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We use a functional approach to calculate the Casimir energy due to Dirac fields in interaction with thin,

flat, parallel walls, which implement imperfect baglike boundary conditions. These are simulated by the

introduction of �-like interactions with the walls. We show that, with a proper choice for the correspond-

ing coupling constants, bag-model boundary conditions are properly implemented. We obtain explicit

expressions for the energies in 1þ 1 and 3þ 1 dimensions, for massless and massive fields.
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I. INTRODUCTION

In recent years, a renewed interest in the Casimir effect
[1] emerged, as a consequence of new, refined experimen-
tal techniques [2], which raised the required standards of
the theoretical calculations. They were usually based on
gross simplifying assumptions, mostly about the properties
of the mirrors. To explain the experimental results, it is
then important to use more accurate models, including
corrections due, for example, to the imperfect nature of
the mirrors.

In this paper we are concerned with the calculation of
the fermionic Casimir effect for imperfect ‘‘mirrors,’’ in a
functional integral framework. In a fermionic context, the
mirrors are meant to partially reflect the fermionic current;
including as a particular case the ‘‘bag’’ boundary condi-
tions, where the current is completely reflected.

From a technical point of view, we shall use an adapted
version of a previously used functional approach [3], to
cope with the case of fermionic fields and imperfect
boundaries. In the fermionic context, this method had al-
ready been applied to the case of fermions in 2þ 1 dimen-
sions satisfying bag conditions on a curve and coupled to a
gauge field [4].

To cope with imperfect mirrors, which will occupy
parallel planes, we follow [5] to introduce a coupling of
the bilinear �  to a �-function potential of the proper
coordinate. We shall then calculate the resulting Casimir
energy as a function of the distance between two mirrors,
using to that effect a functional formalism which maps the
original problem to a one-dimensional one, where the
fields live on the surfaces of the mirrors. We show that
exact results may be obtained by for 1þ 1 and 3þ 1
dimensions; for the 1þ 1 dimensional case our result in
the perfect bag case agrees with the one of [5], in spite of
the fact that the treatment of the problem is quite different;
in particular, the description of the interaction cannot be
mapped in a straightforward manner from one calculation
to the other.

This article is organized as follows. In Sec. II we in-
troduce the method in general; in Sec. III we apply it to the
calculation of the Casimir energy for two imperfect mirrors

in 1þ 1 and 3þ 1 spacetime dimensions. In Sec. IV we
analyze the relationship between this kind of interaction
and the bag boundary conditions, which emerge when the
coupling constant takes a particular value. Finally, in
Sec. V we present our conclusions.

II. THE METHOD

In this section, we shall introduce the method used for
the calculation of the vacuum energy, in the presence of
‘‘defects’’ which generate the approximate baglike bound-
ary conditions, for the case of a fermionic field in Dþ 1
spacetime dimensions.
Our approach is based on the well-known property that

the vacuum energy, E0, may be obtained from the
Euclidean functional Z � e��, as

E0 ¼ lim
T!1

�

T
; (1)

where T is the extension of the (imaginary) time coordi-
nate. On the other hand, in the functional integral repre-
sentation, Z is given, for a Dirac field, by

Z ¼
Z

D D � e�S; (2)

where S, the Euclidean action, will be such that S ¼ S0 þ
SI, with

S0 ¼
Z
dDþ1x � ðxÞð@6 þmÞ ðxÞ;

SI ¼
Z
dDþ1x � ðxÞVðxÞ ðxÞ;

(3)

which are the free and interaction actions, respectively.
In the last equation, VðxÞ denotes a ‘‘potential’’, intro-

duced in order to simulate the boundary conditions.
Although we shall mostly consider just the cases of one
or two defects, we write (for the sake of generality) its
expression for a system with N equally-spaced defects:

VðxÞ ¼ g
XN�1

�¼0

�ðxD � a�Þ; (4)
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where a� ¼ �L and� ¼ 0; 1; . . . ; N � 1. g is the coupling
constant, whose role in imposing an approximate boundary
condition is discussed in Sec. IV. It is worth noting here
that, as mentioned in [5], Dirac’s equation with this kind of
potential is not well defined. However, also in [5], a con-
sistent calculation of the Casimir energy for a Dirac field in
1þ 1 dimensions could still be performed, since one can
set up the problem in terms that avoid the calculation of the
eigenstates of the Dirac Hamiltonian. We shall here use an
approach that also bypasses the eigenproblem for the Dirac
Hamiltonian, relying instead on the corresponding
Euclidean propagator. The reason this can be done is, of
course, that the vacuum energy may be expressed as a
function of the expectation values of fermionic bilinears
which are, at least in this case, well defined even when the
eigensystem is not.

Of course, the total energy for this kind of potential will
be, since there is translation invariance along the coordi-
nates parallel to the surface of the mirrors, proportional to
the ‘‘area’’ of each defect; thus we will be interested in
evaluating energy densities, or pressures, rather than the
extensive quantity E0 (except the D ¼ 1 case where the
two quantities coincide).

In D spatial dimensions, the defects are codimension 1
hyperplanes. Putting the system in a d � D�
1-dimensional ‘‘box’’ of side a, we obtain the vacuum
energy density E0 dividing E0 (calculated for such a box)
by ad, and then taking the a! 1 limit:

E 0 ¼ lim
T;a!1

�
�

adT

�
: (5)

We have denoted by x the coordinates in Dþ
1-dimensional spacetime x ¼ ðx0; . . . ; xDÞ. It will turn out
to be convenient to introduce also coordinates y 2 Rdþ1,
for the subset of the dþ 1 spacetime components that
parametrize the �th defect’s world volume, as x ¼
ðy; a�Þ. Analogously, momentum-space coordinates in
Dþ 1 dimensions are denoted by p, while q is reserved

for its dþ 1-dimensional restriction:

p ¼ ðq; pDÞ; (6)

where pD is the momentum component along the normal
direction to the mirrors.
In terms of these conventions, we have

e�SI ¼ YN�1

�¼0

e�g
R
ddþ1y � ðy;a�Þ ðy;a�Þ (7)

which, following the methods of [3], may be written in an
equivalent way by introducing a pair of auxiliary
Grassmann fields ���ðyÞ and ��ðyÞ for each defect. The
vacuum functional then adopts the form:

Z ¼ Z0

Z �YN�1

�¼0

D��D ���

�
exp

�XN�1

�¼0

Z
ddþ1y�2

�ðyÞ

þ g
Z
dDþ1x

Z
dDþ1x0 ��ðxÞGð0Þðx; x0Þ�ðx0Þ

�
;

(8)

where

�ðxÞ � XN�1

�¼0

��ðyÞ�ðxd � a�Þ; (9)

while Z0 is the vacuum functional in the absence of
defects:

Z 0 ¼
Z

D D � e�S0 ¼ detð@6 þmÞ: (10)

On the other hand,

Gð0Þðx; x0Þ ¼ hxjð@6 þmÞ�1jx0i; (11)

is the free fermion propagator. Note that the auxiliary fields
are naturally defined on each one of the mirrors’ world
volumes.
Since we are interested in calculating the dependence of

E0 on the positions, a�, of the defects, we shall discard any
constant which is independent of those variables. Constant
factors in the functional integral, like Z0, generate pre-
cisely that kind of constant, which we shall therefore
ignore (without bothering to rename the corresponding
subtracted quantity).
Replacing (9) into (8), we may write the latter in the

more explicit form:

Z ¼
Z �YN�1

�¼0

D��D ���

�

� e
P

N�1
�;�¼0

R
ddþ1y

R
ddþ1y0 ���ðyÞK��ðy;y0Þ��ðy0Þ; (12)

where we introduced the matrix kernel

K ��ðy; y0Þ ¼ ����ðy� y0Þ þ gGð0Þðy; a�; y0; a�Þ; (13)

where each �, � element is also a matrix in Dirac space.
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FIG. 1 (color online). c1 as a function of g, for different
values of M ¼ mL.
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The formal result of evaluating the integral above is then

Z ¼ det½K��ðy; y0Þ�; (14)

where the determinant is meant to affect all, continuum and
discrete, variables. This means that

E 0 ¼ � lim
T;a!1

�
1

adT
Tr lnK

�
; (15)

where ‘‘Tr’’ is the trace over continuous and discrete
indices.1

Since there is invariance under translations in the y
coordinates, we may Fourier transform with respect to
them. The kernel becomes then block diagonal in the
continuous variables; besides, a proper counting of the
modes in the box shows that the adT factor is cancelled
by an identical one coming from the numerator; thus, in the
limit,

E 0 ¼ �
Z ddþ1q

ð2�Þdþ1
tr½ln ~KðqÞ�; (16)

where the tilde has been used to denote Fourier trans-
formation, and ‘‘tr’’ denotes trace over the �, � and
Dirac indices only.

In the following section, we deal with the evaluation of
the previous expression for E0 in the most relevant case,
i.e., N ¼ 2.

III. CASIMIR ENERGY

Besides the subtraction of the vacuum energy in the
absence of the defects, there is another constant to get rid
of: the self-energy of the defects. It may be identified as the
result of evaluating E0 for L! 1. Thus the prescription
for such a subtraction, which will render a finite quantity as
a result, is to subtract from E0 its limit when L! 1. Of
course, to give meaning to the expression at intermediate
steps, a regularization is introduced.

Since the last subtraction brings into play the self-energy
of the defects, we present first N ¼ 1, where the self-

energy first emerges, and then the N ¼ 2 case where we
evaluate the energy for the case of two defects, identifying
and subtracting the contributions of the self-energies of the
two mirrors.

A. One defect

For N ¼ 1, the ~K matrix has only one element (� ¼
� ¼ 0), thus there is no need to use �, � indices:

~K ¼ 1þ g

2
WðqÞ; WðqÞ � mþ iq6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ q2
p ; (17)

so that E0 becomes

E 0 ¼
Z ddþ1q

ð2�Þdþ1
tr

�
ln

�
1þ g

2
WðqÞ

��
: (18)

When D ¼ 1, the Euclidean gamma matrices have the
single eigenvalues �1. Then the vacuum persistence am-
plitude is

E 0 ¼ �
Z dp0

2�
ln

�
1þ g2

4
þ gmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
0

q �
; (19)

which has a logarithmic UV divergence, easily regularized
by using a frequency cutoff.
A lengthier, but quite straightforward calculation shows

that, in D ¼ 3

E ¼ �2
Z d3p

ð2�Þ3 ln

�
1þ g2

4
þ gmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ q2
p �

; (20)

which is quadratically divergent. Again, a Euclidean can be
used to give meaning to the integral, whose explicit form
we do not need: indeed, it will emerge in the next sub-
section only to be subtracted in order to fix the energy to
zero when L! 1.

B. Two defects

When N ¼ 2 the matrix ~KðqÞ is given by

~KðqÞ ¼ 1þ g
2WðqÞ g

2 ðWðqÞ � �DÞe�L
ffiffiffiffiffiffiffiffiffiffiffi
m2þq2

p
g
2 ðWðqÞ þ �DÞe�L

ffiffiffiffiffiffiffiffiffiffiffi
m2þq2

p
1þ g

2WðqÞ

2
4

3
5; (21)

with W as defined in (17).
Using the property

det ~KðqÞ ¼ det ~K00 det
~K11 det½I � ~K�1

00
~K01

~K�1
11

~K10�
(22)

for the determinant of the matrix in (21), we may identify
the first two factors above as yielding the self-energies for

the defects, as studied in Sec. III A. We first introduce an
UV cutoff to give meaning to those two factors (the third
factor is convergent) before subtracting the corresponding
self-energies. The resulting pressure is

E 0 ¼ �
Z ddþ1q

ð2�Þdþ1
tr½ln ~MðqÞ�; (23)

with

~MðqÞ � I � ~K�1
00

~K01
~K�1

11
~K10: (24)

1Again, a finite spacetime box is introduced before tacking the
limit.

FUNCTIONAL APPROACH TO THE FERMIONIC CASIMIR . . . PHYSICAL REVIEW D 78, 025017 (2008)

025017-3



Let us now evaluate E0 above for D ¼ 1 and D ¼ 3. In
one spatial dimension, if we take into account Dirac’s

indices, ~K�� is a matrix with two 2� 2 blocks, while ~M

is just a 2� 2 matrix. A somewhat lengthy but otherwise
straightforward calculation shows that the latter has eigen-
values �1, �2 given by

�1 ¼ 1; �2 ¼ 1þ 16g2q20
½ð4þ g2Þ!ðq0Þ þ 4gm�2 e

�2Ljq0j;

(25)

where !ðq0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þm2

q
. Therefore, the trace in the ex-

pression for the vacuum energy can be calculated exactly.
In the massless case, we can obtain the exact expression for
the energy as a function of g, since

E 0ðLÞ ¼ � 1

�

Z 1

0
dq0 ln

�
1þ 16g2

ð4þ g2Þ2 e
�2Lq0

�
; (26)

or,

E 0 ¼ � c1ðgÞ
L

; (27)

where

c1ðgÞ � � 1

2�
Li2

� �16g2

ð4þ g2Þ2
�

(28)

is a dimensionless constant which determines the strength
of the Casimir interaction, and LinðxÞ denotes the polylo-
garithm function. In Fig. 1, we plot the dimensionless
combination c1ðgÞ ¼ �LE0 as a function of the (also
dimensionless) variable g, for the massless case, and for
different values ofM � mL, corresponding to the massive
case (where there is no closed expression for the energy).
Note that there is a maximum at g ¼ 2. That value, as
explained in the next section, corresponds to exact bag
boundary conditions, where the boundaries are more ef-
fective and as a consequence the energy reaches it maxi-
mum possible value:

½E0�g¼2 ¼ � �

24L
: (29)

Note that in the approach of Ref. [5], bag conditions
correspond to an infinite coupling constant. The difference
is explained, of course, by the different meaning of the
coupling constants in both cases. For example, the propa-
gator in our approach includes tadpolelike propagation
between the wall and itself, which naturally change the
effective value of the coupling constant. Nevertheless, our
g ¼ 2 agrees with �! 1.

A fuller explanation of this fact is given in Sec. IV,
where we derive the form of the fermion propagator in
the presence of the defects, studying its behavior close to
the boundary.

As already mentioned, for the massive case the corre-
sponding integral cannot be performed exactly. In Fig. 2

we plot the result of numerically evaluating that integral
for c1ðg;mLÞ � jE0jL as a function ofM ¼ mL, for differ-
ent values of g.

In 3 spatial dimensions, each block in ~M is a 4� 4

matrix. For a massive field, and using the notation !ðqÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
, we find that

~K�1
00

~K01
~K�1

11
~K10 ¼ 4g2e�2!ðqÞL

½ð4þ g2Þ!ðqÞ þ 4gm�2
� ½�2q2I þ gq2�D

þ ið2mþ g!ðqÞÞq6 þ ið2!ðqÞ
þ gmÞq6 �D�; (30)

with q ¼ ðp0; p1; p2Þ, pD ¼ p3, and �D ¼ �3.

The exact eigenvalues of ~M can be found after some
algebra, the result being

�1 ¼ 1; �2 ¼ 1þ 16g2q2

½ð4þ g2Þ!ðqÞ þ 4gm�2 e
�2!ðqÞL;

(31)

each one with multiplicity equal to two. Then, after inte-
grating out the angular variables, the Casimir energy per
unit area may be written as follows:

E 0ðg;m; LÞ ¼ � c3ðg;mLÞ
L3

; (32)

where

c3ðg;MÞ � 1

�2

Z 1

0
drr2

� ln

�
1þ 16g2r2e�2

ffiffiffiffiffiffiffiffiffiffiffi
r2þM2

p

½4gMþ ð4þ g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2

p
�2
�
; (33)

which converges in both the IR and UV regions.
It is convenient to introduce first the result correspond-

ing to the casem ¼ 0 and g ¼ 2, where the energy reaches
a maximum:
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FIG. 2 (color online). c1 as a function of M � mL; D ¼ 1.
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E 0ð2; 0; LÞ ¼ � 7�2

2880L3
; (34)

in agreement with [6] (see also [7]).
When m � 0, and introducing M ¼ mL � 0,

L3E0 ¼ 1

�2

Z 1

0
drr2 ln

�
1þ 16g2r2e�2

ffiffiffiffiffiffiffiffiffiffiffi
r2þM2

p

½4gMþð4þ g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2

p
�2
�
:

(35)

This integral cannot be found analytically, but it has a
convenient form for performing it numerically. In Fig. 3,
we plot c3ðg;MÞ ¼ L3jE0j as a function of g for different
values ofM ¼ mL between 0.1 and 1. We see the expected
decreasing behavior of the energy when m grows, regard-
less of the value of g. This happens because the fermionic
field propagator has a faster decay with distance the larger
is the mass, reducing the interaction energy between them.
On the other hand, the energy always has a maximumwhen
g ¼ 2, for any value of the mass. As we mentioned for the
D ¼ 1 case, this comes from the bag boundary conditions,
which are met precisely at this value.

In Fig. 4, we present the complementary view, by plot-
ting c3 as a function ofM, for different values of g between
01. to 3. It can be seen that the energy becomes negligible
when M ’ 2 which means that the distance between the
plates is of the order of the decay length of the propagator.

IV. THE �-INTERACTION AND BAG BOUNDARY
CONDITIONS

Bag boundary conditions are usually formulated in
terms of the fermionic propagator Gðx; x0Þ ¼ h ðxÞ � ðx0Þi,
in the presence of boundaries. For the case of just one
defect located at xd ¼ 0, one says that it imposes bag
conditions on its two, ‘‘right’’ and ‘‘left’’ faces, when

lim
xD!0�

ð1� �DÞGðx; x0Þ ¼ 0; (36)

respectively. They imply that the vacuum expectation value
of the normal component of the fermionic current vanishes
when approaching the wall from each side. Similar con-
ditions may be imposed, of course, on more than one wall.
Following an analogous procedure to the one used for

the calculation of Z, but now for the propagator,

h ðxÞ � ðx0Þi ¼
R
D D �  ðxÞ � ðx0Þe�SR

D D � e�S
(37)

we obtain

Gðx; x0Þ ¼ Gð0Þðx; x0Þ þ Tðx; x0Þ; (38)

where

Tðx; x0Þ ¼ �gX
�;�

Z ddq

ð2�Þd e
�iqðy�y0Þ ~Gð0Þðq; xD; a�Þ

� ½ ~K�1���ðqÞ ~Gð0Þðq; a�; x0DÞ; (39)

with

~G ð0Þðq; xD; x0DÞ ¼
Z dpD

2�
e�ipDðxD�x0DÞGð0Þðx; x0Þ: (40)

The matrix elements of the inverse of ~K may be written in
terms of the matrix elements of ~K:

~K�1 ¼ C�1
0 �½ ~K00��1 ~K01C

�1
1

�C�1
1

~K10½ ~K00��1 C�1
1

 !
;

(41)

where ½ ~K00��1 and ½ ~K11��1 denote the inverses of the
respective matrix elements (not to be confused with
the matrix elements of the inverse). We have used the

definitions C0 � ~K00 � ~K01½ ~K11��1 ~K10 and C1 �
~K11 � ~K10½ ~K00��1 ~K01.
Let us apply the formulas above, for the sake of sim-

plicity, to the case of massless fermions and only one
defect in D ¼ 1; we see that, when x1 ! 0þ and x01 > 0
we obtain
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FIG. 3 (color online). c3 as a function of g, for different
values of M ¼ mL.
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FIG. 4 (color online). c3 as a function of M ¼ mL, for
different values of g.
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ð1� �1Þ½ ~Gðq; 0; x01Þ þ ~Gðq; 0; x01Þ�

¼ e�jqjjx01j
�

2g

4þ g2
� 1

2

�
½I � isgðqÞ�0 � �1

þ isgðqÞ�0�1�; (42)

where sg is the sign function. Since we are interested in the
þ sign when approaching the defect from the right, we see
that the bag condition is fulfilled when

2g

4þ g2
¼ 1

2
(43)

thus, g ¼ 2.
On the other hand, when one approaches the defect from

the left, one also obtains g ¼ 2 to satisfy the corresponding
bag condition. An entirely analogous derivation yields the
same value for g when the fermions are massive, or when
more dimensions are considered. For example, in 2þ 1
dimensions, and for m ¼ 0, the propagator reduces to the
one of [8].

V. CONCLUSIONS

We derived general expressions for the vacuum energy
in the presence of N ‘‘defects,’’ whose role is to impose
imperfect baglike boundary conditions on parallel planes.

Standard bag conditions may be obtained as a particular
case. For the case of two plates, we obtain more explicit
formulas, which yield the Casimir energy as an integral
over a single variable. That integral is both UV and IR
finite.
We show that, at any given distance between the plates,

the energy reaches a maximum precisely when the bag
condition is satisfied.
Our way of implementing the calculation relies on the

calculation of the exact fermion propagator in the presence
of the defects. This propagator is a perfectly well-defined
object, in spite of the fact that the eigensystem for the
associated Dirac Hamiltonian is not well defined. This
ambiguity has the consequence of allowing for different
parametrizations of the strength of the coupling between
the Dirac field and the mirrors. In particular, our method
produces a fermionic propagator which satisfies bag
boundary conditions when the coupling constant g ¼ 2.
That value corresponds, in the setting of Ref. [5], to an
infinite coupling constant.
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