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Perfect magnetic conductor (PMC) boundary conditions are dual to the more familiar perfect electric

conductor (PEC) conditions and can be viewed as the electromagnetic analog of the boundary conditions

in the bag model for hadrons in QCD. Recent advances and requirements in communication technologies

have attracted great interest in PMC’s, and Casimir experiments involving structures that approximate

PMC’s may be carried out in the not-too-distant future. In this paper, we make a study of the zero-

temperature PMC Casimir piston in dþ 1 dimensions. The PMC Casimir energy is explicitly evaluated by

summing over pþ 1-dimensional Dirichlet energies where p ranges from 2 to d inclusively. We derive

two exact d-dimensional expressions for the Casimir force on the piston and find that the force is negative

(attractive) in all dimensions. Both expressions are applied to the case of 2þ 1 and 3þ 1 dimensions. A

spin-off from our work is a contribution to the PEC literature: we obtain a useful alternative expression for

the PEC Casimir piston in 3þ 1 dimensions and also evaluate the Casimir force per unit area on an

infinite strip, a geometry of experimental interest.
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I. INTRODUCTION

Perfect magnetic conductor (PMC) boundary conditions
are dual to the more familiar perfect electric conductor
(PEC) conditions. In 3þ 1 dimensions, the electric field E
and the magnetic field B are zero inside a PEC and the
condition at the surface is n � B ¼ 0 and n� E ¼ 0,
where n is the vector normal to the surface. The conditions
for PMCs are obtained via the dual transformations E !
H and B ! �D, where H is the magnetic field strength
and D the electric displacement. Inside a PMC, D and H
are zero, and the condition at the surface becomes n �D ¼
0 and n�H ¼ 0. PMC boundary conditions can be gen-
eralized to any dimension and are analogous to the bound-
ary conditions in the bag model for hadrons in QCD (see
next section).

A distinctive property of a PMC is that its surface
reflects electromagnetic waves without a phase change of
the electric field, in contrast to the � phase change from a
PEC [1]. In the last few years there has been great interest
in structures which approximate PMCs because of their
usefulness to communication technologies, in particular,
low-profile antennas [1]. Casimir experiments involving
structures which approximate PMCs could therefore be
carried out in the not too distant future. This would be an
exciting development.

In this paper, we make a study of the zero-temperature
PMC Casimir piston in a dþ 1-dimensional parallelepiped

geometry. The PMC Casimir energy can be expressed as
sums over Dirichlet energies of different dimensions and
we perform this sum explicitly. We derive two different and
exact expressions for the d-dimensional Casimir force on
the piston. The second (alternative) expression is more
useful than the first expression when the plate separation
is larger than the dimension of the plates and vice versa
when the plate separation is smaller. The PMC Casimir
force is negative (attractive) as in the PEC case (see
Refs. [2–6]), the Dirichlet case [2,6–8], and the Neumann
case [2,6,9]. The d-dimensional formulas (both expres-
sions) are applied to the case of 2þ 1 and 3þ 1 dimen-
sions and our results agree with previous Dirichlet [7] and
PEC results of Refs. [2–6] (see Sec. III). A spin-off from
our work on PMCs is a contribution to the PEC literature.
We obtain a novel alternative expression for the 3þ
1-dimensional PEC Casimir piston and also calculate the
Casimir force per unit area on an infinite strip, a case of
experimental interest.
The piston geometry has attracted considerable attention

since the original work of Cavalcanti [7], because it re-
solves the issue of surface divergences that often plague
Casimir calculations [10] and includes the nontrivial ef-
fects of the exterior region. A Casimir piston contains an
interior and an exterior region and Cavalcanti showed
explicitly for the case of a massless scalar field in a 2þ
1-dimensional rectangular cavity that the surface terms of
the interior and exterior regions canceled. He also showed
that the Casimir force on the piston is always negative
regardless of the ratios of the two sides of the rectangular
region. This is in contrast to calculations that can yield
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positive Casimir forces in rectangular geometries when no
exterior region is considered (see references in [11]).

The PEC Casimir piston at zero temperature in a 3þ
1-dimensional square cavity was first studied in [2] and
exact results were obtained for the Casimir force on the
piston. It was also shown that the force was attractive.
Expressions for arbitrary cross section valid for small plate
separation were also derived. Moreover, in that same work,
the authors studied the Dirichlet and Neumann pistons in
3þ 1 dimensions obtaining results for small plate separa-
tion (exact results were then obtained in [6,8,9]; see para-
graph below). The PEC work was generalized further in [3]
(see also [4,5]) where exact results for arbitrary cross
sections at zero and finite temperature were first obtained
for arbitrary separation. The arbitrary cross-section results
were applied to both rectangular and circular cross sections
and explicit expressions were obtained for these geome-
tries. A positive feature of the Casimir expressions in [3] is
that they are manifestly negative. Using an optical path
technique, finite temperature results for the PEC rectangu-
lar piston with arbitrary separation were later obtained in a
different form [6] (arbitrary cross-section results valid for
small plate separation were also obtained). The physical
meaning behind the various terms that contribute to the
Casimir energy of a rectangular cavity was recently dis-
cussed as a three step process involving piston interactions
[12]. It is worth noting that Casimir forces in a piston
geometry can be repulsive (positive) under various con-
ditions. This was discussed in [13,14].

Besides the usual electromagnetic field, there is also
good reason to consider massless scalar fields in Casimir
calculations. As discussed in [2,6], the PEC Casimir en-
ergy can be obtained from the Dirichlet and Neumann
energies. Moreover, Casimir results for massless scalar
fields have been shown to have direct application to physi-
cal systems such as Bose-Einstein condensates [15–17].
Higher-dimensional scalar field Casimir calculations have
also appeared in 6D supergravity theories [18] and re-
cently, the Casimir force on a piston with extra compacti-
fied dimensions has been investigated [19]. As already
mentioned above, scalar fields in the 3þ 1-dimensional
piston scenario were first studied in [2] and approximate
results valid for small plate separation were obtained.
Exact results for the zero temperature 3þ 1-dimensional
Dirichlet piston with rectangular cross section were then
obtained in [8] via a multidimensional cutoff technique
[20]. Exact zero and finite temperature results for the 3þ 1
Neumann and Dirichlet pistons with rectangular cross
sections were then obtained in [6]. Shortly thereafter, using
a different technique, two different expressions for the
zero-temperature 3þ 1 Neumann piston with rectangular
cross section were obtained in [9]. The zero-temperature
Dirichlet and Neumann Casimir pistons for parallelepiped
geometries were solved exactly in arbitrary dimensions in
[9]. The d-dimensional formulas were applied to the 2þ 1-

(and 3þ 1)-dimensional Neumann piston bringing a com-
pletion to Cavalcanti’s original work in 2þ 1 dimensions
[7].

II. PMC CASIMIR PISTON IN dþ 1 DIMENSIONS

The PMC boundary conditions n � E ¼ 0 and n�B ¼
0 can be expressed as ��F�� ¼ 0, where F�� � @�A� �
@�A� is the electromagnetic field tensor and �� is a space-

like vector normal to the surface. This is analogous to the
boundary conditions in the bag model for hadrons in QCD.
We choose the gauge conditions A0 ¼ 0 and @iAi ¼ 0. The
PMC condition ��F�� ¼ 0 together with the gauge con-

dition applies to any dimension. The mode decomposition
for a parallelepiped geometry in dþ 1 dimensions with
sides of lengths Li, where i runs from 1 to d inclusively, is
given by [21]

Ai ¼ ci sinðkixiÞ
Yd
j¼1
j�i

cosðkjxjÞe�i!t; (2.1)

where kp ¼ np�=Lp, np � 0 2 N, and ! ¼ ðkpkpÞ1=2
where p runs from 1 to d inclusively. The PMC Casimir
energy can be decomposed into sums of Dirichlet energies
of different dimensions. When all ni’s are nonzero, there
are d modes but the gauge condition reduces this by 1
yielding d� 1 independent modes. When one of the ni’s is
zero, there are d� 2 independent modes. In general, there
are d� j independent modes when j� 1 ni’s are zero
(where j runs from 1 to d� 1 inclusively). Each of those
modes has the energy of a scalar field in d� jþ 1 dimen-
sions obeying Dirichlet boundary conditions. One must
sum over all distinct sets of d� jþ 1 lengths chosen
among the d lengths L1; L2; . . . ; Ld. The Casimir energy
E for PMC boundary conditions in a dþ 1-dimensional
parallelepiped geometry with sides of length L1; L2;
. . . ; Ld can therefore be expressed as sums over Dirichlet
(D) Casimir energies ED (in units where @ ¼ c ¼ 1) [21]:

E ¼ Xd�1

j¼1

ðd� jÞ�d
i1;...;id�jþ1

EDi1 ;...;id�jþ1
: (2.2)

There is an implicit summation over the integers ij in (2.2).

The ordered symbol �d
i1;...;ip

, originally introduced in [8], is

defined as

�d
i1;...;ip

¼
�
1 if i1 < i2 < � � �< ip; 1 � ip � d;
0 otherwise:

(2.3)

For p ¼ 0, �d
i1;...;ip

is defined to be unity. The ordered

symbol ensures that the implicit sum over the ij’s is over

all distinct sets fi1; . . . ; ipg, where the ij’s are integers that
can run from 1 to d inclusively under the constraint that
i1 < i2 < � � �< ip. The superscript d specifies the maxi-

mum value of ip. For example, if p ¼ 2 and d ¼ 3, then

�d
i1;...;ip

¼ �3
i1;i2

and the nonzero terms are �1;2, �1;3, and
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�2;3. This means the summation is over fi1; i2g ¼ ð1; 2Þ,
(1,3), and (2,3) so that �3

i1;i2
Ei1i2 ¼ E12 þ E13 þ E23. The

expression for the d-dimensional Dirichlet Casimir energy
was previously obtained and is given by [8,9]

ED1;2;...;d
¼ �

2dþ1

Xd�1

p¼0

ð�1Þdþp�d�1
k1;...;kp

Lk1 � � �Lkp

ðLdÞpþ1
ðQp þ RDp

Þ;

(2.4)

where Qp is a function of p and a product of gamma and

Riemann zeta functions:

Qp ¼ �

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ: (2.5)

RDp
can be thought of as a remainder and is an infinite sum

over modified Bessel functions that converges rapidly

RDp
¼ X1

n¼1

X1
‘i¼�1
i¼1;...;p

0 2nðpþ1Þ=2

�

�
Kðpþ1Þ=2ð2�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1 Lk1

Ld
Þ2 þ � � � þ ð‘p Lkp

Ld
Þ2

r
Þ

½ð‘1 Lk1

Ld
Þ2 þ � � � þ ð‘p Lkp

Ld
Þ2�ðpþ1Þ=4

:

(2.6)

The prime on the sum in (2.6) means that the case when
all ‘’s are simultaneously zero (‘1 ¼ ‘2 ¼ � � � ¼ ‘p ¼ 0)

is to be excluded. There is an implicit summation over the
ki’s via the ordered symbol �k1;...;kp defined in (2.3). Unlike

Qp, RDp
does not depend only on p but is also a function of

the ratios of lengths, i.e., RDp
¼ RDp

ðLk1=Ld; . . . ; Lkp=LdÞ.
Therefore, the implicit summation over the ki’s applies
also to RDp

. For p ¼ 0, RDp
is defined to be zero and

�k1;...;kp and Lkp are defined to be unity so that

�d�1
k1;...;kp

ðLk1 � � �LkpÞ=ðLdÞpþ1 ¼ 1=Ld for p ¼ 0.

The piston divides the volume into two regions: region I
(inside) and region II (outside). In region I, the d sides are

of length a1; a2; . . . ; ad�1; a, where a is the plate separa-
tion. The d sides are labeled in the following fashion: L1 ¼
a1, L2 ¼ a2, Ld�1 ¼ ad�1, and Ld ¼ a. The Casimir force
depends on the derivative with respect to a of the Casimir
energy and therefore only those terms which contain Ld ¼
a need to be included. For the Casimir energy EDi1 ;...;id�jþ1

appearing in (2.2), the length Ld occurs when id�jþ1 ¼ d

(recall that i1 < i2 < � � �< id�jþ1). Therefore

�d
i1;...;id�jþ1

EDi1 ;...;id�jþ1
¼ �d�1

i1;...;id�j
EDi1 ;...;id�j ;d

: (2.7)

The formula for EDi1 ;...;id�j;d
is obtained by replacing d by

d� jþ 1 and Lk1 by Lik1
, Lkp by Likp

, and Ld by Lid�jþ1
¼

Ld in (2.4):

EDi1 ;...;id�j;d
¼ �

2ðd�jþ2Þ
Xd�j

p¼0

ð�1Þdþp�jþ1�d�j
k1;...;kp

Lik1
� � �Likp

ðLdÞpþ1

� ðQp þ RpÞ; (2.8)

where Rp is equal to RDp
with Lk1 replaced by Lik1

, Lkp by

Likp
, and Ld by Lid�jþ1

¼ Ld.

To evaluate �d�1
i1;...;id�j

EDi1 ;...;id�j;d
we need to determine

�d�1
i1;...;id�j

�d�j
k1;...;kp

Lik1
� � �Likp

. The number of distinct sets

ði1; . . . ; id�jÞ that can be generated by �d�1
i1;...;id�j

is the bino-

mial coefficient

d� 1
d� j

� �
:

The number of those sets that contain a particular set
ðik1 ; . . . ; ikpÞ is simply

d� 1� p
d� j� p

� �
:

We therefore obtain

�d�1
i1;...;id�j

�d�j
k1;...;kp

Lik1
� � �Likp

¼ d� 1� p
d� j� p

� �
�d�1
k1;...;kp

Lk1 � � �Lkp: (2.9)

As an illustration consider the case d ¼ 5, p ¼ 2, and j ¼ 2. Evaluating the left-hand side of (2.9) yields

�d�1
i1;...;id�j

�d�j
k1;...;kp

Lik1
� � �Likp

¼ �4
i1;i2;i3

�3
k1;k2

Lik1
Lik2

¼ �4
i1;i2;i3

ð�3
1;2Li1Li2 þ �3

1;3Li1Li3 þ �3
2;3Li2Li3Þ

¼ �4
i1;i2;i3

ðLi1Li2 þ Li1Li3 þ Li2Li3Þ
¼ �4

1;2;3ðL1L2 þ L1L3 þ L2L3Þ þ �4
1;2;4ðL1L2 þ L1L4 þ L2L4Þ

þ �4
1;3;4ðL1L3 þ L1L4 þ L3L4Þ þ �4

2;3;4ðL2L3 þ L2L4 þ L3L4Þ
¼ 2ðL1L2 þ L1L3 þ L1L4 þ L2L3 þ L2L4 þ L3L4Þ: (2.10)

The right-hand side of (2.9) yields
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d� 1� p
d� j� p

� �
�d�1
k1;...;kp

Lk1 � � �Lkp ¼ 2
1

� �
�4
k1;k2

Lk1Lk2 ¼ 2ðL1L2 þ L1L3 þ L1L4 þ L2L3 þ L2L4 þ L3L4Þ; (2.11)

which is equal to the result in (2.10).
The Casimir energy in region I, EI, is obtained by substituting (2.7) into (2.2) and then using formula (2.8) and the

equality (2.9):

EI ¼
Xd�1

j¼1

Xd�j

p¼0

ð�1Þdþp�jþ1 �

2ðd�jþ2Þ ðd� jÞ d� 1� p
d� j� p

� �
�d�1
k1;...;kp

Lk1 � � �Lkp

ðLdÞpþ1
ðQp þ RpÞ

¼ Xd�1

p¼0

Xd�p

j¼1

ð�1Þdþp�jþ1 �

2ðd�jþ2Þ ðd� jÞ d� 1� p
d� j� p

� �
�d�1
k1;...;kp

ak1 � � � akp
apþ1

ðQp þ RIpÞ: (2.12)

Note that we have rearranged the double sum, replaced Ld

by the plate separation a and Lki by aki . The sum over j can
be readily evaluated and yields

Xd�p

j¼1

ð�1Þdþp�jþ1 d� j

2ðd�jþ2Þ
d� 1� p
d� j� p

� �
¼ ðd� 1� 2pÞ

2dþ1
:

(2.13)

We finally obtain for region I

EI ¼ �

2dþ1

Xd�1

p¼0

ðd� 1� 2pÞ�d�1
k1;...;kp

ak1 � � �akp
apþ1

ðQp þ RIpÞ;

(2.14)

whereQp is given by (2.5) and RIp is obtained from RDp
by

replacing Lki by aki and Ld by the plate separation a, i.e.,

RIp ¼
X1
n¼1

X1
‘i¼�1
i¼1;...;p

0 2nðpþ1Þ=2

�

� Kðpþ1Þ=2ð2�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1 ak1

a Þ2 þ � � � þ ð‘p akp
a Þ2

q
Þ

½ð‘1 ak1
a Þ2 þ � � � þ ð‘p akp

a Þ2�ðpþ1Þ=4 :

(2.15)

We now evaluate the PMC Casimir energy in region II,
EII. In region II, the d lengths are s� a, a1; a2; . . . ; ad�1

(i.e., the same lengths as in region I except that a is
replaced by s� a). We label the lengths in region II as
L1 ¼ s� a, L2 ¼ a1, L3 ¼ a2, and Ld ¼ ad�1. The
Casimir force is obtained by taking the derivative with
respect to a so that only terms that contain L1 need to be
included in the Casimir energy. We therefore set i1 ¼ 1 in
(2.2) which yields

EII ¼
Xd�1

j¼1

ðd� jÞ�d
1;i2;i3;...;id�jþ1

ED1;i2 ;i3 ;::;id�jþ1
; (2.16)

where the Dirichlet expression is given by (2.4):

ED1;i2 ;i3...;id�jþ1
¼ �

2ðd�jþ2Þ
Xd�j

p¼1

ð�1Þdþp�jþ1�d�j
1;k2;k3;...;kp

�
L1Lik2

� � �Likp

ðLid�jþ1
Þpþ1

ðQp þ RIIpÞ: (2.17)

RIIp is obtained from RDp
Eq. (2.6) with Lk1 replaced by

L1 ¼ s� a, Lkp by Likp
, and Ld by Lid�jþ1

. Substituting

(2.17) into (2.16) yields

EII ¼
Xd�1

j¼1

Xd�j

p¼1

ð�1Þdþp�jþ1 �

2ðd�jþ2Þ ðd� jÞ�d
1;i2;i3;...;id�jþ1

� �d�j
1;k2;k3;...;kp

L1Lik2
� � �Likp

ðLid�jþ1
Þpþ1

ðQp þ RIIpÞ: (2.18)

In �d
1;i2;i3;...;id�jþ1

, the value of id�jþ1 ranges from d� jþ 1

to d inclusively. We can therefore replace id�jþ1 with d�
q and sum q from 0 to j� 1 yielding

�d
1;i2;i3;...;id�jþ1

�d�j
1;k2;k3;...;kp

L1Lik2
� � �Likp

ðLid�jþ1
Þpþ1

¼ Xj�1

q¼0

�d�q�1
1;i2;i3;...;id�j;d�q�

d�j
1;k2;k3;...;kp

L1Lik2
� � �Likp

ðLd�qÞpþ1

¼ Xj�1

q¼0

d� q� 1� p
d� j� p

� �
�d�q�1
1;k2;k3;...;kp

L1Lk2 � � �Lkp

ðLd�qÞpþ1
;

(2.19)

where the binomial coefficient follows from the same
reasoning given above (2.9).
Substituting the above into (2.18) yields
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EII ¼
Xd�1

j¼1

Xd�j

p¼1

Xj�1

q¼0

ð�1Þdþp�jþ1 �ðd� jÞ
2ðd�jþ2Þ

d� q� 1� p
d� j� p

� �
�d�q�1
1;k2;k3;...;kp

L1Lk2 � � �Lkp

ðLd�qÞpþ1
ðQp þ RIIpÞ

¼ Xd�1

p¼1

Xd�p�1

q¼0

Xd�p

j¼qþ1

ð�1Þdþp�jþ1 �ðd� jÞ
2ðd�jþ2Þ

d� q� 1� p
d� j� p

� �
�d�q�1
1;k2;k3;...;kp

ðs� aÞak2�1 � � � akp�1

ðad�q�1Þpþ1
ðQp þ RIIpÞ; (2.20)

where the triple sum has been rearranged into an equivalent form and the lengths corresponding to the Li’s were
substituted. The sum over j yields

Xd�p

j¼qþ1

ð�1Þdþp�jþ1 ðd� jÞ
2ðd�jþ2Þ

d� q� 1� p
d� j� p

� �
¼ ðd� 1� 2p� qÞ

2d�qþ1
; (2.21)

and we finally obtain the PMC Casimir energy EII for region II:

EII ¼
Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

ðs� aÞak2�1 � � � akp�1

ðad�q�1Þpþ1
ðQp þ RIIpÞ; (2.22)

whereQp is again given by (2.5) and RIIp is obtained from Eq. (2.6) with Lk1 replaced by L1 ¼ s� a, Lkp by akp�1, and Ld

by ad�q�1, i.e.,

RIIp ¼
X1
n¼1

X1
‘i¼�1
i¼1;...;p

0 2nðpþ1Þ=2

�

Kðpþ1Þ=2ð2�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1 s�a

ad�q�1
Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2

q
Þ

½ð‘1 s�a
ad�q�1

Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2�ðpþ1Þ=4 : (2.23)

A. PMC Casimir force expressions in dþ 1 dimensions

The Casimir force is obtained by taking the negative derivative with respect to the plate separation a of the Casimir
energy. In region I the Casimir energy is given by (2.14) together with (2.5) and (2.15). The Casimir force in region I, FI is
given by

FI ¼ � @EI

@a
¼ �

2dþ1

Xd�1

p¼0

ðd� 1� 2pÞðpþ 1Þ�d�1
k1;...;kp

ak1 � � � akp
apþ2

�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ � @RI

@a
; (2.24)

where

@RI

@a
¼ @

@a

�
�

2dþ1

Xd�1

p¼1

ðd� 1� 2pÞ�d�1
k1;...;kp

ak1 � � � akp
apþ1

RIp

�

¼ �

2d�1

Xd�1

p¼1

X1
n¼1

X1
‘i¼�1
i¼1;...;p

0 ðd� 1� 2pÞ�d�1
k1;...;kp

ak1 � � � akpnðpþ3Þ=2 Kðp�3Þ=2ð2�na
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1ak1Þ2 þ � � � þ ð‘pakpÞ2

q
Þ

aðpþ5Þ=2½ð‘1ak1Þ2 þ � � � þ ð‘pakpÞ2�ðp�1Þ=4 : (2.25)

The Casimir energy in region II is given by (2.22) together with (2.5) and (2.23). We are interested in the case when the
outside region II is infinite, i.e., s ! 1. The Casimir force in region II is then given by

FII ¼ � lim
s!1

@EII

@a

¼ Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

ak2�1 � � � akp�1

ðad�q�1Þpþ1

�
�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ � lim

s!1
@

@a
fðs� aÞRIIpg

�

¼ Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

ak2�1 � � � akp�1

ðad�q�1Þpþ1

�
�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ þ RIIpð‘1 ¼ 0Þ

�
; (2.26)

where RIIpð‘1 ¼ 0Þ means RIIp evaluated with ‘1 ¼ 0:
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RIIpð‘1 ¼ 0Þ ¼ X1
n¼1

X1
‘i¼�1
i¼2;...;p

0 2nðpþ1Þ=2

�

Kðpþ1Þ=2ð2�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘2 ak2�1

ad�q�1
Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2

q
Þ

½ð‘2 ak2�1

ad�q�1
Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2�ðpþ1Þ=4 : (2.27)

The Casimir force FPMC on the piston with perfect magnetic conductor boundary conditions is finally obtained by
adding FI and FII:

FPMC ¼ �

2dþ1

Xd�1

p¼0

ðd� 1� 2pÞðpþ 1Þ�d�1
k1;...;kp

ak1 � � � akp
apþ2

�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ � @RI

@a

þ Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

ak2�1 � � � akp�1

ðad�q�1Þpþ1

�
�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ þ RIIpð‘1 ¼ 0Þ

�
;

(2.28)

where @RI=@a is given by (2.25) and RIIpð‘1 ¼ 0Þ by
(2.27). The PMC Casimir force in any spatial dimension
d and for arbitrary lengths of the sides of the parallelepiped
can be obtained via Eq. (2.28) together with (2.25) and
(2.27). The force is automatically negative (attractive)
because it is obtained from a sum over Dirichlet Casimir
piston forces which are negative.

We now discuss the rate of convergence of (2.28). Note
that (2.28) contains two different kinds of terms: a finite
sum over analytical terms and infinite sums over modified
Bessel functions. The analytical terms contain inverse
powers of the plate separation a (i.e., 1=apþ2) multiplied
by gamma and Riemann zeta functions. A finite sum of
those terms is trivial to evaluate and there are no conver-
gence issues. The next term, @RI=@a given by (2.25),
contains infinite sums over modified Bessel functions.
The ratios of lengths in the argument of the modified
Bessel functions have the plate separation a in the denomi-
nator. If a is the smallest length, the modified Bessel
functions are tiny and the sum converges exponentially
fast [only a few terms need to be summed in (2.25) to
reach convergence]. However, if the plate separation a is
the largest length (e.g., square plates with sides of 1 �m
separated by 10 �m), the modified Bessel functions can be
large and converge slowly. In the large a limit where
aki=a � 1, a large number of terms would need to be

summed in (2.25) to achieve convergence. Simply put,
when a is large, it is not computationally efficient to use
(2.28) to evaluate the Casimir force.

By using the invariance of the Casimir energy under
permutation of lengths, it is possible to derive an alterna-
tive expression for the PMC Casimir force Falt

PMC that yields

the same force as (2.28) but converges exponentially fast
when the plate separation a is the largest length. This
expression is derived in the Appendix and is given by
(A6) together with (A7). In (A7), the plate separation a
appears in the numerator in the argument of the modified
Bessel functions so that the infinite sums converge expo-
nentially fast when a is the largest length. Computationally

it is better to use the alternative expression (A6) instead of
the above expression (2.28) to calculate the PMC Casimir
force when the plate separation a is the largest length and
vice versa if a is the smallest length. The main results of
this paper are the two different expressions for the PMC
Casimir force on the piston: Eqs. (2.28) and (A6).

III. APPLICATIONS: THE 2þ 1- AND
3þ 1-DIMENSIONAL PMC CASIMIR PISTON

As an illustration of how to apply the dþ 1-dimensional
PMC Casimir formula (2.28) or the alternative expression
(A6), we consider 2þ 1 and 3þ 1 dimensions. The case of
2þ 1 dimensions is the simplest nontrivial case where
Eqs. (2.28) and (A6) can be applied. From (2.2), we see
that in two spatial dimensions, the PMC Casimir energy is
equivalent to the Dirichlet energy. In three spatial dimen-
sions (and only in three), the PMC Casimir energy is equal
to the PEC Casimir energy. This can be seen most trans-
parently in the transverse electric (TE) and transverse
magnetic (TM) decomposition that exists in 3þ 1 dimen-
sions. The PEC Casimir energy in 3þ 1 is half the sum
over all modes of the eigenfrequencies !TE and !TM (see
[3] for a recent application of the TE/TM decomposition in
a piston geometry of arbitrary cross section). The eigen-
frequencies in the PMC case are obtained by simply
switching !TE for !TM and vice versa leaving the sum
!TE þ!TM unchanged. A strong confirmation of our
d-dimensional technique and PMC formulas is that our 2þ
1- and 3þ 1-dimensional results are in agreement with
previous Dirichlet and PEC results, respectively. An im-
portant spin-off from our work is that we obtain an alter-
native expression for the PEC Casimir piston in 3þ 1
dimensions and also obtain the Casimir force per unit
area for the special case of an infinite strip.

A. 2þ 1 dimensions

In 2þ 1 dimensions we use d ¼ 2 in (2.28). The two
lengths are a1 ¼ b and the plate separation a. We evaluate
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the three terms in (2.28) separately. The first term is

�

8

X1
p¼0

ð1� 2pÞðpþ 1Þ�1
k1;...;kp

ak1 � � �akp
apþ2

�

�
pþ 2

2

�

� �ð�p�4Þ=2�ðpþ 2Þ ¼ �

48a2
� �ð3Þb

8�a3
: (3.1)

The second term is evaluated via Eq. (2.25) with d ¼ 2:

� @RI

@a
¼ �b

a3
X1
n¼1

X1
‘¼1

n2K0

�
2�n‘b

a

�
: (3.2)

The third term yields (only the p ¼ 1, q ¼ 0 case needs to
be evaluated)

�ð�1Þ
23

1

ða1Þpþ1

�
�

�
3

2

�
��5=2�ð3Þ þ RIIpð‘1 ¼ 0Þ

�

¼ � �ð3Þ
16�b2

; (3.3)

where RIIpð‘1 ¼ 0Þ is zero for p ¼ 1 (it starts at p ¼ 2).

The PMC Casimir force on the piston in 2þ 1 dimensions
is given by summing all three terms:

FPMC ¼ � �ð3Þb
8�a3

þ �

48a2
þ �b

a3
X1
n¼1

X1
‘¼1

n2K0

�
2�n‘b

a

�

� �ð3Þ
16�b2

: (3.4)

In the limit of infinite parallel lines, i.e., b ! 1, the force
per unit length tends to ��ð3Þ=8�a3.

We now calculate the Casimir force using the alternative
expression (A6) together with (A7). For d ¼ 2, we only
need to evaluate the term (p ¼ 1, q ¼ 0) in (A6):

Falt
PMC ¼ �

8b2
@

@a

�
a
X1
n¼1

X1
‘¼1

4

�

nb

‘a
K1

�
2�n‘a

b

��

¼ 1

2b

X1
n¼1

X1
‘¼1

n

‘

@

@a
K1

�
2�n‘a

b

�
: (3.5)

Equations (3.4) and (3.5) are both in agreement with
those obtained by Cavalcanti [7] for Dirichlet boundary
conditions in 2þ 1 dimensions and this provides an inde-
pendent confirmation of our general PMC formulas (2.28)
and (A6).

B. 3þ 1 dimensions

In 3þ 1 dimensions we set d ¼ 3 in (2.28). The three
lengths are a1 ¼ c, a2 ¼ b, and the plate separation a.
Again we evaluate the three terms in (2.28) separately. The
first term yields

�

16

X2
p¼0

ð2� 2pÞðpþ 1Þ�2
k1;...;kp

ak1 � � � akp
apþ2

�

�
pþ 2

2

�

� �ð�p�4Þ=2�ðpþ 2Þ ¼ �

48a2
� 3bc�ð4Þ

8�2a4
: (3.6)

The second term is given by

� @RI

@a
¼ ��

4

X2
p¼1

X1
n¼1

X1
‘i¼�1
i¼1;...;p

0 ð2� 2pÞ�2
k1;...;kp

ak1 . . . akpn
ðpþ3Þ=2 Kðp�1Þ=2ð2�na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1ak1Þ2 þ � � � þ ð‘pakpÞ2

q
Þ

aðpþ5Þ=2½ð‘1ak1Þ2 þ � � � þ ð‘pakpÞ2�ðp�1Þ=4

¼ �bc

2a7=2

X1
n¼1

X1
‘1;‘2¼�1

0
n5=2

K1=2ð2�na
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘1cÞ2 þ ð‘2bÞ2

p Þ
½ð‘1cÞ2 þ ð‘2bÞ2�1=4

; (3.7)

and the third term yields

X2
p¼1

X2�p

q¼0

�ð2� 2p� qÞ
24�q

�2�q
1;k2;k3;...;kp

ak2�1 � � � akp�1

ða2�qÞpþ1

�
�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ þ RIIpð‘1 ¼ 0Þ

�

¼ � �ð3Þ
16�c2

� �ð4Þc
8�2b3

� 1

2c1=2

X1
n¼1

X1
‘¼1

�
n

‘b

�
3=2

K3=2

�
2�n‘c

b

�
: (3.8)

The PMC Casimir force in 3þ 1 dimensions is obtained by summing all three terms, i.e.,

FPMC ¼ �

48a2
� 3�ð4Þbc

8�2a4
þ �bc

2a7=2

X1
n¼1

X1
‘1;‘2¼�1

0
n5=2

K1=2ð2�na
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘1cÞ2 þ ð‘2bÞ2

p Þ
½ð‘1cÞ2 þ ð‘2bÞ2�ð1=4Þ

� �ð3Þ
16�c2

� �ð4Þc
8�2b3

� 1

2c1=2

X1
n¼1

X1
‘¼1

�
n

‘b

�
3=2

K3=2

�
2�n‘c

b

�
: (3.9)
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Though expressed in a different form, Eq. (3.9) is in numerical agreement with previous PEC results in 3þ 1 dimensions
[2–6]. This provides another independent confirmation of our d-dimensional equations.

To obtain the alternative expression for the Casimir force, we substitute d ¼ 3 in (A6):

Falt
PMC ¼ � X2

p¼1

X2�p

q¼0

�ð2� 2p� qÞ
24�q

�2�q
1;k2;k3;...;kp

ak2�1 � � � akp�1

ða2�qÞpþ1

@

@a
faRalt

Ip
ð‘1 � 0Þg

¼ 1

2c

X1
n¼1

X1
‘¼1

n

‘

@

@a
K1

�
2�n‘a

c

�
þ @

@a

�
ac

2

X1
n¼1

X1
‘1¼1

X1
‘2¼�1

�
n

b

�
3=2 K3=2ð2�nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘1aÞ2 þ ð‘2cÞ2
p Þ

½ð‘1aÞ2 þ ð‘2cÞ2�3=4
�
: (3.10)

The alternative expression (3.10) yields the same value as
the original expression (3.9) but converges much faster if a
is larger than b and c. Note that (3.10) is also an alternative
expression for the PEC Casimir piston in 3þ 1 dimen-
sions. A spin-off from our work is therefore a novel ex-
pression for the PEC piston that is highly useful (converges
fast) when a is larger than b and c.

1. Infinite strip

In this section we consider the special case of an infinite
strip where one side of the plates is of finite length and the
other side is infinitely long (yielding translation invariance
along that direction). An accurate measurement of the
Casimir force between parallel metallic surfaces was per-
formed only a few years ago [22]. The infinite strip, being
closely related in geometry, should therefore be of experi-
mental interest. The 3þ 1-dimensional Casimir force
given by Eq. (3.9) is invariant under exchange of the two
sides b and c, and without loss of generality we take b to be
finite and let c ! 1. In this limit, the term containing K3=2

in (3.9) is zero and the term containing K1=2 is zero except

when ‘1 equals zero. This yields a Casimir force per unit
area (or pressure) of

P � lim
c!1

F

bc

¼ � 3�ð4Þ
8�2a4

� �ð4Þ
8�2b4

þ �

a7=2

X1
n¼1

X1
‘¼1

n5=2
K1=2ð2�n‘ba Þffiffiffiffiffiffi

‘b
p :

(3.11)

After performing the sum over ‘ the above expression
simplifies to

P ¼ � 3�ð4Þ
8�2a4

� �ð4Þ
8�2b4

� �

2ba3
X1
n¼1

n2 lnð1� e�2�nb=aÞ:

(3.12)

The first term represents the force per unit area between
parallel plates, i.e.,

Pk ¼ � 3�ð4Þ
8�2a4

: (3.13)

The pressure P expressed in units of Pk reduces to the

expression

P

Pk
¼ 1þ 1

3

�
a

b

�
4 þ 120

�

�
a

b

� X1
n¼1

n2 lnð1� e�2�nb=aÞ:

(3.14)

We plot P=Pk as a function of a=b in Fig. 1. The Casimir

pressure on the strip is greater than or equal to 1 and
increases as a=b increases, reaching a value that is 26%
higher than the parallel plate case when b ¼ a.

IV. SUMMARYAND DISCUSSION

In this paper we obtain two exact d-dimensional expres-
sions for the PMC Casimir piston, namely, Eqs. (2.28) and
(A6). We showed that the application of these formulas to
2þ 1 and 3þ 1 dimensions is in agreement with previous
Dirichlet and PEC piston results. Moreover, as a spin-off,
we obtain an alternative expression for the 3þ
1-dimensional PEC Casimir piston which is useful when
the plate separation is larger than the dimension of the
plates. We also calculated the Casimir force per unit area
for the special case of an infinite strip, a geometry of
experimental interest. We showed that the Casimir pressure
on the strip is 26% stronger compared to the pressure on

FIG. 1 (color online). Casimir pressure on infinite strip versus
a=b (in units of Pk).
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parallel plates when the side b of the strip equals the plate
separation a.

The important role that Casimir energies can play when
extra dimensions are present has recently been highlighted
in [23]. It was argued that in a brane world scenario with
toroidal extra dimensions, Casimir energies under certain
conditions could stabilize the extra dimensions, allow three
dimensions to grow large, and provide an effective dark
energy in the large dimensions. Higher-dimensional
Casimir formulas derived in previous works were used
and this illustrates the relevance of such results to inves-
tigations in different branches of physics.

Driven in large part by communication technologies, the
last four to five years have seen a great interest in structures
which approximate PMCs [1]. Casimir experiments in-
volving such structures may therefore be possible in the
not too distant future. In practice, experiments would yield
different results between PEC and PMC pistons because
one is comparing metals with finite electric conductivity to
approximate PMCs with finite magnetic conductivity. In
PECs, we know that finite electric conductivity corrections
can contribute on the order of 10% to 20% of the net
Casimir force for parallel plates separated by approxi-
mately 1 �m [11]. It would therefore be worthwhile to
calculate the effects of finite magnetic conductivity on
PMC Casimir energies first in a parallel plate scenario
and then in a piston scenario. This is work for the future.
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APPENDIX: ALTERNATIVE EXPRESSIONS FOR
THE dþ 1-DIMENSIONAL PMC CASIMIR PISTON

We can develop an alternative formula for the PMC
Casimir force by simply labeling the d lengths
L1; L2; . . . ; Ld in region I differently while keeping the
same labeling for region II. This will not alter the
Casimir energy in region I because it is invariant under
permutation of lengths. In our previous derivation leading
to the FPMC, Eq. (2.28), we labeled the d lengths in region I
in the following fashion: L1 ¼ a1, L2 ¼ a2; . . . ;
Ld�1 ¼ ad�1, and Ld ¼ a where a is the plate separation.
We now label them L1 ¼ a, L2 ¼ a1; . . . ; Ld ¼ ad�1. Note
that this is the same labeling we had for region II in our
original derivation except that now L1 is a instead of s� a.
This means that our alternative expression for the Casimir
energy in region I, Ealt

I , can be obtained from the formula

for EII [(2.22) together with (2.23)] by replacing s� a by
a. This yields

Ealt
I ¼ Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

� aak2�1 � � � akp�1

ðad�q�1Þpþ1
ðQp þ Ralt

Ip
Þ; (A1)

where Qp is given by (2.5) and Ralt
Ip
is obtained from (2.23)

with s� a replaced by a, i.e.,

Ralt
Ip

¼ X1
n¼1

X1
‘i¼�1
i¼1;...;p

0 2nðpþ1Þ=2

�

�
Kðpþ1Þ=2ð2�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1 a

ad�q�1
Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2

q
Þ

½ð‘1 a
ad�q�1

Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2�ðpþ1Þ=4 :

(A2)

The alternative expression for the Casimir force in
region I is

Falt
I ¼ �@Ealt

I

@a

¼ � Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

� ak2�1 � � � akp�1

ðad�q�1Þpþ1

�
�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ

þ @

@a
ðaRalt

Ip
Þ
�
: (A3)

The expression for the Casimir force in region II is the
same as before, i.e., FII given by Eq. (2.26):

FII ¼
Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

� ak2�1 � � � akp�1

ðad�q�1Þpþ1

�
�

�
pþ 2

2

�
�ð�p�4Þ=2�ðpþ 2Þ

þ RIIpð‘1 ¼ 0Þ
�
; (A4)

where RIIpð‘1 ¼ 0Þ is given by (2.27). The alternative

expression for the Casimir force on the piston Falt
PMC is

obtained by adding Falt
I and FII. Note that the first terms

in the curly brackets (the term with the Riemann zeta
function) of Falt

I and FII are identical except that one is
the negative of the other. They therefore cancel out. Note
also that the ‘1 ¼ 0 part of the second term in the curly
brackets of Falt

I cancels out with the second term in FII

since

� @

@a
faRalt

Ip
ð‘1 ¼ 0Þg ¼ �Ralt

Ip
ð‘1 ¼ 0Þ ¼ �RIIpð‘1 ¼ 0Þ:

(A5)

The alternative expression for the PMC Casimir force
reduces to
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Falt
PMC ¼ Falt

I þ FII ¼ � Xd�1

p¼1

Xd�p�1

q¼0

�ðd� 1� 2p� qÞ
2d�qþ1

�d�q�1
1;k2;k3;...;kp

ak2�1 � � � akp�1

ðad�q�1Þpþ1

@

@a
faRalt

Ip
ð‘1 � 0Þg; (A6)

where Ralt
Ip
ð‘1 � 0Þ is (A2) evaluated without including ‘1 ¼ 0, i.e.,

Ralt
Ip
ð‘1 � 0Þ ¼ X1

n¼1

X1
‘1¼1

X1
‘i¼�1
i¼2;...;p

4nðpþ1Þ=2

�

Kðpþ1Þ=2ð2�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘1 a

ad�q�1
Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2

q
Þ

½ð‘1 a
ad�q�1

Þ2 þ � � � þ ð‘p akp�1

ad�q�1
Þ2�ðpþ1Þ=4 : (A7)

In contrast to (A2), there is no longer a prime on the sum over ‘i and it starts at i ¼ 2.
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