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We consider nontopological, ‘‘bell-shaped’’ localized and regular solutions available in some 1þ
1-dimensional scalar field theories. Several properties of such solutions are studied, namely, their stability

and the occurrence of fermion bound states in the background of a kink and a kink-antikink solution of the

sine-Gordon model.
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I. INTRODUCTION

Nonlinear phenomena play an important role in many
sectors of physics. The most widely known classical solu-
tions obeying nonlinear equations are solitons and topo-
logical defects, see e.g. [1,2] for recent reviews. The
stability of these objects is usually related to the nontrivial
topology of the space of configurations where the fields of
the underlying physical models take their values.
Nontopological lumps are worth being studied as well.
Here topological arguments cannot be invoked to show
stability but they can turn out to be stable through the
occurrence of conserved bosonic currents related to global
symmetries of the underlying model. On the other hand,
some models can admit a regular, localized, finite-energy,
classical but unstable solution which can be relevant in
some specific contexts. Sphalerons, which appear as un-
stable solutions in the electroweak model [3], are believed
to play a role in the baryon asymmetry of the Universe [4]
and the computation of their normal modes [5] is an
important ingredient for the evaluation of the rate of
baryon/lepton-number violating processes. Various exten-
sions of the sphaleron solution have been emphasized. In a
very recent paper, families of new axially symmetric solu-
tions representing sphaleron-antisphaleron bound states
have been constructed [6].

Among all known nonlinear lumps, the ‘‘kink solution’’
available in the 1þ 1-dimensional scalar field theory with
a ��4 potential is probably the simplest and the most
popular. Recently several authors have constructed differ-
ent types of localized lump solutions in scalar field theories
with specific families of the self-interaction potentials [7].
A special emphasis was set on ‘‘bell-shaped’’ lumps char-
acterized by limx!�1�ðxÞ ¼ 0, contrasting with the tradi-
tional kink solutions. In particular, the authors of [7]
exhibit a family of potential admitting a lump with the
same profile as the celebrated Korteweg-de Vries solution.
A long list of possible physical applications is given in [7].
Among them, we point out the possibility for these models
to be applied in a brane world involving a single extra
dimension and for the description of tachyonic states living
on the brane (see e.g. [8] and references in this paper). For
such applications, as well as for many others, the number

of unstable modes of the classical solution constitutes an
essential ingredient. The question of stability, which to our
knowledge is not emphasized in [7], is considered in the
second section of the present paper. The linear equation
determining the normal modes turns out to be quasi-ex-
actly-solvable [9]. The normalizable solutions of the equa-
tion can be obtained explicitly and one of the eigenvalues is
negative, indicating an instability. The corresponding di-
rection of instability can be expressed in terms of elemen-
tary functions.
Recently again, kink and antikink solutions were used in

a different physical context [10]. In [11], the spectrum on
the Dirac equation in the background of several solutions
available in the ��4 model has been studied. The inves-
tigation of fermionic bound states in the background of
classical bosonic fields (solitons or sphalerons) has a long
history. The Dirac equation in the background of a linear
cosmic string was studied in [12,13]. The existence of
normalizable fermion zero mode in the background of a
sphaleron was addressed in [14,15]. Further studies of
fermionic bound states and level crossing were performed
in [16]. The spectrum along the full noncontractible loop
passing through the sphaleron was reported in [17].
In the third section of this paper, we reconsider the

calculation of [11] by replacing the kink and kink-antikink
backgrounds by their analogues available in the sine-
Gordon model. The advantage of the sine-Gordon trigono-
metric potential over the quartic polynomial one is that the
sine-Gordon model admits an explicit solution describing
fully the kink-antikink interaction; as a consequence, the
spectrum of the Dirac equation in this background can be
computed over the full range of configurations, including
the region of the parameters where kink and the antikink
interact with each other. The qualitative properties of the
analysis reported in [11] are confirmed with the sine-
Gordon model for well separated lumps. However the
solutions of the sine-Gordon equation allow for configura-
tions where the two lumps are close to each other. The
spectral analysis can be extended to this case as well. Our
results demonstrate how fermion bound states can emerge
from the continuumwhen the wall and the antiwall become
well separated or, equivalently, how existing fermion
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bound states are absorbed into the continuum when the two
lumps come close to each other. Some conclusions and
perspective are mentioned in Sec. IV. For completeness,
the definition of the Poschl-Teller equation is presented in
the Appendix.

II. BELL-SHAPED LUMPS: STABILITY

In this section we study the stability of several new lump
solutions which were presented recently in [7]. The models
considered are 1þ 1-dimensional scalar field theory of the
form

L ¼ 1

2
@��@

��� Vð�Þ; (2.1)

with suitable potential Vð�Þ. For static fields, the classical
equation has the form d2x� ¼ dV

d� . The linear stability of a

solution, say �cðxÞ, of this equation can be studied by
diagonalizing the quadratic part of the Lagrangian in a
perturbation around �c. Concretely, one has to compute
the eigenvalues allowing for normalizable eigenfunctions
of the spectral equation

�
� d2

dx2
þ d2V

d�2

���������¼�c

�
� ¼ !2�;

�ðt; xÞ ¼ �cðxÞ þ ei!t�ðxÞ:
(2.2)

Negative eigenvectors !2 < 0 reveal the existence of in-
stabilities of the classical solution �c.

Case 1: �4 potential—The case of a quartic potential is
well known but we mention it for completeness and for the
purpose of comparison of the eigenmodes with the cases
mentioned next. The potential and the corresponding kink-
solution read

Vð�Þ ¼ 1

2
ð�2 � 1Þ2; �cðxÞ ¼ � tanhðxÞ (2.3)

and the stability equation corresponds to the Poschl-Teller
equation (see Appendix) with N ¼ 2 and !2 ¼ !2

p þ 4.

The eigenvalues are then!2 ¼ 0; 3; 4. It is well known that
the ��4 kink has no negative mode and is stable. The
corresponding eigenfunctions are

�0 ¼ 1

coshðxÞ2 ¼ �d�c

dx
; �3 ¼ sinhðxÞ

cosh2ðxÞ ;

�4 ¼ tanh2ðxÞ � 1

3
:

(2.4)

The zero mode corresponds to infinitesimal translations of
the classical solution �c in the space variable.

Case 2: Inverted�4 potential—This case corresponds to
a quartic potential with inverted sign. The potential and the
corresponding lump are given by

Vð�Þ ¼ 1

2
�2ð1��2Þ; �cðxÞ ¼ � 1

coshðxÞ : (2.5)

In this case also, the stability equation corresponds to the
Poschl-Teller equation with N ¼ 2 but with a different
shift of the eigenvalue, for instance !2 ¼ !2

p þ 1; leading

to !2 ¼ �3; 0; 1. As a consequence the lump is charac-
terized by one negative mode and one zero mode. Up to a
normalization they are given by

~��3 ¼ 1

coshðxÞ2 ; ~�0 ¼ sinhðxÞ
cosh2ðxÞ ¼ �d�c

dx
;

~�1 ¼ tanh2ðxÞ � 1

3
:

(2.6)

As usual, the zero mode is associated with the translation
invariance of the underlying field theory.
Case 3: Cubic �3 potential—The last case investigated

corresponds to a potential of third power in the field�. The
potential and the corresponding lump are given by

Vð�Þ ¼ 2�2ð1��Þ; �cðxÞ ¼ � 1

cosh2ðxÞ : (2.7)

The corresponding normal mode equation corresponds to
the Poschl-Teller equation with N ¼ 3 with an appropriate
shift of the spectrum !2 ¼ !2

p þ 4, leading to !2 ¼
�5; 0; 3; 4. The lump here is then characterized by one
negative mode, one zero mode, and two positive modes.
Up to a normalization they are given by

~��5 ¼ 1

cosh3ðxÞ ; �0 ¼ sinhðxÞ
cosh3ðxÞ ¼ � 1

2

d�c

dx
;

�3 ¼ 1

cosh2ðxÞ
�
tanh2ðxÞ � 1

5

�
;

�4 ¼ tanhðxÞ
�
tanh2ðxÞ � 3

5

�
:

(2.8)

In [7], deformations of the three potentials given above are
studied as well (e.g. is cases 1 and 3, deformations break-
ing the reflection symmetry�! ��). The corresponding
stability equation is not of the Poschl-Teller type but their
spectrum could be studied perturbatively from the ones
obtained above. It should be interesting to see, in particu-
lar, how the unstable mode (or the zero mode in case 1)
evolve in terms of the coupling constant parametrizing the
deformation.

III. FERMION MODES IN A SINE-GORDON KINK-
ANTIKINK SYSTEM

Another aspect of lumplike structures of the type dis-
cussed here is the possibility to couple them to a fermion
field and to generate a mass to the fermion through a
Yukawa interaction of the fermion to the scalar field �.
Using the notations of Chu-Vachaspati [11], we have

L ¼ 1

2
@��@

��� Vð�Þ þ i � ��@� � gð�� CÞ �  ;
(3.1)
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where  is a two-component spinor and the two-
dimentional Dirac matrices can be chosen in terms of the
Pauli matrices �0 ¼ �3, �

2 ¼ i�1, g is the Yukawa cou-
pling constant, and the shift constant C has to be chosen
appropriately (C ¼ 0 for the �4 model, C ¼ � for the
sine-Gordon model). To solve the Dirac equation in the
background of a classical solution, say �c, available in the
bosonic sector of the model, it is convenient to parametrize
[11] the Dirac spinor according to

 ¼ ð 1;  2Þt;  1 ¼ e�iEtð�þ � ��Þ;
 2 ¼ e�iEtð�þ þ ��Þ;

(3.2)

where �� are functions of x. Then the system of first order
Dirac equations is transformed into two decoupled second
order equations for �� and �þ:

ð�@2x þ V�ð�cÞÞ�� ¼ E2��;

V�ð�cÞ ¼ g2�2
c � g@x�c:

(3.3)

For the Dirac equation in the background, when the one
kink corresponding to the model (2.3) was studied in detail
in [11], it was found, in particular, that the Eqs. (3.3) are
Poschl-Teller equations, respectively, withN ¼ g andN ¼
g� 1 and!2

p ¼ E2 � g2. For any value of g such that n�
1< g � n, there exist n fermionic modes given by

Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2g� jÞ

q
; j ¼ 0; 1; . . . ; n� 1: (3.4)

At each integer value of g, a supplementary bound state
emerges from the continuum E ¼ g and exists for g > n.

Next, the Dirac equation was studied in the background
of a kink-antikink configuration, say �KK, represented by

means of superposition of a kink centered at x ¼ �L and
an antikink centered at x ¼ L with L� 1:

�K �KðxÞ ¼ tanhðxþ LÞ � tanhðx� LÞ � 1: (3.5)

Such configurations are also bell-shaped. The main result
is that the spectrum of the Dirac equation in the back-
ground of �K �K deviates only a little from the spectrum
available in the background of a single kink (or an anti-
kink) for L� 1. The analysis of the spectrum in the region
L� 1 is unreliable since the linear superposition (3.5) is an
approximate solution of the classical equation only for
large values of L. In this paper we have reconsidered the
Dirac equation (3.3) for the kink and kink-antikink solu-
tions available in the sine-Gordon model. The potential and
the form of the fundamental lump in this model are

Vð�Þ ¼ ð1� cosð�ÞÞ
2

; �ðxÞ ¼ �4 arctanðexÞ: (3.6)

In Fig. 1, a few fermionic bound states are represented as
functions of the parameter g (for clarity, we omitted the
modes n ¼ 4; . . . ; 9 on the graphic). The figure presents
exactly the same pattern as in the case of the �4 kink. In
particular, new bound states emerge regularly from the

continuum at critical values of g, say g ¼ gn. Let us
mention that the normal modes about the sphaleron and
bisphaleron solutions [5] of the standard model of electro-
weak interactions also lead to a similar pattern.
Because these qualitative properties of the solutions are

similar to the one of the �4 kink we expect the features
discovered in [11] to hold in the case of well separated
sine-Gordon kink and antikink. In the sine-Gordon model,
we can take advantage of the fact that an exact form of the
kink-antikink solution is available:

�K �K ¼ 4 arctan
sinhðut=�Þ
u coshðx=�Þ ; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
; (3.7)

where u is a constant related to the relative velocity of the
two lumps. We used this solution to study the Dirac equa-
tion in the background of a moving wall-antiwall system
(approaching or spreading each other, according to the sign
of t) and were able to study the spectrum of the bound
states in the domain of the parameter when t becomes
small, i.e. when the kink and the antikink interact.
Solving Eq. (3.3) in the background (3.7), we implicitly
assume that the motion of the kink and of the antikink is
treated adiabatically. A time-integration of the full equa-
tions will be reported elsewhere [18]. The results are
summarized in Fig. 2 where the fermionic eigenvalue E
for the ground state n ¼ 0 and the first few excited states
are represented as functions of t. Our numerical integration
of the spectral equations (3.3) for several values of t reveals
that only the ground state subsists in the t! 0 limit where
it enters in the continuum (this could be expected since the
classical background solution vanishes in this limit) and
that the excited states join the continuum at finite values of
t, depending on the level of the excitation. It should be
pointed out that the fermionic eigenvalue of the fundamen-
tal solution (line n ¼ 0) approaches E ¼ 0 for t! 1

FIG. 1. The fermionic bound state corresponding to the single
sine-Gordon kink as a function of the constant g. The level n ¼
0, 1, 2, 3, and 10 are represented.
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although staying positive. It decays roughly like E�
exp�4t. The fact that the excited energy levels become
pairwise degenerate in the large t limit can be understood
from the form of the potential. Indeed, for t� 1, the
potential possesses two well separate valleys centered
about the points x��ut. In the neighborhood of x ¼
�ut, the form of the potential is given by V� ¼ g2�2 �
g�0. Far away from the two regions of the x line situated
around x ¼ �ut (i.e in the region of the origin and in the
asymptotic regions), the potential is exponentially small. In
fact the effective potential under investigation results from
a superposition of two (suitably shifted) potentials which
are supersymmetric partners of each other; accordingly
they have the same spectrum apart from the ground state

of Vþ. It is one of the striking properties of supersymmetric
quantummechanics (see [19] for a review) that if V�ðxÞ are
supersymmetric partner potentials, the k-th energy level of
V� coincides with the kþ 1 energy level of Vþ. As a
consequence, in our case, two eigenvectors exist with
roughly the same eigenvalue when the wall and the anti-
wall are well separated, like e.g. in Fig. 3. While t de-
creases, the two valleys of the potential have a tendency to
merge in the region of the origin (see Fig. 4) and the
degeneracy of the two energy levels corresponding to
each other by the supersymmetry is lifted, as shown in
Fig. 2. It is tempting to say that the supersymmetry of the
spectrum occurring for jtj � 1 is broken in the jtj ! 0
limit. Said in other words, it turns out that when the wall
and antiwall approach each other, the system cannot sup-
port fermion bound states and their spectra merge into the
continuum of the Dirac equation. Seen opposite, fermion
bound states (ground state and a number of excited modes,
the number of them depending on the coupling constant g)
can emerge from the continuum when the wall and antiwall
separate from each other. We plan to study this phenome-
non in more detail by solving the full Dirac sine-Gordon
equation [18].

IV. CONCLUSION AND PERSPECTIVES

The stability equations associated with the bell-shaped
lumps recently discussed in [7] turn out to belong to the
class of quasi-exactly-solvable equations [9]. In particular
their unstable mode can be computed explicitly.
Accordingly, the underlying field theory can be used, along
with [8], as toy models for studying tachyonic modes in
brane world. In Sec. III, the study of the spectrum of the
Dirac equation in the background of wall-antiwall configu-
ration has revealed the existence of several fermionic

FIG. 2. The fermionic bound state corresponding to the sine-
Gordon kink-antikink solution as a function of time for g ¼ 1
and u ¼ 0:5. The level n ¼ 0; 1; 2; 3; 4 are represented.

FIG. 3. The profile of the potential and of the first three
fermionic bound states corresponding to the single sine-
Gordon kink-antikink solution for t ¼ 4, g ¼ 1, and u ¼ 0:5
are represented.

FIG. 4. The profile of the potential and of the first three
fermionic bound states corresponding to the single sine-
Gordon kink-antikink solution for t ¼ 1, g ¼ 1, and u ¼ 0:5
are represented.
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bound states (the exact number depending on the coupling
constant) emerging from the continuum while the two
walls get more separated in space. We have pointed out
the close relation of the pattern of eigenmodes with super-
symmetric quantum mechanics. It would be tempting to
use this feature in a context of higher dimensional space-
time where the extra dimension would be interpreted as the
‘‘spatial’’ coordinate of the walls. Alternative mechanisms
of fermion-brane interaction could be looked for in this
direction. The main result in this topic was obtained in the
celebrated achievement of [20]. Here a kink is used to
localize the fermion in a d ¼ 5 space-time.
Generalizations of this idea to space-times involving
more than two codimensions have been emphasized,
namely, in [21], where topological solitons available in
Yang-Mills and sigma-models are used as localizing
mechanisms for fermions.

Finally, let us point out that a lot of activity is devoted to
the study of the interactions of solitons, or of more general
spatially localized objects, with themselves [22,23]. The
interaction of kink solution with an external field of radi-
ations is studied in detail in [22]. It is shown that the
radiation exerts a negative pressure on the kink and that,

accordingly, the kink is pushed backwards. A similar
analysis could be performed in the case of wall-antiwall
configurations like the ones emphasized in [11] or in the
present paper.

APPENDIX: THE POSCHL-TELLER EQUATION

The Poschl-Teller equation is known as the following
one-dimensional eigenvalue Schrodinger equation for the
corresponding Poschl-Teller potential.

� d2

dx2
�� NðN þ 1Þ

cosh2x
� ¼ !2

p�: (A1)

It is considered on an appropriate domain of the Hilbert
space of square integrable functions on the real line. It is a
standard result that, for integer values of N, the above
equation admits N þ 1 eigenvalues and eigenvectors
which can be computed algebraically. For the first few
values of N the eigenvalues are given by

N ¼ 1: !2
p ¼ �1; 0; N ¼ 2: !2

p ¼ �4;�1; 0;

N ¼ 3: !2
p ¼ �9;�4;�1; 0: (A2)
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