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We consider the problem of a degenerate electron gas in the background of a uniformly distributed

positive charge, ensuring overall neutrality of the system, in the presence of noncommutativity. In contrast

to previous calculations [F. S. Bemfica and H.O. Girotti, J. Phys. A 38, L539 (2005)] that did not include

twisted formalism, we study the effects of noncommutativity from the points of view of both usual and

braided twisted symmetry. We find corrections to the ground-state energy already at first order in

perturbation theory when the usual twisted statistics is taken into account. The effects of noncommuta-

tivity, however, disappears if braided twisted symmetry is considered. In the former case these corrections

arise since the interaction energy is sensitive to two-particle correlations, which are modified for the usual

twisted anticommutation relations.

DOI: 10.1103/PhysRevD.78.025024 PACS numbers: 11.10.Nx

I. INTRODUCTION

The study of noncommutative (NC) geometry and its
implications have gained considerable importance in re-
cent times as these studies are motivated from string theory
and certain condensed matter systems like the quantum
Hall effect. Despite this, the physical consequences of
noncommutativity remains unclear. In free space (no
boundaries) and in the absence of interactions, noncom-
mutativity seems to have no observable physical conse-
quences [1,2]. On the other hand, in [3] it was found that
noncommutativity does affect the ground-state energy of a
degenerate electron gas to second order in perturbation
theory. However, in this computation the role of twisted
statistics was not taken into account. As is well known by
now it is necessary to twist the anticommutation relations
in order to restore the Galilean [4] or, more generally,
Poincaré invariance [5,6]. Here we revisit this calculation
taking also due care of the twisted formalism, both in the
usual and braided frame work. One expects that the twisted
statistics, arising in the usual framework, will also have an
effect on the ground-state energy as it changes the two-
particle correlations [4], and it is well known that the two-
particle interaction energy is sensitive to the two-particle
correlations. Thus there are two possible ways in which
noncommutativity may have a physical effect. The first is
due to the noncommutative nature of space per se and the
second is due to the modification of two-particle correla-
tions due to the twisted statistics required to restore
Poincaré invariance.

On the other hand, as shown in [2], the implementation
of braided twisted symmetry does not give rise to any

twisted statistics. One therefore does not expect to find
any noncommutative correction in this case. It should be
mentioned in this context that the braided twisted symme-
try [2] entails the compositions of functions at different
points resulting in noncommutativity between space-time
coordinates even for two different particles, labeled by �
and �: ½x̂�� ; x̂��� ¼ i��� in contrast to the usual case, where

it is given by ½x̂�� ; x̂��� ¼ i������. Although it is well

known that the noncommutativity in the lowest Landau
level of the Landau problem takes the form of the latter,
with 1=B playing the role of the noncommutative parame-
ter [7], it is not clear what kind of form the fundamental
noncommutativity between space-time coordinates will
take. Indeed, there is an ongoing controversy regarding
whether one should implement the usual or braided twisted
symmetry [2,8]. It is therefore quite desirable to find an
example, where the difference between these two examples
show up explicitly.
Here we demonstrate this in the specific setting of [3],

namely, a nonrelativistic degenerate electron gas in the
presence of a uniform neutralizing background charge,
interacting through a screened Coulomb potential. One of
the motivations for studying this particular system is that
this is the typical setting encountered in astro physical or
quantum Hall systems.
It is generally believed that the noncommutative pa-

rameter ��� is of the order of the Planck area. It, therefore,
seems very unlikely that any experimental signature of its
presence can be detected by any terrestrial observation,
unless one finds a way of amplifying it by several orders of
magnitude. One of the motivations for this paper is to study
whether this is at all feasible by considering a nonrelativ-
istic degenerate electron gas, which presumably can con-
tain few orders higher than Avogadro’s number (� 1023)
of particles, so that the effects of noncommutativity may be
amplified.
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The plan of the paper is as follows. We first introduce the
basic notations and conventions of NC geometry in Sec. II.
In Sec. III we provide a brief review on the origin of
twisted (anti)commutation relations and the related twisted
bosons/fermions. We also discuss how the implementation
of braided twisted symmetry can restore the conventional
bosons/fermions, associated with their usual symmetry/
antisymmetry properties of the wave functions. In
Sec. IV we consider the effect of the noncommutativity
by computing the energy shift, arising from the screened
interparticle Coulomb potential, to first order in perturba-
tion theory. Again here we discuss the effects of noncom-
mutativity from the points of view of conventional and
braided twisted symmetry. Here we use the technology
developed by Fetter and Walecka [9] for the same commu-
tative problem (� ¼ 0). Finally, we conclude in Sec. V.

II. NC GEOMETRY

To fix our notation and conventions, we briefly recall the
essentials of a NC geometry. The canonical NC structure is
given by the following operator-valued space-time coordi-
nates,

½x�op; x�op� ¼ i���: (1)

Instead of working with functions of these operator-valued
coordinates, one can alternatively work with functions of
c-numbered coordinates provided one composes the func-
tions through the Moyal star ( � ) product defined as [7]

� �� �ðxÞ ¼
�
� exp

�
i

2
@
 
��

��@
!
�

�
�

�
ðxÞ; (2)

��� ¼ ���� 2 R; x ¼ ðx0; x1; . . . ; xdÞ: (3)

This definition applies to a restricted class of functions in
which at least one of �, � is smooth [10]. A more general
integral definition can be given, which applies to a more
general class of functions that includes distributions
[10,11], and the relation between the two definitions was
discussed in [10]. The definition (2) will, however, suffice
for our present purposes as the functions �, � will be taken
to be periodic (see Sec. IV). With this definition, the Moyal
bracket ½x�; x��� � ðx� � x� � x� � x�Þ ¼ i��� is isomor-
phic to the corresponding commutator (1) involving x�op. In
this paper, we consider only the problem of spatial non-
commutativity and therefore set �0i ¼ 0. The Poincaré
group P or the diffeomorphism group D, which acts on
the NC space-time Rdþ1, defines a natural action on
smooth functions � 2 C1ðRdþ1Þ as

ðg�ÞðxÞ ¼ �ðg�1xÞ; (4)

for g 2 P or 2D. However, in general,

ðg�Þ �� ðg�Þ � gð� �� �Þ; (5)

showing that the action of the group P or D is not an
automorphism of the Algebra A�ðRdþ1Þ, unless one con-

siders the translational subgroup. The Poincaré symmetry
can, however, be restored by the twisted implementation of
the Lorentz group, as has been shown recently in the
literature [5,6]. This in turn implies that the permutation
group, used for defining bosons or fermions, gets twisted as
well in order to maintain the statistics operator as a super-
selected observable. One thus ends up defining twisted
fermionic or bosonic fields, the Fourier modes of which
are subjected to the following (anti)commutation relations:

~̂a k1�1
~̂ak2�2 ¼ �e2ik1^k2 ~̂ak2�2

~̂ak1�1 ; (6)

~̂a yk1�1
~̂ayk2�2

¼ �e2ik1^k2 ~̂ayk2�2
~̂ayk1�1

; (7)

~̂ayk1�1
~̂ak2�2 ¼

1

�
ð~̂ak2�2

~̂ayk1�1
� ð2	Þ3�ðk2 � k1Þ��1�2Þ

� e2ik2^k1 ; (8)

where @k represents the spatial components of momentum
and the f�g’s represent the spin degree of freedom.
Incidentally, this structure of twisted (anti)commutation
relation can also be obtained in the nonrelativistic domain,
if one considers the twisted action of the Galileo group [4].
As has been shown in the paper just mentioned, one has to
just restore the symmetry corresponding to spatial rotation
[SO(3)] here, as the Galileo boost generator does not get
affected by the twist. Also the wedge symbol ( ^ ) inserted
between k1 and k2 denotes

k 1 ^ k2 ¼ 1
2k1i�

ijk2j: (9)

Finally, � ¼ �1 as dictated by Boson or Fermion statis-
tics. As we are interested in fermionic systems � ¼ �1.
These operators go over to usual Bose/Fermi ladder opera-

tors in the limit �! 0: ~̂a! â. In fact, it has been shown in

[6] that ~̂a and â are related as ~̂a ¼ e�ðði=2Þp����P�Þâ.

III. A BRIEF REVIEW OF TWISTED (ANTI)
COMMUTATION RELATION

It has been shown earlier that in a nonrelativistic system,
the presence of spatial noncommutativity given by �ij

spoils the SO(3) rotational symmetry. This can be seen
easily from the fact that the vector � ¼ f�ig, dual to the
second rank antisymmetric tensor �ij

�i ¼ 1
2
ijk�

jk; (10)

fixes a direction in the 3-dimensional space. Thus the only
surviving symmetry is the SO(2) rotation around the �
direction. However, applying the Drinfeld twist to the
Hopf algebra, the entire SO(3) symmetry can be restored.
This is done by considering a twisted co-product, ��ðMijÞ,
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corresponding to SO(3) generatorsMij, with action defined

as

��ðMijÞ ¼ F�1� �0ðMijÞF�; (11)

where

�0ðMijÞ ¼ Mij

O
1þ 1

O
Mij (12)

is the co-product in the commutative case ð� ¼ 0Þ and
F� ¼ e�ði=2Þ�

ijPi
N

Pj is the twist operator. The correspond-
ing co-product for the rotation group SO(3) in the commu-
tative and noncommutative cases are

�0ðgÞ ¼ g
O

g; ��ðgÞ ¼ F�1� �0ðgÞF�: (13)

Note that the star product, defined in (2), can now be
written alternatively as

ð� � �ÞðxÞ ¼ m�ð�
O

�Þ ¼ m0ðF��
O

�Þ; (14)

where m0 represents the composition of a pair of functions
in the commutative ð� ¼ 0Þ case, which is nothing but
pointwise multiplication of these functions, i.e., �ðxÞ�ðxÞ.

It can be easily seen at this stage that the usual projection
operator for a two-particle system,P0 ¼ 1

2 ð1� �0Þ, involv-
ing the flip map �0ð�N

�Þ ¼ �
N
�, and which projects

onto the symmetric (antisymmetric) subspace describing
bosonic (fermionic) statistics, does no longer commute
with ��: ½��; P0� � 0. This implies that one must twist
the flip map as

�� ¼ F�1� �0F� ¼ F�2� �0; (15)

so that the corresponding projection operator P� ¼ 1
2 ð1�

��Þ ¼ F�1� P0F� commutes with ��

½��; P�� ¼ 0: (16)

This ensures that the new statistics, i.e. the flip operator ��,
remains superselected, i.e. it commutes with all Galilean
generators, and defines twisted bosons or fermions. We
now provide a heuristic argument how the algebra involv-
ing the corresponding creation and annihilation operators
also get modified.

To begin with, let us apply the twisted projection opera-
tor P� on the tensor product of two momentum eigenstates
jk >N jl> and make use of (15):

P�ðjk >
O jl>Þ ¼ 1

2ðjk >
O jl >þ�F�2� jl >

O jk>Þ:

(17)

Up to an overall phase, this can be rewritten in a symmetric

or antisymmetric form as in the � ¼ 0 case

P�ðjk >
O jl>Þ ¼ eik^l½12ðjk; l�þ�jl; k�Þ�;

jk; l�� e�ik^ljk >O jl > :
(18)

Now identifying ~̂ayl ~̂a
y
k j0> ¼ P�ðjk >

N jl>Þ it easily fol-
lows that ~̂ayk ~̂a

y
l ¼ �e2ik^l ~̂ayl ~̂a

y
k . The other phase e�2ik^l,

occurring in ~̂ayk ~̂al of Eq. (8), can be easily understood from
the fact that the annihilation operator ~̂al is associated with a

momentum ð�lÞ, in contrast to the operator ~̂ayl , for which
the associated momentum is ðþlÞ.
Despite the appearance of these twisted commutation/

anticommutation relations (6)–(8), the implementation of
braided twisted symmetry, as prescribed in [2], can restore
the usual symmetry/antisymmetry of the wave function
under permutation, so that they become usual bosons/
fermions.
To see this more clearly, note that the conventional

twisted symmetric/antisymmetric 2-particle wave function
is obtained as

�Tðx; yÞ � ð<xjO<yjÞP�ðj >
O j�>Þ

¼ 1
2ð ðxÞ�ðyÞ � F�2� �ðxÞ ðyÞÞ; (19)

which clearly has eigenvalues �1 under �� (15) and the
usual symmetric/antisymmetric form is restored in the
commutative �! 0 limit. Now the implementation of
braided twisted symmetry of Ref. [2] is tantamount to a
�-composing pair of functions even at distinct points. This
implies that we have to replace the above as

�BTðx; yÞ ¼ 1
2ð ðxÞ ��ðyÞ � F�2� �ðxÞ �  ðyÞÞ (20)

to obtain a(n) (anti)symmetric 2-particle wave function
under braided twisted symmetry. Now using the fact that

 ðxÞ ��ðyÞ ¼ F� ðxÞ�ðyÞ ¼ eði=2Þ�
ij@xi @

y
j ðxÞ�ðyÞ (21)

one obtains for (20)

�BTðx; yÞ ¼ 1
2ðeði=2Þ�

ij@xi @
y
j ðxÞ�ðyÞ

� eði=2Þ�
ij@yi @

x
j ðyÞ�ðxÞÞ: (22)

Clearly, under x$ y interchange, this is symmetric/anti-
symmetric in the ordinary (� ¼ 0) sense. One therefore
does not expect to have any effect of noncommutativity,
stemming solely from twisted statistics, if braided twisted
symmetry is implemented.

IV. NONCOMMUTATIVE DEGENERATE
ELECTRON GAS

To begin with, the Hamiltonian operator for the elec-
tronic system in the second-quantized formulation can be
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written as

Ĥ el ¼
Z
d3x ̂yðxÞ � T̂  ̂ðxÞ þ 1

2

ZZ
d3xd3y ̂yðxÞ

�  ̂yðyÞ � Vðx; yÞ �  ̂ðyÞ �  ̂ðxÞ: (23)

Before we explain the terms and notations, first note that in
order to get a well-defined thermodynamic limit, we in-
troduce a box of volume V ¼ L3, containingN particles, as
a regulator so that when V ! 1 and N ! 1, the density
ðN=VÞ is held fixed. Upon introducing the box, we have to
specify boundary conditions. We take these to be periodic,
which implies compactifying to the three torus T3. The
field operators

 ̂ðxÞ ¼X
k;�

 k�ðxÞ~̂ak�; (24)

occurring in (23) then act on the Fock-space of states
obtained by superposing annihilation operators in terms
of the single-particle wave functions

 k�ðxÞ ¼ 1ffiffiffiffi
V
p eik	x�� (25)

with k taking the discrete set of values k ¼ 2	
L n and n

represents a triplet of positive or negative integers, arising
from the imposition of periodic boundary conditions in the
box, and �� stands for two spin functions,

�" ¼ 1
0

� �
; �# ¼ 0

1

� �
:

Furthermore, the arguments x are now the usual
c-numbered coordinates, so that they compose through �
products. In this form the action is Hermitian, as follows
from the fact that ðf � gÞy ¼ gy � fy [7]. Since we have
compactified to T3 the star product can be taken as the one
appropriate to T3 [7,12]. However, since the original
twisted (anti)commutation relations (6)–(8) were obtained
in [6] for noncompact spaces like R3, we prefer to define
the star product on R3. This can be done by periodic
continuation of the functions over R3 and defining the
star product on the continued functions.

The kinetic and interaction energy operators are denoted

by T̂ðxÞ and Vðx; yÞ, respectively:

T̂ ¼ 1

2m
p̂2 ¼ � @

2

2m
r2; (26)

Vðx; yÞ ¼ e2

2

e��jx�yj

jx� yj : (27)

This has to be augmented by the Hamiltonian of the
positive inert background having the particle density nðxÞ

Hb ¼ e2

2

Z
d3xd3x0

nðxÞnðx0Þe��jx�x0j
jx� x0j (28)

and the Hamiltonian

Hel-b ¼ �e2
XN
i¼1

Z
d3x

nðxÞe��jx�xij
jx� xij ; (29)

representing the energy between the electrons and positive
background.1 With this the total Hamiltonian for the sys-
tem becomes

H ¼ Hel þHb þHel-b: (30)

Here we have introduced a screened Coulomb potential
through an exponentially damping factor having a regula-
tor � of dimension ½L��1. This renders the integrals ap-
pearing in Hb and Hel-b finite in the thermodynamic limit.
It should, however, be kept in mind that the limit �! 0
should be taken after the L! 1 limit, so that one can
ensure��1 
 L at each step of the computation. This also
facilitates the shifting of origin of integration, as dictated
by convenience, as the surface terms are negligibly small in
this limit.
Taking the distribution to be uniform nðxÞ ¼ N=V, we

can now compute the pair of nondynamical (inert) terms

Hb ¼ 1

2
e2
N2

V

4	

�2
; (31)

Hel-b ¼ �e2N
2

V

4	

�2
; (32)

where we have made use of the translational invariance. As
expected, these are c-number terms. The total Hamiltonian
(30) thus reduces to

H ¼ � 1

2
e2
N2

V

4	

�2
þHel (33)

with all the interesting physical effects being buried inHel.
We therefore turn our attention to Hel. To begin with, let

us consider the kinetic term in (23) first. This can be
simplified asZ

d3x ̂yðxÞ � T̂  ̂ðxÞ

¼ X
k�k0�0

@
2k2

2m
~̂ay
k0�0 ~̂ak�

Z
d3x y

k0�0 ðxÞ �  k�ðxÞ: (34)

1Strictly speaking a � operator has to be inserted in Hb (28)
and Hel-b (29) also, if the braided twisted symmetry [2] is
implemented. However, this has no effect in our case, as we
shall be concerned here only with a uniform distribution of
particle density.
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Using the definition of the � product given in (2), we can

easily see that this brings in an exponential factor e�ik0^k,
as the � operator is sandwiched between a pair of plane-
wave states of the form (25). However, the integration
yields �kk0���0 , thereby reducing this �-dependent expo-
nential factor to identity. As far as this kinetic term is
concerned, this therefore yields the same result as in the
commutative (� ¼ 0) case:

Z
d3x ̂yðxÞ � T̂  ̂ðxÞ ¼X

k�

@
2k2

2m
~̂ayk� ~̂ak�; (35)

which can be interpreted as the kinetic energy of each
mode multiplied by the corresponding number operator.
Almost the same thing also happens for the potential
energy term as all �-dependent exponential factors coming
from the Moyal star product reduces to the identity here as
well. Seemingly, the noncommutative structure of space,
encoded in the Moyal star product, plays no role, at least to
first order in perturbation theory. This was also found in
[3]. There the effects of noncommutativity only showed up
in second order, which is not unexpected as the exchange
correlations of a noncommutative theory will generically
be different from those of a commutative theory. However,
as we proceed to show now, a � dependence, stemming
from the twisted anticommutation relation, survives to give
a NC modification to the ground-state energy already to
first order in perturbation theory.

To this end consider the potential term in (23). First of all
this requires a proper interpretation. Given that x and y
represent the position coordinates of two distinct particles
in a pair, we must have ½x�; y��� ¼ 0 if conventional
twisted symmetry is implemented but will be nonzero if
braided twisted symmetry is implemented [2]. Let us con-
sider the conventional twisted symmetry first. Con-
sequently, in this case, only functions involving coordi-
nates of a single particle will compose through the �
product. This implies that the appropriate way of writing
this potential term is

Z
d3x ̂yðxÞ �

�Z
d3y ̂yðyÞ � Vðx; yÞ �  ̂ðyÞ

�
�  ̂ðxÞ;

(36)

where the y integral is performed first, after composing the
three functions of y, with x being held fixed, to yield a
function of x. With this interpretation, we can write

ZZ
d3xd3y ̂yðxÞ �  ̂yðyÞ � Vðx; yÞ �  ̂ðyÞ �  ̂ðxÞ

¼ 1

2

X
fkgf�g

~̂ayk1�1
~̂ayk2�2

~̂ak4�4
~̂ak3�3hk1�1k2�2jVjk3�3k4�4i;

(37)

where the matrix element is given by

hk1�1k2�2jVjk3�3k4�4i

¼ e2

2V2

Z
d3xe�ik1:x��1ð1Þy

�
�Z

d3ye�ik2:y��2ð2Þy �
e��jx�yj

jx� yj � e
ik4:y��4ð2Þ

�
� eik3:x��3ð1Þ: (38)

We now make use of the identity2

e��jx�yj

jx� yj ¼
4	

ð2	Þ3
Z d3k

�2 þ k2
eik:ðx�yÞ (39)

and then convert the integration over ‘‘ k’’ to a sum by the
standard replacement

R
d3k! ð2	L Þ3

P
k, so that the parity

with other momentum variables can be restored. We can
simplify this matrix element to get

hk1�1k2�2jVjk3�3k4�4i

¼ 2	e2

V

X
k

1

�2 þ k2
e�ik1^k3e�ik2^k4��1�3��2�4�k;ðk1�k3Þ

� �k;ðk4�k2Þ; (40)

where k clearly gets restricted to k ¼ k1 � k3 ¼ k4 �
k2, so that k, occurring in the Fourier transform of the
screened Coulomb potential, can be identified with the
momentum transfer. On the other hand, the Kronecker
deltas involving momenta levels also enforce the momen-
tum conservation. The potential energy operator then be-
comes

2	e2

V

X
fkgf�g

1

�2 þ k2
e�ik1^k3e�ik2^k4��1�3��2�4�k;ðk1�k3Þ

� �k;ðk4�k2Þ~a
y
k1�1

~ayk2�2
~ak4�4

~ak3�3 ; (41)

where fkg represents the set ðk;k1;k2;k3;k4Þ on which
the summation has to be performed. The total Hamiltonian
can now be written as

Ĥ ¼ � 1

2
e2
N2

V

4	

�2
þX

k�

@
2k2

2m
~ayk�~ak�

þ 2	e2

V

X
fkgf�g

1

�2 þ k2
e�ik1^k3e�ik2^k4��1�3��2�4

� �k;ðk1�k3Þ�k;ðk4�k2Þ~a
y
k1�1

~ayk2�2
~ak4�4

~ak3�3 : (42)

2This can easily be seen by noting that the screened Coulomb
potential is a Green’s function of the Laplacian augmented by a
mass term: ð�r2 þ�2Þðe��jxjjxj Þ ¼ 4	�3ðxÞ.
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The electrical neutrality of the system makes it possible
to eliminate� from the Hamiltonian. To that end, consider
the last term of the Eq. (42), which can now be recast in
terms of the momentum variables k, k3, and k4 by elim-
inating k1 and k2 through the Kronecker deltas as

2	e2

V

X
½kk3k4�1�2�

1

�2 þ k2 e
�ik^k3eik^k4 ~aykþk3;�1

~ayk4�k;�2

� ~ak4�2
~ak3�1 ; (43)

where the two spin summations have been evaluated with
the Kronecker deltas. At this stage, it is convenient to
separate the above expression into two terms, referring to
k � 0 and k ¼ 0, respectively,

2	e2

V

X0

½kk3k4�1�2�

1

�2 þ k2 e
�ik^k3eik^k4 ~aykþk3;�1

~ayk4�k;�2

� ~ak4�2
~ak3�1 þ

2	e2

V

X
½k3k4�1�2�

1

�2
~ayk3�1

~ayk4�2
~ak4�2

~ak3�1

(44)

where the prime on the first summation means the k ¼ 0
term is omitted. The second term may be rewritten with the
discrete version of the twisted anticommutation relation
given by (6) and (8). In this discrete version, (6) remains
unaffected, while one has to just replace ð2	Þ3�3ðk1 �
k2Þ ! �k1k2

in (8). Using this the second term takes the

form

2	e2

V

X
½k3k4�1�2�

1

�2

1

�
ð~ayk3�1

~ak3�1
~ayk4�2

~ak4�2

� ~ayk3�1
�k3k4

��1�2 ~ak4�2Þ�e2ik3^k4e2ik4^k3

¼ 2	e2

V

4	

�2
ðN̂2 � N̂Þ; (45)

where

N̂ ¼
Z
d3xn̂ðxÞ ¼X

r

~̂ayr ~̂ar ¼
X
r

âyr âr ¼
X
r

n̂r

¼
Z
d3x ̂yðxÞ ̂ðxÞ (46)

represents the number operator. Here too the effect of
noncommutativity disappears.3 Since we always deal

with states of fixed N, the operator N̂ may be replaced
by its eigenvalue N, thereby yielding a c-number contri-
bution to the Hamiltonian

N2e2

V

2	

�2
� Ne2

V

2	

�2
: (47)

The first term of the above expression cancels the first term
of the Hamiltonian in (33). The second term represents an
energy �2	e2ðV�2Þ�1 per particle and vanishes in the
proper physical limit: first L! 1 and �! 0 as discussed
earlier. Thus the explicit ��2 divergence cancels identi-
cally in the thermodynamic limit, which reflects the elec-
trical neutrality of the total system; furthermore, it is now
permissible to set � ¼ 0 in the first term of (43), since the
resulting expression is well defined. We therefore obtain
the final Hamiltonian for a bulk electron gas in a uniform
positive background

Ĥ ¼X
k�

@
2k2

2m
~ayk�~ak� þ

2	e2

V

X0

kk3k4

X
�1�2

1

k2
e�ik^k3eik^k4

� ~aykþk3;�1
~ayk4�k;�2 ~ak4�2 ~ak3�1 : (48)

We can now introduce the interparticle spacing r0, defined
through V � 4

3	r
3
0N and measure it in units of the Bohr

radius a0 ¼ @
2

me2
, thus yielding a dimensionless variable

rs ¼ r0
a0
.

With r0 as the unit of length, we define the following
quantities:

�V ¼ r�30 V; �k ¼ r0k;

�k3 ¼ r0k3; �k4 ¼ r0k4;
(49)

and thus we obtain the following dimensionless form of the
Hamiltonian operator:

Ĥ ¼ e2

a0r
2
s

�X
�k�

1

2
�k2~ay�k�~a �k� þ

2	rs
�V

X0

½ �k �k3
�k4�

X
�1�2

1
�k2
~ay�kþ �k3;�1

� ~ay�k4� �k;�2
~a �k4�2

~a �k3�1
e�ir20 �k^ð �k3� �k4Þ

�
: (50)

In the limit rs ! 0, corresponding to the high-density limit
(r0 ! 0), the potential energy becomes a small perturba-
tion even though it is neither weak nor short ranged, while
the leading term comes from the kinetic-energy term. Thus
the leading term in the interaction energy of a high-density
electron gas can be obtained with first-order perturbation
theory. In the high-density limit, we can therefore separate
the original dimensional form of the Hamiltonian (48) into
two parts:

Ĥ 0 ¼
X
k�

@
2k2

2m
~ayk�~ak�; (51)

Ĥ1 ¼ 2	e2

V

X0

½kk3k4�

X
�1�2

1

k2
~aykþk3;�1

~ayk4�k;�2 ~ak4�2
~ak3�1

� e�ik^ðk3�k4Þ; (52)

where Ĥ0 is the unperturbed Hamiltonian, representing a

noninteracting Fermi system, and Ĥ1 is the (small) pertur-
bation. Correspondingly, the ground-state energy Emay be

3As was mentioned earlier, it was shown in Ref. [6] that the
twisted and untwisted ladder operators are related by a unitary
transformation, thereby preserving the number operators.
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written as E0 þ E1 þ . . . , where E0 is the ground-state
energy of a free Fermi gas, while E1 is the first-order
energy shift. Since the Pauli exclusion principle allows
only two fermions in each momentum eigenstate (this
also holds in noncommutative space),4 one with spin up
and one with spin down, the normalized ground-state jF>
is obtained by filling the momentum states up to a maxi-
mum value, the Fermi momentum pF ¼ @kF. In the ther-
modynamic limit one can again replace summation by
integration, so that kF can be determined by computing
the expectation value of the number operator in the ground-
state jF>

N ¼ hFjN̂jFi ¼X
k�

hFjn̂k�jFi ¼
X
k�

�ðkF � kÞ

¼ ð3	2Þ�1Vk3F ¼ N; (53)

where �ðxÞ denotes the step function

�ðxÞ ¼ 1 for x � 0; �ðxÞ ¼ 0 for x < 0: (54)

Equivalently kF can be expressed as

kF ¼
�
3	2N

V

�
1=3 ¼

�
9	

4

�
1=3
r�10 : (55)

Now the expectation value of Ĥ0 may be evaluated as

Eð0Þ ¼ hFjĤ0jFi ¼ @
2

2m

X
k�

k2hFjn̂k�jFi

¼ @
2

2m

X
k�

k2�ðkF � kÞ

¼ @
2

2m

X
�

V

ð2	Þ3
Z
d3kk2�ðkF � kÞ ¼ 3

5

@
2k2F
2m

N

¼ e2

2a0

N

r2s

3

5

�
9	

4

�
2=3
: (56)

In a free Fermi gas, the ground-state energy per particle

Eð0Þ=N is 3
5 of the Fermi energy 
0F ¼ @

2k2F=2m. We now

compute the shift in the ground-state energy to first order in
perturbation theory:

Eð1Þ ¼ hFjĤ1jFi

¼ 2	e2

V

X0

kk3k4

X
�1�2

1

k2

�hFj~aykþk3;�1
~ayk4�k;�2 ~ak4�2

~ak3�1e
�ik^ðk3�k4ÞjFi:

(57)

For a nonzero matrix element, all the states jk4�2 > ,
jk3�1 > , jkþ k3, �1 > , jk4 � k, �2> should be occu-
pied in jF > . Also, since k ¼ 0 is excluded, we must have
the pairing

k þ k3; �1 ¼ k4; �2 (58)

so that the matrix element becomes

�kþk3;k4
��1�2hFj~aykþk3;�1

~ayk4�k;�2 ~ak4�2
~ak3�1 jFi:

The exponential factor in the previous expression for Eð1Þ
(57) again becomes the identity as kþ k3 ¼ k4ði:e:k ¼
k4 � k3Þ. Finally, using the twisted commutation relation
given by (6) and (8) and also considering the fact that the
term k ¼ 0 is excluded from the sum, the above expression
becomes

� �kþk3;k4
��1�2hFjn̂kþk3;�1 n̂k3�1e

�2ik3^ðkþk3ÞjFi
¼ ��kþk3;k4

��1�2�ðkF � jkþ k3jÞ�ðkF � k3Þe�2ik3^k:

(59)

This clearly demonstrates that the effect of noncommuta-
tivity in the conventional twisted framework appears only
in this phase factor, which on turn stems solely from the
twisted anticommutation relations (6)–(8). At this stage,
we can therefore check the status of this observation, if
braided twisted symmetry [2] is implemented. As men-
tioned earlier, this is tantamount to defining a star product
also between functions at different points x and y. Thus we
have to reevaluate the matrix element hk1�1;
k2�2jVjk3�3;k4�4i in (38). To really zoom in to the
points of deviation, note that this matrix element involves
the following integral:

I ¼
Z
d3xd3ye�ik1:x � e�ik2:y � eik:ðx�yÞ � eik4:y � eik3:x:

First note that we can still write eik:ðx�yÞ ¼ eik:xe�ik:y . To
group together all the exponential factors involving y, we
will have to shift the factor eik:x to the right of eik4:y ,
thereby generating an additional phase e�2ik^k4 :

I ¼
Z
d3x

�
e�ik1:x �

�Z
d3ye�ik2:y � e�ik:y � eik4:y

�

� eik:x � eik3:x

�
e�2ik^k4 :

This phase will then combine with the one in (59), which
arises from twisted anti(commutation) relations to yield

4As one can see that the Pauli’s exclusion principle remains
valid in momentum space, as can be seen from (6) that in the
case of �! �1, ^̂ayk ~̂a

y
k ¼ 0. Consequently, the concepts like

Fermi label etc. remain valid in momentum space even in the
presence of noncommutativity. However, this does not remain
true in configuration space, as  ̂yðxÞ ̂yðxÞ does not vanish
necessarily as follows from the relation  ðxÞ ðyÞ ¼R
d2x0d2y0��ðx; y; x0; y0Þ ðy0Þ ðx0Þ; � � 0 [4]. Indeed it has

been shown there, that a repulsive statistical potential between
a pair of identical (twisted) fermions can saturate to a finite value
at coincident points, thereby violating the Pauli principle in real
space.
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e�2ik^ðk4�k3Þ as the final phase factor. This, however, be-
comes the identity in view of the above mentioned identi-
fication k ¼ k4 � k3 (58), leaving no trace of the
noncommutativity in the first order of perturbation theory,
if the braided twisted symmetry is considered. On the other
hand, the nontrivial phase occurring in (59) shows that
there exists a nontrivial effect of noncommutativity if the
conventional twisted symmetry is considered. We now
carry out the corresponding shift in the ground-state energy

Eð1Þ (57) using (59) to get

Eð1Þ ¼ � 2	e2

V

X
½kk3�1�

1

k2
�ðkF � jkþ k3jÞ�ðkF � k3Þ

� e�2ik3^k

¼ � 2	e2

V

X
�1

�
V

ð2	Þ3
�
2 Z

d3kd3k3
1

k2

��ðkF � jkþ k3jÞ�ðkF � k3Þe�2ik3^k:

Note that we have again included the k ¼ 0 term at the
level of integration; as being a set of measure zero, it does
not contribute anything to the integral. Now taking the
summation over �1 the above expression becomes

Eð1Þ ¼ � 4	e2V

ð2	Þ6
Z
d3kd3k3k

�2�ðkF � jkþ k3jÞ
��ðkF � k3Þe�2ik3^k:

It is convenient to change variables: k3 ! k3 þ k
2 , which

reduces the above expression into the symmetrical form

Eð1Þ ¼ � 4	e2V

ð2	Þ6
Z d3k

k2
d3k3�

�
kF �

��������k3 þ 1

2
k

��������
�

��

�
kF �

��������k3 � 1

2
k

��������
�
e�ik3i�ijkj : (60)

The computation of this integral is quite involved. In the
following we present the computation for which only
�12 � 0. Although a bit lengthy the integral can then be
computed in a straightforward manner (see appendix) to
yield

Eð1Þ ¼ � 16	3Ve2

ð2	Þ6 k4F
X1
r¼0

ð�1Þrðk2F�Þ2r4�1�r
ð1þ rÞð1þ 2rÞð�ð32þ rÞÞ2

:

(61)

This is an infinite series in �. Now as � is of the order of the
Plank-length scale, hence very small, we sum the series up
to the first contributing term in �, neglecting all other
higher-order terms. This gives

Eð1Þ ¼ � 16	3Ve2

ð2	Þ6 k4F

�
1� ðk

2
F�Þ2
54

�

¼ � e2

2a0

��
9	

4

�
1=3 3

2	

1

rs
�

�
9	

256

�
2=3

�
�

a20

�
2 1

r5s

�
:

(62)

Thus the ground-state energy per particle in the high-
density limit is given approximately by

E

N
¼
rs!0

e2

2a0

�
2:21

r2s
� 0:916

rs
þ

�
�

a20

�
2 0:2302

r5s
þ . . .

�
: (63)

As can be seen from the above expression, the ground-state
energy has � corrections and deviates from the commuta-
tive result. The ground-state energy per particle is in-
creased by an order of ð�ð �

a20
Þ2Þ, which is a dimensionless

quantity. Note, however, that this � dependency has its
roots in the twisted anticommutation relations, rather
than the noncommutative structure of space per se, as the
� dependency arising from the star product, which encodes
the noncommutativity of space, always dropped out. This
is true to first order in perturbation theory. However, as was
shown in [3] both of these effects plays a role to higher
order in perturbation theory.
It is also quite clear from the above expression that when

rs becomes very small, i.e. in the high-density limit, the
effect of spatial noncommutativity on the ground-state
energy of the degenerate electron gas becomes more sig-
nificant. Taking the noncommutativity parameter ð�Þ to be
of the order of plank length, it can be seen that the effect of
noncommutativity in any terrestrial experiments may not
be found, but in the case of astrophysical objects, where
matter density is very high, the effect of noncommutativity
may be found by experiments.

V. CONCLUSIONS

We have shown that, in contrast to [3], the ground-state
energy of a noncommutative degenerate electron gas in a
neutralizing background acquires noncommutative correc-
tions to first order in perturbation theory if the conventional
twisted symmetry is implemented. But no noncommutative
correction is obtained if the braided twisted symmetry is
implemented. These corrections, in the former case, arise
from the modified two-particle correlations resulting from
the twisted anticommutation relations. All � dependency
arising directly from the star product dropped out to this
order in perturbation theory. On the other hand, in the case
of braided twisted symmetry, the nontrivial correction
arising out of twisted anticommutation relations is neutral-
ized by the � composition of exponential functions at
different points. Our final observation is that any observ-
able effect, as far as the energy shift is concerned, can only
be obtained when the system is extremely dense—a situ-
ation that can presumably arise only in an astrophysical
setting. These experiments, we feel, can determine whether
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the usual twisted symmetry or braided twisted symmetry is
realized in nature.
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APPENDIX

Here we provide some of the basic steps leading to the
evaluation of the integral

I ¼
Z d3k

k2
d3k3�

�
kF �

��������k3 þ 1

2
k

��������
�

��

�
kF �

��������k3 � 1

2
k

��������
�
e�ik3i�ijkj : (A1)

These � functions indicate that the exponential function
has to be integrated first over the overlapping region ‘‘R’’
of the two spheres of equal radii kF centered at�ð12kÞ with
respect to the variable k3 holding k fixed. The resultant
function of k is then integrated over the solid sphere jkj �
2kF. Considering the region Rþðk3z > 0Þ initially, we can
write the corresponding integral over k3 with proper limit
as

Lþ ¼
Z
Rþ
d3k3e

�ik3i�i where �i ¼ �ijkj ¼
Z ðkF�ðk=2ÞÞ
0

dze�i�3z
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2F�ðzþðk=2ÞÞ2Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2F�ðzþðk=2ÞÞ2Þ
p dye�i�2y

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2F�ðzþðk=2ÞÞ2�y2Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2F�ðzþðk=2ÞÞ2�y2Þ
p dxe�i�1x:

Here we have substituted k3x ¼ x, k3y ¼ y, and k3z ¼ z for convenience.
Upon simplification, this takes the following form:

Lþ ¼ 2

�1

Z ðkF�ðk=2ÞÞ
0

dze�i�3z
Z þp
�p

dye�i�2y sinð�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � y2

q
Þ where p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F �

�
zþ k

2

�
2

s
:

Substituting the above expression for Lþ in (62), one gets for the corresponding Iþ

Iþ �
Z d3k

k2
Lþ ¼

Z d3k

k2

�
4

�1

Z ðkF�ðk=2ÞÞ
0

dz
Z p

0
dy cosð�2yÞ sinð�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � y2

q
Þ
�
;

where we have taken �13 ¼ �23 ¼ 0, by orienting the 3-
axis in the k frame in the direction of �, where �i ¼
1
2 
ijk�jk [see Eq. [10]] so that the only surviving compo-
nents of �ij are �12 ¼ ��21 ¼ �, and consequently�3 ¼ 0
and �1 ¼ �k2 and �2 ¼ ��k1. The above integral can
now be expressed in terms of Bessel functions [13]

J�ðzÞ ¼ z�

2�
X1
r¼0
ð�1Þr z2r

22rr!�ð�þ rþ 1Þ

as

Iþ ¼ 2	
Z d3k

k2

Z ðkF�ðk=2ÞÞ
0

dz
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þ2 þ ð�2Þ2p

� J1ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þ2 þ ð�2Þ2

q
Þ:

Now we can integrate term by term by expanding the
series of Bessel functions. By making use of the integral

Z ðkF�ðk=2ÞÞ
0

dz

�
k2F �

�
zþ k

2

�
2
�
rþ1

¼ ðkFÞð2rþ3Þ
Xrþ1
j¼0

rþ 1Cjð�1Þj
2jþ 1

�
1�

�
k

2kF

�ð2jþ1Þ�
;

one gets after a lengthy but straightforward computation

Iþ ¼ �k4F
X1
r¼0

ð�1Þrðk2F�Þ2r
r!ðrþ 1Þ!ð2rþ 1Þ!

Xrþ1
j¼0

rþ 1Cjð�1Þj
ðrþ jþ 1Þ

� Xr
l¼0

rClð�1Þl
ð2lþ 1Þ :

The last two factors involving series summation can now
be carried out exactly to get

Xr
l¼0

rClð�1Þl
ð2lþ 1Þ ¼

ffiffiffiffi
	
p

r!

2�ð32þ rÞ ;

Xrþ1
j¼0

rþ 1Cjð�1Þj
ðrþ jþ 1Þ ¼

4ð�1�rÞ
ffiffiffiffi
	
p

r!

�ð32þ rÞ :
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With this Iþ takes the following form:

Iþ ¼ 4	2k4F
X1
r¼0

ð�1Þrðk2F�Þ2r4�1�r
2ð1þ rÞð1þ 2rÞð�ð32þ rÞÞ2

: (A2)

A similar result is obtained for I�, when one considers the
region R� corresponding to k3z < 0. Consequently one has
I ¼ 2Iþ ¼ 2I�. Substituting this back in (60), one gets the
desired expression of Eð1Þ.
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