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Local gauge symmetries cannot break spontaneously, according to Elitzur’s theorem, but this leaves

open the possibility of breaking some global subgroup of the local gauge symmetry, which is typically the

gauge symmetry remaining after certain (e.g. Coulomb or Landau) gauge choices. We show that in an

SU(2) gauge-Higgs system such symmetries do indeed break spontaneously, but the location of the

breaking in the phase diagram depends on the choice of global subgroup. The implication is that there is

no unique broken gauge symmetry, but rather many symmetries which break in different places. The

problem is to decide which, if any, of these gauge-symmetry breakings is associated with a transition

between physically different, confining and nonconfining phases. Several proposals—Kugo-Ojima,

Coulomb, and monopole condensate—are discussed.
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I. INTRODUCTION

Most introductory treatments of the Higgs mechanism
teach that the spontaneous breaking of a gauge symmetry is
signaled by the nonvanishing expectation value of a Higgs
field. Such introductory discussions occasionally overlook
the fact that local gauge symmetries cannot break sponta-
neously, according to a celebrated theorem by Elitzur [1],
and in the absence of gauge fixing the vacuum expectation
value (VEV) of the Higgs field � is rigorously zero, no
matter what the form of the Higgs potential. In contrast, in
a unitary gauge which fixes the gauge symmetry com-
pletely, it can happen instead that h�i � 0, again irrespec-
tive of the Higgs potential. The point is that only a global
subgroup of a local gauge symmetry can break spontane-
ously, and the order parameter for this symmetry breaking
must transform nontrivially under the global subgroup, but
remain invariant under arbitrary local gauge transforma-
tions. Local gauge transformations, of course, can vary
independently at each spacetime point; this is the feature
which is crucial to the Elitzur theorem, and the number of
parameters specifying a local gauge transformation grows
with spacetime volume. By a ‘‘global’’ subgroup we mean
only that gauge transformations in the subgroup depend on
a finite and fixed number of parameters which is indepen-
dent of volume; such global transformations are not nec-
essarily constant in spacetime.

One way of constructing appropriate order parameters is
via a gauge choice, which leaves the desired global sym-
metry unfixed. Coulomb and Landau gauges are examples
of such gauge choices. Since the local but not the global
gauge freedom has been gauged away, the Higgs field (and
other local observables) can serve as order parameters for
breaking of the remaining gauge symmetry. An alternative
approach is to build the gauge choice into the definition of
the order parameter, rendering it invariant under local, but
not global, transformations. For example, instead of com-
puting the VEVof the Higgs field in, e.g., Coulomb gauge,

one could compute the VEVof the nonlocal operator

�ðx;AÞ ¼ gðx;AÞ�ðxÞ; (1.1)

where gðx;AÞ is a field-dependent gauge transformation
which takes the given A field into Coulomb gauge. In an
Abelian theory with an infinite spatial volume this trans-
formation can be derived explicitly, and the result is

�ðx; t;AÞ ¼ exp

�
i
Z
d3yAkðy; tÞ@k 1

4�jx� yj
�
�ðx; tÞ:

(1.2)

This is the Dirac construction [2]. The operator � is
invariant under local gauge transformations which go to
the identity at spatial infinity, but transforms as a charged
operator under spatially constant gauge transformations. It
is easy to see that the VEVof � in Coulomb gauge is the
same as the VEV of � evaluated without gauge fixing. A
similar construction can be made in the Landau gauge.
It is important to recognize that different gauge choices,

and even different order parameters in the same gauge,
single out different global subgroups of the full gauge
symmetry. In Landau gauge there is of course a remnant
gauge symmetry under spacetime-constant gauge transfor-
mations gðxÞ ¼ g. There is also, in this gauge, an invari-
ance with respect to certain spacetime-dependent
transformations. For the SU(2) group, with

gðxÞ ¼ exp½i�að�; xÞ12�a� (1.3)

and �ð�; xÞ linear in the infinitesmal parameters �a�, these

spacetime-dependent transformations can be worked out in
a power series expansion in the coupling g [3]. To first
order, � is given by

�að�; xÞ ¼ �a�x
� � g

1

@2
ðA� � ��Þa þOðg2Þ: (1.4)

If the Higgs field has an expectation value in Landau
gauge, both the spacetime-constant and spacetime-
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dependent global symmetries are broken. The spacetime-
dependent global symmetry (1.4) singled out in Landau
gauge is not a global symmetry in Coulomb gauge
(although a different but analogous symmetry could be
constructed). Symmetry with respect to the spacetime-
constant transformations gðxÞ ¼ g is a remnant symmetry
in both Landau and Coulomb gauges, but in Coulomb
gauge there is a much larger invariance with respect to
transformations which are constant in space, but not in
time, i.e. gðx; tÞ ¼ gðtÞ. Suppose we single out two specific
times, e.g. t ¼ 0 and t ¼ T. The trace Tr½L� of a timelike
Wilson line

Lðx; TÞ ¼ P exp

�
i
Z T

0
dtA0ðx; tÞ

�
(1.5)

is invariant under gauge transformations which are con-
stant in space and time,

Tr ½Lðx; TÞ� ¼ Tr½gLðx; TÞgy� (1.6)

and is therefore insensitive to the spontaneous breaking of
that symmetry. But this observable is not invariant under
the group of transformations which are constant in space,
but independent at times t ¼ 0 and t ¼ T

Tr ½Lðx; TÞ� � Tr½gð0ÞLðx; TÞgyðTÞ�: (1.7)

This means that hTr½L�i in Coulomb gauge probes the
breaking of a global gauge symmetry which is different
from the symmetry probed by h�i in Landau gauge.1

The question which naturally arises is whether the spon-
taneous breaking of different global subgroups of the local
gauge symmetry, associated with different gauge choices
and/or order parameters, occurs at the same location in the
space of coupling constants. If not, then there is a certain
ambiguity in the notion of gauge-symmetry breaking; pre-
cision requires specifying the particular global subgroup
which is actually broken.

Assuming that different subgroups break in different
places, the next question is which (if any) of the various
global subgroups is associated, upon symmetry breaking,
with a transition to a physically different phase. In particu-
lar, the breaking or restoration of which subgroup is asso-
ciated with the transition from a confinement phase to
some nonconfining phase? As it happens, a number of
different approaches to the confinement problem, dis-
cussed below, associate confinement with the symmetric
(or broken) realization of different global gauge symme-

tries. If these symmetries break in different places, it raises
the obvious question of which global gauge symmetry is
the ‘‘correct’’ way to characterize confinement, particu-
larly when global center symmetry (which is not a gauge
symmetry) is broken by matter fields
In this article we will investigate the possible ambiguity

of gauge-symmetry breaking in the context of a gauge-
Higgs theory on the lattice, with a fixed-modulus Higgs
field in the fundamental color representation. For the SU(2)
gauge group, the Lagrangian can be written in the form [4]

S ¼ �
X
plaq

1

2
Tr½UUUyUy�

þ �
X
x;�

1

2
Tr½�yðxÞU�ðxÞ�ðxþ �̂Þ� (1.8)

with� an SU(2) group-valued field. Investigations [5,6] of
this model, carried out many years ago, revealed an im-
portant and surprising feature: Consider two points
ð�1; �1Þ and ð�2; �2Þ in the �� � phase diagram, with
ð�1; �1Þ � 1 deep in the ‘‘confinement’’ (strong-coupling)
regime, and ð�2; �2Þ � 1 deep in the Higgs regime. Then
according to a result due to Fradkin and Shenker [5] (which
was based on an earlier theorem of Osterwalder and Seiler
[6]), there is a path in the phase diagram connecting the
two points, such that the expectation value of any local
gauge-invariant observable, or product of such observ-
ables, varies analytically along the path. This means that
there is no thermodynamic phase transition which entirely
isolates the Higgs phase from a confinement phase.
Subsequent numerical work [4,7] ruled out a massless
phase, and indicated the phase structure sketched in
Fig. 1, with a line of first-order transitions (or possibly
just a line of rapid crossover) which ends at around � ¼ 2,
� ¼ 1, consistent with the Fradkin-Shenker-Osterwalder-
Seiler theorem. Above the transition line, at large �, the

β

γ 1

2 4

2
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0
0
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FIG. 1. Schematic phase diagram of the SU(2) gauge-Higgs
system. The solid line is a line of weak first-order phase
transitions.

1The Coulomb gauge remnant symmetry gðtÞ is local in time,
and if we consider timelike Wilson lines running from t ¼ t0 to
t ¼ t0 þ T, then the Elitzur theorem guarantees that Tr½L� would
vanish if averaged over all t0, as well as all 3-space positions x.
What happens is that Wilson lines can have a nonvanishing
average at fixed t0, because on a time slice the symmetry is
global and can break spontaneously, but these spatial averages
are in general different at different t0, and must cancel upon
averaging over t0.
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dynamics is clearly that of a Higgs phase, with a massive
spectrum, no linear Regge trajectories, no flux-tube for-
mation, and only Yukawa-type potentials between static
color charges. On the other hand, at small values of �, the
theory is reminiscent of real QCD with dynamical fermi-
ons. In this coupling regime we have flux-tube formation
and a linear potential over some finite distance range,
followed by string breaking via scalar particle production.

One of the things that we learn from the Fradkin-
Shenker work is that the Higgs phase cannot be distin-
guished from the confinement phase by so-called ‘‘color
confinement’’ in the asymptotic particle spectrum. It is
always possible to choose a path, from the confinement
to the Higgs regime, such that all local gauge-invariant
observables, products of such observables, and (in particu-
lar) the free energy, vary analytically along the path, and
this behavior is incompatible with an abrupt, qualitative
change in the spectrum. Asymptotic particle states are
therefore color singlets throughout the phase diagram. In
the absence of a massless, Coulombic regime, color is
always screened by the fundamental-representation Higgs
field, whether this screening is viewed as a string-breaking
effect, or as the rearrangement of a condensate in the
neighborhood of a color charge.

We then return to the basic question: In the absence of a
thermodynamic separation, can the spontaneous breaking
of a gauge symmetry distinguish unambiguously between
the Higgs and confinement phases? To address this ques-
tion, we will map out the location of the breaking of
remnant global gauge symmetries in the Coulomb and
Landau gauges. It will be found that these transitions
coincide, within the accuracy of our data, along the ther-
modynamic transition line at �> 2. But away from that
line, at�< 2, the transitions are found to diverge from one
another. This result ties in with an earlier work [8] in the
gauge-Higgs theory, comparing the line of gauge-
symmetry breaking in Coulomb gauge with the line of
center vortex percolation/depercolation (a ‘‘Kertész’’ line
[9]), which was thought to be identical [10]. In fact, the
Coulomb gauge and percolation transition lines also coin-
cide with the thermodynamic transition line at �> 2, but
diverge from one another at lower �. Percolation transi-
tions at finite temperature, for other types of topological
objects in electroweak gauge theory and QCD, were also
discussed in Ref. [11], where it was pointed out (in the
second article cited) that the precise location of the Kertész
line depends on the type of object studied. Of course,
spontaneous breaking of a gauge symmetry and a percola-
tion transition are in principle very different things, and the
result in Ref. [8] leaves open the question of whether or not
the spontaneous symmetry breakings of different global
gauge symmetries coincide.

In the next section we will discuss the order parameters
for confinement in three different approaches: (i) the Kugo-
Ojima criterion (covariant gauges); (ii) Coulomb confine-

ment (Coulomb gauge); and (iii) dual superconductivity.
Each of these order parameters is sensitive to the breaking
of a different global gauge symmetry. In Sec. III we present
our data for global gauge-symmetry breaking, in Landau
and Coulomb gauges, in the SU(2) gauge-Higgs model.
Symmetry breaking associated with the third order pa-
rameter, which is less straightforward to implement nu-
merically, will be reserved for a later study. Section IV
contains discussion and conclusions.

II. ORDER PARAMETERS FOR CONFINEMENT

In gauge theories with a nontrivial center symmetry,
there is no difficulty in distinguishing qualitatively be-
tween the confinement phase and the Higgs phase, or
between confinement and a high temperature deconfined
phase. The vanishing of Polyakov lines, the large-volume
behavior of the vortex free energy, and the nonvanishing of
string tensions extracted from fundamental-representation
Wilson loops all serve as appropriate, consistent, and
gauge-invariant signals of the confinement phase [12]. A
transition away from the confinement phase is always
accompanied by the spontaneous breaking of the global
center symmetry, and nonanalytic behavior in the free
energy. But the situation is much less clear when there
are dynamical matter fields in the fundamental representa-
tion of the gauge group, as in real QCD. When global
center symmetry is broken explicitly, Polyakov lines are
nonzero, and Wilson loops fall off asymptotically with a
perimeter-law behavior, as in a Higgs phase. The question
is whether there is some other symmetry which can dis-
tinguish the confinement phase from other massive phases.
We will discuss three proposals, each of which could
potentially identify the confined phase even in the absence
of a global center symmetry in the Lagrangian.

A. The Kugo-Ojima criterion

Kugo and Ojima [13] begin with an equation satisfied by
the conserved color current Ja� in covariant gauges

Ja� ¼ @�Fa�� þ fQB;D
ab
� �cbg; (2.1)

where c and �c are the ghost-antighost fields with QB the
Becchi-Rouet-Stora-Tyutin charge, and also introduce the
function uabðp2Þ, defined by the expression

uabðp2Þ
�
g�� �

p�p�

p2

�
¼

Z
d4xeipðx�yÞh0jT½D�c

aðxÞ

� gðA� � �cÞbðyÞj0i: (2.2)

They then show that the expectation value of color charge
in any physical state vanishes

hphysjQajphysi ¼ 0 (2.3)

providing that (i) remnant symmetry with respect to
spacetime-independent gauge transformations is unbro-
ken; and (ii) the following condition is satisfied:
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uabð0Þ ¼ �	ab: (2.4)

This latter condition is the Kugo-Ojima confinement crite-
rion, and it implies that the ghost propagator is more
singular, and the gluon propagator less singular, than a
simple pole at p2 ¼ 0 [14]. A number of efforts have
focused on verifying this condition (or its corollaries)
both analytically [15] and numerically [16].

It turns out that the Kugo-Ojima condition (2.4) is itself
tied to the unbroken realization of remnant gauge symme-
try in covariant gauges (such as Landau gauge). We have
already noted that in Landau gauge there is a remnant
group of spacetime-dependent gauge transformations,
given in Eq. (1.4), which preserves the Landau gauge
condition. It was shown by Hata in Ref. [3] (see also
Kugo in Ref. [14]) that the condition (2.4) is a necessary
(and probably sufficient) condition for the unbroken real-
ization of the residual spacetime-dependent symmetry
(1.4), while an unbroken, spacetime-independent symme-
try is required, in addition to (2.4), for the vanishing of
h jQaj i in physical states.

Thus the Kugo-Ojima scenario requires the full remnant
gauge symmetry in Landau gauge, i.e. both the spacetime-
dependent and the spacetime-independent residual gauge
symmetries must be unbroken. Both of these symmetries
are necessarily broken if a Higgs field aquires a VEV in
Landau gauge.

B. The Coulomb gauge criterion

The criterion for confinement as the unbroken realiza-
tion of remnant gauge symmetry in Coulomb gauge was
first put forward by Marinari et al. in Ref. [17]; the idea
was elaborated and studied numerically in Ref. [10]. The
criterion can be motivated as follows: In Coulomb gauge it
is simple to construct color nonsinglet physical states; an
example is

�a
q ¼ qaðxÞ�0; (2.5)

where�0 is the vacuum state in Coulomb gauge, and qaðxÞ
is a heavy quark operator. Whereas the aim of the Kugo-
Ojima approach is to prove that the space of physical states
consists of only color singlets, the goal in Coulomb gauge
is to prove that color nonsinglet states have an energy
which is infinite above the vacuum. For heavy quarks,
with a lattice regularization understood, we define

GðTÞ ¼ h�a
qje�ðH�E0ÞTj�a

qi / hTr½Lðx; TÞ�i: (2.6)

The energy of the charged state �q is infinite if GðTÞ ¼ 0,

i.e. hTr½L�i ¼ 0, and finite otherwise. This means that the
Coulombic field energy of an isolated charge is infinite if
the remnant global gauge symmetry associated with the
pair of spatially homogeneous transformations gð0Þ, gðTÞ
is unbroken. Conversely, an isolated color charge has finite
energy if this remnant symmetry is spontaneously broken.

One can also show that the instantaneous color Coulomb
potential between quark-antiquark color charges is given
by the logarithmic derivative of the correlator of timelike
lines [18]

VcoulðRÞ ¼ �lim
T!0

d

dT
log½Tr½Lðx; TÞLyðy; TÞ�� (2.7)

(R ¼ jx� yj), and this potential is an upper bound on the
static quark potential [19]. If hTr½L�i � 0, then VcoulðRÞ is
R independent as R! 1, and therefore nonconfining. This
is a further motivation for the use of timelike Wilson lines,
in Coulomb gauge, as an order parameter for confinement.
In principle, the color Coulomb potential can reveal the

confining nature of the vacuum even in the presence of
dynamical matter fields, because of its instantaneous na-
ture. The color Coulomb potential derives from the non-
local term in the Coulomb gauge Hamiltonian. When the
VEVof this term is evaluated in a state such as

�q �q ¼ �qaðxÞqaðyÞ�0 (2.8)

containing isolated quark-antiquark charges, it accounts
for the energy of the associated Coulomb field before the
quark-antiquark system has evolved in time, and screening
effects due to matter and/or transverse gluon fields have set
in. This means that Tr½L� can work as an order parameter
for confinement even when, as in real QCD, there exist
dynamical matter fields which break the global center
symmetry. Confinement, in this approach, is identified
with the phase in which the energy of the Coulomb field
due to isolated color-charge sources diverges as the charge
separation is taken to infinity. That also means that con-
finement is tied to the unbroken realization of a specific
global subgroup of the gauge symmetry, which remains
after fixing to Coulomb gauge.

C. Dual superconductivity

It is an old idea, due originally to ’t Hooft and
Mandelstam, that the Yang-Mills vacuum is a kind of
dual superconductor, in which the roles of the E and B
fields are interchanged. It is then electric, rather than
magnetic, charges which are confined, and magnetic,
rather than electric, charges which are condensed.
Magnetic monopoles can exist in gauge theories with
compact Abelian gauge groups, and an order parameter
for monopole condensation, breaking the dual U(1) gauge
symmetry associated with magnetic charge conservation,
was introduced in Ref. [20]. The order parameter �ðxÞ is a
monopole creation operator, which acts on states in the
Schrödinger representation by inserting a monopole field
configuration AMi ðyÞ, centered at y ¼ x i.e.

�ðxÞjAii ¼ jAi þ AMi i: (2.9)

Explicitly, the operator
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�ðxÞ ¼ exp

�
i
Z
d3yAMi ðyÞEiðyÞ

�
(2.10)

performs the required insertion. In a non-Abelian SU(N)
gauge theory, an Abelian projection gauge must be intro-
duced to single out an Abelian Uð1ÞN�1 subgroup, and� is
defined in terms of the gauge fields associated with that
subgroup. Details concerning this construction on the lat-
tice, and the numerical computation of h�i, can be found in
Ref. [21].

The dual U(1) gauge symmetry, in an Abelian theory
containing magnetic charge, is evident from the existence
of a conserved magnetic current. Let

~F �� ¼ 1
2���
�F


� (2.11)

be the dual field strength tensor. Then

jM� ¼ @� ~F�� (2.12)

is the conserved magnetic current associated with the dual
gauge symmetry. A global U(1) subgroup of this local
symmetry is generated by the total magnetic charge opera-
tor, and it is shown in Ref. [20] that the � operator trans-
forms as a magnetically charged object under these global
symmetry transformations. Thus, according to Ref. [22],
the � operator is in some sense the dual of the Dirac
construction of electrically charged operators in
Eq. (1.2). If h�i � 0, this signals both monopole conden-
sation, and the associated breaking of a global U(1) gauge
symmetry in the dual gauge theory.

As with the Kugo-Ojima and Coulomb conditions,
monopole condensation can be put forward as a confine-
ment criterion whether or not there are dynamical matter
fields in the theory, and whether or not global center
symmetry is broken. Like the other two criteria, the con-
dition that h�i � 0 is tied to the spontaneous breaking of a
global subgroup of some local gauge symmetry. Although
we will not directly investigate the � operator here, we
believe that the general issues we raise in connection with
spontaneous gauge-symmetry breaking apply to this ap-
proach as well. The Kugo-Ojima, Coulomb gauge, and
dual-superconductor order parameters for confinement
are all very well motivated, and each is associated with
the way in which some global gauge symmetry is realized.
But what if, in practice, these criteria disagree with one
another in identifying the boundary between the Higgs and
the confinement phases? Which symmetry is the ‘‘right’’
one, in terms of identifying physically distinct phases?
This question is reserved for the concluding section; we
first need to show that the location of gauge-symmetry
breaking is, in fact, dependent on the choice of the global
subgroup.

III. REMNANT SYMMETRY BREAKING IN
COULOMB AND LANDAU GAUGES

The order parameter for remnant symmetry breaking in
Landau gauge is straightforward. In Landau gauge, the
remnant symmetry is broken if the magnitude of the spatial
average of the Higgs field is nonzero in the infinite volume
limit. Denoting the spatial average as

~� ¼ 1

V

X
x

�ðxÞ; (3.1)

we define2

~QL ¼ 1
2 Tr½ ~� ~�y�; QL ¼ h ~QLi; (3.2)

where V is the lattice 4-volume. The global remnant sym-
metry is unbroken if and only ifQL ! 0 as V ! 1. In fact,
it is easy to see that if the symmetry is unbroken, and the
Higgs field has a finite correlation length in Landau gauge,
then

QL / 1

V
; (3.3)

whereas QL ! const> 0 as V ! 1 in the broken phase.
In Coulomb gauge there is a larger remnant gauge

symmetry, in which gauge transformations gðx; tÞ ¼ gðtÞ
which are constant in the spatial directions can neverthe-
less vary in time. We can use the timelike lattice link
variables U0ðxÞ as order parameters for this symmetry
breaking, as previously proposed in [10], since Tr½U0� is
sensitive to symmetry transformations gðtÞ which depend
on t, but is invariant with respect to transformations which
are also constant in the time direction. On the lattice, the
logarithm of the U0 correlator has also been used, in
accordance with Eq. (2.7), to calculate the color
Coulomb potential [18]. Denoting the spatial average of
timelike links on a time slice as

~UðtÞ ¼ 1

V3

X
x

U0ðx; tÞ; (3.4)

where V3 is the 3-volume of a time slice, we define3

~QC ¼ 1

Lt

XLt
t¼1

1

2
Tr½ ~UðtÞ ~UyðtÞ�; QC ¼ h ~QCi: (3.5)

In the unbroken phase, assuming finite-range correlations
among the timelike links at constant t,

2This operator was applied previously by Langfeld [23] to
determine global gauge-symmetry breaking transitions in SU(2)
and SU(3) gauge-Higgs theories, fixed to Landau gauge. The
models studied in that work used Higgs fields of variable
modulus, so the transition points are not directly comparable
to our data.

3Note that this differs slightly from the observable proposed in
[10], which defines QC by taking the square root of the trace.
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QC / 1

V3

; (3.6)

while QC converges to a nonzero constant, in the broken
phase, in the infinite volume limit.

The phase structure of the SU(2) gauge-Higgs model,
sketched in Fig. 1, is reflected in plots of the plaquette
expectation value P vs �, as shown in Figs. 2(a) and 2(b),
which are taken from Ref. [8]. For �> 2, we find a sudden
rise in P at some value of �, as seen, e.g., in Fig. 2(a) for
� ¼ 2:2. The data at this coupling indicate either a weak
first-order transition, at� ¼ 2:2, � ¼ 0:84, or possibly just
a sharp crossover. The evidence for the first-order nature of
the transition, for � values above this coupling, is given in
Ref. [7]. Below� � 2 [see Fig. 2(b) at� ¼ 1:2] there is no
indication, in the P vs � data, of any nonanalytic behavior
in the observable, as expected from the Fradkin-Shenker-
Osterwalder-Seiler theorem.

We will now display our evidence that, for fixed �< 2,
there is a transition in QC and QL away from zero, in the
infinite volume limit, to some nonzero value, but that this
transition happens at different couplings � for the
Coulomb and Landau order parameters.

Figure 3 is a plot of QL and QC vs � at � ¼ 1:2, on a
hypercubic lattice of volume 144. At low � both QC and
QL are very small, and cannot be distinguished from zero
on the scale of the graph. At some � both QC and QL rise
rapidly away from zero, indicating a nonzero value in the
infinite volume limit. However, this rise begins at different
values of � for the two observables.

Figure 4(a) is a log-log plot showing the dependence of
QL on the lattice extension L, with L ¼ 6, 8, 10, 12, and
14. The coupling � ¼ 1:2 is fixed, and we show results for
several � values. The straight lines are a best fit of the data
to

QL ¼ �

L4
: (3.7)

We see that the fit is quite good at the lower � values,
which supports the extrapolation to QL ¼ 0 in the infinite
volume limit. On the other hand, at � ¼ 1:45, there is very
little falloff inQL with lattice volume, indicating a nonzero
infinite volume limit. This means that somewhere there is a
transition from a phase of unbroken Landau gauge remnant
symmetry to a broken phase. Figure 4(b) shows the same
type of data for QC at � ¼ 1:2 computed in Coulomb
gauge. This time the straight lines on the log-log plot are
a best fit to

QC ¼ �0

L3
: (3.8)

Once again, the evidence supports an extrapolation to
QC ¼ 0 at low �, and a nonzero value at higher �, imply-
ing a transition from an unbroken to a broken phase of
Coulomb gauge remnant symmetry. However, the actual
Coulomb and Landau gauge transition points must be
different. This is illustrated in Fig. 5, where we compute
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FIG. 2. Plaquette expectation value P vs Higgs coupling � at
gauge couplings: (a) � ¼ 2:2, either a sharp crossover or a weak
first-order transition is seen at � ¼ 0:84, and (b) � ¼ 1:2, no
transition is evident. The figures are taken from Ref. [8].
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gauge coupling � ¼ 1:2.
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QL and QC vs lattice extension L at � ¼ 1:2 and � ¼ 1:5,
for lattice sizes up to 204. Here we see that the observable
QL is very nearly volume independent, with fluctuations of
less than 2% around the average valueQL ¼ 0:323, and the
Landau remnant gauge symmetry is broken. On the other
hand, the data forQC at these same couplings are very well
fit by a 1=L3 falloff, which implies an unbroken Coulomb
gauge remnant symmetry.

In order to improve the accuracy of our determination of
the transition point, we follow the procedure of looking for
the value of � where fluctuations in the order parameter are
largest.4 For this we define
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FIG. 4. Log-log plot of the gauge-symmetry breaking order
parameters QL and QC vs lattice extension L, at � ¼ 1:2 and a
variety of gauge-Higgs couplings �, in (a) Landau and
(b) Coulomb gauges. In the Landau and Coulomb gauges the
straight lines are a best fit to Eqs. (3.7) and (3.8), respectively.
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FIG. 5. QL and QC vs lattice extension L at � ¼ 1:2 and
� ¼ 1:5. The upper and lower lines are best fits, the upper to
QL ¼ const, and the lower to QC ¼ �0=L3.
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FIG. 6. Susceptibilities � vs gauge-Higgs coupling � at fixed
� ¼ 1:2 and a variety of lattice volumes L4. (a) Landau gauge;
(b) Coulomb gauge.

4We will not, however, attempt a finite size scaling analysis.
The order of the transition is not especially important to us,
particularly because there is, at �< 2, no actual thermodynamic
transition. It is enough, for our purposes, to establish that a
transition exists, in whichQ! 0 below the critical �, andQ> 0
above the critical �, in the infinite volume limit.
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�L ¼ V2ðh ~Q2
Li �Q2

LÞ; �C ¼ V2
3 ðh ~Q2

Ci �Q2
CÞ: (3.9)

The overall volume-squared factor in these expressions is
chosen so that �L and �C diverge, in the infinite volume
limit, at their respective transition points, but go to a non-
zero constant, in the same limit, in the unbroken phase. The
unconventional power of the volume is explained in a brief
Appendix. Briefly, it is due to the fact that we have defined
~QL;C as products of spatially averaged observables, rather

than being linear in spatially averaged observables. The
results for �L and �C, respectively, at � ¼ 1:2, are shown
in Figs. 6(a) and 6(b). From this data we locate the remnant
symmetry breaking transition points at � ¼ 1:4 for Landau
gauge, and � ¼ 1:7 for Coulomb gauge, with uncertainties
on the order of 0.03.

We have applied these methods to determine the Landau
and Coulomb remnant symmetry breaking transition points
at � ¼ 0:4, 0.8, 1.2, 1.6, 1.8, 2.0, 2.2, and 2.3, with the
results shown in Fig. 7. There is a clear separation of the
two transition lines for �< 2, where there is no thermody-
namic transition, while at �> 2 the symmetry breakings
coincide with each other and with the thermodynamic
transition/crossover points, within the accuracy of our
measurements. This is the central result of our paper.
Center vortex percolation/depercolation transitions in the
SU(2) gauge-Higgs model were investigated in Ref. [8],
and it was found that at � � 2 the percolation transition
points also coincide with the thermodynamic transitions,
while at �< 2 the percolation transitions lie above the
Coulomb transition line [8].

IV. DISCUSSION AND CONCLUSIONS

We have shown that in the SU(2) gauge-Higgs model
there is no unique transition line between unbroken and

spontaneously broken gauge symmetry; instead there are
different transition lines corresponding to different global
subgroups of the local symmetry. Two subgroups, in par-
ticular, one associated with the Kugo-Ojima confinement
criterion, and the other with the confining color Coulomb
potential, are found to have distinct transitions. The order
parameters for these two symmetries cannot both be order
parameters for the transition from a confinement to a Higgs
phase; this seems to be a firm conclusion of our study. In
fact, since the particle spectrum consists of only color
singlets throughout the phase diagram, and the asymptotic
string tension is zero (except at � ¼ 0) throughout the
phase diagram, it is unclear in exactly what sense a tran-
sition in either of these order parameters is associated with
a transition to or from a confined phase.
The larger question is whether the breaking of these or

any global gauge symmetries necessarily indicates a tran-
sition between physically different phases in non-Abelian
gauge theory. Of course, gauge-symmetry breaking may
accompany a change of state when there is a thermody-
namic phase transition. But the question is whether gauge-
symmetry breaking is always accompanied by a change of
physical state, even when the thermodynamic transition is
absent.
On the basis of the Fradkin-Shenker-Osterwalder-Seiler

theorem, there is a compelling case that no transition exists
in the SU(2) gauge-Higgs model from a Higgs phase to a
physically distinct ‘‘confinementlike’’ phase, which in-
cludes the strong-coupling region. If we consider any two
points ð�1; �1Þ � 1 and ð�2; �2Þ � 1 in the coupling-
constant plane, then there is always a path between them
along which the VEV of all local gauge-invariant observ-
ables vary analytically, and Green’s functions constructed
from such observables vary analytically. As a consequence,
the free energy and the spectrum vary analytically.
Moreover, the usual order parameters for confinement,
i.e. the asymptotic string tension (which vanishes) and
Polyakov lines (which do not vanish) exhibit nonconfining
behavior throughout the coupling-constant plane, for any
� > 0. There is simply no evidence for, and strong evi-
dence against, any abrupt change separating the Higgs
region from the strong-coupling confinementlike region.
So the fact that global gauge symmetries do break sponta-
neously in gauge-Higgs theory at small �, with different
symmetries breaking in different places in the coupling-
constant plane, makes it very unlikely that spontaneous
breaking of these global gauge symmetries necessarily
correspond to a change in physical state.
It is worth noting, in passing, that the absence of an

isolated Higgs phase in SU(2) gauge-Higgs theory also
makes it clear that there is no fundamental distinction
between string breaking by pair production of scalar par-
ticles, and the screening of color charge by a scalar field
‘‘condensate.’’ Along a path in the �� � plane which
continuously interpolates between the confinementlike
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FIG. 7. The location of remnant global gauge-symmetry
breaking in Landau and Coulomb gauges, in the �� � coupling
plane.
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and Higgs-like regions, the two effects must smoothly
morph into one another.5

The dual Abelian global gauge symmetry, probed by the
monopole operator (2.9) associated with dual supercon-
ductivity, has not yet been investigated in SU(2) gauge-
Higgs theory. However, there are already some indications,
in G(2) gauge theory, that spontaneous breaking of the dual
gauge symmetry is not necessarily accompanied by a
change of physical state. In G(2) lattice gauge theory there
is known to be a point of rapid crossover, where the
plaquette action rises very sharply as � increases, but
which does not appear to be accompanied by an actual
thermodynamic transition [24]. The monopole operator �,
or more precisely the logarithmic derivative  ¼
d logð�Þ=d� of that operator, has been studied in G(2)
gauge theory by Cossu et al. [25], and preliminary numeri-
cal evidence suggests that the dual global gauge symmetry
breaks at the crossover point, despite the absence of any
actual change in the physical state at that coupling. The
signal of a transition in the monopole operator, according
to previous studies [21], is a large negative peak in  at the
transition point, which grows with lattice volume, and this
is found to be the case at the crossover point at � ¼
7=g2 ¼ 9:44. There is also a slight peak in  found at the
deconfinement transition (� ¼ 9:765 for Lt ¼ 6 lattice
spacings in the time direction), but this is tiny compared
to the peak at the crossover point. If there is indeed a
transition in � at the G(2) crossover coupling, that would
be in line with what we have found for remnant gauge
symmetries in Landau and Coulomb gauges: these sym-
metries break at points where there is no actual change of
phase.

There is still the question of whether there is any other
symmetry which distinguishes confined from unconfined
phases. The answer hinges on what is meant by the word
confinement (cf. Ref. [26]). If all it means is that the
asymptotic particle states are color singlets, then there is
really no ‘‘unconfined’’ phase in gauge-Higgs theory, at
any coupling, whose symmetry could be contrasted with
the confined phase. If one chooses to define confinement in
this way, then the existence of a linear static quark potential
is a separate, and to some extent independent, issue. There
is, however an alternative definition of confinement, which
we prefer: Confinement is the phase of magnetic disorder.
‘‘Magnetic disorder’’ means the existence of vacuum fluc-
tuations strong enough to disorder, i.e. induce an area-law
falloff in, Wilson loops at arbitrarily large scales. SU(2)
gauge-Higgs theory is not in a magnetically disordered

phase at any � > 0. There is always some cutoff length
scale beyond which the large vacuum fluctuations, required
for the area-law falloff, are no longer found, and the
vacuum state is magnetically ordered in the infrared.
(This is analogous to the concept of a massless phase:
the phase does not exist if the Euclidean propagator of
the lightest particle state falls off exponentially at large
distances, even if the falloff appears to follow a power law
up to some very large, but still finite scale.) A true mag-
netically disordered vacuum state, with magnetic disorder
throughout the infrared region, is only found at � ¼ 0, and
there is indeed a nongauge symmetry which distinguishes
the magnetically disordered phase at � ¼ 0 from the or-
dered phase at � > 0. This is the well-known global center
symmetry. The linear potential, linear Regge trajectories,
and electric flux-tube formation are only found, up to some
finite distance scale, at small �, where the center symmetry
is only weakly broken (a situation labeled ‘‘temporary
confinement’’ in Refs. [8,26]). As �! 0 and center sym-
metry is restored, this finite scale goes off to infinity, and
magnetic disorder reigns throughout the infrared regime. In
theories where the center of the gauge group is trivial, such
as G(2) gauge-Higgs theory, a state of true magnetic dis-
order is never reached, even at � ¼ 0.
Let us finally consider an SU(2) gauge-Higgs theory

with the Higgs field in the adjoint representation. In this
case the Lagrangian is invariant under center symmetry
transformations, the symmetry is not broken explicitly by
the Higgs field, and this symmetry can break spontane-
ously in certain regions of the coupling-constant space
[27]. The Fradkin-Shenker-Osterwalder-Seiler theorem
does not apply in this case, and spontaneous center sym-
metry breaking is a transition between two physically
different phases, only one of which is magnetically disor-
dered. The example is instructive. Center symmetry breaks
spontaneously only when there is a change in the physical
state of the system, and confinement—understood as mag-
netic disorder at all large scales—is the phase of unbroken
center symmetry. Global subgroups of a local gauge sym-
metry, on the other hand, can break spontaneously even
when there appears to be no change of phase whatever, and
their relevance to the confinement problem, in our opinion,
remains to be firmly established.
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APPENDIX

In order to accurately determine the transition points for
breaking Landau and Coulomb global gauge symmetries
we have introduced �L and �C, which, from their defini-

5This fact may have implications for the screening of adjoint
representation (e.g. gluon) color charge in pure-gauge theories,
since that effect is not essentially different from the screening of
fundamental-representation color charge by a dynamical matter
field. Perhaps adjoint string breaking by gluon pair production
can also be thought of as the screening effect of a gluon
condensate.
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tions, are simply the mean square uncertainties ð�QLÞ2 and
ð�QCÞ2, multiplied by a factor of volume squared. Here we
would like to explain why the volume is squared in this
definition, while in, e.g., plaquette susceptibility or
Polyakov line susceptibility, only a single factor of volume
appears, e.g.

�pol ¼ V3½hP2i � hPi2�; P ¼ 1

V3

X
x

Tr½PðxÞ�; (A1)

where PðxÞ is a Polyakov line at spatial position x and V3 is
the spatial volume of a time slice. Stated briefly, the reason
for the differing powers of volume is that P is defined as the

spatial average of a local observable, while ~QC and ~QL are
defined as the product of spatially averaged observables. It
is this fact which leads to the unusual volume squared
factors in �L and �C.

It would be possible, in our case, to define order pa-

rameters such as Tr½ ~�� for the Landau gauge, or Tr½ ~U0ðtÞ�
in Coulomb gauge, which are linear in the spatially aver-
aged observables. However, this seems to us a little un-
natural since, in the broken phase, there is no particular
preferred direction for�ðxÞ orU0ðx; tÞ in group space. This
is in contrast to Polyakov lines, which cluster around center
elements, or plaquette actions, which are simple scalar
quantities. For the purpose of mapping the spatially aver-

aged matrix ~� to a scalar, we think it is more natural to

consider the squared magnitude Tr½ ~� ~�y�, which has the
minor cost of requiring a nonstandard power of volume in
the definition of �L.

In order to see where this power is coming from, let us
begin by considering hP2i which appears in the Polyakov
line susceptibility. Suppose we are in the unbroken phase,
well away from the transition, and Polyakov lines have
some finite correlation length l. Then

hP2i ¼ 1

V2
3

X
x

X
y

hTr½PðxÞ�Tr½PðyÞ�i

¼ 1

V3

X
x

hTr½Pð0Þ�Tr½PðxÞ�i / lp

V3

; (A2)

where p is some positive power. Therefore, if we multiply
this quantity by a single power of V3, it will go to a finite
positive constant in the infinite volume limit. At the phase
transition point where l! 1 in the infinite volume limit,
the susceptibility �pol also tends to infinity, which pin-

points the transition point. Now we do a similar analysis
of hQ2

Li

hQ2
Li¼

1

V4

X
x1

X
x2

X
x3

X
x4

h�abðx1Þ�ybaðx2Þ�cdðx3Þ�ydcðx4Þi:

(A3)

If the scalar fields have only finite-range correlations, then
the main contribution to the positional sums comes from
having pairs of points within a correlation length, e.g.
jx1 � x2j< l, jx3 � x4j< l, or jx1 � x4j< l, jx2 � x3j<
l. Then

hQ2
Li�

1

V4

X
x1

X
x2

h�abðx1Þ�ybaðx2Þi
X
x3

X
x4

h�cdðx3Þ�ydcðx4Þi

þsimilar terms

/ 1

V4
ðVlqÞðVlqÞ

/ l
2q

V2
; (A4)

where q is a positive power. The same considerations show
that hQLi2 is also Oðl2q=V2Þ. This time, multiplying these
quantities by volume squared in the definition of �L results
in a quantity which is finite and nonzero in the infinite
volume limit, and only tends to infinity in the disordered
phase, as V ! 1, as one approaches the transition point
where l! 1. Similar arguments apply to �C.
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