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A modified version of the double potential formalism for the electrodynamics of dyons is constructed.

Besides the two vector potentials, this manifestly duality invariant formulation involves four additional

potentials, scalar potentials which appear as Lagrange multipliers for the electric and magnetic Gauss

constraints and potentials for the longitudinal electric and magnetic fields. In this framework, a static dyon

appears as a Coulomb-like solution without string singularities. Dirac strings are needed only for the

Lorentz force law, not for Maxwell’s equations. The magnetic charge no longer appears as a topological

conservation law but as a surface integral on a par with electric charge. The theory is generalized to curved

space. As in flat space, the string singularities of dyonic black holes are resolved. As a consequence all

singularities are protected by the horizon and the thermodynamics is shown to follow from standard

arguments in the grand canonical ensemble.
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I. INTRODUCTION

Reissner-Nordstrøm black holes with both electric and
magnetic charge

ds2 ¼ �N2dt2 þ N�2dr2 þ r2ðd�2 þ sin2�d�2Þ;

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r
þQ2 þ P2

r2

s
;

(1.1)

A ¼ �Q

r
dtþ Pð1� cos�Þd� (1.2)

are generally excluded in a discussion of uniqueness the-
orems and geometric derivations of the first law because
the gauge potential is singular along a string that intersects
the horizon and goes to infinity [1,2]. Exceptions can be
found in [3] for stationary and axisymmetric perturbations
and in [4] where dipole charge contributions to the first law
for five dimensional black ring solutions are investigated
by dealing directly with divergent potentials on the hori-
zon. Dyonic solutions were also excluded in an investiga-
tion of duality of electric and magnetic black holes using
Euclidean methods [5].

Nevertheless, for variations of the three parameters the
first law

�M ¼ �

8�
�Aþ�H�Qþ  H�P; (1.3)

where

� ¼ M2 � ðQ2 þ P2Þ; r� ¼ M�
ffiffiffiffi
�

p
; (1.4)

� ¼ rþ � r�
2r2þ

; A ¼ 8�

�
M2 �Q2 þ P2

2
þM

ffiffiffiffi
�

p �
;

(1.5)

�H ¼ Q

rþ
;  H ¼ P

rþ
; (1.6)

can easily be inferred from the purely electric case by using
a duality argument. Furthermore, electric-magnetic black
hole duality has been extended to the case of dyons in the
canonical ensemble by using the manifestly duality invari-
ant double potential formalism [6]. In its original version
[7], this formalism involves as dynamical degrees of free-
dom two vector potentials. An independent rederivation
[8] has been written with two additional scalar potentials
which are spurious because they appear only as a part of
a total derivative of the action. In the black hole context
[6], coupling to external static sources can be made either
through fixed strings, spherically symmetric nondynamical
longitudinal fields, or intermediate combinations. Finally,
the coupling to dynamical dyons with the help of dynami-
cal strings has been studied in detail in [9,10], including a
proof of equivalence with Dirac’s original theory [11,12]
and a derivation of the appropriate quantization condition
[13,14].
What we will do in this paper is introduce potentials for

longitudinal components of electric and magnetic fields.
This has the effect of making the two scalar potentials non-
spurious as they now appear as the Lagrange multipliers for
the divergence constraints on electric and magnetic fields.
We thus increase the redundancy of the description in such
a way as to have twice as much gauge invariance as in
standard Maxwell theory.
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Now, taking into account all the results described above,
this extension of the double potential formalism is rather
straightforward and seems hardly worth the effort. We beg
to differ.

First of all, the electric and magnetic potentials pro-
duced by a static dyon both appear as Coulomb-like solu-
tions in a single, manifestly duality invariant formulation
without any stringlike singularities. In this framework Di-
rac strings are only needed in order to produce the correct
Lorentz force law from an action principle for dynamical
point-particle dyons.

In curved space, the new formulation is ideally suited for
the description of black hole dyons. As in flat space, their
string singularity is resolved and a geometric derivation of
the first law can be done along standard lines because all
singularities are now protected by the horizon. This is a
direct consequence of the intriguing transmutation into a
surface integral of the magnetic charge which appears as
a topological conservation law in the standard approach.
Since there is no quantization condition on magnetic or on
electric charge for a single dyon and because of the pres-
ence in the formalism of both chemical potentials, thermo-
dynamics and Euclidean computations can be performed in
the grand canonical ensemble, thus circumventing argu-
ments of [2,5].

In the next section, we discuss our formulation in
Minkowski space in the case of fixed external sources.
Section III is devoted to Dirac strings and dynamical
point-particle dyons. We finally write down and analyze
the appropriate action for curved space and discuss appli-
cations in the context of black hole physics.

II. EXTENDED DOUBLE POTENTIAL
FORMALISM IN FLAT SPACE

In this section we present an action principle for elec-
tromagnetism in the presence of electric and magnetic
sources which is manifestly duality invariant. Both electric
and magnetic Gauss constraints are dynamical and appear
in the action with their corresponding Lagrange multi-
pliers. For a static dyon, the solution of the field equations
is Coulomb-like, both in the electric and the magnetic sec-
tor. We show that the theory can be gauge fixed so as to
coincide with standard electromagnetism and conclude the
section by showing that Lorentz invariance, while not
manifest, is nevertheless realized through canonical gen-
erators very much as in the standard Hamiltonian for-
mulation of electromagnetism. This suggests, as we will
explicitly show in the last section, that the theory can be
generalized to curved space.

A. Action, duality, and gauge symmetries

The dynamical fields of the theory are Aa�, C
a, a ¼ 1, 2.

Here, Aa� � ðA�; Z�Þ are the standard and new potentials.

The additional fields Ca � ðC; YÞmake up the longitudinal

parts of magnetic and electric fields ~Ba � ð ~B; ~EÞ accord-
ing to

~B a ¼ ~r� ~Aa þ ~rCa: (2.1)

The external magnetic and electric currents ja� � ðk�; j�Þ
are conserved, @�j

a� ¼ 0. In this section, we assume that

they correspond to the currents produced by a single point-
particle dyon. We consider the action

I½Aa�; Ca� ¼ IM½Aa�; Ca� þ II½Aa�; ja��; (2.2)

where

IM½Aa�; Ca� ¼ 1

2

Z
d4x½�abð ~Ba þ ~rCaÞ � ð@0 ~Ab � ~rAb0Þ

� ~Ba � ~Ba� (2.3)

is the substitute for the usual Maxwell action and

II½Aa�; ja�� ¼
Z
d4x�abA

a
�j

b� (2.4)

is the ‘‘interaction’’ action. Here �ab is skew-symmetric
with �12 ¼ 1, and indices a; b; . . . raised and lowered with
the Kronecker delta. The action (2.2) is manifestly invari-
ant under simultaneous duality rotations on ðAa�; Ca; ja�Þ

�DA
a
� ¼ �abAb�; �DC

a ¼ �abCb;

�Dj
a� ¼ �abj�b :

(2.5)

It is also gauge invariant under

��A
a
� ¼ @��

a; ��C
a ¼ 0: (2.6)

B. Equations of motion and point-particle dyon

The Euler-Lagrange equations of motion associated
with (2.3) are easily shown to be equivalent to Maxwell’s
equation with magnetic and electric currents. Indeed, vari-
ations with respect to Aa0 give the constraints

~r � ~Ba � r2Ca ¼ j0a: (2.7)

Variations with respect to Ca imply the equations

r2Ca ¼ �abð ~r � @0 ~Ab �r2Ab0Þ: (2.8)

The fields A0
a, C

a are auxiliary in the sense that, under
suitably boundary conditions at spatial infinity, their equa-
tions of motion can be solved for A0

a, C
a in terms of all

other fields, without the need for initial conditions.

Variations with respect to ~Aa yield Maxwell’s equations
in the form

� �ab@0 ~B
b þ ~r� ~Ba ¼ �ab ~j

b: (2.9)

As a consequence, if the electromagnetic field tensor F
is expressed in the usual way in terms of electric and mag-
netic fields, F0i ¼ �B2

i , Fij ¼ �ijkB
1k, it follows that both
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dF and d�F vanish outside of sources on account of the
Euler-Lagrange equations of motion.

In the case of a single point-particle dyon at the origin
with charges Qa � ðP;QÞ, for example,

ja�ðxÞ ¼ 4�Qa��0 �
3ðxÞ; (2.10)

instead of (1.2), Maxwell’s equations in the above form are
now solved by

Aa ¼ � �abQb

r
dt; Ca ¼ �Qa

r
: (2.11)

This solution resolves the string-singularity of the standard
formulation. It is unique in the transverse gauge
~r � ~Aa ¼ 0with vanishing boundary conditions on Aa�, C

a.

C. Canonical structure and degrees of freedom

By using integrations by parts and decomposing ~Aa ¼
~AaT þ ~rMa, with Ma ¼ ðMA;MZÞ, the free action (2.3)
can be written in the form

IM½ ~AaT; Aa0 ;Ma; Ca� ¼
Z
d4x½� ~r� ~ZT � @0 ~AT

þr2Y@0MA �r2C@0MZ

� 1

2
~E � ~E� 1

2
~B � ~B� A0r2Y

þ Z0r2C�; (2.12)

where ~E ¼ ~r� ~Zþ ~rY, ~B ¼ ~r� ~Aþ ~rC. This shows
that the canonically conjugate pairs are ð ~AT;� ~r� ~ZTÞ,
ðr2Y;MAÞ, and ð�r2C;MZÞ so that there are 4 conjugate
pairs per spacetime point.

Variation with respect to the Lagrange multipliers Z0

imposes the first class constraint r2C ¼ 0. Partial gauge
fixing to the standard covariant description can be achieved
by requiring the longitudinal part of the second vector po-
tentials to vanish,MZ ¼ 0, and gives back the usual Ham-
iltonian description of electromagnetism. Complete gauge
fixation is then achieved, as usual, by solving the electric
Gauss constraint r2Y ¼ 0 associated with the Lagrange
multiplier A0 together with the gauge condition MA ¼ 0.
The gauge fixed theory contains 2 physical degrees of free-
dom per spacetime point described by the transverse vec-
tor potential ~AT and its canonically conjugate variable

� ~ET ¼ � ~r� ~ZT , as it should.
For later use, we note that

fAaiðxÞ; Bbjðx0Þg ¼ ��ab�ij�3ðx; x0Þ;
fCaðxÞ; Bbjðx0Þg ¼ 0;

fMaðxÞ; Cbðx0Þg ¼ �abr�2�3ðx; x0Þ;
fBaiðxÞ; Bbjðx0Þg ¼ �ab�ijk@k�

3ðx; x0Þ:

(2.13)

D. Duality, gauge, and Poincaré generators

The Hamiltonian and constraints associated with the first
order action IM½Aa�; Ca� are

H ¼
Z
d3x

1

2
~Ba � ~Ba; ga ¼ �ab

~r � ~Bb: (2.14)

The duality generator is the SOð2Þ Chern-Simons term [7]
suitably extended to the longitudinal potentials,

D ¼ � 1

2

Z
d3xð ~Ba þ ~rCaÞ � ~Aa: (2.15)

It commutes with the Hamiltonian and the other Poincaré
generators introduced below, but is only weakly gauge
invariant,

fga;Dg ¼ �abg
b: (2.16)

The duality transformations (2.5) on the canonical
variables Aai , C

a are generated through �DA
a
i ¼ fAai ; Dg,

�DC
a ¼ fCa;Dg. The extension to the Lagrange multi-

pliers is dictated by (2.15) and the requirement that the
first order action IM½Aa�; Ca� is invariant. In the same way,

the gauge transformations �� in (2.6) are generated by

�½�� ¼
Z
d3xga�

a: (2.17)

In this expression, the generators are smeared with the
arbitrary functions �a defining the gauge transformation
in (2.6).
A general Poincaré generator may be written as

Tð!; aÞ ¼ 1
2!�	J

�	 � a�P
�: (2.18)

Here J�	 and P� are the individual Poincaré generators,
and !�	, a� the corresponding parameters defining the

transformation. The generator of time translations is the
Hamiltonian, P0 ¼ H. The Lorentz generators may be
decomposed as

1
2!�	J

�	 ¼ 1
2!ij�

ijkJk �!i0K
i: (2.19)

The Poincaré generators are related to the symmetric
energy-momentum tensor with complete electric and mag-
netic fields as follows:

T00 ¼ 1
2ð ~E2 þ ~B2Þ; Ti0 ¼ ð ~E� ~BÞi; (2.20)

P� ¼
Z
d3xT�0; J0�	 ¼ �

Z
d3xðx�T	0 � x	T�0Þ;

(2.21)

where J0k ¼ Jk and ~K0 ¼ ~K � x0 ~P,
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~P ¼ � 1

2

Z
d3x�ab ~B

a � ~Bb;

~J ¼
Z
d3x�ab ~B

að ~x � ~BbÞ; ~K ¼
Z
d3x ~x

�
1

2
~Ba � ~Ba

�
:

(2.22)

One can then show by direct computation of the Poisson
brackets that these generators form a representation of the
Poincaré algebra, up to terms involving the constraints. We
will prove this explicitly in Sec. IVC and show that

fTð!; aÞ; Tð�; bÞg ¼ Tð½!; ��; !b� �aÞ þ�½½
; ��B�;
(2.23)

where


ð!; aÞ� ¼ �!�
ix
i þ a�;

�ð�; bÞ� ¼ ���ixi þ b�;

½
;��aB ¼ Bai�ijk

j�k � �acBcið
0�i � �0
iÞ:

(2.24)

If we then define

a0i ¼ ai þ!0ix
0 (2.25)

and all other parameters unchanged, the conserved Noether
charges generating the Poincaré transformations as canoni-
cal transformations on the fields are

Qð!; aÞ ¼ Tð!; a0Þ: (2.26)

Indeed, deriving (2.23) in terms of a0ðaÞ with respect to b0
and putting � ¼ 0 gives

fH;Qð!; aÞg ¼ @

@t
Qð!; aÞ �

Z
d3xga�

abBbi

ið!; a0Þ:

(2.27)

As a consequence, the Noether charges are conserved
on the constraint surface, as they should, and the Poin-
caré transformations of the canonical variables, �QC

a ¼
fCa;Qg and �QA

a
i ¼ fAai ; Qg, can be extended to the

Lagrange multipliers so as to leave the action invariant.
Explicitly, with the understanding that 
 ¼ 
ð!; a0ðaÞÞ,

�QC
a ¼ 0; (2.28)

�QA
a
i ¼ @i�

a
Q � �abBbi


0 � �ijk

jBak; (2.29)

�QB
a
i ¼ ��ijk@jð�abBbk
0Þ � @jðBaj
iÞ þ @jðBai
jÞ;

(2.30)

�QA
a
0 ¼ @0�

a
Q þ �abBbi


i; (2.31)

where

�aQ ¼ ��abr�2@iðBib
0Þ þ r�2@ið�ijkBaj 
kÞ: (2.32)

III. DYNAMICAL POINT-PARTICLE DYONS

We show in this section that for sources that correspond
to dynamical point-particle dyons, a consistent action prin-
ciple that makes the dyons evolve according to the Lorentz
force law needs Dirac-type strings and requires a veto giv-
ing rise to the standard quantization condition. We then
show equivalence with Dirac’s original, manifestly Lorentz
invariant formulation.

A. Dyons and Dirac strings

We begin by reviewing the use of Dirac strings in the
theory of magnetic monopoles. Let us first fix conventions.
Define �a1...an ¼ �a1...an to be totally skew-symmetric with

�1...n ¼ 1. The Levi-Civita tensor is "a1...an ¼
ffiffiffiffiffiffijgjp
�a1...an .

Indices on this tensor are raised with the metric, which im-

plies that "a1...an ¼ ð�Þ�ffiffiffiffiffi
jgj

p �a1...an where � is the signature of

the metric. Our convention for the dual is ð�!pÞa1...an�1
¼

1
p!!

b1...bp"b1...bpa1...an�p .

Consider a ðdþ 1Þ-dimensional surface �dþ1 in flat
4-dimensional spacetime parameterized by ð;�1; . . . ; �dÞ,

x� ¼ v�ð; �1; . . . ; �dÞ:
Associated with this surface, define the dþ 1 form H�dþ1

with contravariant components

H
�1����dþ1

�
ðxÞ ¼

Z
�
�ð4Þðx� vÞdv�1 ^ � � � ^ dv�dþ1 :

(3.1)

It is straightforward to show that if @� is the boundary of
�, then,

d�H�dþ1
¼ �H@�dþ1

: (3.2)

In the Dirac theory, the worldline �:x� ¼ z�ðÞ of a mag-
netic pole of charge g defines the magnetic current

j�mag ¼ gH�
� : (3.3)

The worldline is the boundary of the worldsheet of a Dirac
string �: x� ¼ y�ð; �Þ. Hence, if G�	 ¼ gH�	

�
,

d�G ¼ �jmag: (3.4)

Dirac defines the electromagnetic field by

F ¼ daþ �G (3.5)

and gets the desired modified Bianchi identity dF ¼ �jmag.
Note that we have used the lowercase a� for the electro-
magnetic potential here. This is to distinguish it from the
potentials Aai in our formalism [see Eq. (2.1)]. In particular,
A1
i in our formulation is not equal to ai, which arises in

other two-potential formulations to be discussed below.
In the Dirac formulation, the theory has an extra gauge

symmetry associated with the freedom of arbitrarily choos-
ing the position of the strings while keeping its boundary
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(worldline of monopole) fixed. To see this, consider the
displacement of a string defined by

x� ¼ w�ð; �; �Þ; (3.6)

where the initial string worldsheet � is at � ¼ 0 and the
final, �0, at � ¼ 1. The boundary of the 3-dimensional
surface � defined by (3.6) is �� ¼ �� �0. Hence, if

�H
�	
�

¼ H
�	
�

�H
�	
�0 ; (3.7)

then from (3.2),

��G ¼ d�K; (3.8)

where K��� ¼ gH���
� . Therefore, we see that the electro-

magnetic field F in (3.5) is invariant under the displace-
ment of the string if, while moving the string, we also vary
a by

�a ¼ ��K: (3.9)

The Dirac action, which depends on the string only through
F�	 is invariant under this gauge symmetry, up to the
anomaly that gives rise to the quantization condition,
which will be explained in more detail below when dis-
cussing the double potential formalism.

In a manifestly duality invariant theory, magnetic and
electric charges are treated on the same footing. In general
one considers n dynamical dyons with magnetic and elec-
tric charges qan � ðgn; enÞ. The current is then defined as

ja�ðxÞ ¼ X
n

qanH
�
�n
ðxÞ ¼ X

n

qan
Z
�n

�4ðx� znÞdz�n ;

(3.10)

where the sum in n is over the worldlines �n of every dyon
of charge qan [parameterized by z

�
n ðÞ with an arbitrary

parameter ]. For the Dirac strings attached to them, we
define

Ga�	ðxÞ ¼ X
n

qanH
�	
�n

ðxÞ

¼ X
n

qan
Z
�n

�4ðx� ynÞdy�n ^ dy	n; (3.11)

where �n is the worldsheet of the Dirac string whose
boundary is �n [parameterized by y

�
n ð; �Þ with arbitrary

parameters  and �]. The analogs of Eqs. (3.4) and (3.8) in
this case are

d�Ga ¼ �ja; ��Ga ¼ d�Ka; (3.12)

where

Ka ��� ¼X
n

qanH
���
�n

; (3.13)

and �n is the surface defined by the displacement of the
string attached to the dyon qan.

When splitting space and time, as in the different mani-
festly duality invariant formulations, it is convenient to

also split the space and time components of the string
currents, defining

�ai ¼ 1
2�ijkG

a jk ¼ �Ga
0i; �ai ¼ Ga 0i ¼ 1

2�
ijk�Ga

jk:

(3.14)

Explicitly,

~� a ¼ X
n

qan
Z
�n

�4ðx� ynÞ 12d~yn �^d~yn; (3.15)

~� a ¼ X
n

qan
Z
�n

�4ðx� ynÞdy0n ^ d~yn; (3.16)

where ðd~yn �^d~ynÞi ¼ �ijkdy
i ^ dyj and the first identity

in (3.12) becomes

~r � ~�a ¼ ja0; ~r� ~�a � @0 ~�
a ¼ ~ja: (3.17)

It is also convenient to work with the dual of Ka ���, the
one-form va�. In terms of it, we may derive the way the

vectors ~�a and ~�a in (3.14) transform under displacement
of the strings. Using the second identity in (3.12),

��ai ¼ ��Ga
0i ¼ ðdvaÞ0i ¼ @0v

a
i � @iv

a
0 ; (3.18)

��ai ¼ 1
2�
ijk��Ga

jk ¼ 1
2�
ijkðdvaÞjk ¼ ð ~r� ~vaÞi: (3.19)

For dynamical dyons, the action must be supplemented
with the kinetic term

Ik½z�n � ¼ �X
n

Z
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dz�n dzn�

q
: (3.20)

The total action I0 that includes the dynamics of the dyons
and produces the correct Lorentz force law is

I0½Aa�; Ca; y�n � ¼ IM þ II þ Ik þ 1

2

Z
d4x�ab½2 ~rCa ~�b

� ~�a ~�b � ~�ar�2 ~r� @0 ~�
b�: (3.21)

The constraints (2.7) and the electromagnetic Eqs. (2.9) are
clearly unchanged, for the extra piece in the action does not
depend on Aa�. The equations obtained from the variation

of Ca are modified with respect to the result of (2.8) to

r2Ca ¼ �abð ~r � ½@0 ~Ab þ ~�b� � r2Ab0Þ: (3.22)

For later use we note that, applying ~r� to (2.9) and using

(3.22), together with the boundary condition that ~Ba falls
off at least as fast as r�1 at infinity,

~B a � �abð@0 ~Ab � ~rAb0 þ ~�b þr�2 ~r� @0 ~�
bÞ: (3.23)

As a side remark, we also note that the definitions

F a
�	 ¼ @�A

a
	 � @	A

a
� þ �Ga

�	;
�Ga

ij ¼ �ijk@
kCa;

(3.24)
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�Ga
0i ¼ �ai þr�2ð ~r� @0 ~�

aÞi; (3.25)

are such that

Bai ¼ 1
2�ijkF

jk
a ¼ �Fa0i: (3.26)

Furthermore, they allow us to write the on-shell
Eqs. (3.23) as

Bai � �abF
b
0i ¼ �1

2�ijk�ab
�Fjkb; (3.27)

while the equations of motion for Aa� take the covari-

ant form

@	F
�	
a ¼ �abj

b�; @	
�F�	a ¼ �j�a : (3.28)

In the case of a single dyon, one assumes without loss of
generality that the string terms in the last line of (3.21) are
absent. Indeed, in this case one can perform a duality ro-
tation so that, say, the magnetic charge vanishes. The string
terms then reduce to �R

d4x ~rC1�2 and can be dropped

because they only affect the irrelevant auxiliary equation
used to determine A2

0. This justifies a posteriori the cou-

pling to the sources considered in the first section.

B. Lorentz force law and veto

We still need to vary y�, z� in action (3.21) in order to
derive the Lorentz force law. We will see below that in
order to obtain it, we need to impose the so called ‘‘Dirac
veto.’’ This demand was introduced by Dirac in his original
treatment of magnetic monopoles [12] to obtain the desired
classical equations. It consists of the requirement that no
electric charge can touch a Dirac string. At the quantum
level, Dirac showed that the veto modifies the topology of
phase space, giving rise to his celebrated quantization
condition. In our formalism the Dirac veto is required as
well, as we show below. The difference resides in that here
we will need to ask that no dyon can touch the string of any
other dyon. This generalized version of the Dirac veto was
also used in [9].

Variations of II with respect to z
�
n give

�zII ¼
X
n

�abq
b
n

Z
�n

ðð@0 ~Aa � ~rAa0Þ � ð�z0nd~zn � �~zndz
0
nÞ

þ ð ~r� ~AaÞ � ð�~zn � d~znÞÞ: (3.29)

Before varying IM with respect to y
�
n , we establish the

following identities. For all smooth vector fields ~Va, ~Wa

one hasZ
d4x ~Vb�y ~�

b ¼ X
n

qbn

�Z
�n

~Vb � ð�~zn � d~znÞ

þ
Z
�n

�
~r � ~Vb�~yn � 12 ðd~yn �^d~ynÞ

� @0 ~Vb �
�
�~yn � ðdy0n ^ d~ynÞ

� �y0n
1

2
ðd~yn �^d~ynÞ

���
(3.30)

andZ
d4x�y ~�

a ~Wa ¼
X
n

qan

�Z
�n

ð�z0nd~zn � �~zndz
0
nÞ � ~Wa

þ
Z
�n

�
�~yn � ðdy0n ^ d~ynÞ

� 1

2
�y0nðd~yn �^d~ynÞ � ð ~r� ~WaÞ

��
:

(3.31)

The variation of IM with respect to y�n may be computed by
specializing for the fields

~V b ¼ 1
2�abð2 ~rCa � ~�aÞ; (3.32)

~W a ¼ �1
2�abð ~�b þ 2r�2 ~r� @0 ~�

bÞ: (3.33)

Combining all terms,

�zII þ �yIM ¼ X
n

qan

�Z
�n

ðð ~Wa � �abð@0 ~Ab � ~rAb0ÞÞ � ð�z0nd~zn � �~zndz
0
nÞ þ ð ~Va � �abð ~r� ~AbÞÞ � ð�~zn � d~znÞÞ

þ
Z
�n

�
~r � ~Va�~yn � 12 ðd~yn �^d~ynÞ þ ð ~r� ~Wa � @0 ~VaÞ �

�
�~yn � ðdy0n ^ d~ynÞ

� �y0n
1

2
ðd~yn �^d~ynÞ

���
: (3.34)

Now, taking the divergence of (3.32) and making use of the
first identity in (3.17) and the constraints (2.7) one gets,

~r � ~Va ¼ 1
2�abj

b0: (3.35)

It follows that the second term in (3.34) vanishes provided
the string attached to dyon n does not cross any other dyon
(Dirac veto). This is due to the fact that the Dirac veto

ensures that j�a ¼ 0 on the worldsheet of the strings.
Similarly, from (3.32) and (3.33) and the identities (3.17)
it is straightforward to show that

~r� ~Wa � @0 ~Va ¼ �1
2�ab

~jb: (3.36)

Hence, the last term in (3.34) also vanishes on account of
Dirac’s veto. The string piece in the first and second terms
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of (3.34) again vanish because of the veto. This may be
seen from the fact that (3.32) may be written as

~V a � �abð ~r� ~AbÞ ¼ ��ab ~Bb þ 1
2�ab�

b; (3.37)

and therefore, due to the veto, the integral on the world-
line of a dyon only sees the first term. In the same way,
using (3.23),

~W a � �abð@0 ~Ab � ~rAb0Þ ¼ � ~Ba þ 1
2�ab ~�

b; (3.38)

and the second term vanishes on the worldline of a dyon.
Combining the remaining terms with those from the

variation of Ik, extremization of the total action now im-
plies the Lorentz force law

mn

d

d

0
@ dz0n

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� dzn�

d
dz

�
n

d

q
1
A ¼ qan ~BaðznÞ � d~znd ; (3.39)

mn

d

d

0
@ d~zn

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� dzn�

d
dz�n
d

q
1
A ¼ qan ~BaðznÞ � dz

0
n

d
þ d~zn
ds

� ~BaðznÞ�abqbn; (3.40)

as it should.

C. Equivalence with Dirac’s covariant formulation and
quantization condition

We end this section by showing that the theory presented
above is equivalent to Dirac’s theory. This shows that the
theory with dyons is Lorentz invariant. We will actually
show that our action (3.21) is equivalent to an action found
in [9] which, in turn, has been shown in [10] to be equiva-
lent to a generalization of Dirac’s covariant formulation
allowing for dyons.

Explicitly, this action reads

�I½ ~aa; y�n � ¼ 1

2

Z
d4x½�ab ~bað@0 ~ab þ ~�bÞ � ~ba � ~ba

þ �ab ~a
a � ~jb� þ Ik; (3.41)

where

~b a ¼ ~r� ~aa þ ~�a: (3.42)

This formulation makes use of Dirac strings in the same
way as our formulation does. That is, each dyon qn is
attached to a string parameterized by y�n ð; �Þ. The quan-

tities ~�a and ~�a appearing in (3.41) are the same ones as
defined in Eqs. (3.15) and (3.16) above and satisfy the
identities (3.17). Note that on account of these identities,
the longitudinal part of ~a drops out of this action principle.

The field ~ba is the magnetic/electric field appearing in
Maxwell’s equations. It must, therefore, be the same as
our ~Ba.

In this formulation, Gauss’s law appears as an identity
on taking the divergence of ~ba in (3.42). The field ~r� ~aa

is transversal but has a stringlike singularity which is
removed by ~�a. In our formulation ~Ba has two nonsingular
pieces, namely, the transverse and longitudinal compo-
nents of it. To show equivalence, we decompose ~�a ac-
cordingly so that

~b a ¼ ~r� ~aa þ ~�a

¼ ~r� ð ~aa �r�2 ~r� ~�aÞ þ ~rr�2 ~r � ~�a: (3.43)

From the constraints (2.7) and the first identity in (3.17),

the longitudinal piece is precisely ~rCa. We are then lead to
the following identifications:

~A a ¼ ~aa �r�2 ~r� ~�a; (3.44)

Ca ¼ r�2 ~r � ~�a: (3.45)

(The first equation is true up to an irrelevant longitudinal

field, in order for ~Ba ¼ ~ba to hold.)
To establish equivalence is now straightforward. We

start with the action (3.21) of our formulation. Assuming
vanishing boundary conditions at spatial infinity, ðAa0 ; CaÞ
are auxiliary fields because their equations of motions (2.7)
and (3.22) can be used to algebraically determine them in
terms of the other fields. We can thus solve for them in
action (3.21). Then we use (3.44) to write ~Aa in terms of ~aa,
and after a bit of algebra involving the identities (3.17) we
get precisely action (3.41).
In the double potential formulation of [9], i.e., for action

(3.41), the symmetry corresponding to shifts in the string

is realized by transforming ~�a and ~�a in (3.18) and (3.19),
with va0 ¼ 0 and

� ~aa ¼ � ~va: (3.46)

Let us do that for the case in which there are only two
dyons, qa, �qa. We will only change the position of the
string attached to qa. Varying action (3.41) and using the

identity ~r � ~ba ¼ ja0 we get

� �I ¼ 1

2
�ab

Z
d4xja�vb�: (3.47)

This is zero unless the worldline of dyon �qa crosses the
3-dimensional manifold � swept by the string attached to
qa. In that case the variation is

� �I ¼ 1
2�abq

a �qb: (3.48)

This will not affect the quantum mechanical system if the
variation is proportional to 2�@n, for some integer n. This
leads us to the Dirac-Schwinger-Zwanziger quantization
condition

�eg� e �g ¼ 2�n@; (3.49)
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up to a factor of 1=2. This factor is removed by a careful
analysis of the topology of the system. We will not discuss
this here. More details can be found in [9,10].

Finally, we study what happens in our formulation. First,
let us compute how the field ~Aa transforms under the
movement of the string. From Eq. (3.19), (3.44), and
(3.46) we get (3.44),

� ~Aa ¼ � ~va �r�2 ~r�r� ~va ¼ � ~rðr�2 ~r � ~vaÞ:
(3.50)

If we now take

�Aa0 ¼ �va0 ¼ �@0ðr�2 ~r � ~vaÞ þ @0ðr�2 ~r � ~vaÞ � va0 ;

(3.51)

the variation defined by (3.50) and the first term of (3.51) is
a gauge transformation of the form (2.6) which leaves
action I0 in (3.21) invariant. We thus only need to compute
the variation under the movement of the strings and the
second part of (3.51). Using identities (3.17) one obtains
precisely the same result as in the previous case, namely,
the right-hand side of Eq. (3.47). The argument leading to
the quantization condition is therefore the same.

IV. EXTENDED DOUBLE POTENTIAL
FORMALISM IN CURVED SPACE

We generalize the first order action to curved spacetimes
and discuss the canonical and gauge structure of the the-
ory, including diffeomorphism invariance. In particular, we
show that the standard algebra of surface deformations of
the purely gravitational case now involves both Gauss-type
constraints with structure functions depending on electric
and magnetic fields. We proceed to the equations of motion
deriving from the generalized action principle and show
that they are equivalent to the covariant Einstein-Maxwell
equations. We then show how the string singularity of the
Reissner-Nordstrøm dyonic black hole solution gets re-
solved in our formalism. We compute the electric and mag-
netic surface integrals following the Regge-Teitelboim
approach, discuss how they appear in a geometric deriva-
tion of the first law and in the Euclidean approach to black
hole thermodynamics. Finally, we apply these results to the
resolved Reissner-Nordstrøm black hole.

A. Action and canonical structure

The first order action IM can be generalized to curved
spacetimes. We consider a globally hyperbolic spacetime,
foliated by a spacelike family of hypersurfaces, each la-
beled by the value of a timelike coordinate t. The induced
metric on each surface is gijðtÞ. We follow the conventions

of MTW [15], chapter 21, where spatial indices are low-
ered and raised with the 3-metric gij and g is its deter-

minant. We denote by �ijk the completely antisymmetric

symbol, which differs from the ½ijk� notation used in
MTW.
Adapting the results derived in [6–8,16] and defining

Bai ¼ �ijk@jA
a
k þ

ffiffiffi
g

p
@iCa, we get the following mani-

festly duality invariant action in the absence of sources:

IM½Aa�; Ca; gij; N; Ni� ¼ 1

8�

Z
d4x

�
ðBai þ ffiffiffi

g
p
@iCaÞ

� �abð@0Abi � @iA
b
0Þ �

Nffiffiffi
g

p Bi
aBa

i

� �ab�ijkN
iBajBbk

�
; (4.1)

where N ¼ ð�ð4Þg00Þ1=2 and Ni ¼ ð4Þgijð4Þg0i are the lapse
and shift functions and ð4Þg�	 is the 4-dimensional metric.

We are interested in solutions to the equations of motion
derived from I ¼ IADM þ IM, where IADM is the first order
action for pure general relativity. Introducing the collective
notation zA ¼ ðgij; �ij; Aai ; CaÞ for the different fields in

our system, this action principle takes the form

I½z; u� ¼
Z
d4x½aAðzÞ@0zA � u����; (4.2)

aAðzÞ@0zA ¼ �ij

16�
@0gij � Ei

4�
@0Ai þ

ffiffiffi
g

p
@iC

4�
@0Zi: (4.3)

The constraints �� � ðH?;H i;GaÞ are associated with
the Lagrange multipliers u� � ðN;Ni; Aa0Þ and given by1

H ? ¼ 1

16�
ðH ADM

? þH mat
? Þ;

H i ¼ 1

16�
ðH ADM

i þH mat
i Þ; Ga ¼ 1

4�
�ab@iBbi;

(4.4)

where H ADM
? , H ADM

i are given in [15,16] and

H mat
? ¼ 2gijffiffiffi

g
p Bi

aBaj; H mat
i ¼ 2�ab�ijkBajBbk:

(4.5)

The first two sets of constraints in (4.4) above are
the gravitational Hamiltonian and momentum constraints,
while the last set are the two electromagnetic Gauss
constraints.
In order to disentangle the canonical structure we begin

by writing this action as

IM ¼ 1

4�

Z
d4x

�
�Ei@0Ai þ ffiffiffi

g
p
@iC@0Zi � A0@iEi

þ Z0@iBi � N

2
ffiffiffi
g

p ðEiEi þBiBiÞ þ �ijkN
iEjBk

�
;

(4.6)

1Note the misprint in Eq. (21.116) of [15], where there should
be no lapse function on the right-hand side.
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where Ei ¼ �ijk@jZk þ ffiffiffi
g

p
@iY and Bi ¼ �ijk@jAk þffiffiffi

g
p
@iC. We assume here and below that every 3-vector

admits a unique orthogonal, spatially covariant decompo-
sition (see e.g. [17]) Xi ¼ XTi þ XLi, where

XLi ¼ @iM; XTi ¼ 1ffiffiffi
g

p �ijk@jLk; (4.7)

for some M, Lk. In terms of the inverse of the spatially
covariant Laplacian r�2 and the spatially covariant de-
rivative ri, we have

M ¼ r�2rjX
j; XTi ¼ Xi � @iM: (4.8)

A vector is transverse if its divergence vanishes and longi-
tudinal if its curl vanishes,

@ið ffiffiffi
g

p
XiÞ ¼ 0 ) Xi ¼ XTi;

�ijk@jXk ¼ 0 ) Xi ¼ XLi:
(4.9)

We then haveZ
d3x

ffiffiffi
g

p
XigijY

j ¼
Z
d3x

ffiffiffi
g

p ðXLigijYLj þ XTigijY
TjÞ:

Using such a decomposition for Aia, A
a
i ¼ @iM

a þ AaTi ,
Ma ¼ ðMA;MzÞ, the kinetic term becomes

Z
d4xaAðzÞ@0zA¼

Z
d4x

��
�ij

16�
þ

ffiffiffi
g

p
Dijkl

4�
ðZTk

ffiffiffi
g

p
@lC

�ATk
ffiffiffi
g

p
@lYÞ

�
@0gij�

�ijk@jZ
T
k

4�
@0A

T
i

þ@ið
ffiffiffi
g

p
@iYÞ

4�
@0MA�

@ið ffiffiffi
g

p
@iCÞ

4�
@0MZ

�
;

(4.10)

where Dijkl ¼ 1
2
ffiffi
g

p ðgikgjl þ gilgjk � gijgklÞ is the DeWitt

supermetric. Note that Dijkl is not the inverse DeWitt
supermetric, but the result of raising all the indices with
the metric. Let us define

�a ¼ ð@ið ffiffiffi
g

p
@iCÞ; @ið ffiffiffi

g
p
@iYÞÞ ¼ ð��Z;�AÞ; (4.11)

as new independent variables, so that Ca ¼ r�2 �affiffi
g

p . We

also define

~� ij ¼ �ij þ 4
ffiffiffi
g

p
Dijkl�abA

aT
k

ffiffiffi
g

p
@lC

b; (4.12)

The independent phase space variables are thus
ðgij; ATi ;MA;MZ; ~�

ij; ZTi ; �A; �ZÞ in terms of which the

canonically conjugate pairs are�
gij;

~�kl

16�

�
;

�
ATi ;�

�ijk@jZ
T
k

4�

�
;�

MA;
�A
4�

�
;

�
MZ;

�Z
4�

�
:

(4.13)

In particular,

fBaiðxÞ;BbjðyÞg ¼ 4��ijk�ab@xk�
3ðx; yÞ;

fMaðxÞ; �bðyÞg ¼ 4��ab�3ðx; yÞ: (4.14)

B. Gauge structure

Before turning to the equations of motions and their
solutions, let us discuss the gauge structure of the theory.
We want to show that the constraints �� are first class.
Defining �� � ð
?; 
i; �aÞwith �� vanishing at the bound-
ary and �½�� ¼ R

d3x���
�, this means that

f�½�1�;�½�2�g ¼ �½½�1; �2��; (4.15)

for a suitably defined ½�1; �2�. In this case, the gauge
transformations leaving action (4.2) invariant are given by

��z
A ¼ fzA;�½��g; �u� ¼ @0�

� þ ½�; u��: (4.16)

In order to compute these brackets it is useful to go to the
Darboux coordinates identified in the previous subsection
in terms of which the Gauss constraints become

G a ¼ 1

4�
�ab�

b: (4.17)

Now one should do the change of coordinates in
H?, H i, i.e., perform the replacement �ij ¼ ~�ij �
4
ffiffiffi
g

p
Dijkl�abA

aT
k

ffiffiffi
g

p
@lC

b. Since the additional terms that
are generated in this way are proportional to Ca and thus
vanish on the constraint surface defined by Ga they can
safely be discarded in the source-free situation. In the
following, we will drop the tilde on �ij.
In particular, we have

���
a ¼ 0; (4.18)

��A
a
i ¼ @i�

a
T �

gijffiffiffi
g

p �abBj
b


? � �ijk

jBak; (4.19)

��gij ¼ ri
j þrj
i þ 2Dijkl�
kl
?; (4.20)

where

�aT ¼ �a � �ab
1ffiffiffi
g

p r�2@iðBi
b


?Þ

þ 1ffiffiffi
g

p r�2@i

 
�ijkffiffiffi
g

p Ba
j 
k

!
: (4.21)

Equation (4.18) implies that �a are constants of motion,
which is consistent with the longitudinal part of the source-
free Maxwell equations. From (4.19) we also find

��Bia ¼ ��ijk@j
 
1ffiffiffi
g

p �abBbk

?
!
� @jðBaj
iÞ

þ @jðBai
jÞ: (4.22)

Infinitesimal diffeomorphisms along �� are recovered
by using 
? ¼ N�0, 
i ¼ gi��

�. Indeed, with this choice
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of parameters, L�g�	 � �
g�	. This can be seen for
instance on (4.20) by using the (auxiliary) equations of
motion for �ij together with the definitions of lapse N and
shift Ni in terms of the 4-metric g�	. In other words, dif-
feomorphism invariance in the Hamiltonian framework is
implemented through the gauge transformations generated
by H½
� ¼ R

d3xðH?
? þH i

iÞ. In particular, using

as gauge parameters the Lagrange multipliers, �� ¼ u�,
amounts to performing an infinitesimal time-translation on
account of the Hamiltonian equations of motion.

Let us end this discussion by determining ½�1; �2�. The
constraints Ga, have vanishing Poisson brackets among
themselves and with all other constraints because the Bai

do not depend on MA, MZ. It follows that ½�; �2�� ¼ 0
and also, from (4.16) and (4.19) that the associated gauge
transformations �� generated by G½�� ¼ R

d3xGa�
a are

the double electromagnetic gauge transformations of (2.6),
while all other variables are left invariant.

We still have to compute fH½
�; H½��g. We notice first of
all that the purely gravitational part satisfies the algebra of
surface deformations [18,19],

fHADM½
�; HADM½��g ¼ HADM½½
; ��SD�; (4.23)

½
;��?SD ¼ 
i@i�
? � �i@i


?; (4.24)

½
; ��iSD ¼ gijð
?@j�? � �?@j
?Þ þ 
j@j�
i � �j@j


i:

(4.25)

From (4.20) and (4.22), we find that

fHADM½
�; Hmat½��g � ð
$ �Þ þ fHmat½
�; Hmat½��g
¼ Hmat½½
; ��SD� þG½½
;��B�; (4.26)

where

½
; ��aB ¼ Bai�ijk

j�k � �acBciffiffiffi

g
p ð
?�i � �?
iÞ: (4.27)

Combining with (4.23), we finally get

fH½
�; H½��g ¼ H½½
; ��SD� þG½½
;��B�: (4.28)

According to [20], such a constraint algebra provides the
integrability conditions that guarantee that ‘‘the evolution
of a three geometry can be viewed as the deformation of a
three-dimensional cut in a four-dimensional space-time.’’

C. Derivation of the Poisson algebra of Poincaré
generators in flat spacetime

In this subsection, we derive the Poisson algebra of the
Poincaré generators in flat spacetime as given in (2.23) by
restricting the results of the previous subsection to flat
spacetime.

We thus assume in this subsection that N ¼ 1, Ni ¼ 0,
gij ¼ �ij. Greek indices take values from 0 to 3 with

� ¼ ð?; iÞ. Indices are lowered and raised with ��	 ¼
diagð�1; 1; 1; 1Þ and its inverse. Let ~!�	 ¼ � ~!	�. In this

case, the Lie algebra of vector fields 
ð ~!; ~aÞ ¼ ð� ~!�
ix
i þ

~a�Þ @
@x� with bracket the surface-deformation bracket

(4.24) and (4.25) forms a representation of the Poincaré
algebra [21],

½
ð ~!1; ~a1Þ; 
ð ~!2; ~a2Þ�SD ¼ 
ð½ ~!1; ~!2�; ~!1~a2 � ~!2~a1Þ:
(4.29)

It then follows from (4.28) that this is also the case for the
canonical generators H ½
ð ~!; ~aÞ� equipped with the Pois-
son bracket, when one considers the restriction to the
constraint surface defined by Ga ¼ 0.
Comparing with Sec. II D, we find that

1
2!�	J

�	 � a�P
� ¼ H ½
ð ~!; ~aÞ� , ~!�	 ¼ 4�!�	;

~a0 ¼ 4�a0; ~ai ¼ 4�ðai þ!0ix
0Þ: (4.30)

This concludes the proof that the generators defined in
(2.22) form a representation of the Poincaré algebra and
the algebra in (2.24) is a direct consequence of (4.28).

D. Equations of motion with sources and comparison
to covariant formalism

The standard Einstein-Maxwell equations, now in the
presence of external, magnetic, and electric conserved
current densities ja�, @�j

a� ¼ 0 given by (3.10) with

associated string terms defined in (3.11), derive from ex-
tremizing the action Igeom þ I0M, where

Igeom½g�	� ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
R; (4.31)

and

I0M½g�	;F �	; a�; y
�� ¼ 1

4�

Z
d4x

�
� 1

2
ð@�a	 � @	a�

þ �G�	ÞF �	 þ 1

4

1ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
�F �	F �	 þ a�j

�

�
: (4.32)

To make connection with the ADM formalism, we
have followed [16] and introduced the auxiliary ten-
sor densities F �	. On the one hand, one can solve
the equations of motion for F �	 algebraically, F�	 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
g��g	�ð@�a	 � @	a� þ �G�	Þ. When substituted

into the action, one recovers the Einstein-Maxwell theory
with Dirac strings. On the other hand, one can introduce
F 0i ¼ EiADM, eliminate the auxiliary F ij and use the de-
composition of the 4-metric into the 3-metric, lapse and
shift to find the standard Hamiltonian form
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I0M½EiADM; a�; gij; N; Ni; y�� ¼ 1

4�

Z
d4x

�
�EiADMð@0ai þ �iÞ � a0@iEiADM � N

2
ffiffiffi
g

p ðEiADMEADM
i þBi

ADMB
ADM
i Þ

þ �ijkN
iEjADMB

k
ADM þ a�j

�

�
; (4.33)

where Bi
ADM ¼ �ijk@jak þ �k. The equations of motion

for EiADM read

E i
ADM ¼

ffiffiffi
g

p
N
gijð@ja0 � @0aj � �j � �jklN

kBl
ADMÞ:

(4.34)

They determine EiADM in terms of the other variables and
the sources. Similarily, in the gravitational sector, the equa-
tions of motion following from varying �ij are auxiliary in
the sense that they can be solved algebraically for �ij in
terms of the other variables. After this has been done, the
constraints and the equations of motion following from
variation of gij are equivalent to the covariant Einstein-
Maxwell equations with Dirac strings. Hence, every solu-
tion g�	, a� to the covariant equations of motions is a
solution to the ADM equations of motion with electric
and magnetic fields EiADM, B

i
ADM and momenta �ij deter-

mined in terms of g�	; a�. Conversely, every solution of
the ADM equations of motion gives a solution to the
covariant equations of motion.

Alternatively, one can multiply (4.34) by N. The longi-
tudinal part of this equation is solved uniquely for a0, while
the transverse part gives, after using �ijk@j�k � @0�

i ¼ ki,

@0Bi
ADM ¼ ��ijk@j

�
Nffiffiffi
g

p EADM
k

�
� @jðNiBj

ADMÞ

þ @jðNjBi
ADMÞ � ki: (4.35)

Finally, Maxwell’s equations for ai are

@0EiADM ¼ �ijk@j

�
Nffiffiffi
g

p BADM
k

�
� @jðNiEjADMÞ

þ @jðNjEiADMÞ � ji: (4.36)

As a side remark, note that the constraint algebra in the
absence of sources and strings in the standard ADM ap-
proach to Einstein-Maxwell theory can be directly rede-
rived from our result (4.28) and is given by

fH½
�; H½��g ¼ H½½
; ��SD� þGADM½½
; ��ADM�;
(4.37)

where

GADM½�� ¼
Z
d3x@iEiADM�;

½
;��ADM ¼ Bi
ADM�ijk


j�k � EADM
i ffiffiffi
g

p ð
?�i � �?
iÞ:
(4.38)

Indeed, the algebra rests only on the constraints and the
transformation properties (4.14) and (4.20). Provided that
EiADM ¼ Ei and Bi

ADM ¼ Bi, which we always assume in
the following, these are the same in both descriptions,
except that the constraint G2 ¼ �@iBi

ADM is absent
because @iBi

ADM vanishes identically in the absence of
sources and strings.
In the presence of sources, (3.41) generalizes readily to

curved space, where a manifestly duality invariant action
principle is defined by IADM þ �IM, with

�I M½aai ; gij; N;Ni; y�� ¼ 1

8�

Z
d4x

�
ðbai�abð@0abi þ �bi Þ�

(4.39)

� Nffiffiffi
g

p biab
a
i � �ab�ijkN

ibajbbk þ �aba
a
i j
bi

�
; (4.40)

and bai ¼ �ijk@ja
a
k þ �ai. Indeed, equivalence of the asso-

ciated equations of motion to the ADM/covariant ones is
obvious when b1i ¼ Bi

ADM, b
2i ¼ EiADM since the gravita-

tional equations of motion are unaffected while those for
aai read

@0b
ai ¼ ��ijk@j

�
Nffiffiffi
g

p �abbbk

�
� @jðNibajÞ

þ @jðNjbaiÞ � jai; (4.41)

and coincide with the relevant Eqs. (4.35) and (4.36).
With the longitudinal electric and magnetic fields pro-

duced by the potentials Ca, the appropriate action principle
is IADM þ IM þ IJ, where IM is defined in (4.1) and

IJ½Aa�; Ca; y�� ¼ 1

4�

Z
d4x�abðAa�jb� þ ffiffiffi

g
p
@iCa�bi

� 1

2
�ai�bi þ

1

2
�aTi@0�

b
i Þ: (4.42)

Here �ai is the potential for the transverse part of �ai,
�aTi ¼ �ijk@j�

a
k .

In this case the equations of motion for Aai are given by

@0Bai ¼ ��ijk@j
�
Nffiffiffi
g

p �abBbk

�
� @jðNiBajÞ

þ @jðNjBaiÞ � jai: (4.43)

They are the correct matter field equations provided that
Bai ¼ bai are the magnetic and electric fields. This implies
on the one hand �ijk@jA

a
k ¼ �ijk@ja

a
k þ �aTi, and in turn

Aak ¼ aak þ �ak , up to an irrelevant longitudinal part, and
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ffiffiffi
g

p
@iCa ¼ �aLi on the other hand. Again, the equations of

motion for Aa0 , C
a,

@ið ffiffiffi
g

p
@iCaÞ ¼ ja0; (4.44)

@i½NBi
a��ab

ffiffiffi
g

p
gilð@0Abl �@lA

b
0 þ�bl þ�ljkN

jBbkÞ� ¼ 0;

(4.45)

are auxiliary because they can be used to solve these fields
in terms of the others. This can be done in the action
principle and gives back (4.39).

In conclusion, if the lapse N is nonvanishing and the
covariant decomposition of spatial vectors into longitudi-
nal and transverse components is unique then there is a
one-to-one and onto correspondence between solutions of
the covariant/ADM equations of motion and solutions to
the equations of motion deriving from IADM þ IM þ IJ.

In the case of a single dyon, one can again drop all string
terms in IJ, which then simplifies to

IJ½Aa�; ja�� ¼ 1

4�

Z
d4x�abA

a
�j

b�: (4.46)

All relevant matter equations of motion are correct in this
case, but one has to face the fact that the metric dependence
in the longitudinal part ofBai implies an additional term in
the equations of motion associated with variations of gkl,

�ðIADM þ IMÞ
�gkl

� �ðIADM þ �IMÞ
�gkl

¼
ffiffiffi
g

p
4�

Dijkl@jC
aXai;

(4.47)

Xia ¼ Nffiffiffi
g

p Bi
a � �abg

ilð@0Abl � @lA
b
0 þ �lkmN

kBbmÞ:
(4.48)

Again, one can use a duality rotation to make the magnetic
charge vanish in which case the equations of motion imply
C1 ¼ 0. We thus only need to consider Xi2. But in the
purely electric case �i ¼ 0 and A� ¼ a� so that Xi2 van-

ishes on account of the matter equation of motion (4.34).

E. String-singularity free dyonic black holes

Consider now the case of a dyonic Reissner-Nordstrøm
solution with charge Qa. The dyon defined by (1.1) and
(1.2) is a solution outside of the location of the dyon (at
r ¼ 0 in our coordinate system) with a Dirac-string singu-
larity to the equations deriving from Igeom þ I0M given in

(4.31) and (4.32). It is thus also a solution to the equations
of motion derived from IADM þ I0M for which

E i
ADM ¼ �irQ sin�; Bi

ADM ¼ �irP sin�: (4.49)

In the simplified duality invariant formulation defined
by IADM þ IM þ IJ, with IJ given in (4.46), we have to
determine the vector and scalar potentials giving rise to

Bai ¼ �irQ
a sin�, where Q1 ¼ P, Q2 ¼ Q with the met-

ric given by (1.1). This is easily seen to be the case for
Aai ¼ 0 and

Ca ¼�Qa
Z 1

r

dr0

r02Nðr0Þ

¼ Qaffiffiffiffiffiffiffiffiffiffiffiffiffi
QbQb

p ln
rðM�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QfQf

q
Þ

Mr�QcQc�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QdQdðr2� 2MrþQeQeÞ

p
¼�Qa

r
þOðr�2Þ: (4.50)

In the gauge where the scalar potentials vanish at infinity, it
is then straightforward to see that all matter equations of
motions are solved by

Aa0 ¼ � �abQb

r
; (4.51)

and one can directly check that in this case Xia ¼ 0.
In conclusion, in the new formulation, the Reissner-
Nordstrøm dyon is described by the metric (1.1) and the
potentials (4.50) and (4.51). The string singularity of the
standard approach has thus been resolved in the new
formulation.
In the gauge where the scalar potentials vanish at infin-

ity, let us define

� ¼ �A0;  ¼ Z0; (4.52)

with�H,  H denoting these quantities evaluated at the hor-
izon, in agreement with (1.6). For the resolved Reissner-
Nordstrøm dyon, this gives

� ¼ Q

r
;  ¼ P

r
: (4.53)

In the Euclidean methods discussed below, it is useful to
choose a gauge where the scalar potentials vanish on the
horizon. In this case,

Aa0 ¼ ��abQb

�
1

r
� 1

rþ

�
; (4.54)

A0 ¼ �Q

r
þ�H; Z0 ¼ P

r
�  H: (4.55)

F. Surface charges

The Regge-Teitelboim analysis [21] allows one to derive
the correct variational principle in the presence of non-
vanishing surface charges at infinity. Consider an arbitrary
gauge transformation generator �½�� ¼ R

d3x���
� with

�� not necessarily vanishing at the boundary (a condition
we demanded in Sec. IVB above). The variation of this
generator under a change of phase space variables may
be written
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��½�� ¼
Z
d3x�zð����Þ

¼
Z
d3x

�
�zA

�ð����Þ
�zA

� @ik
i
�

�
; (4.56)

where �=�zA is the Euler-Lagrange derivative. The second
piece is a boundary term and arises from integration by
parts. The expression ki"½zA; �zA� depends on the phase
space variables and linearly on their variations and the
gauge parameters.

For the simplest application, consider phase space vari-
ables zAs that satisfy the constraints and variations �zAs
obeying the linearized constraints. In this case, the left-
hand side of (4.56) vanishes. Suppose then that the asso-
ciated solution zas , u

�
s to the evolution equations is time

independent, @0z
A
s ¼ 0. In particular, this means that the

associated vector field �� ¼ ��0 is the timelike Killing

vector field of the metric g�	. In this case, the evolution

equations following from (4.2),

�aB
�zA

@0z
A � @0aA ¼ �ð��u�Þ

�zA
; (4.57)

imply that the first term on the right-hand side of (4.56)
vanishes as well. We thus find

@ik
i
us½zAs ; �zAs � ¼ 0: (4.58)

Using Stokes’s theorem, it follows that the integral over a
sphere at radius r and fixed time t does not depend on the
radius r,I

Sr1

d3xik
i
us½zAs ; �zAs � ¼

I
Sr2

d3xik
i
us½zAs ; �zAs �: (4.59)

Here d3xi ¼ 1
2 �ijkdx

j ^ dxk. The explicit expression for

ki�½zA;�zA� can be easily worked out by integrations by
parts. It is defined up to the divergence of an arbitrary

superpotential, @jt
½ij�, which does not play any role for our

purpose. It splits into a standard purely gravitational part
and a matter part,

ki�½zA;�zA� ¼ k
grav;i
� ½gij; �ij;�gij; ��ij� þ kmat;i

� ½zA;�zA�:
(4.60)

The former has been derived in [21] and reads

k
grav;i
� ¼ 1

16�
½Gljkið
?rk�glj � @k


?�gljÞ þ 2
k��
ki

þ ð2
k�ji � 
i�jkÞ�gjk�;
Gljki ¼ 1

2

ffiffiffi
g

p ðglkgji þ gilgjk � 2gljgkiÞ; (4.61)

where Gijkl is the inverse of the DeWitt supermetric,
DijklG

klmn ¼ 1
2 ð�mi �nj þ �mj �

n
i Þ. The matter part now in-

volves, besides the electric contributions, the sought for
magnetic ones:

kmat;i
" ¼ 1

4�

�

?ffiffiffi
g

p �ijkBa
j �Aak � 
?Bai�Ca þ �abð
kBai

� 
iBakÞ�Abk � �ab
ffiffiffi
g

p
gil�ljk


jBak�Cb

þ �abð ffiffiffi
g

p
@i�a�Cb � �a�BbLiÞ

�
: (4.62)

In the sequel, we are interested in asymptotically flat
gravitational field configurations carrying finite charges as-
sociated with energy momentum. We will not need to con-
sider the more general boundary conditions guaranteeing
finite charges associated with rotations or boosts. The ap-
propriate fall-off conditions on the gravitational variables
and lapse and shift have been discussed in detail in [21],

grr ¼ 1þOðr�1Þ; g�� ¼ r2 þOðrÞ;
g�� ¼ r2sin2�þOðrÞ; (4.63)

gr� ¼ Oðr0Þ ¼ gr�; g�� ¼ OðrÞ; (4.64)

�rr ¼ Oðr0Þ; ��� ¼ Oðr�2Þ ¼ ��� ¼ ���;

�r� ¼ Oðr�1Þ ¼ �r�;
(4.65)

N ¼ 1þOðr�1Þ; N� ¼ Oðr�2Þ ¼ N�;

Nr ¼ Oðr�1Þ: (4.66)

For the matter variables, we assume

Aar ¼ Oðr�1Þ; Aa� ¼ Oðr0Þ ¼ Aa�;

Ca ¼ Oðr�1Þ; Aa0 ¼ ka þOðr�1Þ:
(4.67)

In particular, these fall-off conditions include the back-
ground solutions �z, �u described by

�g rr ¼ 1; �g�� ¼ r2; �g�� ¼ r2sin2�; (4.68)

�N ¼ 1; �N� ¼ 0 ¼ �N� ¼ �Nr; �Aa0 ¼ ka; (4.69)

and all other variables vanishing. For later use we introduce
the additional notation

k1 ¼ �c; k2 ¼ � c: (4.70)

In order to allow configurations satisfying the fall-off con-
ditions to be extrema of the variational principle, action
(4.2) needs to be supplemented by the addition of a suitable
surface term at the boundary at infinity, i.e., the surface r, t
constant with r! 1,

IT½z; u� ¼
Z
d4x½aAðzÞ@0zA � u���� �Qu½z�: (4.71)

The surface term Qu½z� is determined by the requirement
that, under variations of the fields zA satisfying the fall-off
conditions, its variation �zQu should precisely cancel the
spatial boundary term arising when deriving the Hamilto-
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nian equations of motion, i.e., the term due to the right-
hand side of (4.56),

�zQu½z� ¼
I
S1
d3xik

i
u½z; �z�: (4.72)

For the purely gravitational part, this problem was
solved in [21], the appropriate boundary term being the
ADM mass:

I
S1
d3xik

grav;i
u ½z; �z� ¼

I
S1
d3xik

grav;i
�u ½�z; �z�

¼ �z
I
S1
d3xik

grav;i
�u ½�z; z� �z�;

(4.73)

so that

Q
grav
u ½g; �� ¼

I
S1
d3xik

grav;i
�u ½�z; z� �z� ¼ M; (4.74)

M ¼
I
d3xi

ffiffiffi
�g

p ð �glk �gji � �glj �gkiÞ �Dkðglj � �gljÞ; (4.75)

where the covariant derivative is taken with respect to the
flat background metric �gij.

For the matter part, the boundary conditions imply also
thatI

S1
d3xik

mat;i
u ½z; �z� ¼

I
S1
d3xik

mat;i
�u ½�z; �z�

¼ �z
I
S1
d3xik

mat;i
�u ½�z; z� �z�: (4.76)

In particular, the boundary conditions (4.63), (4.64), (4.65),
and (4.66) are such that, when ð
?; 
i; �aÞ are replaced by
ðN;Ni; Aa0Þ, the contributions proportional to N, Ni from

the matter part (4.62) vanish. There is thus no correction to
the ADM mass for the adopted boundary conditions. This
will not remain true for more general boundary conditions
where the matter part (4.62) can contribute both to the
ADM energy momentum and the Lorentz generators. For
the boundary conditions at hand, only the last term survives
and combines into magnetic and electric charge Qa ¼
ðP ;QÞ, as expected,

Qmat
u ½g; C� ¼

I
S1
d3xik

mat;i
�u ½�z; z� �z� ¼ �ka�abQb;

(4.77)

Q b ¼ 1

4�

I
S1
d3xiBbiL: (4.78)

In other words, off shell, the correct Hamiltonian for the
boundary condition under considerations is

H ¼
Z
d3xðH?N þH iN

iÞ þM; (4.79)

while electric and magnetic charges are given by

Q ¼ � 1

�c

Z
d3xðG1A0Þ þQ;

P ¼ � 1

 c

Z
d3xðG2Z0Þ þ P :

(4.80)

These observables commute in the Poisson bracket,

fH;Qg ¼ 0 ¼ fH;Pg ¼ fQ;Pg; (4.81)

and the total action (4.71) can be written as

IT½z; u� ¼
Z
dt

�Z
d3xaAðzÞ@0zA � ðH��cQ�  cPÞ

�
:

(4.82)

G. First law

For the resolved Reissner-Nordstrøm dyon z, u given by
(1.1), (4.50), and (4.55), the first law of thermodynamics
can now be derived as a consequence of using identity
(4.59) between infinity, r1 ! 1 and the outer horizon r2 ¼
rþ, I

S1
d3xik

i
u½z; �z� ¼

I
Srþ

d3xik
i
u½z; �z�; (4.83)

where �z describes a variation around the dyon satisfying
the constraints. Indeed, in this case, k� ¼ 0 ¼ k� ¼ kr,

while ka ¼ �abQb

rþ
. In other words k1 ¼ �H is the electric

potential on the horizon, while k2 ¼ � H is minus the
magnetic potential on the horizon. Now, the results of the
previous subsection imply that we get at infinity,I

S1
d3xik

i
u½z;�z� ¼

I
S1
d3xik

i
�u½�z; z� �z�

¼ �zM��H�zQ� H�zP : (4.84)

For the matter part, we haveI
Sr

dn�1xik
mat;i
u ¼ � 1

4�

Z �

0
d�

Z 2�

0
d��abA

a
0�B

bLi;

(4.85)

which vanishes on the horizon r ¼ rþ where Aa0 vanishes.
Note that in the gauge where Aa0 vanishes at infinity, the

matter part gives no contribution at infinity, but �H�zQþ
 H�zP at the horizon, as it should.
Finally at the horizon, the purely gravitational part givesI

Srþ
dn�1xik

grav;i
u ¼ �

8�
�zA: (4.86)

This can be shown for instance by using the fact that kgrav;iu

is the time-space component of a conserved superpotential

k½�	�@=@t that can be proved to coincide, for variations satisfy-

ing the linearized field equations and up to an irrelevant

term of the form @�t
½��	�
@=@t , with the conserved superpoten-

GLENN BARNICH AND ANDRÉS GOMBEROFF PHYSICAL REVIEW D 78, 025025 (2008)

025025-14



tial considered in [22]. In turn the latter has been shown to
contribute �

8� �zA at the horizon.

This concludes the geometric discussion of the first law

�zM ¼ �

8�
�zAþ�H�zQþ  H�zP ; (4.87)

for variations satisfying the linearized equations of motion
around the Reissner-Nordstrøm dyon.

H. Euclidean approach

Our setup also allows us to complement the work of
[5,6], by evaluating the partition function in the grand
canonical ensemble, along the lines of [23].

For the three commuting observables Ĥ, Q̂, P̂, we thus
would like to compute

Z½�;�c;  c� ¼ Tre��ðĤ��cQ̂� cP̂Þ ¼ e�G ; (4.88)

where �Gð�;���c;�� cÞ is the Massieu potential for
the grand canonical ensemble (see e.g. [24] in the present
context),

�Gð�;���;�� Þ ¼ SðhĤi; hQ̂i; hP̂iÞ � �hĤi
þ ��hQ̂i þ � hP̂i; (4.89)

d�G ¼ �hĤid�þ hQ̂idð��Þ þ hP̂idð� Þ: (4.90)

The path integral representation for this partition func-
tion is

Z½�;�;  � ¼
Z

D�eI
T
e ; (4.91)

where � represents all the fields ðzA; u�Þ together with
appropriate ghost fields �C�, C� [25] (see e.g. [26] for a
review). The appropriate action is

ITe ¼
Z �

0
d

�
i
Z
d3xaAðzÞ@0zA � ðH��cQ�  cPÞ

�
þ ghost terms: (4.92)

The path integral is taken over all periodic paths in 
with periodicity � and N ! 1, A0 ! �c, Z0 ! � c for
r! 1.

We now notice that the transformation defined by

�ij ! �i�ij; Ai ! �iAi;
ZLi ! �iZLi ; Ni ! �iNi

(4.93)

with all other variables unchanged maps the action ITe to a
real action when all (transformed) variables are real. The
latter action differs from the Lorentzian action (4.82) by
the fact that the terms involving �ij and BiT in NH? and
NiH i have the opposite signs. For the purely gravitational
part, this is as it should be in order that the path integral
corresponds to one over Euclidean metrics after integration
over the momenta �ij.

The leading contribution to the path integral is given by

the value of eI
T
e evaluated at the classical solutions satisfy-

ing the specified boundary conditions, that is, (i) the fall-
off conditions (4.63), (4.64), (4.65), (4.66), and (4.67),
(ii) fixed values of the potentials ð�c;  cÞ, and (iii) a fixed
inverse temperature �. The Reissner-Nordstrøm dyon
(RND) described by the lapse and the spatial metric given
in (1.1) and the matter fields (4.50) and (4.55) is such a
solution if �c ¼ �H and  c ¼  H with�H,  H defined in
(1.6) since all variables affected by the above transforma-
tion vanish in this case. Furthermore, this solution is time
independent and satisfies the (modified) constraints so that
ITe reduces to surface integrals. For the matter part, we find
directly that Imat

e ðRNDÞ ¼ ��HQþ � HP. For the gravi-
tational part, it has been shown for instance in [27] in the
current Hamiltonian context that I

grav
e ðRNDÞ ¼ ��Mþ

1
4A, with A given in (1.5).

Assuming then that the dyon is the only extremum, it
follows that to leading order,

�G ¼ ��Mþ 1
4Aþ ��HQþ � HP; (4.94)

which is the expected result.

V. CONCLUSION

In this paper we have generalized the manifestly duality
invariant double potential formalism [7,8] to include
potentials for the longitudinal electric and magnetic fields
thus turning the scalar potentials into nonspurious La-
grange multipliers. By introducing additional pure gauge
degrees of freedom on the classical level, which corre-
sponds to an additional quartet [28] on the quantum level,
we have turned a topological conservation law, the mag-
netic charge, into a dynamical one.
We have shown on the example of the Reissner-

Nordstrøm dyon that the formalism is tailor-made for a
treatment of black hole dyons by standard action based
methods and allows one to compute in the grand canonical
ensemble. How to explicitly resolve the string singularity
of the Kerr-Newman dyon and derive its thermodynamics
will be discussed elsewhere.
In our approach Dirac strings are only needed for the

coupling to dynamical dyons and the derivation of the
Lorentz force law. It would be interesting to understand
whether there are applications of the formalism in the
non-Abelian case or extensions to gravitational magnetic
charge.
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Note added in proof.—After the present work was ac-
cepted for publication, Refs. [29,30] were called to our
attention. In these references, a manifestly covariant
double potential formalism is developed. As explained
there, the problem is the occurrence of a second ‘‘photon’’
that has to be removed in an ad hoc manner.
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