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We consider the running coupling from the four-gluon vertex in Landau gauge, SUðNcÞ Yang-Mills

theory as given by a combination of dressing functions of the vertex and the gluon propagator. We

determine these functions numerically from a coupled set of Dyson-Schwinger equations. We reproduce

asymptotic freedom in the ultraviolet momentum region and find a coupling of order one at mid-momenta.

In the infrared we find a nontrivial (i.e. nonzero) fixed point which is 3 orders of magnitude smaller than

the corresponding fixed point in the coupling of the ghost-gluon vertex. This result explains why the

Dyson-Schwinger and the functional renormalization group equations for the two point functions can

agree in the infrared, although their structure is quite different. Our findings also support Zwanziger’s

notion of an infrared effective theory driven by the Faddeev-Popov determinant.
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I. INTRODUCTION

In recent years the running coupling of Yang-Mills
theory has been investigated in a number of approaches;
for a review see [1]. These include lattice QCD [2–7],
analytic perturbation theory [8,9], the functional renormal-
ization group [10–12], Dyson-Schwinger equations [13–
15], and phenomenological extractions from experiment
[16,17]. The goal of these investigations is an extension of
our knowledge of the coupling from the large momentum
region towards small momenta of the order of �QCD and

smaller. Perturbation theory alone, plagued by the problem
of the Landau pole, is clearly insufficient for this task. In
this respect it seems remarkable that the mere improve-
ment of the perturbation series by analyticity constraints
leads to a well-defined running coupling that freezes out in
the infrared; see [9] for a review of analytic perturbation
theory.

Infrared fixed points of the couplings of Yang-Mills
theory have also been found in two functional approaches
to QCD, the functional (or ‘‘exact’’) renormalization group
(FRG) and the framework of Dyson-Schwinger equations
(DSEs); see [18–20] for reviews. In these approaches non-
perturbative running couplings can be defined in terms of
(gauge dependent) dressing functions of propagators and
dressing functions of the primitively divergent vertices of
the theory. The resulting expressions are renormalization
group invariants but may be scheme dependent. In Landau
gauge, the couplings from the ghost-gluon vertex, �gh�gl,
the three-gluon vertex, �3g, and the four-gluon vertex, �4g,
are given by [15]:

�gh�glðp2Þ ¼ g2

4�
G2ðp2ÞZðp2Þ; (1)

�3gðp2Þ ¼ g2

4�
½�3gðp2Þ�2Z3ðp2Þ; (2)

�4gðp2Þ ¼ g2

4�
½�4gðp2Þ�Z2ðp2Þ: (3)

Here g2=4� is the coupling at the renormalization point

�2, whereas Zðp2Þ denotes the dressing function of the
gluon propagator D�� and Gðp2Þ the dressing of the ghost

propagator DG, i.e.

DGðp2Þ ¼ �Gðp2Þ
p2

;

D��ðp2Þ ¼
�
��� �

p�p�

p2

�
Zðp2Þ
p2

:

(4)

The functions �3g and �4g describe the nonperturbative
dressing of the tree-level tensor structures of the three- and
four-gluon vertices. The multiplicities of the various dress-
ing functions in (1)–(3) are related to the number of legs of
the corresponding vertex.1 The three definitions of the
coupling given in Eqs. (1)–(3) correspond to three different
renormalization schemes. The resulting couplings are re-
lated to each other by scale transformations and Slavnonv-
Taylor identities as detailed e.g. in Ref. [21]. In this work
we focus on a calculation of �4gðp2Þ and compare the
result with the previously determined coupling
�gh�glðp2Þ [14,22].
One of the basic ingredients to the running coupling

�4gðp2Þ is the dressing function �4g of the nonperturbative
four-gluon vertex. An evaluation of this dressing together
with a corresponding evaluation of the gluon propagator
therefore allows to study the running of the coupling with
momentum. However, there are also other reasons why the
nonperturbative four-gluon vertex is an interesting object.
First of all, this vertex is the only primitively divergent one
that allows for the formation of bound state (glueball)
poles, a phenomenon usually restricted to higher, super-
ficially convergent vertices. Second, the vertex describes

1Note that the ghost-gluon vertex is finite in Landau-gauge,
which explains the absence of a corresponding dressing function
in Eq. (1). Furthermore, the bare four-gluon vertex is propor-
tional to g2 instead of g which leads to factors of �4gZ2 instead
of the naive expectation ½�4g�2Z4 from the number of legs in the
vertex.
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quantum corrections to elementary gluon-gluon scattering,
which might be important e.g. for the description of gluon-
gluon interactions in the high temperature quark-gluon
plasma phase of QCD. Third, a number of studies indicate
[13–15,23,24] that the infrared structure of the correlation
functions of Yang-Mills theory is connected to the confin-
ing properties of the theory via the so-called Gribov-
Zwanziger scenario. Here, long ranged correlations are
induced in the gauge fixed theory by effects from the first
Gribov horizon in gauge field configuration space [24]. As
we will see in the course of this work, the infrared behavior
of the four-gluon vertex and the related running coupling
provide additional support of this picture.

This four-gluon vertex is a highly complex object due to
its rich tensor structure generated by the four Lorentz and
four color indices. As a consequence, this correlation
function is very poorly understood so far. Lattice calcula-
tions of many-gluon Green’s functions suffer from prob-
lems with statistics and consequently no definite results
have been obtained so far. Within the functional continuum
approach to Yang-Mills theory, early investigations of the
vertex concentrated on the structure of its Dyson-
Schwinger equations (see e.g. [25]), without aiming at
actual solutions. Results on the one-loop level have been
given e.g. in [21,26,27]. An attempt to solve the vertex-
DSE nonperturbatively has been made in [28–30] within a
self-consistent expansion scheme in terms of couplings and
power laws of momenta.

In this work we are going beyond these results by a
combination of analytical and numerical methods that
allow to extract the dressing functions of the vertex without
any prejudice to their functional form. In Sec. II we con-
struct an approximation to the full Dyson-Schwinger equa-
tion of the vertex which reproduces the correct asymptotic
behavior of the vertex as known from perturbation theory
and infrared power-counting methods [15]. In Sec. III we
give analytical expressions for the vertex in these two
limits and discuss numerical results for all momenta in
Sec. IV. For the running coupling �4gðp2Þ we find an

infrared fixed point, which we discuss in Sec. V. We
explain why the smallness of this fixed point matches
with results from the functional renormalization group
and the notion of ghost dominance in the infrared. A
summary and outlook concludes the paper.

II. THE FOUR-GLUON VERTEX AND ITS DYSON-
SCHWINGER EQUATION

A. Nonperturbative structure of the four-gluon vertex

As already mentioned above, the four-gluon vertex is a
highly complicated object with four Lorentz and four color
indices. This complexity forces a two step procedure: one
first works with a restricted subset of possible combina-
tions of Lorentz and color tensors. This reduced complex-
ity allows for a first study of the most important properties
of the vertex and its Dyson-Schwinger equation. On the

basis of these results one can then attack the full problem in
a second step. While we report on the first part of this
program in this work, the second part is left for future
studies. Of course, the success of such a procedure greatly
depends on the choice of the restricted subset. A suitable
selection has been suggested in [30] and shall also be used
here.
The building blocks of the reduced tensor-structure are

three Lorentz and five color tensors:
L����
ð1Þ ¼ ������; L����

ð2Þ ¼ ������;

L����
ð3Þ ¼ ������;

(5)

Cð1Þ
abcd ¼ �ab�cd; Cð2Þ

abcd ¼ �ac�bd;

Cð3Þ
abcd ¼ �ad�bc; Cð4Þ

abcd ¼ fabnfcdn;

Cð5Þ
abcd ¼ facnfbdn:

(6)

This is the minimal subset of all possible tensor-structures,
which has the following properties [30]:
(i) It is dynamically closed under DSE and Bethe-

Salpeter iterations, provided the only color structure
appearing in the three-gluon vertex is fabc.

(ii) It closes under crossing operations.
(iii) It contains the structure of the bare four-gluon

vertex.
The last property of this subset allows for the representa-
tion of the high momentum limit of the vertex in this basis
and also allows for the calculation of the relevant dressing
function for the running coupling, Eq. (3).
From these tensors a basis of the linear space of Lorentz/

color tensors is constructed as a direct product

T����
ði;jÞ;abcd ¼ CðiÞ

abcdL
����
ðjÞ ; (7)

where we abbreviate the various combinations as follows:

B1 ¼ Lð1ÞCð1Þ; B2 ¼ Lð1ÞCð2Þ; B3 ¼ Lð1ÞCð3Þ;

B4 ¼ Lð1ÞCð4Þ; B5 ¼ Lð1ÞCð5Þ; B6 ¼ Lð2ÞCð1Þ;

B7 ¼ Lð2ÞCð2Þ; B8 ¼ Lð2ÞCð3Þ; B9 ¼ Lð2ÞCð4Þ;

B10 ¼ Lð2ÞCð5Þ; B11 ¼ Lð3ÞCð1Þ; B12 ¼ Lð3ÞCð2Þ;

B13 ¼ Lð3ÞCð3Þ; B14 ¼ Lð3ÞCð4Þ; B15 ¼ Lð3ÞCð5Þ:
(8)

Here the Lorentz and color indices are left implicit. The
four-gluon vertex is then represented by:

4g�
����
abcd ðp1;p2;p3Þ ¼

X5
i¼1

X3
j¼1

�ijðp1;p2;p3ÞT����
ði;jÞ;abcd; (9)

where the T
����
ði;jÞ;abcd are elements of an orthonormal basis

constructed from the elements B1...15 such that the tree-
level vertex is included. The tensors of this basis can be
found in Appendix A. The algebraic manipulations in-
volved in the construction of this basis and also the one
below have been performed with the use of FORM [31].
Of course, the dressing functions �ijðp1; p2; p3Þ of the

basis (9) are not completely independent. Bose symmetry
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of the four external vertex legs dictates interrelations be-
tween combinations of the �ijðp1; p2; p3Þ. This symmetry

is of course reproduced by the exact vertex-DSE, although
it is far from trivial how this works, in detail, since one
external leg is always connected with a bare internal vertex
while the others are connected with dressed Green’s func-

tions. Thus any approximation to the full system is endan-
gered to generate unsymmetric terms. These can (partly) be
projected out by contraction with a reduced basis of tensor
structures, which only include Bose-symmetric objects.
The construction of this reduced basis is described in
Appendix B. Here we only give the result in terms of the
building blocks, Eqs. (5), (6), and (8):

V1 ¼ 1

108N2
cðN2

c � 1Þ ð�B4 þ 2B5 þ 2B9 �B10�B14 �B15Þ; (10a)

V2 ¼ 1

48N4
c � 120N2

c þ 72

�
B1 þ 2

3Nc

B4 � 4

3Nc

B5 þB7 � 4

3Nc

B9 þ 2

3Nc

B10 þB13 þ 2

3Nc

B14þ 2

3Nc

B15

�
; (10b)

V3 ¼ 1

216ðN6
c � 4N4

c þN2
c þ 4Þ

�
N2

c þ 6

3� 2N2
c

B1 þB2 þB3 þ 2ðN2
c þ 1Þ

3Nc � 2N3
c

B4 þ 4ðN2
c � 1Þ

Ncð2N2
c � 3ÞB5 þB6þ N2

c þ 6

3� 2N2
c

B7

þB8 þ 4ðN2
c þ 1Þ

Ncð2N2
c � 3ÞB9 þ 2ðN2

c � 1Þ
3Nc� 2N3

c

B10 þB11 þB12 þ N2
c þ 6

3� 2N2
c

B13þ 2ðN2
c þ 1Þ

3Nc � 2N3
c

B14 þ 2ðN2
c þ 1Þ

3Nc� 2N3
c

B15

�
: (10c)

The element V1 is identical to the tree-level vertex, whereas V2 and V3 represent the two only additional Bose-symmetric
structures that can be built from Eq. (8). The vertex is then represented by

4g�����
abcd ðp1; p2; p3Þ ¼

X3
i¼1

4g~�iðp1; p2; p3ÞV����
i;abcd: (11)

The object �4gðp2Þ appearing in the running coupling (3) is then related to (11) by �4gðp2Þ ¼ 4g~�1ðp1; p2; p3Þ, where all
external scales p2

1 � p2
2 � p2

3 � p1 � p2 � p1 � p3 � p2 � p3 � p2. We will come back to this coupling in Sec. V.

B. The DSE for the four-gluon vertex

Having constructed a suitable representation of the four-gluon vertex we now discuss the structure of its Dyson-
Schwinger equation. In compact notation this equation reads [30]:
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where all internal propagators are to be understood as fully
dressed and the shaded circles denote reducible vertex
functions. The decomposition of these functions into
proper (i.e. one-particle irreducible) vertices is given in
Appendix C. Here also higher n-point functions (n ¼ 5, 6)
appear which satisfy their own Dyson-Schwinger equa-
tions. Since in general one cannot solve the resulting
infinite tower of equations at once, we have to truncate
the vertex-DSE, Eq. (12), in a physical reasonable way.
The truncation scheme that will be applied is as follows:

(i) The four-gluon vertex will be reduced to the subset
of structures discussed above. In particular we use
the Bose-symmetric representation, Eq. (11).

(ii) The fully dressed ghost and gluon propagators in the
internal loops are taken from their own coupled
system of DSEs. These have been solved in [22]
without taking into account any effects of the four-
gluon vertex. By comparison with lattice calcula-
tions [32,33] one finds that this approximation in the
propagator DSE leads to errors of the order of 10%
in the mid-momentum region only [20]. The far
infrared and the ultraviolet are unaffected.We there-
fore employ these solutions in this work and leave
an inclusion of the backreaction of the four-gluon
vertex on the propagators for future studies.

(iii) Because of the complexity of the four-gluon vertex
DSE it seems justified to reduce the number of
diagrams contained in our investigation to the
ones that give dominant contributions in the infra-
red and ultraviolet momentum region. Since these
limits are under analytical control (see Sec. III and
Refs. [12,15]) we can identify these diagrams
safely. In the infrared, the leading diagram is the
ghost-loop (b), whereas in the ultraviolet leading
contributions can be expected from all one-loop
diagrams.

(iv) These diagrams then contain higher n-point verti-
ces, that will be reduced to two- and three-point

functions using a skeleton expansion (i.e. an expan-
sion in full vertices and propagators).

(v) Self-consistency effects of the four-gluon vertex
will be neglected, i.e. we drop all diagrams on the
right-hand side that contain the four-gluon vertex
(e.g. the diagrams (c), (d), (e), (f) in Eq. (12). While
this approximation greatly reduces the complexity
involved in the numerical treatment of the DSE it
does not affect the infrared behavior of the resulting
four-gluon vertex, since the ghost loop (b) is the
dominant diagram for small momenta (cf. above). In
the ultraviolet momentum region, however, this
omission leads to a one-loop running of the vertex
not in agreement with perturbation theory. We rem-
edy this drawback by the use of an effective three-
gluon vertex in diagram (b).

(vi) This effective three-gluon vertex obeys the correct
IR power-law and generates the correct UV behav-
ior of the four-gluon vertex under the absence of the
diagrams (c), (d), and (e). A similar effective con-
struction has been used previously in the DSEs for
the ghost and gluon propagators, where results
close to corresponding ones from lattice calcula-
tions have been obtained [22].

(vii) The dressed ghost-gluon vertex will be replaced by
the bare vertex. This approximation is well justi-
fied not only in the ultraviolet but also in the
infrared momentum region. This property has al-
ready been conjectured by Taylor in the early
seventies [34] and has recently been verified nu-
merically in continuum as well as lattice calcula-
tions [35–37]. It also agrees with the all-order
analytical analysis of the DSEs performed in
[12,15], cf. Sec. III B.

The resulting approximation of the Dyson-Schwinger
equation of the four-gluon vertex then reads

Here ‘‘perm.’’ denotes permutations of the three external
dressed legs of the ghost-box and the gluon-box diagram.
The subscript ‘‘symm’’ indicates that we average over all
possible locations of the bare vertex in the diagrams thus
restoring Bose symmetry by hand. The dressed ghost-
gluon vertices are taken bare and the dressed three-gluon
vertex is given by the following ansatz:

3g�ab
���ðq; pÞ ¼

Gðq2Þð�ð1=6Þ��Þ

Zðq2Þðð5þ3�Þ=6Þ

� Gðp2Þð�ð1=6Þ��Þ

Zðp2Þðð5þ3�Þ=6Þ
3g
ð0Þ�

ab
���ðq; pÞ; (14)

with the one-loop anomalous dimension of the ghost � ¼
� 9

44 and the dressings Gðp2Þ and Zðp2Þ of the ghost and
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gluon propagators. The symbol
3g
ð0Þ� denotes the bare three-

gluon vertex. This ansatz preserves the correct UVanoma-
lous dimension of the full four-gluon vertex, as well as the
correct IR power-law of the three-gluon vertex in the
scaling scenario reviewed in the next section.

III. ANALYTICAL RESULTS IN THE INFRARED
AND ULTRAVIOLET MOMENTUM REGION

A. Multiplicative renormalizability

The truncation of the DSE for the four-gluon vertex,
Eq. (13), is given explicitly by

4g�����
abcd ¼ Z4

4g
ð0Þ�

����
abcd �

�
~Z1g

2
Z d4q

ð2�Þ4 �
�DG�

�DG�
�DGð0Þ�

�DGTabcd

�
jperm:;symm

þ
�
Z1g

2
Z d4q

ð2�Þ4
3g��0��00

D3g
�00�0��0��00

D3g
�00�0��0��00

D�00�03gð0Þ�
�0��00

D�00�0Tabcd

�
jperm:;symm

; (15)

where the color factors have been subsumed in a factor
Tabcd ¼ ðfb0aa0fc0bb0fd0cc0fa0dd0 Þ (recall that we assume the
ghost-gluon and three-gluon vertices to be proportional to
fabc and the propagators to be diagonal in color space).
The symbols ð0Þ�

�,
3g
ð0Þ�

�0��00
, and

4g
ð0Þ�

����
abcd denote the bare

ghost-gluon, three-gluon, and four-gluon vertices, respec-
tively. All momentum arguments have been omitted for
brevity. Note that this equation is already divided by a
factor g2 coming from the full vertex on the left-hand
side (l.h.s.) of Eq. (13). Before we embark in the analytical
analysis of this momentum dependence, we wish to show
that this truncation scheme preserves multiplicative renor-
malizability of the four-gluon vertex DSE.

To this end we need the relations between the renormal-
ized and the unrenormalized but regularized Green’s func-
tions of the theory. The former ones are functions of the
renormalization point �2 (in addition to their momentum
dependence), whereas the latter ones depend on the regu-
larization scale. If the regularization is performed by a
momentum cutoff � these relations are given by

gð�ÞZgð�;�Þ ¼ gð�Þ; (16)

DGðp;�Þ~Z3ð�;�Þ ¼ DGðp;�Þ; (17)

D�	ðp;�ÞZ3ð�;�Þ ¼ D�	ðp;�Þ; (18)

4g�ðpi; �Þ���� ¼ Z4ð�;�Þ4g�ðpi;�Þ����; (19)

3g�ðpi; �Þ��� ¼ Z1ð�;�Þ3g�ðpi;�Þ���; (20)

�ðpi; �Þ� ¼ ~Z1ð�;�Þ3g�ðpi;�Þ�: (21)

They are complemented by the Slavnov-Taylor identities

Z1 ¼ ZgZ
3=2
3 ; ~Z1 ¼ Zg

~Z3Z
1=2
3 ;

Z1F ¼ ZgZ
1=2
3 Z2; Z4 ¼ Z2

gZ
2
3:

(22)

One can then analyze the dependence of the ghost and
gluon-box diagrams on the renormalization point � of the
theory. We obtain for the renormalization point depen-

dence of the ghost-box diagram gh�
����
abcd ð�2Þ

gh�
����
abcd ð�2Þ � 1

½Z2
gð�2Þ�2 ½

~Z1ð�2Þ�4 1

½~Z3ð�2Þ�4
¼ ½Zgð�2Þ�2½Z3ð�2Þ�3 ¼ Z4ð�2Þ; (23)

and for the gluon-box diagram gl�
����
abcd ð�2Þ

gl�
����
abcd ð�2Þ � 1

½Zgð�2Þ�2 ½Z1ð�2Þ�4 1

½Z3ð�2Þ�4
¼ ½Zgð�2Þ�2½Z3ð�2Þ�3 ¼ Z4ð�2Þ: (24)

As a result, all diagrams are proportional to Z4ð�2Þ, which
guarantees the multiplicative renormalizability of the ver-
tex DSE in our truncation scheme.

B. Yang-Mills Green’s functions in the infrared

The infrared behavior of the four-gluon vertex can be
determined from its Dyson-Schwinger equation by means
of analytical techniques. Before we demonstrate the details
of such an analysis we have to shortly summarize previous
results on the infrared scaling of general one-particle irre-
ducible Green’s functions of Yang-Mills theory.
The basic idea, followed in [15], to determine the infra-

red behavior of one-particle-irreducible (1PI) Green’s
functions is to investigate their Dyson-Schwinger equa-
tions order by order in a skeleton expansion (i.e. a loop
expansion using full propagators and vertices). The analy-
sis rests upon a separation of scales, which takes place in
the deep infrared momentum region. Provided there is only
one external momentum scale p2 � �QCD much smaller

than �QCD, a self-consistent infrared asymptotic solution

of the whole tower of Dyson-Schwinger equations for these
functions is given by

�n;mðp2Þ � ðp2Þðn�mÞ�: (25)

Here �n;mðp2Þ denotes the dressing function of the infrared
leading tensor structure of the 1PI-Green’s function with
2n external ghost legs and m external gluon legs. The
exponent � is known to be positive [14,38].
A special instance of the solution (25) are the inverse

ghost and gluon dressing functions �1;0ðp2Þ ¼ G�1ðp2Þ
and �0;2ðp2Þ ¼ Z�1ðp2Þ, which are related to the ghost
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and gluon propagators via

DGðp2Þ ¼ �Gðp2Þ
p2

;

D��ðp2Þ ¼
�
��� �

p�p�

p2

�
Zðp2Þ
p2

:

(26)

The corresponding power laws in the infrared are

Gðp2Þ � ðp2Þ��; Zðp2Þ � ðp2Þ2�: (27)

For a bare ghost-gluon vertex in the infrared, justified by
lattice calculations [36,37] and also in the DSE-approach

[35], one obtains � ¼ ð93� ffiffiffiffiffiffiffiffiffiffiffi
1201

p Þ=98 � 0:595 [14,23].
Possible corrections by regular dressings of the vertex in
the infrared have been investigated in [14], where an
interval 0:5 � � < 0:7 has been given. Thus, although
the precise value of � is hitherto unknown and depends
on the truncation scheme, the variation is quite small and
not important for the results presented in this work.

An interesting consequence of the solution (25) is the
qualitative universality of the running coupling in the
infrared. Renormalization group invariant couplings can
be defined from either of the primitively divergent vertices
of Yang-Mills-theory, i.e. from the ghost-gluon vertex
(gh� gl), the three-gluon vertex (3g), or the four-gluon
vertex (4g) via

�gh�glðp2Þ ¼ g2

4�
G2ðp2ÞZðp2Þ �p2!0 const=Nc; (28)

�3gðp2Þ ¼ g2

4�
½�0;3ðp2Þ�2Z3ðp2Þ �p2!0 const=Nc; (29)

�4gðp2Þ ¼ g2

4�
½�0;4ðp2Þ�2Z4ðp2Þ �p2!0 const=Nc: (30)

Using the DSE solution (25) it is easy to see that all three
couplings approach a fixed point in the infrared. This fixed
point can be explicitly calculated for the coupling (30).
Employing a bare ghost-gluon vertex one obtains
�gh�glð0Þ � 8:92=Nc [14].

We emphasize that Eq. (25) solves the untruncated
system of DSEs and the corresponding equations from
the functional renormalization group. Thus, although �
depends on a truncation scheme, (25) does not. It is fur-
thermore the only possible solution of both systems in
terms of irrational power laws [12]. The resulting behavior
of the gluon and ghost propagators agrees well with the
predictions deduced in the Gribov-Zwanziger and Kugo-
Ojima confinement scenarios [24,39]. Nevertheless there is
a caveat here: lattice Monte Carlo simulations have not yet
been able to verify the relations (27). In fact, very recent
results on large lattice indicate that the exponent of the
gluon dressing function may be close to � � 0:5, whereas
the corresponding value for the ghost dressing function
may be considerably smaller [40,41]. These findings allow

for at least two possible interpretations: theymay indicate a
different infinite volume limit than expressed by Eq. (25),
or they may be attributed to Gribov-copy effects associated
with gauge fixing on large lattices. General considerations
on the confining properties of QCD suggest the latter
interpretation [14]. Pending further clarification we will
therefore employ the behavior Eq. (25) for the purpose of
this work.

C. Infrared analysis

1. The ghost-box diagram

According to the general analysis of [15], the infrared
behavior of the four-gluon vertex in the presence of only
one external scale p2 is given by

�0;4ðp2Þ � ðp2Þ�4�; (31)

see Eq. (25) above. This solution is generated by the ghost
contributions to the vertex-DSE, i.e. in our truncation by
the ghost-box diagram. In the following we will verify this
result for one particular momentum configuration and
determine the corresponding coefficient of the power law.
This will be useful for two reasons. First the result provides
a welcome consistency check to our numerical calcula-
tions. Second, and much more important, together with the
corresponding result for the gluon propagator it will give us
the value for the infrared fixed point of the running cou-
pling from the four-gluon vertex. In principle, the running
coupling can be calculated for every basis component
projection of the full four-gluon vertex. However, matching
with perturbation theory in the ultraviolet momentum re-
gion demands to perform this analysis with the tree-level
tensor structure, which will be done in the following.
The particular momentum configuration we choose for

our analysis is given by

It has the merit that it is invariant under permutations of the
three dressed legs. Thus all permutations give the same
results which can be taken into account by a factor of 6 in
front of the integral.2

2At first sight one may believe that an even simpler kinemati-
cal choice is possible, namely p1 ¼ p2 ¼ �p3 ¼ �p4.
However, we found that such configurations lead to results which
are not stable with a variation of a numerical infrared cutoff 
.
This indicates that the emergence of such a kinematic situation
as a limit of a more general setup is not free of singularities. Such
‘‘soft’’ or ‘‘collinear’’ singularities arise in addition to the ‘‘over-
all’’ singularity (31) of the four-gluon vertex. In this work we
will not touch upon these soft singularities and leave this issue
for future studies.
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With bare ghost-gluon vertices and projected onto the
tree-level tensor the ghost box is then given by

�ghðp2Þ ¼ � g2Nc

36ð2�Þ4
Z

d4qp2q2sin2ð�ÞGðqþ pÞ
ðqþ pÞ2

� Gðqþ 2pÞ
ðqþ 2pÞ2

Gðqþ 3pÞ
ðqþ 3pÞ2

GðqÞ
q2

¼ � g2Nc

36ð2�Þ3
Z 1

0

Z �

0
dq2d�p2q4sin4ð�Þ

� Gðqþ pÞ
ðqþ pÞ2

Gðqþ 2pÞ
ðqþ 2pÞ2

Gðqþ 3pÞ
ðqþ 3pÞ2

GðqÞ
q2

:

(32)

Note that this contribution is already Bose-symmetric in
our truncation scheme with bare ghost-gluon vertices. The
factor six from permutations of the external legs is already
included here.

Since the internal ghost dressing functions are infrared
divergent, i.e.

GðpÞ ¼ Bðp2Þ��; (33)

for p2 � �2
QCD the integral is dominated by loop momenta

where the internal momentum is of the same order as the
external scale p2. We can thus replace the internal ghost
dressing functions by the infrared asymptotic expression
(33). This leads to

IR�ghðp2Þ ¼ � g2NcB
4

36ð2�Þ3
Z 1

0

Z �

0
dq2d�p2q4

� sin4ð�Þðqþ pÞ�2ð1þ�Þðqþ 2pÞ�2ð1þ�Þ

� ðqþ 3pÞ�2ð1þ�Þq�2ð1þ�Þ: (34)

We then divide the momentum integration range into three
parts from ½0; p2�, ½p2; 10p2�, and ½10p2;1� and denote the
corresponding contributions by Ia, Ib, and Ic.

Of course, replacing the internal ghost by the infrared
asymptotic expression (33) would be a poor approximation
if the contribution Ic were to dominate the total integral
I ¼ Ia þ Ib þ Ic. However, this is not the case. Ic can be
evaluated using a Taylor expansion and we find its contri-
bution to be extremely small compared to Ia þ Ib provided
the lower bound of this integral is chosen large enough.
This is indeed the case for our choice q2 > 10p2 and we
may therefore neglect Ic.

To evaluate the first integral, Ia, the approximation

ðqþ pÞ2ðqþ 2pÞ2ðqþ 3pÞ2

� 36p6

�
1þ

�
q

ap

�
2 þ 2

q

ap
cosð�Þ

�
3

(35)

is employed, with a parameter a > 1. This parameter can
be determined numerically; we find a � 1:886 and obtain

Ia � � g2NcB
4

36ð2�Þ3
Z p2

0
dq2

p2q4

ð36p6q2Þ�þ1

�
Z �

0
d�

sin4ð�Þ
ð1þ ð qapÞ2 þ 2 q

ap cosð�ÞÞÞ3ð�þ1Þ : (36)

The angular integral can be evaluated with Eq. (D1), yield-
ing

Ia � � g2NcB
4

36ð2�Þ3
Z p2

0
dq2

p2q4

ð36p6q2Þ�þ1

� B

�
5

2
;
1

2

�
2F1

�
3ð�þ 1Þ; 3�þ 1; 3;

�
q

ap

�
2
�
: (37)

Abbreviating z ¼ q2

p2 one then obtains3

Ia � �ð�2ÞNcB
4

192�

1

ð36Þ�þ1
ðp2Þ�4�

�
Z 1

0
dzz1��

2F1

�
3ð�þ 1Þ; 3�þ 1; 3;

1

a2
z

�

¼ �ð�2ÞNcB
4

192�

1

ð36Þ�þ1

�ð2� �Þ
�ð3� �Þ

� 3F2

�
2� �; 3ð�þ 1Þ; �þ 1; 3� �; 3;

1

a2

�
� ðp2Þ�4�; (38)

with �ð�2Þ ¼ g2=ð4�Þ. The last integral has been solved

with the help of Eq. (D2). Inserting � ¼ ð93� ffiffiffiffiffiffiffiffiffiffiffi
1201

p Þ=98
(cp. the text below Eq. (27)) and a ¼ 1:886 one finds

Ia � 9:49� 10�6 � �ð�2Þ � Nc � B4 � ðp2Þ�4�; (39)

which agrees with the power-counting analysis, Eq. (31).
Now only the part Ib where the loop momentum is of the

same order of magnitude as the external momenta is left. It
can be evaluated using a Chebyshev expansion (in the loop
momentum and the polar angle), see Appendix B for de-
tails. Renaming variables as x ¼ p2, y ¼ q2 and abbrevi-
ating

fðx; y; �Þ ¼ sin4ð�Þy2ðxþ yþ 2
ffiffiffiffiffi
xy

p

� cosð�ÞÞ�ð1þ�Þð4xþ yþ 4
ffiffiffiffiffi
xy

p
cosð�ÞÞ�ð1þ�Þ

� ð9xþ yþ 6
ffiffiffiffiffi
xy

p
cosð�ÞÞ�ð1þ�Þy�ð1þ�Þ; (40)

gðy; �Þ ¼ sin4ð�Þð1þ yþ 2
ffiffiffi
y

p

� cosð�ÞÞ�ð1þ�Þð4þ yþ 4
ffiffiffi
y

p
cosð�ÞÞ�ð1þ�Þ

� ð9þ yþ 6
ffiffiffi
y

p
cosð�ÞÞ�ð1þ�Þy�ð1þ�Þ; (41)

3Actually Eq. (38) directly shows the above-mentioned soft
singularity occurring when the momentum configuration p1 ¼
p2 ¼ �p3 ¼ �p4 is chosen. In this case the approximation
Eq. (35) becomes exact and a ¼ 1. However the hypergeometric
function in Eq. (38) only converges when jaj< 1.
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and

�k ¼ �

2

�
cos

�ðk� 1=2Þ�
N

�
þ 1

�
;

~yl ¼ xyk ¼ x

�
9

2
cos

�ðl� 1=2Þ�
N0

�
þ 11

2

�
;

(42)

one finds

Ib ¼ � g2NcB
4

36ð2�Þ3
�

N

9

N0 ðp2Þ�4�

�XN
k¼1

�XN0

l¼1

gðyl; �kÞ

þ XN0�1

i¼2

cosði�Þ þ 1

1� i2
XN0

l¼1

cos

�
iðl� 1=2Þ�

N0

�
gðyl; �kÞ

�

þ XN�1

j¼2

cosðj�Þ þ 1

1� j2

XN
k¼1

cos

�
jðk� 1=2Þ�

N

�

�
�XN0

l¼1

gðyl; �kÞ þ
XN0�1

i¼2

cosði�Þ þ 1

1� i2

�XN0

l¼1

cos

�
iðl� 1=2Þ�

N0

�
gðyl; �kÞ

��
: (43)

This expression can be evaluated numerically. It turns out
that the expansion is well converged with N ¼ N0 ¼ 20.
This yields

Ib � 9:49� 10�5 � �ð�2Þ � Nc � B4 � ðp2Þ�4�: (44)

This contribution is almost exactly a factor of 10 larger
than Ia.

Putting all pieces together one finally finds

IR�ghðp2Þ ¼ Ia þ Ib þ Ic

� 1:04� 10�4 � �ð�2Þ � Nc � B4 � ðp2Þ�4�:

(45)

This result will be used in Sec. V, where we discuss the
infrared behavior of the running coupling.

2. The gluon-box diagram

The IR-behavior of the gluon-box diagram can be esti-
mated by power counting using Eq. (25). In this diagram,
there are four gluon propagators along with three three-
gluon vertices. The three-gluon vertices behave like

IR�3gðp2Þ ¼ C � ðp2Þ�3�; (46)

when p2 ! 0. Together with the four gluon propagators,
which contribute to the IR divergence like C0 � ðp2Þ2� one
gets for the gluon-box diagram

IR�gl ¼ C00 � ðp2Þ��: (47)

The gluon box thus is only subleading in the infrared in
agreement with our general considerations in Sec. II. Thus
the coefficient C00 is of only minor interest and will not be

computed here. The power-law behavior ðp2Þ�� is well
reproduced by our numerical results for the gluon box.

D. Ultraviolet analysis

1. The ghost-box diagram

It is known from resummed perturbation theory that in
the ultraviolet momentum region the dressing function of
the ghost propagator can be described by the asymptotic
expression

Gðp2Þ ¼ Gð�2Þ
�
! log

�
p2

�2

�
þ 1

�
�
; (48)

with the one-loop anomalous dimension � ¼ �9=44, ! ¼
11Nc�ð�2Þ=12� and some renormalization point�2. This
behavior is reproduced by the Dyson-Schwinger equations
for the ghost propagator [22]. Plugging this into Eq. (32)
and using dimensional regularization we arrive at

UV�ghðp2Þ ¼ �g2NcG
4ð�2Þ

36ð2�Þd
Z

ddqp2q2sin2ð�Þ

�
ð! logððqþpÞ2

�2 Þ þ 1Þ�
ðqþ pÞ2

�
ð! logððqþ2pÞ2

�2 Þ þ 1Þ�
ðqþ 2pÞ2

�
ð! logððqþ3pÞ2

�2 Þ þ 1Þ�
ðqþ 3pÞ2

ð! logðq2
�2Þ þ 1Þ�
q2

;

(49)

which describes the ultraviolet behavior of the tree-level
projection of the ghost-box dressing function. Since the
diagram is dominated by the region where the loop mo-
mentum q2 is larger than the external momenta, it is
justified to employ an angular approximation: all argu-
ments of the logarithms are replaced by the loop momen-
tum q2. The integration interval can then be restricted to
½p2;1�. Furthermore, the denominators are approximated
using Eq. (35). After evaluating the two trivial angular
integrals and the third one using Eq. (D1) we obtain

UV�ghðp2Þ ¼ �g2NcG
4ð�2Þ

2592ð2�Þd
2�ðd�1=2Þ�ðdþ1

2 Þ
�2ðd2Þ

1

p4

�
Z 1

p2
dyyðd=2Þ�1B

�
dþ 1

2

�

� 2F1

�
3; 3� d

2
;
d

2
þ 1;

y

a2x

�

�
�
! log

�
y

s

�
þ 1

�
4�
: (50)

The hypergeometric function has the series representation

2F1ð�;�; 
; zÞ ¼
X1
j¼0

ð�Þjð�Þj
ð
Þjj! zj; (51)
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with the Pochhammer symbol ðaÞj as introduced in

Appendix C. The remaining integral can be evaluated
with the help of Eq. (D16). We find

UV�ghðp2Þ ¼ � g2NcG
4ðsÞ

1296ð2�Þd
�X1
j¼0

�ðdj�1=2Þ�ðdjþ1

2 Þ
�2ðdj2 Þ

Bðdjþ1

2 ; 12Þ
a2j

� ð3Þjð3� dj
2 Þj

ðdj2 þ 1Þjj!
��
! log

�
p2

�2

�
þ 1

�
4�
; (52)

where the dj are different regulator dimensions, one for

every order j of the expansion equation (51). The diver-
gence of the integral is absorbed into the coefficients of the
logarithm and finally cancelled by the renormalization
procedure. In order to match our results from the numerical
calculations, where a momentum cutoff regularization will
be employed, the renormalization condition for the ana-
lytical result is chosen such that the numerical and the
analytical results agree at the renormalization point �2.

As can be seen from the Slavnov-Taylor identity Z4 ¼
Z3= ~Z

2
3 the anomalous dimension of the four-gluon vertex in

the ultraviolet momentum region should equal �
þ
2� ¼ 1þ 4� ¼ 8=44, where 
 ¼ �13=22 and � ¼
�9=44 are the anomalous dimensions of the gluon and
the ghost propagator and 1þ 2�þ 
 ¼ 0. The result
4� ¼ �36=44 found here is negative and leads to a van-
ishing contribution in the ultraviolet. Thus the ghost box is
subleading at large momenta and the leading contributions
have to come from the gluonic diagrams.

2. The gluon-box diagram

With the abbreviations q20 ¼ q2, q21 ¼ ðqþ pÞ2, q22 ¼
ðqþ 2pÞ2, and q23 ¼ ðqþ 3pÞ2, the gluon-box integral

reads

gl�
����
abcd ðp2Þ ¼ g2Nc

72

Z d4q

ð2�Þ4 Kðp
2; q2; �ÞZðq

2
1Þ

q21

Zðq22Þ
q22

� Zðq23Þ
q23

Zðq20Þ
q20

ðGðq21ÞÞð�ð1=6Þ��Þ

ðZðq21ÞÞðð5þ3�Þ=6Þ

� ðGðq20ÞÞð�ð1=6Þ��Þ

ðZðq20ÞÞðð5þ3�Þ=6Þ
ðGðq22ÞÞð�ð1=6Þ��Þ

ðZðq22ÞÞðð5þ3�Þ=6Þ

 !
2

� ðGðq23ÞÞð�ð1=6Þ��Þ

ðZðq23ÞÞðð5þ3�Þ=6Þ

 !
2

; (53)

with the model three-gluon vertex given in Eq. (14). The
kinematic kernel Kðp2; q2; �Þ stems from Lorentz contrac-
tions after projection on the tree-level vertex. This kernel is
complicated and lengthy and we therefore omit its explicit
form. It has the general structure

Kðp2; q2; �Þ ¼ X6
n¼0

cosn�� X10
m¼0

am;nðp2Þðm=2Þðq2Þ5�ðm=2Þ:

(54)

For even n we can replace cosk� ¼ ð1� sin2�Þðk=2Þ. If n is
odd, one has to factor out one cosine. Then the kernel has
the structure

Kðp2; q2; �Þ ¼ X6
n¼0

X10
m¼0

am;nðp2Þðm=2Þðq2Þ5�ðm=2Þ

�
� ð1� sin2�Þðn=2Þ n even
cos�ð1� sin2�Þððn�1Þ=2Þ n odd

:

(55)

This form allows using Eqs. (D2) and (D3) for the analytic
calculations. Similar to the ghost dressing function the
ultraviolet behavior of the gluon dressing can be written as

Zðp2Þ ¼ Zð�2Þ
�
! log

�
p2

�2

�
þ 1

�


: (56)

As before in the ghost box we employ the angular approxi-
mation q20 ¼ q21 ¼ q22 ¼ q23 ¼ q2 in the logarithm, use the

approximation Eq. (35) and dimensional regularization.
We then find

UV�glðp2Þ ¼ g2Nc

72ð2�Þd
ðGð�2ÞÞ�1�6�

ðZð�2ÞÞ1þ3�

Z
ddqKðp2; q2; �Þ

�
ð! logðq2

�2Þ þ 1Þ1þ4�

36p6q2ð1þ ð qapÞ2 þ 2 q
ap cosð�ÞÞ3 : (57)

Evaluating the trivial angular integrations and again re-
stricting the integral on the interval ½p2;1� then leads to

UV�glðp2Þ ¼ g2Nc

72ð2�Þd
2�ðd�1=2Þ�ðdþ1

2 Þ
�2ðd2Þ

ðGð�2ÞÞ�1�6�

ðZð�2ÞÞ1þ3�

�
Z 1

p2
dy
Z �

0
d�ðq2Þððd�3Þ=2Þsind�2�

� Kðp2; q2; �Þ
36x3ð1þ q2

a2x
þ 2

ffiffiffiffiffiffi
ðq2Þ
a2x

q
cosð�ÞÞ3

�
�
! log

�
q2

�2

�
þ 1

�
1þ4�

(58)

with Eqs. (D2), (D3), and (D16) one then finds

UV�glðp2Þ ¼ C �
�
! log

�
p2

�2

�
þ 1

�
1þ4�

; (59)

with a regularized factor C. This divergent factor is ex-
tremely lengthy and we therefore refrain from giving it
explicitly here. However we note that the divergence is
such that it matches the one of Z4 in the four-gluon DSE
thus guaranteeing a finite result for the four-gluon vertex
on the l.h.s. of the DSE. The momentum dependence of
(59) and, in particular, the anomalous dimension 1þ 4� of
the logarithm is in agreement with the expectations from
the Slavnov-Taylor identity for the four-gluon vertex re-
normalization factor as discussed above.
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IV. NUMERICAL RESULTS FOR THE FOUR-GLUON VERTEX

A. Numerical methods

For the numerical investigation the subtracted version of Eq. (13), is considered.

with some subtraction point �2, which is set equal to the
ultraviolet momentum cutoff �2 ¼ 1010 GeV2 for reasons
of numerical stability. Furthermore we also introduce an
infrared cutoff 
2, which is chosen as 
2 ¼ 10�10 GeV2.
The numerical integration is carried out using a Gauß-
Legendre algorithm on a logarithmic grid.

In Eq. (60), the renormalization constant Z4 stemming
from the tree-level vertex after projection, is replaced by an
integral and the full dressed vertex function at the sub-
traction point. Its value has to be fixed by renormalization.
This will be done such that the running coupling from the
four-gluon vertex has the same value as the running cou-
pling from the ghost-gluon vertex at the renormalization
point �2. As input we use the value �ð�2 ¼
1:713 GeV2Þ ¼ 0:97 determined in [22] within a momen-
tum subtraction scheme.

Before we present our results we need to discuss two
further technical points:

(i) We explicitly checked that our results are indepen-
dent of the ultraviolet and infrared cutoffs. This is
indeed the case, if these cutoffs are at least 3 orders
of magnitude larger/lower than the largest/lowest of
the external momenta. In addition, due to the com-
plicated kinematics of the gluon box we had to use
quite a large number of sampling points for the radial
momentum integral (typically 5000 points on a loga-
rithmic grid). To further improve the numerical ac-
curacy the momentum integral has been split into
three parts, integrating the infrared up to a small
region p2 	�p2 around the external scale, the small
region itself and then up to infinity. In the numerical
calculations �p2 is chosen as �p2 ¼ 0:01p2. In the
numerical angular integral we find that it is numeri-
cally advantageous to integrate over the cosine of the
angle.

(ii) The crucial assumption in our infrared analysis of
the vertex-DSE was that the integrand of the dia-
grams are dominated by loop momenta of the order
of the (small) external momentum. This we verified
explicitly also numerically.

As input for the ghost and gluon propagators we take the
following analytical expressions:

�ðxÞ ¼ �ð0Þ
ln½eþ a1ðx=�2

QCDÞa2 þ b1ðx=�2
QCDÞb2�

;

RðxÞ ¼ cðx=�2
QCDÞ� þ dðx=�2

QCDÞ2�
1þ cðx=�2

QCDÞ� þ dðx=�2
QCDÞ2�

;

(61)

ZðxÞ ¼
�
�ðxÞ
�ð�Þ

�
1þ2�

R2ðxÞ; GðxÞ ¼
�
�ðxÞ
�ð�Þ

���
R�1ðxÞ;

(62)

with parameters

�ð0Þ �ð�Þ a1 a2 b1 b2 c d �QCD

8:915=NC 0.97 1.106 2.324 0.004 3.169 1.269 2.105 0.714 GeV

and the anomalous dimension � ¼ �9=44 of the ghost.
These expressions have been fitted to the numerical results
of [22] for the coupled system of DSEs for the ghost and
gluon propagators.

B. Results

We first present numerical results for the specific kine-
matical situation given by

which matches the one used in our infrared and ultraviolet
analysis. The results are presented in Fig. 1. On the top
diagram we display the full four-gluon vertex in this kine-
matical setup projected onto the Bose-symmetric tensor
structures given in Eq. (10). Recall that the structure V1 is
identical to the one of the bare four-gluon vertex (‘‘tree-
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level structure’’). The results match nicely our expectations
from the analytical analysis in Sec. III C. All structures of
the four-gluon vertex diverge like ðp2Þ�4� in the infrared.
This divergence is driven from the ghost-loop diagram, as
can be seen from comparing the full result with the con-
tributions from the ghost-box and gluon-box diagrams
displayed in the lower panel of Fig. 1. Concerning the
infrared coefficients it is not the Bose-symmetric tree-level
structure that dominates but one of the non-tree-level
counterparts.

All curves show a characteristic scale of a few hundred
MeV, where the infrared power-law behavior bends to-
wards the logarithmic, perturbative behavior in the ultra-
violet momentum region. Certainly, the magnitude of this
scale is inherited from the input (62) for the ghost
and gluon dressing functions and represents the scale
�YM of Yang-Mills theory generated by dimensional
transmutation.

In the ultraviolet momentum regime we also reproduce
the analytic behavior of the tree-level structure determined
in Sec. III C. Here the leading contribution stems from the
gluon-box diagram. Similar to the infrared, we also ob-
serve that the non-tree-level structure V2 has the largest
coefficient of the three structures considered. However, this
will change for even larger momenta, since the logarithms
appearing in V2 and V3 have negative anomalous dimen-
sions, while the tree-level structure V1 has the correct and
positive anomalous dimension 1þ 4� in agreement with
resummed perturbation theory.
At first sight, it seems counter-intuitive that the structure

V2 dominates the vertex also for the relatively large mo-
menta considered in our calculations. However, this domi-
nance has a natural interpretation: it is the prefactors of
these contributions stemming from the corresponding color
contractions that give large relative coefficients of the
order of 102 between the V1 and V2 projections. These

FIG. 1 (color online). Results for the full four-gluon vertex (top) and the ghost-box diagram (bottom left) and the gluon-box diagram
(bottom right) in the kinematical section p1 ¼ �3p, p2 ¼ p3 ¼ p4 ¼ p. The results for the ghost and gluon boxes include the
symmetry factors. The three curves in each diagram correspond to projections onto the three Bose-symmetric structures given in
Eq. (10).
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also appear in first order perturbation theory, i.e. with no
internal dressings from propagators and vertices in the
ghost and gluon-box diagrams. We explicitly checked
that the relative ordering of the contributions V1, V2, and
V3 is the same in this case. This shows that the ordering
appearing in Fig. 1 is not an artefact of the truncation of the
ghost-gluon and three-gluon vertices. The relative magni-
tudes of V1, V2, and V3 may however be modified by the
inclusion of the missing one-loop diagrams (c), (d), and (e)
of Eq. (12).

In Fig. 2 we also present a calculation for a different
kinematical situation with the two independent Lorentz
invariants p2

1 and p2
2 and p1 � p2 ¼ jp1jjp2j, p3 ¼ p2,

p4 ¼ �p1 � 2p2 (all four momenta p1...4 are defined to
flow into the diagram), i.e.

As can be seen from Fig. 2 we find an infrared divergency
when all momenta go to zero with the power law ðp2Þ�4�

satisfied in the presence of only one external scale, i.e. in a
cone around the diagonal of the diagram. The behavior of
the vertex dressing function for kinematics at the edges of
the diagram is nontrivial and may indicate additional,
weaker kinematical singularities present when one or
more external momenta are held fixed. Note that the nu-
merical problems in this case are quite intricate, since the
presence of an additional scale involves huge cancellations
for some kinematical points. Here we dealt with these
problems by employing an adaptive framework for the
angular integration routines. Since the main focus of this
study is the running coupling defined along the diagonal of
Fig. 2 we postpone further discussion of the general kine-
matical behavior of the vertex to future work.

V. THE RUNNING COUPLING

The running coupling from the four-gluon vertex has
already been given in Eq. (3) and is repeated here for the
convenience of the reader:

�4gðp2Þ ¼ g2

4�
½�4gðp2Þ�Z2ðp2Þ: (63)

Here �4gðp2Þ denotes the dressing of the tree-level vertex
structure V1 and Zðp2Þ denotes the dressing function of the
gluon propagator. The value g2

4� ¼ �ð�2Þ ¼ 0:97 has also

been given before. The resulting momentum dependence
of the coupling is shown in Fig. 3 along with the running
coupling from the ghost-gluon vertex. In the ultraviolet
momentum region we observe that both couplings run like
the usual inverse logarithm as is well known from pertur-
bation theory. Here we have universal behavior as dictated
from gauge invariance. In the mid-momentum region we
observe a steep rise of both couplings up to values of order
�� 1. The coupling from the ghost-gluon vertex then
keeps rising before freezing to an infrared fixed point,
whereas the coupling from the four-gluon vertex decreases
dramatically until it reaches a very small but nonzero fixed
point in the deep infrared.
Before we discuss the implications of this behavior

further, we wish to verify this numerical result from our
analytical calculations in Sec. III C. There we found that

IR�ghðp2Þ � 045� 10�4 � �ð�2Þ � Nc � B4 � ðp2Þ�4�

¼ Cgh � �ð�2Þ � Nc � B4 � ðp2Þ�4�: (64)

In the infrared the gluon dressing function obeys the power
law

Zðp2Þ ¼ Aðp2Þ2�: (65)

FIG. 3 (color online). The running coupling from the four-
gluon vertex compared to the coupling from the ghost-gluon
vertex from Ref. [22].

FIG. 2 (color online). Results for the ghost-box in the kine-
matical situation with p1 � p2 ¼ jp1jjp2j, p3 ¼ p2, and p4 ¼
�p1 � 2p2 (all four momenta p1...4 are defined to flow into the
diagram).
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We then obtain

�4gðp2 ! 0Þ ¼ �ð�2Þ � Cgh � �ð�2Þ � Nc � B4 � ðp2Þ�4�

� ½Aðp2Þ2��2
¼ ½�ð�2Þ � A � B2�2 � Nc � Cgh: (66)

This expression is manifestly RG-invariant, since we know
from the coupling of the ghost-gluon vertex that �ð�2ÞAB2

is RG-invariant. Also, since�ð�2Þ ¼ g2=ð4�Þ � 1=Nc and
A and B are separately independent of Nc [13,22] as is Cgh,

the coupling is proportional to 1=Nc in agreement with the
large Nc counting rules.

Note that the combination �ð�2ÞAB2 is equivalent to the
running coupling from the ghost-gluon vertex at zero mo-
mentum [14]. Thus we can rewrite Eq. (66) as

�4gðp2 ! 0Þ ¼ ½�gh�glðp2 ! 0Þ�2 � Cgh � Nc: (67)

With �gh�glð0Þ � 8:92=Nc [14] and Cgh ¼ 1:045� 10�4

we then obtain

�4gðp2 ! 0Þ � 0:0083

Nc

: (68)

This value agrees well with our numerical result.
In order to assess the implications of our findings it is

worth noting that the corresponding coupling from the
three-gluon vertex has a very similar behavior to the one
of the four-gluon vertex shown in Fig. 3. In particular it also
has an extremely small fixed point in the infrared, a maxi-
mum at intermediate momenta, and a perturbative loga-
rithmic tail in the ultraviolet [42]. We therefore find
universality in the ultraviolet momentum region, as re-
quired from gauge invariance. In the infrared, all three
couplings are qualitatively similar in the sense that they
all go to an infrared fixed point (as already emphasized in
[15]). However, there are huge qualitative differences be-
tween the coupling involving ghosts, �gh�gl, and the other

two couplings, �3g and �4g, that only involve gluonic

correlators.
In this respect it is important to note that the smallness of

the infrared fixed point of the four-gluon vertex is rooted in
the structure of the vertex-DSE. In Sec. III C 1 we found

FIG. 4. The Dyson-Schwinger equation (top) and the functional flow equation (bottom) for the gluon propagator. In the flow
equation, crosses denote insertions of the infrared regulator, which cuts off the theory at or around a scale k.
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that the diagram involving ghosts is the one that gives the
leading infrared behavior and determines the coefficient of
the infrared power law Cghðp2Þ�4� of the four-gluon ver-

tex. One reason why the coefficient Cgh is small is a factor

1=216 stemming from the projection on the tree-level
tensor structure. The four propagators in the loop generate
further suppression. Therefore the smallness of this coef-
ficient can be attributed entirely to the structure of the DSE
and does not depend on our choice for the ghost-gluon and
three-gluon vertices.

Of course, the ghost box is only the first term in the
skeleton expansion of the original ghost related diagram in
the full DSE, Eq. (12). It is known from Ref. [15] that all
terms in this expansion share the same infrared power-law
behavior and will therefore contribute to the coefficient
Cgh. Certainly, we cannot exclude that a summation of

these terms will result in large changes compared to our
value of Cgh.

However, there is a systematic argument that indicates
this may indeed not be the case. Consider once again the
Dyson-Schwinger equation for the gluon propagator. In
Fig. 4 we compare this equation with the corresponding
flow equation in the functional renormalization group
framework. From a systematic point of view, the DSE
can be viewed as an integrated flow equation, so the
physical content of the two equations is the same.
However, there is an important structural difference be-
tween the two equations: In every diagram of the DSE we
have one bare vertex, whereas in the flow equation, all
vertices are dressed. As has been noted in [12] this leads to
an interesting situation for small momenta: In the DSE the
ghost-loop (a) is the only diagram responsible for the
leading contributions in the infrared, all other diagrams
are suppressed by powers of momenta. In the flow equa-
tion, however, all diagrams share the same infrared expo-
nent and therefore contribute to the coefficient of the
resulting power law for the gluon dressing functions.
Now, both equations are exact as they stand, so they should
give the same results in the infrared. We also know that the
ghost-gluon vertex is almost bare in the small momentum
region. For this reason we expect that the ghost-loop dia-
grams in the flow equations (first line) should be roughly
similar in effect to the ghost-loop (a) in the gluon-DSE
[43,44]. Thus the infrared coefficients of all other diagrams
in the flow equations have to either cancel, or should be
much smaller than the coefficient of the ghost diagrams.
Our result for the coupling from the four-gluon vertex
together with the tentative result for the three-gluon vertex
[42] indicates exactly this: since all these diagrams are
roughly proportional to their corresponding coupling the
gluonic diagrams in the flow equation are parametrically
suppressed compared to the ghost-diagrams due to the
smallness of the gluonic couplings in the infrared. This
offers a natural explanation how the DSE and the renor-
malization group framework can agree in the infrared. In

turn, this point suggests that the smallness of the four-
gluon coupling may indeed be an effect which is robust
beyond the leading order in the skeleton expansion.
In fact there is a further argument supporting this sce-

nario. In [24] Zwanziger gave good arguments for an
infrared effective theory dominated by the Faddeev-
Popov determinant. He argued that all purely gluonic
interactions switch off in the infrared and it is the geometry
of the gauge group which then controls the infrared dy-
namics via the ghost content of the theory. This is exactly
what we found here.

VI. SUMMARY

In this work we investigated the nonperturbative struc-
ture of the four-gluon vertex from (a truncated version of)
its Dyson-Schwinger equation. We identified analytically
the leading infrared and ultraviolet terms of this equation
and found good agreement of this analysis with our nu-
merical solution. We investigated the behavior of the three
Bose-symmetric tensor structures that can be constructed
from a subset of the complete tensor basis of the vertex.
The dressing functions of these three structures all show an
infrared singular behavior with power laws in agreement
with the results from naive power counting [15]. In the
ultraviolet momentum region our solutions reproduce re-
summed perturbation theory.
The central result of our work concerns the running

coupling from the four-gluon vertex, built from a combi-
nation of vertex dressing and the dressing function of the
gluon propagator. Although in the ultraviolet momentum
region the coupling agrees nicely with the one from the
ghost-gluon vertex (as it should, according to gauge invari-
ance), in the infrared we observe strong deviations.
Whereas the coupling from the ghost-gluon vertex devel-
ops an infrared fixed point at around�gh�glð0Þ � 9=Nc, we

find a much smaller fixed point at around �3gð0Þ � 9�
10�3=Nc for the coupling from the four-gluon vertex.
Certainly, the stability of this finding has to be checked

with respect to (wrt) further improvements of our trunca-
tion scheme. These have to include a study of the two-loop
diagrams in the skeleton expansion of the ghost part of the
vertex DSE, since (only) these terms have the potential to
change the infrared coefficients of the vertex and therefore
the value of the infrared fixed point. However, on general
grounds we are confident that the smallness of the running
coupling from the four-gluon vertex is an important prop-
erty which is stable wrt these improvements. As discussed
in the last section, the reason is that this fact explains why
the Dyson-Schwinger and the functional renormalization
group equations for the two point functions of Yang-Mills
theory agree in the infrared, although their structure is
quite different. With small couplings from the three- and
four-gluon vertices gluonic contributions to the infrared
behavior of the ghost and gluon FRGs are parametrically
suppressed, leading to ghost dominance in agreement with
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the results from the DSEs. This finding also supports the
notion of an infrared effective theory dominated from the
Faddeev-Popov determinant proposed in [24].
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APPENDIX A: THE TENSOR BASIS

The tensor basis is constructed on the following building
blocks of Lorentz and color tensors. Color tensors:

Cð1Þ
abcd ¼ �ab�bd; Cð2Þ

abcd ¼ �ac�bd;

Cð3Þ
abcd ¼ �ad�bc; Cð4Þ

abcd ¼ fabnfcdn;

Cð5Þ
abcd ¼ fabnfdbn:

Lorentz tensors:

L
����
ð1Þ ¼������; L

����
ð2Þ ¼������; L

����
ð3Þ ¼������:

From these, a preliminary generator system of the tensor

space can be constructed

B1 ¼ Lð1ÞCð1Þ; B2 ¼ Lð1ÞCð2Þ; B3 ¼ Lð1ÞCð3Þ;

B4 ¼ Lð1ÞCð4Þ; B5 ¼ Lð1ÞCð5Þ; B6 ¼ Lð2ÞCð1Þ;

B7 ¼ Lð2ÞCð2Þ; B8 ¼ Lð2ÞCð3Þ; B9 ¼ Lð2ÞCð4Þ;

B10 ¼ Lð2ÞCð5Þ; B11 ¼ Lð3ÞCð1Þ; B12 ¼ Lð3ÞCð2Þ;

B13 ¼ Lð3ÞCð3Þ; B14 ¼ Lð3ÞCð4Þ; B15 ¼ Lð3ÞCð5Þ;

with the Lorentz/color indices left implicit. The tree-level
tensor structure of the four-gluon vertex

Vð0Þ / fabnfcdnð������ � ������Þ
þ facnfbdnð������ � ������Þ
þ fadnfbcnð������ � ������Þ;

is not a member of the preliminary system. To construct a
system containing the tree-level structure a Gram-Schmidt
algorithm is applied. It yields an orthogonal system of

basis tensors ðjÞT����
abcd . For projection purposes it is also

useful to define normalized quantities ðjÞT����
abcd such that

ðc � ðjÞT����
abbcdÞ �ðkÞ T����

abcd 
 ðjÞU����
abcd � ðkÞT����

abcd ¼ �jk:

(A1)

The basis system constructed this way is given by

Uð1Þ ¼ 1

108N2
cðN2

c � 1Þ ð�B4 þ 2B5 þ 2B9 � B10 � B14 � B15Þ;

Uð2Þ ¼ 1

468N2
cðN2

c � 1Þ ð�B4 þ 2B5 þ 2B9 � B10 � 5B14 � B15Þ;

Uð3Þ ¼ 1

3510N2
cðN2

c � 1Þ þ 123 201
4 ðN2

c � 1Þ2 � 21 060NcðN2
c � 1Þ �

�
B4 � 2B5 � 2B9 þ B10 þ 351

8
B13 þ 29

2
B14 þ B15

�
;

Uð4Þ ¼ 1
276 246

25 N2
cðN2

c � 1Þ þ 6 472 953
100 ðN2

c � 1Þ2 � 1 657 476
25 NcðN2

c � 1Þ � 848 232
25 ðN2

c � 1Þ
�
�
B4 � 2B5 � 2B9 þ B10 þ 306

5
B12 þ 693

40
B13

263

10
B14 þ B15

�
;

Uð5Þ ¼ 1

5616N2
cðN2

c � 1Þ þ 10 138 203
25 ðN2

c � 1Þ2 � 33 696NcðN2
c � 1Þ � 4 363 794

25 ðN2
c � 1Þ

�
�
�8B4 þ 16B5 þ 16B9 � 8B10 þ 3141

20
B11 � 369

20
B12 � 369

20
B13 þ B14 þ 8B15

�
;

Uð6Þ ¼ 1

13 816N2
cðN2

c � 1Þ þ 294ðN2
c � 1Þ2 � 1372NcðN2

c � 1Þ � 294ðN2
c � 1Þ

�
�
B4 � 2B5 � 2B9 þ 92

3
B10 � 7

2
B11 þ 7

4
B12 þ 7

4
B13 � 23

6
B14 þ B15

�
;
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Uð7Þ ¼ 1
345 536

15 N2
cðN2

c � 1Þ þ 96ðN2
c � 1Þ2 � 448NcðN2

c � 1Þ � 96ðN2
c � 1Þ

�
�
136

9
B4 � 272

9
B5 þ 2776

90
B9 � 104

9
B10 � 2B11 þ B12 þ B13 � 1244

90
B14 þ 136

9
B15

�
;

Uð8Þ ¼ 1
1 591 288

25 N2
cðN2

c � 1Þ þ 10 743 516
25 ðN2

c � 1Þ2 � 9 486 288
25 NcðN2

c � 1Þ � 7776
25 ðN2

c � 1Þ
�
�
�B4 � 2B5 þ 846

5
B8 þ 193

5
B9 þ 178

5
B10 � 18

5
B11 þ 9

5
B12 � 81

2
B13 � 68

5
B14 þ B15

�
;

Uð9Þ ¼ 1
18 614 232

125 N2
cðN2

c � 1Þ þ 101 940 444
125 ðN2

c � 1Þ2 � 111 685 392
125 NcðN2

c � 1Þ � 48 261 744
125 ðN2

c � 1Þ
�
�
�B4 þ 2B5 þ 11 304

50
B7 � 2844

50
B8 � 5606

50
B9 þ 178

5
B10 � 18

5
B11 þ 2736

50
B12 þ 801

50
B13 þ 1204

50
B14 � B15

�
;

Uð10Þ ¼ 1
48 940 416

625 N2
cðN2

c � 1Þ þ 1 828 870 727
5625 ðN2

c � 1Þ2 � 46 543 936
125 NcðN2

c � 1Þ � 48 261 744
125 ðN2

c � 1Þ
�
�
2B4 � 4B5 þ 7074

50
B6 � 1386

50
B7 � 1386

50
B8 þ 178

50
B9 � 356

5
B10 � 2817

100
B11 þ 4

3
B12 þ 4

3
B13 � B14 þ 2B15

�
;

Uð11Þ ¼ 1
49 098

5 N2
cðN2

c � 1Þ þ 1440ðN2
c � 1Þ2 � 6720NcðN2

c � 1Þ � 1440ðN2
c � 1Þ

�
�
107

6
B4 þ 25

6
B5 þ 2B6 � B7 � B8 � 37

30
B9 � 11

2
B10 � 8B11 þ 4B12 þ 4B13 � 129

10
B14 þ 107

6
B15

�
;

Uð12Þ ¼ 1

5670N2
cðN2

c � 1Þ þ 1440ðN2
c � 1Þ2 � 6720NcðN2

c � 1Þ � 1440ðN2
c � 1Þ

�
�
25

2
B4 � 25

6
B5 � 2B6 þ B7 þ B8 � 29

6
B9 þ 11

2
B10 þ 8B11 � 4B12 � B13 � 41

6
B14 þ 107

6
B15

�
;

Uð13Þ ¼ 1

1080N2
cðN2

c � 1Þ þ 7290ðN2
c � 1Þ2 � 6480NcðN2

c � 1Þ
�
�
45

2
B3 þ 5B4 þ 5B5 � 9

2
B8 � B9 � B10 � 9

2
B13 � B14 � B15

�
;

Uð14Þ ¼ 1

2520N2
cðN2

c � 1Þ þ 13 666ðN2
c � 1Þ2 � 14 976NcðN2

c � 1Þ � 6048ðN2
c � 1Þ

�
�
30B2 � 14

2
B3 � 15B4 þ 5B5 � 6B7 þ 3

2
B8 þ 3B9 � B10 � 6B12 þ 3

2
B13 þ 3B14 � B15

�
;

Uð15Þ ¼ 1

1920N2
cðN2

c � 1Þ þ 9720ðN2
c � 1Þ2 � 11 520NcðN2

c � 1Þ � 6480ðN2
c � 1Þ

�
�
25B1 � 5B2 � 5B3 þ 20

3
B4 � 40

3
B5 � 5B6 þ B7 þ B8 � 4

3
B9 þ 8

3
B10 � 5B11 þ B12 þ B13 � 4

3
B14 þ 8

3
B15

�
:

APPENDIX B: THE CONSTRUCTION OF THE
BOSE-SYMMETRIC TENSOR BASIS

To construct a basis of Bose-symmetric tensor structures
out of the structures given in Appendix A, one first has to
construct a matrix representation of the permutation group
with respect to the tensor structures. A general tensor in the
linear spaceV given by the tensor basis from Appendix A
is represented by a vector

T ¼ X15
i¼1

ai � ðiÞUabcd
���� 
 ða1; a2; . . . ; a15Þ: (B1)

An important feature of this tensor basis, is that the tensor
structures constructed from it are closed under permuta-
tions of the external momenta. I.e. no tensor structures not
included from the very beginning are created by such
permutations. This also means that permutations of the
external momenta map the tensor space onto itself. Let P
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be a permutation of the external momenta, then

v 2 V : Pv 2 V :

This means that there is a matrix representation of the
permutation. For the four-gluon vertex, there are 4! permu-
tations. Let MðjÞ be the matrix representation for the jth

permutation. What one is interested in are the vectors v 2
V that are invariant under all permutations. To find them
one first has to find the eigenvectors with respect to the
eigenvalue one for each member of the matrix representa-
tion of the permutations. The eigenvalue one in general can
have different geometrical multiplicities for each of these
matrices. This restricts the dimension of the Bose-
symmetric tensor space. The maximum number of linear
independent vectors in the Bose-symmetric space is the
difference of the lowest and the second lowest geometrical
multiplicity of the eigenvalue one in the set of matrices of
the representation of the permutations.

For the four-gluon vertex tensor structures the lowest
geometrical multiplicity of the eigenvalue one is five,
while the second lowest is eight. Thus one ends up with
an upper limit of three dimensions for the Bose-symmetric
tensor space. Having calculated the eigenvectors of the
representation matrices, one can construct the full Bose-
symmetric linear tensor space. Let ek;l be the lth eigenvec-
tor with respect to eigenvalue one of the k-permutation
matrix.

MðjÞek;l ¼ ek;l:

Consider two permutations P 1 and P 2, with matrix repre-
sentations M1 and M2. Denote the eigenvectors with re-
spect to the eigenvalue one of these permutations as vi and
wi, respectively. Let the geometrical multiplicities of the
eigenvalue one be �1 and �2. The vectors, that are simul-
taneously included in the eigenspaces of two permutations,
are found as the solution of the equation

X�1

i¼1

�i � vi ¼
X�2

j¼1

��j � wj: (B2)

If this coupled system of algebraic equations is determined
it can easily be solved by standard methods. This is the case
when there is only one eigenvector that is invariant under
all permutations. The case of an underdetermined system
also is not problematic. The overdetermined system (which
occurs in the case of the four-gluon tensors) is more
complicated. It is then useful to reformulate the problem.
Let A be the matrix that is constructed from the column
eigenvectors of both permutations in the following way:

A ¼ ððvT
1 ÞðvT

2 Þ . . . ðvT
�1
Þð�wT

1 Þð�wT
2 Þ . . . ð�wT

�2
ÞÞ: (B3)

With this definition

A � ð�1; . . . ; ��1
; ��1; . . . ; ���2

ÞT ¼ 0 (B4)

is equivalent to Eq. (B2). The nontrivial kernel of the
matrix A consists of �1 þ�2-dimensional vectors, whose
first �1 components are the solution for the �1 and the
others are the solutions for the ��j. The kernel of the matrix

can then be evaluated using standard methods. For the four-
gluon vertex the result is given in the main body of this
work, Eq. (10).

APPENDIX C: DECOMPOSITIONS OF HIGHER
GREEN’S FUNCTIONS

In the following the decompositions of the reducible
vertices in Eq. (12) into one-particle irreducible vertices
will be given [29,30]. The reducible functions are denoted
as T and the irreducible as �.

(1) The decomposition of the four-gluon reducible
Green’s function:

(2) The decomposition of the five-gluon reducible function:
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APPENDIX D: ANALYTICAL INTEGRATION METHODS

A. Collected integrals

(1) From Ref. [45] we use
(a)

Z �

0

sin2��1xdx

ð1þ 2a cosxþ a2Þ� ¼ B

�
�;

1

2

�
F

�
�; ���þ 1

2
;�þ 1

2
; a2

�
½Re�> 0; jaj< 1�; (D1)

(b)

Z 1

0
ð1� xÞ��1x��1

pFqða1; . . . ; ap;b1; . . . ; bq; axÞdx ¼ �ð�Þ�ð�Þ
�ð�þ �Þ pþ1Fqþ1ð�; a1; . . . ; ap;�þ �; b1; . . . ; bq;aÞ

½Re�> 0;Re� > 0; p � qþ 1; if p ¼ qþ 1; then jaj< 1�:
(D2)

(2) By partial integration, it can be seen

Z �

0
d� cos�� sin2��1�

ð1þ 2a cos�þ a2Þ� ¼ �a�

�

Z �

0
d�

sin2�þ1

ð1þ 2a cos�þ a2Þ�þ1

¼ �a�

�
B

�
�þ 1;

1

2

�
F

�
�þ 1; ���þ 1

2
;�þ 3

2
; a2

�
½Re�>�1; jaj< 1�:

(D3)
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B. Integrating with the Chebyshev-expansion

A continuous function can be expanded in a series of
polynomials. Most commonly one expands the function in
a Taylor series. But the convergence properties of a Taylor
series can fail to be sufficiently good, since the error of the
approximation can be concentrated in a special region of
the considered integration interval. When dealing with
integrals on finite intervals, the Chebyshev-expansion can
be an alternative. It has the advantage that the approxima-
tion error is smeared out over the interval. The integral of
the original function is reduced to integrals over
Chebyshev-polynomials.

The Chebyshev-polynomials are

TnðxÞ ¼ cosðn arccosðxÞÞ: (D4)

A function fðxÞ can be expanded over these polynomials

fðxÞ � XN�1

j¼1

cjTjðxÞ � c0
2
; (D5)

with the coefficients

cj ¼ 2

N

XN
k¼1

cos

�
jðk� 1=2Þ�

N

�
f

�
cos

�ðk� 1=2Þ�
N

��
;

(D6)

where N is the order of the expansion. The abscissas

cosððk�1=2Þ�
N Þ are the zeros of the nth Chebyshev-

polynomial. For a more detailed discussion see [46].
To integrate a function using its Chebyshev-expansion,

one transforms the variable, so that the integral is on the
interval ½�1; 1�,

Z b

a
dxfðxÞ ¼x¼�ðyÞd�

dy

Z 1

�1
dy

XN�1

j¼0

cjTjðyÞ � c0
2

¼ d�

dy

�
�c0 þ

XN�1

j¼0

cj
Z 1

�1
dyTjðyÞ

�
: (D7)

Thus the integration has been reduced to an integration
over Chebyshev-polynomials. The integral over the 0th
Chebyshev-polynomial yields 2, while the integral over
the 1st vanishes. The integral over the jth Chebyshev-
polynomial yields

Z 1

�1
dxTjðxÞ ¼ cosðj�Þ þ 1

1� j2
: (D8)

Thus one obtains

Z b

a
dxfðxÞ � d�

dy

�
c0 þ

XN�1

j¼2

cj
cosðj�Þ þ 1

1� j2

�
: (D9)

Plugging in Eq. (D6) and denoting yk ¼ cosððk�1=2Þ�
N Þ one

finally gets

Z b

a
dxfðxÞ � 2

N

d�

dy

�XN
k¼1

fðykÞ þ
XN�1

j¼2

XN
k¼1

cos

�
jðk� 1=2Þ�

N

�

� fðykÞ cosðj�Þ þ 1

1� j2

�
: (D10)

C. The UV integral

In the UV analysis of the ghost- and the gluon-box
integral of the form

I 

Z 1

x
dy

ð! logðysÞ þ 1Þa
yn

(D11)

occur. To evaluate them, one substitutes z ¼ ! logðysÞ þ 1

yielding

I ¼ eððn�1Þ=!Þ

!sn�1

Z 1

zðxÞ
dze�ðððn�1ÞzÞ=!Þza (D12)

and then � ¼ ðn�1Þz
! . One gets

I ¼ eððn�1Þ=!Þ!a

sn�1ðn� 1Þaþ1

Z 1

�ðzðxÞÞ
d�e���a

¼ eðn�1=!Þ!a

sn�1ðn� 1Þaþ1
�

�
aþ 1; ðn� 1Þ

�
log

�
x

s

�
þ 1

!

��
:

(D13)

Since x is large in the region of interest, one can employ the
asymptotic expansion

�ða; xÞ ¼ xa�1e�x

�XM�1

m¼0

ð1� aÞm
ð�xÞm þOðjxj�MÞ

�
; (D14)

with the Pochhammer symbol ðaÞm
ðaÞ0 ¼ 1;

ðaÞn ¼ �ðaþ nÞ
�ðaÞ ¼ aðaþ 1Þ . . . ðaþ n� 1Þ:

(D15)

Keeping only the first order of the series, one results in

Z 1

x
dy

ð! logðysÞ þ 1Þa
yn

� ð! logðxsÞ þ 1Þa
ðn� 1Þxn�1

: (D16)
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