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The class of static, spherically symmetric, and finite energy hedgehog solutions in the SU(2) Skyrme

model is examined on a metric three-cylinder. The exact analytic shape function of the 1-Skyrmion is

found. It can be expressed via elliptic integrals. Its energy is calculated, and its stability with respect to

radial and spherically symmetric deformations is analyzed. No other topologically nontrivial solutions

belonging to this class are possible on the three-cylinder.

DOI: 10.1103/PhysRevD.78.025019 PACS numbers: 12.39.Dc

I. INTRODUCTION AND MOTIVATION

We discuss static and spherically symmetric ‘‘hedge-
hog’’ fields in the SU(2) Skyrme model on a metric
three-cylinder (R� S2).1 A static and spherically symmet-
ric spacetime line element with R� S2 as hypersurfaces
of constant time reads

ds2 ¼ �dt2 þ L2ðd 2 þ d�2ð�;�ÞÞ;
d�2ð�;�Þ ¼ d�2 þ sin2�d�2:

Coordinates � and � are standard spherical angles and
 2 ð�1;þ1Þ.2 The positive scale factor L can be inter-
preted as the three-cylinder’s radius, but its role here is to
provide the Skyrme model with additional length scale that
can be compared with the characteristic soliton size. This
simple field-theoretical setup leads to a single equation for
the Skyrme hedgehog that can be solved exactly in three
spatial dimensions. The analogous solution on the metric
three-sphere (S3) can be found only by numerical
integration.

By considering fields with appropriate asymptotics,R�
S2 (with attached two ‘‘points at infinity’’) may be topo-
logically identified with S3. In contrast to the S3 case, the
metric geometry of R� S2 is not isotropic—the sectional
Gauss curvature of R� S2 is direction dependent.
Nevertheless, these two geometries are conformally iden-
tical:

d 2 þ d�2ð�;�Þ ¼ d�2 þ sin2�d�2ð�;�Þ
sin2�

;

� ¼ 2 arctanðe Þ 2 ð0; �Þ

(length scales on R� S2 and on S3 are assumed equal).
Coordinate � is the standard third angle on S3. This
conformal identification of metric geometries of R� S2

and S3 allows for identification of the translation symme-
try Killing vector @ on R� S2 with the conformal sym-

metry Killing vector sin�@� on S3.

The conformal symmetry Killing vector is related to
bifurcations of static spherically symmetric hedgehogs on
S3 at characteristic critical length scales. In particular, at

the critical radius Lc ¼
ffiffiffi
2

p
, the 1-Skyrmion (S1) on S3

separates from the identity map H1: S
3 ! SUð2Þ � S3 by

a conformal deformation of this map [1], namely, in the
limit L & Lc, the shape function of S1 reads �!
e� sin�@�� ¼ �þ � sin�þ oð�Þ, � / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L� Lc
p

.3 Note that
sin� is also the eigenfunction corresponding to the lowest
eigenvalue of the Hessian evaluated at H1 [3]. The eigen-
value vanishes at L ¼ Lc and is negative for L > Lc and
positive for L< Lc. The conformal deformation of H1

generated by sin�@� is thus energetically preferable for

L> Lc. For such L > Lc it is the S1 which minimizes the
energy functional.
On R� S2 the situation is qualitatively different. A

deformation of a solution generated by @ is simply a

translation which is also a symmetry of the space. This
deformation leaves energy of the 1-Skyrmion on R� S2

and the boundary conditions at infinity unchanged. For that
reason one should not expect bifurcations similar to that on
S3 to occur on R� S2. Moreover, by contrast with the S3

case, one may also expect that the 1-Skyrmion on R� S2
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1Throughout this paper we distinguish the notion of ‘‘metric

three-cylinder’’ from that of ‘‘topological three-cylinder.’’ We
use R� S2 as shorthand for metric three-cylinder with line
element d 2 þ d�2 þ sin2�d�2. The same remark applies to
a three-sphere— S3 is shorthand used in this paper for met-
ric three-sphere with standard line element d�2 þ sin2�ðd�2 þ
sin2�d�2Þ.

2More generally, we could also set �f2ð Þdt2 with any f in
the line element, but the rate of clocks is irrelevant for static field
configurations since the kinetic term of such fields vanishes.

3The energy and shape function of S1 can be found with
arbitrary accuracy by perturbations (however, the resulting series
seems to have finite radius of convergence in L� Lc, presum-
ably bounded by

ffiffiffi
2

p
; therefore one cannot reconstruct the energy

of flat space 1-Skyrmion by taking the limit L! 1). To the
leading order this perturbative calculation confirms the discussed
above conformal deformation of the identity solution [2].
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should uniformly tend to a harmonic map of the related
sigma model on R� S2.

Translation symmetry of Skyrme equations on R� S2

enables one to use the conserved current associated with
this symmetry as the first integral of these equations. In
particular, it can be shown that static, spherically symmet-
ric, finite energy and topologically nontrivial hedgehog
solutions with topological charge other than �1 cannot
exist onR� S2. One can also easily examine properties of
the 1-Skyrmion, calculate its energy, and analyze its stabil-
ity. Remarkably, all this can be done without knowing the
exact form of the 1-Skyrmion’s shape function. Next, we
construct an approximate formula for the 1-Skyrmion’s
shape function, and finally we find its exact form.

II. BASIC EQUATIONS

The standardized form of Lagrangian density of SU(2)-
valued Skyrme field U in spacetime with metric signature
ð�;þ;þ;þÞ is [4]

L½U� ¼ ffiffiffiffiffiffiffi�gp �
1

2
TrðK�K�Þ

þ 1

16
Trð½K�;K��½K�;K��Þ

�
;

K� � U�1@�U:

This Lagrangian simply generalizes to other matrix-valued
fields. In the construction of this density, the principle of
minimal coupling of matter with gravitation is assumed—
metric tensor couples with matter fields in the same way it
does in Minkowski spacetime with arbitrary coordinate
system. The Skyrme field behaves as a scalar with respect
to spacetime transformations. The first summand in the
Lagrangian is known as the sigma term. The second term
has the opposite scaling with the length scale. It was
introduced by Skyrme [5] to ensure the existence of sol-
itons among static solutions.

We use (metrical and topological) isomorphism of the
SU(2) group and the unit three-sphere: S3 3 ð�;�;�Þ !
U ¼ expði� ~� � ~nð�;�ÞÞ 2 SUð2Þ, where ~nð�;�Þ is a
unit direction determined by spherical angles ð�;�Þ: ~n ¼
½sin� cos�; sin� sin�; cos��; ~� is a vector of Pauli ma-
trices; and � is the third angle on S3.

As general relativity theory teaches us, the stress tensor
of matter fields is proportional to the variational derivative
of the action functional of these fields with respect to the
spacetime metric tensor

T�� ¼ � 2ffiffiffiffiffiffiffi�gp 	S
	g��

; S½U� ¼
Z

L½U�:

For the Skyrme Lagrangian

T�� ¼ L½U�ffiffiffiffiffiffiffi�gp g�� � TrðK�K�Þ

� 1

4
Trð½K�;K
�½K�;K
�Þ:

The energy functional of static and spherically symmetric

Skyrme hedgehogs on R� S2, reduces to4 [F0 � dFð Þ
d ]

E½F� ¼ 4�
Z þ1

�1
d 

�
Lð2sin2Fþ F02Þ

þ 1

L
sin2Fðsin2Fþ 2F02Þ

�
: (2.1)

We have used the hedgehog ansatz� ¼ Fð Þ,� � �, and
� � �.
To ensure finiteness of energy E½F� we impose the

following asymptotic (finite energy) condition: sinðFÞ ¼
oðj j�1=2Þ as j j ! 1. Under this condition U ! �1 at
infinity. Solutions with such asymptotics are characterized
by the topological charge Q ¼ ðFðþ1Þ � Fð�1ÞÞ=�,
and their energies are bounded from below by a positive
number 12�2jQj [this is known as the Faddeev–
Bogomol’nyi bound, which is universal for the SU(2)
Skyrme model in three spatial dimensions; cf. [6] for a
proof]. We employ this distinguished 12�2 value as the
unit of energy.
Critical points of energy functional (2.1) are solutions of

the following equation:

�
1þ 2

L2
sin2F

�
F00 þF

02

L2
sin2F�

�
1þ 1

L2
sin2F

�
sin2F¼0:

(2.2)

A Noether current associated with the Killing vector @ of

the translation symmetry of R� S2 is j� ¼ T��ð@ Þ�.
Since the Lagrangian is also  -translation invariant, this
current is conserved for solutions. The conservation equa-
tion 0 ¼ r�j

� � @�ð ffiffiffiffiffiffiffi�gp
j�Þ= ffiffiffiffiffiffiffi�gp

yields on integration

with respect to  

ðL2 þ 2sin2FÞF02 � sin2Fð2L2 þ sin2FÞ ¼ C; (2.3)

which is the first integral of Eq. (2.2). The finite energy
condition implies the integration constant C in (2.3) must
be zero. Hence the first integral of Eq. (2.2) for a finite
energy solution reads

F02 ¼ 2L2 þ sin2F

L2 þ 2sin2F
sin2F: (2.4)

4If �� is a Killing vector and if T�� is divergence-free, then
the threeform ! ¼ � 1

3!T
�
��

� ffiffiffiffiffiffiffi�gp
��
�dx


 ^ dx� ^ dx is
closed; that is, d! ¼ 0. In particular, integrated over R� S2

with �� � ð@tÞ�, this form defines energy functional (2.1).
Provided ! vanishes at spatial infinity sufficiently fast, this
energy is conserved since d! ¼ 0.
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Inversely, for nonconstant F, on differentiating (2.3) with
respect to  , we obtain (2.2).

Any nonconstant solution of (2.2) not satisfying (2.4)
must be either divergent or oscillate around �=2mod�,
depending on the sign of C. Indeed, if C> 0 at some point,
then jF0j must be bounded from zero for all  .
Consequently, F must be divergent as j j tends to 1. If
C< 0 then (2.3) implies that F02 � 2sin2F� jCjL�2, and
(2.2) implies that F00 ¼ cðFÞ sin2F for all  , where cðFÞ is
a strictly positive function. As so, F must stay strictly
within the strip ð0; �Þmod� oscillating around
�=2mod�. For such solutions energy defined in (2.1)
cannot be finite.

III. PROPERTIES OF STATIC, SPHERICALLY
SYMMETRIC, AND FINITE ENERGY HEDGEHOG

SOLUTIONS

As we have seen above, the only solutions of Eq. (2.2)
that have finite energy are solutions of Eq. (2.4). Without
loss of generality we may assume that 0<F <� at some
point. Suppose that F leaves the strip ½0; �� at another
point. Equation (2.4) then implies that F0 vanishes at this
point. According to uniqueness theorems applied to
Eq. (2.2) the only solution of this initial problem is the
vacuum solution sinF � 0. Therefore, 0<F <� for all
finite  . It also follows from (2.4) that F0 is bounded from
zero within this strip; thus F is monotonic and attains 0 or
� only asymptotically. Now it is clear that this solution has
unit topological charge. It also follows that no other static,
spherically symmetric, and finite energy hedgehog solution
with larger than unit topological charge can exist on R�
S2.

Within the class of static, spherically symmetric, and
finite energy hedgehog solutions, we may restrict our
attention to considering only the representative solution
for which Fð0Þ ¼ �=2 and F0ð0Þ> 0 [then Fð�1Þ ¼ 0
and Fðþ1Þ ¼ �]. We shall refer to the class of solutions
as the 1-Skyrmion on metric three-cylinder.

It follows from the first integral (2.4) that

1

2
sin2F <

2L2 þ 1

L2 þ 2
sin2F � F02 � 2sin2F:

This implies that the graph of the 1-Skyrmion’s shape
function, passing through the point Fð0Þ ¼ �=2, is con-
tained within the region bounded by graphs of the limiting
profiles

2 arctanðe =
ffiffi
2

p
Þ<F < 2 arctanðe

ffiffi
2

p
 Þ: (3.1)

The first is attained uniformly at L! 0, whereas the
second one at L! 1. This observation suggests that we
can assume the following test function

~F ¼ 2 arctanðeGðLÞ Þ (3.2)

to approximate the exact profile of the 1-Skyrmion. The

optimum value of GðLÞ can be determined at a given L by
finding the minimum energy of the test function. Hence
GðLÞ must satisfy the condition dGE½ ~F� ¼ 0, which gives

GðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 6L2

4þ 3L2

s
;

E½ ~F� ¼ 16�
ffiffiffi
2

p
3L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 3L2Þð1þ 3L2Þ

q
:

The energy of ~F with this GðLÞ attains its global minimum
4
ffiffi
6

p
3� � 12�2 at L ¼ ffiffiffiffiffiffiffiffi

2=3
p

.

IV. STABILITYANALYSIS OF THE 1-SKYRMION

LetH denote the Hilbert space of test functions that are
both C1 and normalizable to ð4�L3Þ�1 on R.5 Such func-

tions must vanish at infinity faster than j j�1=2. Let Fð Þ
be the exact shape function of the 1-Skyrmion and h 2 H .
The energy functional (2.1) evaluated for the test function
F� ¼ Fþ �h, when expanded as a power series in �, reads

E½Fþ �h� ¼ E½F� þ �	FE½F�ðhÞ þ �2	2
FE½F�ðh; h0Þ

þ oð�2Þ:
The first variation 	FE½F�ðhÞ must vanish for any h 2 H
on account of the Euler-Lagrange equations. The Hessian
	2
FE½F�ðh; h0Þ is a quadratic form in h and h0 and provides

an energy measure of a perturbation h. To find the lowest
bound �g of the Hessian attained overH one has to find a

conditional minimum of the Hessian with the condition
that

R
h2dV ¼ 1 and with �g being the corresponding

Lagrange multiplier. For h to be the minimum energy
perturbation in H , it is necessary that h be the solution
of the following eigenvalue problem [7]

	ð	2
FE½F�ðh;h0ÞÞ
	hð Þ ¼�g

	ðRh2dV Þ
	hð Þ ¼2�ghð Þ; h2H

corresponding to the lowest eigenvalue �g. This ordinary

differential equation is linear in h, h0, and h00. By substitut-
ing h � F0, it can be verified that the variational derivative
on the very left in the above equation vanishes identically,
provided F satisfies (2.4).6 Thus F0 is the eigenfunction of
the Hessian corresponding to the eigenvalue �g ¼ 0.

We have seen that the 1-Skyrmion’s shape function F is
monotonic and that F0 ¼ 0 only asymptotically. Thus F0

5Then H extends to spherically symmetric functions normal-
izable to unity on R� S2 (with volume element dV ¼
L3 sin�d d�d�).

6Actually, 	2
FE½F�ðh; h0Þ vanishes for h ¼ F0 by translation

invariance of functional (2.1). For if F�ð Þ ¼ Fð þ �Þ, then
E½F��¼E½Fþ�F0 þOð�2Þ�¼E½F�þ�	FE½F�ðF0 þOð�ÞÞþ
�2	2

FE½F�ðF0 þOð�Þ;F00 þOð�ÞÞþoð�2Þ. But for solutions
	FE½F� � 0, hence, on expanding once again, E½F�� ¼ E½F� þ
�2	2

FE½F�ðF0; F00Þ þ oð�2Þ. By translation invariance E½F� ¼
E½F�� for any �, thus 	2

FE½F�ðF0; F00Þ ¼ 0.
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has no nodes for finite  . It is known that the eigenfunction
corresponding to the lowest eigenvalue has no internal
nodes [7]. As so, we arrive at the conclusion that the 1-
Skyrmion on R� S2 is (marginally) stable against radial
and spherically symmetric deformations.

V. THE EXACTANALYTIC FORMULA FOR THE 1-
SKYRMION ON R� S2

With the initial condition Fð0Þ ¼ �=2 Eq. (2.4) can be
rewritten as

 ðFÞ ¼
Z F

�=2

df

sinf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 2sin2f

2L2 þ sin2f

s
;

ð0; �Þ 3 F !  2 ð�1;þ1Þ:
By substituting z ¼ sinð�ðfÞÞ, with � being related to f
by

k
ffiffiffi
2

p
sinð�ðfÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 2sin2f

2L2 þ sin2f

s
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ L2

2þ 4L2

s
;

this integral can be brought into the form containing ca-
nonical elliptic integrals of the first and of the third kind
(see Appendix):

j ð�ðFÞÞj ¼ 3
ffiffiffi
2

p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2L2

p
Z 1

sinð�ðFÞÞ

�
1þ 1

1� 4k2z2

�

� dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� z2Þð1� k2z2Þp :

The definitions of k and � are correct since 1=2 � k < 1
and 1=2< 1=ð2kÞ � sin� � 1. We choose in this integral
 < 0 for 0< 2F < �, and  > 0 for �< 2F < 2�. The
resulting (although implicit) exact formula for the 1-
Skyrmion on R� S2 reads

j ðFÞj ¼ 3
ffiffiffi
2

p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2L2

p
�
F

�
�

2
; k

�
� Fð�ðFÞ; kÞ

þ�ð�ðFÞ;�4k2; kÞ ��

�
�

2
;�4k2; k

��
:

(5.1)

VI. ENERGY OF THE 1-SKYRMION ON R� S2

The exact form of the 1-Skyrmion’s shape function is
not required to calculate its total energy. By expressing d 
by ðF0Þ�1dF and using the first integral (2.4) in (2.1), we
obtain the following formula for the energy of the 1-
Skyrmion:

E½F� ¼ 16�

L

Z �=2

0
dF sinF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L2 þ sin2FÞðL2 þ 2sin2FÞ

q
:

This integral can be equivalently rewritten as

E½F� ¼ EðLÞ

� 16�
ffiffiffi
2

p
L

Q
ffiffiffiffi
P

p Z 1=
ffiffiffi
Q

p

0
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þð1� k2z2Þ

q
;

where we have substituted
ffiffiffiffi
Q

p
zðFÞ ¼ cosF, Q ¼

1þ L2=2, P ¼ 1þ 2L2, and k ¼ ffiffiffiffiffiffiffiffiffiffi
Q=P

p
< 1 (k is the

same as in Sec. V). This integral, in turn, can be expressed
by means of standard elliptic integrals of the first and
second kind:

EðLÞ ¼ 16�
ffiffiffi
2

p
3L

ð ffiffiffiffi
P

p ðPþQÞEðk; ~�Þ

� ffiffiffiffi
P

p ðP�QÞFðk; ~�Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP� 1ÞðQ� 1Þp Þ; (6.1)

where ~� ¼ arcsinð1= ffiffiffiffi
Q

p Þ.
Let us calculate the minimum energy of the 1-Skyrmion.

The minimum is attained at a radius Lm defined by the
equation E0ðLmÞ ¼ 0. This equation cannot be solved by
radicals. However, this equation is analytic and can be
expanded about some point. We have already seen that

the minimum radius should be close to L ¼ ffiffiffiffiffiffiffiffi
2=3

p
.

Therefore, we substitute Lm ¼ ffiffiffiffiffiffiffiffi
2=3

p þ � and find the
Taylor series expansion with respect to the unknown and
small � . In the first order approximation we obtain

Lm ¼ 9
ffiffiffiffiffiffi
42

p ð11Eð�=3;2= ffiffiffi
7

p Þ� 3Fð�=3;2= ffiffiffi
7

p ÞÞþ 30
ffiffiffi
2

p
ffiffiffi
7

p ð409Eð�=3;2= ffiffiffi
7

p Þ� 141Fð�=3;2= ffiffiffi
7

p ÞÞ� 26
ffiffiffi
3

p

þ oð�Þ
¼ 0:81509 . . . :

To find a better approximation we now discard only the

Oð�4Þ term in the expansion of E0ð ffiffiffiffiffiffiffiffi
2=3

p þ �Þ, obtaining a
cubic polynomial in � . Cardano’s formulas for the roots of
the cubic polynomial lead to a monstrous expression for
Lm. Therefore, here we show only the decimal expansion
of Lm and the corresponding minimum of the 1-Skyrmion’s
energy:7

Lm ¼ 0:815 094 150 6 	 	 	 ;
EðLmÞ ¼ 1:035 768 031 164 798 823 48 	 	 	 � 12�2: (6.2)

All of these digits shown are exact and follow from the
presented third order calculation. This statement may be
verified by carrying out a similar fourth order calculation

7Note that EðLmÞ is very close to the energy per baryon for the
cubic Skyrme crystal found numerically by relaxations to be 

1:036� 12�2 [8] (no error of this value was given, however).
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(the roots of a fourth order polynomial can be still found by
radicals).

VII. DISCUSSION

The energy diagram of the 1-Skyrmion on R� S2 is
shown in Fig. 1(a). It is divergent both for L! 0 and for
L! 1 and has a single minimum. This diagram resembles
qualitatively the behavior of the energy of the identity
solution 2 arctane (H1) on S3 rather than that of the 1-
Skyrmion (S1) on S3, of which energy is finite in the limit
of infinite radius.8 To understand qualitatively why it is so,
it must be remembered thatH1 on S

3 becomes unstable as

the radius passes through its critical value L ¼ ffiffiffi
2

p
. The

instability mode is associated with conformal deformation
of H1. Because of the instability H1 bifurcates at this
radius, and S1 separates from it, remaining stable for all
radii. The energy of S1 tends to a finite limit, whereas the
energy of H1 diverges in the limit of infinite radius. On
R� S2 there is no similar bifurcation—the 1-Skyrmion on
R� S2 is always (marginally) stable. As we have seen, the
lowest (zero) energy eigenmode is associated with  trans-
lations, which preserve energy on R� S2. Therefore, no
other solution with lower energy and the same symmetry
can appear by a bifurcation from the 1-Skyrmion on R�

S2. In the limit of infinite radius the 1-Skyrmion on R�
S2 tends to the harmonic map 2 arctan expð ffiffiffi

2
p
 Þ on R�

S2, which is (marginally) stable against radial and spheri-
cally symmetric perturbations.9 The energy of a harmonic
map must diverge as L! 1 because the sigma term in the
Skyrme Lagrangian scales as L and dominates the Skyrme
term, which scales as L�1.
The minimum energy (6.2) of the 1-Skyrmion on R�

S2 is over 6 times closer to the Bogomol’nyi bound than
the energy of the 1-Skyrmion on flat space, which is 

1:231 45� 12�2. We must remember that the
Bogomol’nyi bound 12�2 in the SU(2) Skyrme model is
saturated on the unit three-sphere.
The minimal energy of the approximated 1-Skyrmion

profile (3.2) is only 0.37% more than the true minimum
(6.2). The asymptotics of energies of the approximated and
the exact 1-Skyrmion are the same:

(a) (b)

FIG. 1. (a) Energy of the 1-Skyrmion on a metric three-cylinder shown as a function of the scale factor L. The unit of energy is
12�2. (b) Thick line—the exact shape function (5.1) of the 1-Skyrmion with the minimum possible energy at L ¼ Lm [cf. Eq. (6.2)];

dotted line—the approximate shape function of the 1-Skyrmion defined in Eq. (3.2) [with L ¼ ffiffiffiffiffiffiffiffi
2=3

p
and GðLÞ ¼ 1]; thin lines—the

1-Skyrmion in the limit L! 0 (lower line) and in the limit L! 1 (upper line). The � variable is related to the  ‘‘radial’’
coordinate by � ¼ 2 arctane , and only the region  > 0 is shown.

8We use the same conformal identification � � 2 arctanðe Þ 2
ð0; �Þ of metric geometries of S3 and of R� S2 as that defined
in Sec. I (the spherical sections of constant � on S3 and of
constant  on R� S2 were identified).

9The harmonic map on metric R� S2 is Y ¼ 2 arctane
ffiffi
2

p
 and

has energy E ¼ 16�
ffiffiffi
2

p
. It is the critical point of the sigma

model energy functional on R� S2

4�
Z þ1

�1
d ðY02 þ 2sin2YÞ

(spherical symmetry and the hedgehog ansatz have been as-
sumed). This map is the counterpart of the identity solution on
S3. The same reasoning as in the text leads to the conclusion that
the map is the only finite energy solution with nonzero topo-
logical charge and that it is (marginally) stable against radial and
spherically symmetric perturbations.
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lim
L!0

EðLÞ
~EðLÞ ¼ 1 ¼ lim

L!1
EðLÞ
~EðLÞ :

Also the limiting solutions (3.1) are correctly reproduced
by this approximation at L ¼ 0 and L ¼ 1. In this sense
the profile (3.2) very well approximates the 1-Skyrmion
solution on R� S2 (5.1). In Fig. 1(b) the exact shape
function is compared with the approximated one at L ¼
Lm [cf. Equation (6.2)].

The metric geometry of R� S2 is conformally identical
to that of S3. The manifolds may be also topologically
identified if fields with appropriate asymptotics are con-
sidered on these manifolds. We have shown that (up to
symmetries) only one topologically nontrivial static,
spherically symmetric, and finite energy hedgehog solution
exists on R� S2 (it has unit topological charge). In the
same topological sector on metric S3, arbitrarily many
solutions may exist, the number of which increases with
the three-sphere’s radius. The number of possible solutions
of this kind is related to the number of SU(2) harmonic
maps on these manifolds. On R� S2 only one harmonic
map exists, whereas on S3 two countable families of
harmonic maps exist [9]. Correspondingly, the structure
of solutions on S3 is very rich and the number of possible

solutions grows with L [10], whereas on R� S2 the struc-
ture is very simple and L independent.
The structure of solutions of the Skyrme model depends

on what kind of base space is considered. It is evident that
it is not the topology of the space but its metrical properties
that are important for this structure. It is also evident that
this structure is affected by the number of harmonic maps
possible on this space. It would be therefore interesting to
analyze Skyrmions on a class of other spaces with the
general line element d 2 þ a2ð Þðd�2 þ sin2�d�2Þ [the
already studied cases include að Þ /  , sin , sinh , and
at last að Þ / 1 in this paper] and to find out how this
structure is related to the function að Þ.

APPENDIX: THREE FUNDAMENTAL ELLIPTIC
FUNCTIONS

We used the following definitions of the standardized
elliptic integrals (k2 < 1) [11]:

(1) Fð�; kÞ ¼ Rsin�
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þð1�k2x2Þ

p ;

(2) Eð�; kÞ ¼ Rsin�
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1�k2x2
1�x2

q
dx;

(3) �ð�; �; kÞ ¼ Rsin�
0

dx

ð1þ�x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þð1�k2x2Þ

p :
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