shall
demonstrate that they can be assigned a consistent and
unitary physical interpretation of the scattering based on
standard asymptotic boundary conditions (2).

In Sec. V, a compact summary of our present construc-
tive arguments will be complemented by a few optimistic
remarks concerning the possible future extension of the
class of our present models of scattering towards some less
schematic non-Hermitian Hamiltonians.

II. SCATTERING FROM COMPLEX POTENTIALS

The mathematical background of the fundamental mod-
els of scattering from localized non-Hermitian centers will
be illustrated here on a set of solvable models. On this
level, we shall demonstrate that a very natural interpreta-
tion of this type of scattering is feasible. On an abstract
phenomenological level we shall stress that in our present
update of the extension of the scattering theory of Ref. [1] a
core of observational consistency should and can be sought
in at least a partial, asymptotic survival of the observability
of the coordinates.

A. Jones’s solvable example

For the majority of the real and smooth one-dimensional
short-range potentials the description of the scattering is
routine. One solves the ordinary differential Schrödinger
equation under the standard asymptotic boundary condi-
tions. For the complex VðxÞs in (1), fundamental theory
makes the scattering unitary via an appropriate adaptation
of the metric � in the Hilbert space of states.
Unfortunately, an unexpected and unpleasant consequence
has been detected in [1] where the replacement of the
standard asymptotic boundary conditions (2) by their fairly

counterintuitive ‘‘amendment’’ (3) has been found neces-
sary in principle. Fortunately, in a concrete illustration
using the complex delta-function toy potential of Ref. [9],

VðMostafazadehÞðxÞ ¼ 2�ð1þ i"Þ�ðxÞ (5)

the contribution of the nonvanishing coefficient D0 to the
flow of probabilities proved negligible [1]. Thus, in the
leading-order approximation it was possible to return to the
original boundary conditions (2).
After such an approximate confirmation of the internal

consistency of the fundamental-theory approach a careful
perturbation analysis of scattering by potential (5) has been
performed in [1] leading to the intermediate result

jCj2 þ jDj2 ¼
�
1� 2"q

1þ "2 þ q2

��1
; q ¼

ffiffiffiffi
E

p
�
: (6)

In the naive effective-theory interpretation of this formula
the nonconservation of the flow of probability merely
reflects the fact that the manifestly non-Hermitian
Hamiltonian H is merely an auxiliary operator defined in

the ‘‘wrong’’ Hilbert space H ðunphysicalÞ. One has to em-
ploy the map � to move to another, unitarily nonequiva-

lent correct Hilbert space H ðphysicalÞ where the true
representant (4) of the Hamiltonian remains safely
Hermitian [1].

B. Long-range nonlocalities induced by the short-range
potential: a paradox

One of the most unpleasant formal features of the physi-
cal metric � ¼ �ðHÞ [10] in the Hilbert space of states

H ðphysicalÞ is that it is usually strongly nonlocal even if the
original potential is local, V ¼ VðxÞ (cf. also [8]). This
implies that it is hardly feasible to perform any computa-

tions in H ðphysicalÞ. In the purely auxiliary Hilbert space

H ðunphysicalÞ, the computations are assumed much easier.
All the ket vectors j i which lie in the latter space lack,
unfortunately, any direct physical interpretation. Even the
standard requirement of the observability of the
Hamiltonian degenerates, in this auxiliary space, to the
identity [4]

Hy ¼ �H��1: (7)

This relation represents the Hermiticity of the Hamiltonian

h in H ðphysicalÞ,

h ¼ �H��1 ¼ hy ¼ ð��1ÞyHy�y:

We may deduce that one has to put � � �y� [12]. In the
language of mathematics we must guarantee that the physi-
cal metric � is compatible with relations (7). Vice versa,
any operator � ¼ �y representing an observable in

H ðphysicalÞ has to have its appropriate quasi-Hermitian

partner � in H ðunphysicalÞ which obeys an analogue of
Eq. (7) using the same metric [13].
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The shift " in Eq. (5) has been assumed small in Ref. [1].
This opened the possibility of an explicit use of
Mostafazadeh’s metric [9] available in perturbation series
form

�ðMostafazadehÞ � � ¼ I þ "�ð1Þ þOð"2Þ: (8)

In coordinate representation, the unit operator I becomes
represented by the delta-function kernel �ðx� yÞ but a
manifest and large nonlocality emerges already in the first
perturbation order,

�ð1Þðx; yÞ ¼ �

2
sgnðy2 � x2Þ½�ðxyÞe��jx�yj

þ �ð�xyÞe��jxþyj�: (9)

The emergence of such a nonlocality leads to serious
problems because ‘‘the physical picture of the scattering
is completely changed’’ since, on the positive half axis the
physical wave function ‘‘no longer represents a pure out-
going wave . . . but . . . contains an Oð"Þ component of an
incoming wave as well [1].’’

We shall be able to show that while the deformations
caused by the use of the locally non-Hermitian interaction
remain long ranged in their character, they need not nec-
essarily lead to the emergence of spurious components in
the outcoming wave. Such an observation is not in contra-
diction with the fact that ‘‘one should change the Hilbert
space by adopting the appropriate metric [which] must
differ from the standard one not only in the vicinity of
the non-Hermitian potentials, but also at distances remote
from it [1].’’ Nevertheless, we shall argue that at least some
of the spuriosities emerge only due to an inappropriate
choice of a specific metric, the definition of which is
known to contain infinitely many free parameters
[4,11,12]. In this sense we shall make use of a simpler
model and recommend here the construction and use of

another, quasilocal (QL) metric operator � ¼ �ðQLÞ � �.

III. DISCRETE SCHRÖDINGER EQUATIONS

Some of the standard scattering-theory considerations
can be simplified when one replaces the ordinary differen-
tial equation (1) by the difference equation

�  ðxk�1Þ � 2 ðxkÞ þ  ðxkþ1Þ
h2

þ VðxkÞ ðxkÞ ¼ E ðxkÞ:
(10)

For example, in some pragmatic numerical calculations
one chooses a sufficiently small step-size h > 0 and in-
troduces discrete coordinates,

xk ¼ kh; k ¼ 0;�1; . . . : (11)

This makes the usual real line replaced or approximated by
an infinitely long discrete lattice. The most elementary
application of such a discretization occurs when one wants
to construct bound states. For certain real, as well as,

complex potentials, a sample of the construction may be
found in our papers [14]. Some of them also illustrate the
fundamental-theory approach to the non-Hermitian quan-
tum bound states where the Hamiltonian H is treated as
quasi-Hermitian, i.e., Hermitian only in the Hamiltonian-

adapted Hilbert space H ðphysicalÞ.

A. Discrete in and out free waves

Let us assume that the potential in Eq. (10) vanishes
beyond a certain, not too large, distance from the origin,
Vðx�jÞ ¼ 0, j ¼ M;Mþ 1; . . . . In the free-motion do-

main, we abbreviate  j ¼  ðxjÞ and 2 cos’ ¼ 2� h2E

and replace Eq. (10) by recurrences

�  ð0Þ
j�1 þ 2 cos’ ð0Þ

j �  ð0Þ
jþ1 ¼ 0; (12)

or by the matrix equations H0
~ ð0Þ ¼ h2k2 ~ ð0Þ

or

M0ð’Þ ~ ð0Þ ¼ 0, viz.,

. .
. . .

. . .
. ..

.

. .
.

2 cos’ �1 0 . . .

. .
. �1 2 cos’ �1 . .

.

. . . 0 �1 2 cos’ . .
.

..

. . .
. . .

. . .
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

..

.

 ð0Þ
j�1

 ð0Þ
j

 ð0Þ
jþ1

..

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼ 0;

(13)

which may be assigned a doublet of independent solutions,

 �
k ¼ const � %k�; %� ¼ expð�i’Þ:

Precisely in the spirit of Ref. [5], we can speak about a
PT -symmetric free Hamiltonian,

H0 ¼

. .
. . .

.

. .
.

2 �1
�1 2 �1

�1 2 . .
.

. .
. . .

.

2
6666666664

3
7777777775
;

PT ¼

..
.

1
1

1
..
.

2
666666664

3
777777775
:

It is easy to verify that its spectrum is real, provided only
that the new energy variable ’ is real [8]. This imposes an
inessential constraint �2 � 2� h2E � 2 upon the energy
range, i.e., we must have E 2 ð0; 4=h2Þ. At any finite
choice of the lattice step h > 0 this is reminiscent of the
similar feature of the spectra in relativistic quantum sys-
tems. This connection has been given a more quantitative
interpretation in Ref. [15].
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Let us finally add an interaction with nonzero elements
forming merely a finite-dimensional submatrix in the
Hamiltonian. The scattering of an incoming wave may
then be characterized, say, by the boundary conditions

 ðxmÞ ¼
�
eim’ þ Re�im’; m � �M;
Teim’; m 	 M� 1

; (14)

i.e., by Eq. (2) in its discrete version.

B. Discrete short-range model of scattering

In a way, inspired by our recent studies of finite-
dimensional non-Hermitian Hamiltonian matrices H with
real spectra [8,16], let us pick up one of these models and
contemplate its infinite-dimensional generalization which
would admit scattering solutions. Its explicit matrix repre-
sentation will be tridiagonal, one-parametric, and doubly
infinite,

H1 ¼

. .
. . .

.

. .
.

2 �1
�1 2 �1

�1 2 �1� a
�1þ a 2 �1

�1 2 �1

�1 2 . .
.

. .
. . .

.

2
666666666666666664

3
777777777777777775

: (15)

Inside the interval of a 2 ð�1; 1Þ, all the 2K-dimensional
truncations of H1 have the 2K-plets of eigenvalues which
are all real and lie inside the closed interval (1, 3) in the
non-Hermitian regime. With the growing jaj these energies
pairwise degenerate at the ‘‘exceptional points’’ a ¼ �1
and get complex at jaj> 1. At K ¼ 2 and K ¼ 3 the
smoothness of the a dependence of these truncation-
dependent standing wave energies has been illustrated in
[8]. At K ¼ 1, their explicit form reads h2k2� ¼
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
and offers a schematic guidance and a nice

quantitative illustration of what happens in general.
In a search for the transmission and reflection ampli-

tudes, our infinite-dimensional matrix problem for scatter-

ing H1
~ ð1Þ ¼ h2k2 ~ ð1Þ

can be split in its two free-motion
parts (13) for the respective ‘‘in’’ and ‘‘out’’ solutions (14)
valid up to M ¼ 1. They have to be matched near the
origin,

�1 ei’ þ e�i’ �1� a 0
0 �1þ a ei’ þ e�i’ �1

� � Re2i’

Rei’

T
Tei’

2
6664

3
7775

¼ 1 �ei’ � e�i’

0 1� a

� �
e�2i’

e�i’

� �
:

These two linear equations for R and T can be simplified,

1
�ð1� aÞei’

� �
Rþ �ð1þ aÞ

e�i’

� �
T ¼ �1

ð1� aÞe�i’

� �
:

It is easy to write down their explicit solution,

R ¼ �a2

4 ; T ¼ ð1� aÞð1� e2i’Þ
4 ;

4 ¼ 1� ð1� a2Þe2i’:

This gives an exact analogue

jRj2 þ jTj2 ¼ 1� a½1þUða;’Þ��1

1þ a½1þUða;’Þ��1
;

Uða;’Þ ¼ a4

2ð1� aÞð1� cos2’Þ

(16)

of Eq. (11) of Ref. [1]. In both cases, the sum of proba-
bilities is greater than 1 or less than 1 depending on the sign
of the deviation of the coupling constant from its Hermitian
zero limit. The same conclusion can be read in Ref. [1] so
that in the weak-coupling regime our present difference-
operator parameter a plays the same dynamical role as its
differential-operator predecessor " in Eq. (5). Moreover,
due to the nonperturbative character of our result, one can
rewrite Eq. (16) in the equivalent form [17]

jR2j þ jTj2 ¼ a4 þ 4ð1� aÞ2sin2’
a4 þ 4ð1� a2Þsin2’ ; (17)

which is more compact and clarifies the nature of the
singularity reached in the limit a! �1.
We shall also see below (cf. Sec. IVB) that after the

necessary adaptation of the Hilbert space of states and after
the ad hoc modification of the inner product, the net result
of the changes will be the elementary modification of
the coefficient of sin2’ in the numerator to 4ð1� a2Þ, thus
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restoring the usual and physically consistent unitarity of the scattering at jaj< 1.

C. More-parametric models

With another Hamiltonian

H2 ¼

. .
. . .

.

. .
.

2 �1
�1 2 �1� b

�1þ b 2 �1� a
�1þ a 2 �1� b

�1þ b 2 �1

�1 2 . .
.

. .
. . .

.

2
666666666666666664

3
777777777777777775

one can expect that many results obtained previously for its b ¼ 0 special case H1 can find a natural generalization. The
same expectations concern also the next-step candidate with three free parameters,

H3 ¼

. .
. . .

. . .
.

�1 2 �1� c
�1þ c 2 �1� b

�1þ b 2 �1� a
�1þ a 2 �1� b

�1þ b 2 �1� c
�1þ c 2 �1

. .
. . .

. . .
.

2
6666666666666664

3
7777777777777775
;

etc. In all of them the asymptotic in and out solutions of
Eq. (14) remain uninfluenced by the interaction. Equally
well, the matching of these in and out solutions remains
feasible at any number of k parameters.

In our first nontrivial scattering model H2
~ ð2Þ ¼

h2k2 ~ ð2Þ
the matching may be mediated by the choice of

M ¼ 2. This means that the following four matching con-
ditions must be considered,

�1 2 cos’ �1� b 0 0 0

0 �1þ b 2 cos’ �1� a 0 0

0 0 �1þ a 2 cos’ �1� b 0

0 0 0 �1þ b 2 cos’ �1

2
666664

3
777775




e�3i’ þ Re3i’

e�2i’ þ Re2i’

e�i’ þ Rei’ � ��1

T þ �0

Tei’

Te2i’

2
666666666664

3
777777777775

¼ 0:

The first line defines the correction ��1 and the last line
defines the correction �0,

ð1þ bÞ��1 ¼ bðe�i’ þ Rei’Þ; ð1� bÞ�0 ¼ bT:

This reduces the number of our equations to two again,

�1þ b 2 cos’ �1� a 0

0 �1þ a 2 cos’ �1� b

" #




e�2i’ þ Re2i’

ðe�i’ þ Rei’Þ=ð1þ bÞ
T=ð1� bÞ
Tei’

2
666664

3
777775 ¼ 0:

After their simplification we may easily eliminate

ð1þ bÞT
ð1� aÞð1� bÞ ¼ 1þ Re2i’

1þ b2e2i’
:

We end up quickly with the explicit definition of R for our
second model H2,

R ¼ �a2 þ 2b2 cos2’þ b4

4 ;

4 ¼ 1� ð1� a2Þe2i’ þ 2b2e2i’ þ b4e4i’:

We observe a close parallelism with the preceding model.
From the easy first-order estimates
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R ¼ Oða2Þ þOðb2Þ;
ð1þ bÞT

ð1� aÞð1� bÞ ¼ 1þOða2Þ þOðb2Þ;

we may immediately deduce that

jRj2 þ jTj2 ¼ 1� 2a� 4bþOða2Þ þOðb2Þ: (18)

This two-parametric dependence parallels closely the one-
parametric prediction offered by Eq. (16).

IV. UNITARILY NONEQUIVALENT HILBERT
SPACES

In a climax of our paper, we shall make use of the fact
that our models are exactly solvable, at least in terms of the
methods based on the computer-assisted symbolic manipu-
lations and extrapolations. This will enable us to construct
many eligible candidates � for the metric in the physical
Hilbert space. In contrast, even the construction of their
subclass denoted by the symbol � and possessing an ex-
plicit perturbation form

% ¼ I þ 1
2"�

ð1Þ þOð"2Þ (19)

was an achievement for differential operators in
Refs. [1,9]. In such a context, a core of our present message
is that due to the simplified, difference-operator represen-
tation of observables we shall be able to select a better

metric �ðQLÞ � �. With its use, some of the most counter-
intuitive manifestations of the nonlocality paradox will
simply disappear.

A. Ambiguity problem

In the effective interaction scenario, formulas (6) or (16)
and (18) would certainly indicate the presence of an ab-
sorption and/or creation at " � 0 or a � 0 and b � 0. In
the fundamental theory one assumes a change of the
Hilbert space such that the original (i.e., standard) defini-
tion of the inner product

h j 0i ¼
Z
R
 �ðxÞ 0ðxÞdx (20)

is replaced by its more general weighted version in the new
space,

h j 0i� ¼
Z
R2
 �ðxÞ�ðx; x0Þ 0ðx0Þdxdx0: (21)

The purpose of such a change is in making the Hamiltonian
self-adjoint.
It is well-known that the choice of the inner product (21)

is ambiguous [4]. One of the standard constructive solu-
tions of the ambiguity problem giving � ¼ � has been
proposed by Mostafazadeh [9]. In the mathematically most
easily tractable dynamical regime of a very small deviation
j"j � 1 from Hermiticity, this author arrived at the explicit
perturbation approximation Eq. (8) þ Eq. (9) where the
maxima of function �ðx; yÞ lie on the two perpendicular
lines defined by the trivial equations x� y ¼ 0 in the x�
y plane. Subsequently, the latter recipe has been used in

Ref. [1] where operator �ðJonesÞ � % was defined as a self-
adjoint square root (19) of metric � emphasizing that in
terms of physics, ‘‘the relevant wave function is not  ðxÞ �
hxj i, but �ðxÞ � hxj�i ¼ hxj%j i.’’
In this context, the mathematical essence of our present

amendment of scattering theory lies precisely in an inno-
vation of the choice of � and � since among all the
available mappings � the selected % remains also very
strongly nonlocal, indeed.

B. The existence of diagonal matrices � ¼ �ðQLÞ

In the technically most complicated part of our present
considerations, we decided to choose a Hamiltonian and to
treat its quasi-Hermiticity condition (7) as a linear set of
equations for all the matrix elements of the metric.
In the first attempt, we choose H1 and verified that there

exists the infinite-dimensional matrix solution �1 of
Eq. (7) which is diagonal, i.e., in our present terminology,
quasilocal,

�ðQLÞ
1 ¼

. .
.

1� a
1� a

1� a
1þ a

1þ a
1þ a

. .
.

2
6666666666666664

3
7777777777777775
:

This result was obtained via tedious symbolic manipulations on the computer. Its simplicity is both very surprising and
very useful because one of the integrations in the related inner product (21) drops out. Moreover, its diagonal kernel can
trivially be factorized into the product of two diagonal operators � ¼ ffiffiffiffiffi

�
p

, i.e.,
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�ðQLÞ
1 ¼

. .
. ffiffiffiffiffiffiffiffiffiffiffiffi

1� a
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� a
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� a
p ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p

. .
.

2
6666666666666664

3
7777777777777775
:

They remain self-adjoint and positive definite at all the parameters a from interval ð�1; 1Þ.
The diagonality of the latter matrix enables us to insert it in Eq. (17) of Ref. [1] and to deduce that the explicit formula

for the correct operator X of the observable coordinate coincides with its standard diagonal-matrix form with elements

given by Eq. (11) above. In the same manner, one can also recall Eq. (4) and introduce the operator hðQLÞ1 ¼
�ðQLÞ
1 H1ð�ðQLÞ

1 Þ�1 which represents the isospectral Hermitian Hamiltonian of our system and which replaces Eq. (15)

by the real and symmetric tridiagonal matrix

hðQLÞ1 ¼

. .
. . .

.

. .
.

2 �1
�1 2 �1

�1 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

2 �1
�1 2 �1

�1 2 . .
.

. .
. . .

.

2
666666666666666664

3
777777777777777775

: (22)

We see that this operator differs from the purely kinetic Hamiltonian just in a small vicinity of the scattering center. In spite
of such a strict locality of the interaction, the metric itself remains deformed far away from the scattering center.

The fact that the manifest non-Hermiticity of our toy model H1 did not involve the mixing of incoming and outgoing
waves that occurred in the model of Ref. [1] encouraged us to proceed towards the more complicated models using the
same brute-force method. After the choice of the next, two-parametric non-Hermitian Hamiltonian H2, the calculations
still remained sufficiently easy for us to deduce and verify the existence of the following two-parametric quasilocal

solution �ðQLÞ
2 of Eq. (7) represented by the diagonal matrix

. .
.

ð1� aÞð1� bÞ2
ð1� aÞð1� bÞ2

ð1� aÞð1� b2Þ
ð1þ aÞð1� b2Þ

ð1þ aÞð1þ bÞ2
ð1þ aÞð1þ bÞ2

. .
.

2
66666666666666664

3
77777777777777775
:

Similarly, we took k ¼ 3 in the next continuation of the series of solutions �ðQLÞ
k pertaining to Hk. It is easy to verify that

the three-parametric quasilocal solution �ðQLÞ
3 of Eq. (7) is still obtainable as a diagonal matrix with the same elements

ð1� aÞð1� bÞ2ð1� cÞ2 in the upper left corner and with the similar array of the same elements ð1þ aÞð1þ bÞ2ð1þ cÞ2 in
its lower right corner. The remaining ‘‘central’’ quadruplet of the ‘‘anomalous’’ diagonal elements is formed by the

following four-dimensional diagonal central submatrix of our doubly infinite matrix �ðQLÞ
3 ,
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ð1� aÞð1� bÞ2ð1� c2Þ
ð1� aÞð1� b2Þð1� c2Þ

ð1þ aÞð1� b2Þð1� c2Þ
ð1þ aÞð1þ bÞ2ð1� c2Þ

2
666664

3
777775:

The general pattern of extrapolation is now obvious. It
would be easy to write down and, via Eq. (7), verify an
immediate extrapolation of the k ¼ 1, k ¼ 2, and k ¼ 3
matrices �ðQLÞ

k to the higher subscripts k whenever
necessary.

These are all reasons why, in the context of scattering,

the specific diagonal metrics �ðQLÞ
k should be preferred in

comparison with all of their nondiagonal and, hence, more
nonlocal alternatives. With such a new postulate, we may
now return to Ref. [1] once more. First of all, our results
reconfirm the high plausibility of the hypothesis that even
the violation of the Hermiticity, which is strictly localized
in space, should be expected to influence, manifestly, even
the asymptotics of the wave functions. The explicit analy-
sis of our schematic models indicates that even our mini-
mally nonlocal metric operators remain, strictly speaking,
different from the most common Dirac’s delta-function

metric �ðDiracÞðx; yÞ ¼ �ðx� yÞ at all distances.
This being said, we found it quite fortunate that at the

sufficiently large distances, i.e., for jxj � 1 and/or jyj �
1, the difference between �ðDiracÞðx; yÞ and �ðQLÞ

k ðx; yÞ
degenerated, in all of our models, to the mere introduction
of a nontrivial multiplication factor,

�ðQLÞðx; yÞ ¼ constðsignxÞ ��ðDiracÞðx; yÞ;
jxj � 1; jyj � 1: (23)

In another formulation, our explicit constructions very
strongly support the affirmative answer to the question of
the existence of a ‘‘spatially localized non-Hermiticity.’’ A
formal key to such an answer is that in a schematic model
we constructed certain new and very specific, ‘‘quasilocal’’

metrics �ðQLÞ with the property (23).
The strict validity of this proportionality rule at almost

all the coordinates x and ymay be admitted to be an artifact
resulting from our specific tridiagonal-matrix choice of our
‘‘toy’’ Hamiltonians Hk. Still, the validity of such a rule at
all the sufficiently large coordinates may be expected to
survive transition to a larger family of models and, perhaps,
also to some slightly less friendly generalized quasilinear

forms of �ðQLÞ, with a band-matrix structure. This would

still allow us to conjecture that with the metrics� ¼ �ðQLÞ
the internal consistency of the models of scattering (and, in
particular, of their asymptotic boundary conditions) would
not be violated after the extension of the present theory
towards many less schematic and reasonably non-
Hermitian models of dynamics.

One of the instrumental versions of our conjecture will
have the form of the requirement D0 ¼ 0 in boundary
conditions so that Eq. (3) � Eq. (2). Then, the choice of

a unique metric �ðQLÞ characterized by its minimalized
nonlocality should be perceived as strongly recommended
in the conceptually consistent fundamental scattering the-
ory using non-Hermitian Hamiltonians.
Marginally, the latter requirement can be supported also

by the remark that ‘‘it has been known for some time that
. . . for the potential ix3 and the infinite PT -symmetric
square well . . . the particle is confined . . . so that the range
of the nonlocality is limited. Scattering potentials highlight
this feature [of nonlocality] to its full extent because the
wave functions . . . do not have compact support [1].’’ This

means that the ‘‘traditional’’ choices of� � �ðQLÞ can still
offer a fully consistent model of the physical reality for
bound states. After all, we already noticed that many

models with � � �ðQLÞ found applications in nuclear
physics [4] and in field theory [5]. Other constructions of

� � �ðQLÞ appeared also in the coupled-channel problems
[13] or in the Klein-Gordon-type models [18], etc.

V. SUMMARY

In the differential-equation model of scattering studied
in Ref. [1] the behavior of the physical in and out states was
strongly nonlocal so that, for example, the outgoing waves
contained a non-negligible ‘‘incoming’’ component. In this
context we showed here that such a paradox is not inevi-
table for non-Hermitian systems with real spectra. A set of
counter examples has been described here in which the
local non-Hermiticities carried by the Hamiltonian implied
just the necessity of the replacement of the usual scalar
product (20) by the local, rescaling change of the measure,

h j 0i ¼
Z
R2
 �ðxÞ�ðxÞ 0ðxÞdx: (24)

This enabled us to address several conceptual difficulties as
encountered in Ref. [1] where the description of scattering
caused by several short-range non-Hermitian sample po-
tentials VðxÞ has been presented. In this context, we dis-
covered and described a family of non-Hermitian short-
range HamiltoniansH1; H2; . . . for which the description of
the scattering looks almost as easy and natural as in the
standard Hermitian regime.
Our selection of short-range interaction models proved

technically much simpler than expected. We revealed sev-
eral amazingly close parallels with their continuous delta-
function analogues. We were able to bring new arguments,
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first of all, thanks to certain ‘‘unreasonable efficiency’’ of
our nonperturbative method. In this framework, our main
mathematical result is that the Hermitizing metrics � ¼
�k which we attached to H1, H2, and H3 and, by an easy
extrapolation, to anyHk are all represented by the (infinite-
dimensional) diagonalmatrices. We believe that this is not
just a friendly feature of our specific models but rather a
generic property of the metrics since one has a lot of
freedom of their modification in general.

In the latter spirit, our present main recommendation is
that for all the realistic non-Hermitian models of scattering
one should still try to insist on the requirement that the
physical metric � is not too nonlocal. In our present text
we succeeded in supporting the latter recommendation by a
series of the explicit illustrations of its feasibility. One of
reasons was that we choose the discretization of the real
line of coordinates as our principal methodical tool.

The first hints offering a background for such a decision
were already found and formulated in [8]. The present
results can briefly be characterized as a successful transi-
tion from the bound-state models (or, formally, from the
finite N-point lattices of Ref. [14]) to the scattering sce-
nario (or, formally, to the limit N ! 1), complemented by
the replacement of the simplest possible one-parametric
model of Ref. [8] by the whole set of dynamically non-
trivial localized Hamiltonians Hk containing, in principle,
an arbitrary finite number k of coupling constants.

A formal benefit of our choice of the models appeared to
lie in their two-faced solvability. Its first face was rather
technical and concerned an easiness of construction of the
reflection and transition coefficients. Certain massive can-
cellations in the linear algebraic matching conditions made
the final formulas unbelievably compact. The second
friendly face of the solvability emerged during our system-
atic construction of the metrics �. An easiness of the
guesswork encountered during extrapolations k! kþ 1
is worth mentioning since it proved helpful and saved
computer time.

A priori we could not have hoped in the amazing diag-
onality of our solutions of Eq. (7) or in their asymptotically
constant form or in a ‘‘user friendliness’’ of the transition
from the trivial model Hk with k ¼ 1 to virtually all of its
k > 1 descendants. We firmly believe that at least some of
these properties will also be encountered in some other,
similar but less schematic models of the dynamics.

It is needless to add that many emerging questions
remain open. Some of them (like, typically, the numerical
efficiency of the discretizations and an analysis of the
practical rate of their convergence) have been skipped
intentionally. The omission of some other points was
only made with regret, mainly because of their lack of
any immediate relevance for physics. For example, a mar-
ginal but interesting benefit of the discretization with a
fixed gap h > 0 could have been seen in the emergence of
parallelism between the discrete-lattice formulas and their
continuous-limit counterparts. Besides such a direct pos-
sible correspondence between Hks and point interactions,
another correspondence (viz., to the truncated, finite latti-
ces) has also been omitted as too mathematical, in spite of
its potential relevance for the verification of the reality of
the spectra.
We are sure that even within the domain of physics we

did not list all the open questions. Pars pro toto, let us
sample, in the conclusion, the possible relevance of the
present models with the extremely simple metrics in the
context of the path-integral formulation of quantum theory
where an extremely interesting discussion has just ap-
peared in print [19], concerning the questions of the role
of the explicit form of the metric � in the partition func-
tions Z½J� and in certain related formulas in thermodynam-
ics and/or quantum field theory.
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Note added in Proof.—Recently, the constructive con-

firmation of the existence of the spatially localized non-
Hermiticities has been finally offered in the paper in
Ref. [20] where several non-Hermitian discrete
Hamiltonians have been constructed for which one can

construct the quasilocal metric �ðQLÞ
k ðx; yÞ which differs

from the usual Dirac’s metric �ðDiracÞ
k ðx; yÞ ¼ �ðx� yÞ

strictly in a very small vicinity of the support domain of
the underlying non-Hermitian pointlike interactions.
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