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I. INTRODUCTION

The infrared sector of quantum chromodynamics (QCD)
[1] remains largely unexplored, mainly due to the fact that,
unlike the electroweak sector of the standard model, it does
not yield to a perturbative treatment. The basic building
blocks of QCD are the Green’s (correlation) functions of
the fundamental physical degrees of freedom, gluons, and
quarks, and of the unphysical ghosts. Even though it is well
known that these quantities are not physical, since they
depend on the gauge-fixing scheme and parameters used to
quantize the theory, it is widely believed that reliable
information on their nonperturbative structure is essential
for unraveling the infrared dynamics of QCD [2].

The two basic nonperturbative tools for accomplishing
this task are (i) the lattice, where space-time is discretized
and the quantities of interest are evaluated numerically, and
(ii) the infinite set of coupled nonlinear integral equations
governing the dynamics of the QCD Green’s functions,
known as Schwinger-Dyson equations (SDE) [3–5]. Even
though these equations are derived by an expansion about
the free-field vacuum, they finally make no reference to it,
or to perturbation theory, and can be used to address
problems related to chiral symmetry breaking, dynamical
mass generation, formation of bound states, and other
nonperturbative effects [1]. While the lattice calculations
are limited by the lattice size used and the corresponding
extrapolation of the numerical results to the continuous
limit, the fundamental conceptual difficulty in treating the
SDE resides in the need for a self-consistent truncation
scheme, i.e., one that does not compromise crucial prop-
erties of the quantities studied.

It is generally accepted by now that the lattice yields in
the Landau gauge (LG) an infrared finite gluon propagator
and an infrared divergent ghost propagator. This rather
characteristic behavior has been firmly established recently
using large-volume lattices, for pure Yang-Mills (no quarks
included), for both SUð2Þ [6] and SUð3Þ [7]. To be sure,
lattice simulations of gauge-dependent quantities are
known to suffer from the problem of the Gribov copies,
especially in the infrared regime, but it is generally be-

lieved that the effects are quantitative rather than qualita-
tive. The effects of the Gribov ambiguity on the ghost
propagator become more pronounced in the infrared, while
their impact on the gluon propagator usually stays within
the statistical error of the simulation [8]. In what follows
we will assume that in the lattice results we use the Gribov
problem is under control.
In this article we show that the SDEs obtained within a

new gauge-invariant truncation scheme furnish results (in
the LG) which are in qualitative agreement with the lattice
data. As has been first explained in [9], obtaining an
infrared finite result for the gluon self-energy from SDEs,
without violating the underlying local gauge symmetry, is
far from trivial, and hinges crucially on one’s ability to
devise a self-consistent truncation scheme that would se-
lect a tractable and, at the same time, physically mean-
ingful subset of these equations. To accomplish this, in the
present work we will employ the new gauge-invariant
truncation scheme derived in [10], which is based on the
pinch technique [9,11] and its correspondence [12] with
the background field method (BFM) [13].

II. SDES IN THE GAUGE-INVARIANT
TRUNCATION SCHEME

The gluon propagator ���ðqÞ in the covariant gauges

assumes the form

���ðqÞ ¼ �i

�
P��ðqÞ�ðq2Þ þ �

q�q�

q4

�
; (1)

where � denotes the gauge-fixing parameter, P��ðqÞ ¼
g�� � q�q�=q

2 is the usual transverse projector, and, fi-

nally, ��1ðq2Þ ¼ q2 þ i�ðq2Þ, with ���ðqÞ ¼
P��ðqÞ�ðq2Þ the gluon self-energy. In addition, the full-

ghost propagator Dðp2Þ and its self-energy Lðp2Þ are re-
lated by iD�1ðp2Þ ¼ p2 � iLðp2Þ. In the case of pure
(quarkless) QCD, the new SD series [10] for the gluon
and ghost propagators reads (see also Fig. 1)
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��1ðq2ÞP��ðqÞ ¼
q2P��ðqÞ þ i

P
4
i¼1ðaiÞ��

½1þGðq2Þ�2 ;

iD�1ðp2Þ ¼ p2 þ i�
Z
k
�����ðkÞ��ðp;kÞDðpþ kÞ;

i���ðqÞ ¼ �
Z
k
Hð0Þ

��Dðkþ qÞ���ðkÞH��ðk;qÞ; (2)

where � ¼ g2CA, with CA the Casimir eigenvalue of the
adjoint representation [CA ¼ N for SUðNÞ], and

R
k �

�2"ð2�Þ�d
R
ddk, with d ¼ 4� � the dimension of

space-time. �� is the standard (asymmetric) gluon-ghost

vertex at tree level, and �� the fully-dressed one. Gðq2Þ is
the g�� component of the auxiliary two-point function

���ðqÞ, and the function H�� is defined diagrammatically

in Fig. 1. H�� is in fact a familiar object [1]: it appears in
the all-order Slavnov-Taylor identity (STI) satisfied by the
standard three-gluon vertex, and is related to the full gluon-
ghost vertex by q�H��ðp; r; qÞ ¼ �i��ðp; r; qÞ; at tree

level, Hð0Þ
�� ¼ ig��.

When evaluating the diagrams (ai) one should use the
BFM Feynman rules [13]; notice, in particular, that (i) the
bare three- and four-gluon vertices depend explicitly on
1=�, (ii) the coupling of the ghost to a background gluon is
symmetric in the ghost momenta, (iii) there is a four-field
coupling between two background gluons and two ghosts.
Thus, for the gluonic contributions we find

ða1Þ�� ¼ �

2

Z
k

~��	
�
	�ðkÞ~�����


�ðkþ qÞ;

ða2Þ�� ¼ �g��

Z
k
�

�
�ðkÞ þ �

�
1

�
� 1

�Z
k
���ðkÞ;

(3)

with ~��	
ðq; p1; p2Þ ¼ ��	
ðq; p1; p2Þ þ ðp

2 g

�	 �
p	
1 g

�
Þ��1, ��	
 the standard QCD three-gluon vertex,

and ~��	
 is the fully-dressed version of ~��	
. For the

ghost contributions, we have instead

ða3Þ�� ¼ ��
Z
k

~��DðkÞDðkþ qÞ~��;

ða4Þ�� ¼ 2�g��

Z
k
DðkÞ;

(4)

with ~��ðq; p1; p2Þ ¼ ðp2 � p1Þ�, and ~�� its fully-dressed

counterpart. Because of the Abelian all-order Ward iden-
tities (WIs) that these two full vertices satisfy (for all �),

namely q�~��	
 ¼ i��1
	
ðkþ qÞ � i��1

	
ðkÞ and q�~�� ¼
iD�1ðkþ qÞ � iD�1ðkÞ, one can demonstrate that
q�½ða1Þ þ ða2Þ��� ¼ 0 and q�½ða3Þ þ ða4Þ��� ¼ 0 [14].

For the rest of the article we will study the system of
coupled SDEs (2) in the LG (� ¼ 0), in order to make
contact with the recent lattice results of [6,7]. This is a
subtle exercise because one cannot set directly � ¼ 0 in the
integrals on the right-hand side (rhs) of (3), due to the terms
proportional to 1=�. Instead, one has to use the expressions
for general �, carry out explicitly the set of cancellations
produced when the terms proportional to � generated by
the identity k����ðkÞ ¼ �i�k�=k

2 are used to cancel 1=�

terms, and set � ¼ 0 only at the very end. It is relatively

easy to establish that only the bare part ~��	
 of the full

vertex contains terms that diverge as � ! 0. Writing
~��	
 ¼ ~��	
 þ ~K�	
, we thus have that ~K�	
 is regular

in that limit, and wewill denote byK�	
 its value at � ¼ 0.

Introducing �t
��ðqÞ ¼ P��ðqÞ�ðq2Þ, we get

X2
i¼1

ðaiÞ�� ¼ �

�
1

2

Z
k
�	

� �t

	�ðkÞ�t

�ðkþ qÞL��

�

� 9

4
g��

Z
k
�ðkÞ þ

Z
k
�t

	�ðkÞ
ðkþ qÞ

ðkþ qÞ2

� ½�þL�	
� þ
Z
k

k�ðkþ qÞ�
k2ðkþ qÞ2

�
; (5)

whereL�	
 ¼ ��	
 þK�	
 satisfies the WI q�L�	
 ¼
P	
ðkþ qÞ��1ðkþ qÞ � P	
ðkÞ��1ðkÞ. Contracting the

FIG. 1. The new SDE for the gluon-ghost system. Wavy lines with white blobs are full gluon propagators, dashed lines with white
blobs are full-ghost propagators, black blobs are full vertices, and the gray blob denotes the scattering kernel. The circles attached to
the external gluons denote that, from the point of view of Feynman rules, they are treated as background fields.
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left-hand side (lhs) of (5) by q� one can then verify that it
vanishes, as announced.

Next, following standard techniques, we express L�	


and ~�� as a function of the gluon and ghost self-energy,

respectively, in such a way as to automatically satisfy the
corresponding WIs. Of course, this method leaves the
transverse (i.e., identically conserved) part of the vertex
undetermined. The ansatz we will use is

L �	
 ¼ ��	
 þ i
q�

q2
½�	
ðkþ qÞ ��	
ðkÞ�;

~�� ¼ ~�� � i
q�

q2
½Lðkþ qÞ � LðkÞ�;

(6)

whose essential feature is the presence of massless pole

terms, 1=q2. Longitudinally coupled bound-state poles are
known to be instrumental for obtaining ��1ð0Þ � 0 [15];
on the other hand, due to current conservation, they do not
contribute to the S-matrix. For the conventional ghost-
gluon vertex ��, appearing in the second SDE of (2) we
will use its tree-level expression, i.e., �� ! �� ¼ �p�.

Note that, unlike ~��, the conventional �� satisfies a STI of
rather limited usefulness; the ability to employ such a

different treatment for ~�� and �� without compromising
gauge invariance is indicative of the versatility of the new
SD formalism used here. Finally, for H�� we use its tree-

level value, Hð0Þ
��.

With these approximations, the last two equations of (2),
together with (4) and (5), give (in Euclidean space)

½1þGðq2Þ�2��1ðq2Þ ¼ q2 � �

6

�Z
k
�ðkÞ�ðkþ qÞf1 þ

Z
k
�ðkÞf2 � 1

2

Z
k

q2

k2ðkþ qÞ2
�

þ �

�
4

3

Z
k

�
k2 � ðk � qÞ2

q2

�
DðkÞDðkþ qÞ � 2

Z
k
DðkÞ

�
;

f1 ¼ 20q2 þ 18k2 � 6ðkþ qÞ2 þ ðq2Þ2
ðkþ qÞ2 � ðk � qÞ2

�
20

k2
þ 10

q2
þ q2

k2ðkþ qÞ2 þ
2ðkþ qÞ2

q2k2

�
;

f2 ¼ � 27

2
� 8

k2

ðkþ qÞ2 þ 8
q2

ðkþ qÞ2 þ 4
ðk � qÞ2

k2ðkþ qÞ2 � 4
ðk � qÞ2

q2ðkþ qÞ2 ; (7)

D�1ðp2Þ ¼ p2 � �
Z
k

�
p2 � ðp � kÞ2

k2

�
�ðkÞDðpþ kÞ;

Gðq2Þ ¼ ��

3

Z
k

�
2þ ðk � qÞ2

k2q2

�
�ðkÞDðkþ qÞ: (8)

Since ½ða1Þ þ ða2Þ��� and ½ða3Þ þ ða4Þ��� are transverse, in arriving at (7) we have used ½ða1Þ þ ða2Þ��� ¼ Tr½ða1Þ þ
ða2Þ�P��ðqÞ and ½ða3Þ þ ða4Þ��� ¼ Tr½ða3Þ þ ða4Þ�P��ðqÞ, substituted into (2), and then equated the scalar cofactors of
both sides. Thus, the transversality of the answer cannot be possibly compromised by the ensuing numerical treatment (e.g.
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FIG. 2 (color online). Left panel: The gluon propagator obtained from the solution of the SDE system (blue continuous line)
compared to the lattice data of [7]; the red dashed line represents the perturbative behavior. In the inset we show the function 1þ
Gðq2Þ (blue continuous line) and its perturbative behavior (red dashed line). Right panel: The ghost propagator obtained from the SDE
system (blue continuous line), the one-loop perturbative result (red dashed line), and the corresponding lattice data of [7]. In the inset
we show the function p2Dðp2Þ from the SDE.
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hard ultraviolet cutoffs), which may only affect the value of
the cofactor.

III. NUMERICAL RESULTS

Before solving numerically the above system of integral
equations, one must introduce renormalization constants to
make them finite. The values of these constants will be
fixed by the conditions ��1ð�2Þ ¼ �2, D�1ð�2Þ ¼ �2,
and Gð�2Þ ¼ 0, with the renormalization point �2 of the
order of M2

Z. It is relatively straightforward to verify that
the perturbative expansion of (7) and (8) furnishes the
correct one-loop results. Specifically, keeping only leading

logs, we have 1þGðq2Þ ¼ 1þ 3CA	s

16� lnðq2=�2Þ, while

D�1ðp2Þ ¼ p2½1þ 3CA	s

16� lnðp2=�2Þ� and ��1ðq2Þ ¼
q2½1þ 13CA	s

24� lnðq2=�2Þ�, where 	s ¼ g2=4�.

The crux of the matter, however, is the behavior of (7) as
q2 ! 0, where the ‘‘freezing’’ of the gluon propagator is
observed. In this limit, Eq. (7) yields

��1ð0Þ ¼ �ðTg þ TcÞ
½1þGð0Þ�2 ; (9)

Tg ¼ 15

4

Z
k
�ðkÞ � 3

2

Z
k
k2�2ðkÞ; (10)

Tc ¼ �2
Z
k
DðkÞ þ

Z
k
k2D2ðkÞ: (11)

Perturbatively the rhs of Eq. (9) vanishes by virtue of the

dimensional regularization result
R
k
lnnk2

k2
¼ 0 n ¼

0; 1; 2; . . . which ensures the masslessness of the gluon to
all orders. However, nonperturbatively ��1ð0Þ does not
have to vanish, provided that the quadratically divergent
integrals defining it can be properly regulated and made
finite, without introducing counterterms of the form
m2

0ð�2
UVÞA2

�, which are forbidden by the local gauge in-

variance of the fundamental QCD Lagrangian. It turns out
that this is indeed possible: the divergent integrals can be
regulated by subtracting appropriate combinations of ‘‘di-
mensional regularization zeros.’’ Specifically, as we have
verified explicitly and as can be clearly seen in Fig. 2 (left
panel), for large enough k2 the �ðk2Þ goes over to its
perturbative expression, to be denoted by �pertðk2Þ; it has
the form �pertðk2Þ ¼ PN

n¼0 an
lnnk2

k2
, where the coefficient

an is known from the perturbative expansion. For the case
at hand, measuring k2 in GeV2, using � � 100 GeV and
	sð�Þ ¼ 0:1, after inverting and reexpanding the ��1ðk2Þ
given below Eq. (8), we find a0 � 1:7, a1 � �0:1, a2 �
2:5� 10�3. Then, subtracting

R
k �pertðk2Þ ¼ 0 from both

sides of Eq. (10), we obtain the regularized T
reg
g given by

(k2 ¼ y)

16�2T
reg
g ¼ 15

4

Z s

0
dyy½�ðyÞ � �pertðyÞ�

� 3

2

Z s

0
dyy2½�2ðyÞ � �2

pertðyÞ�: (12)

A similar procedure can be followed for Tc (see below).
The obvious ambiguity of the regularization described
above is the choice of the point s, past which the two
curves, �ðyÞ and �pertðyÞ, are assumed to coincide.

Ideally, one should then: (i) solve the system of integral
equations under the boundary condition �ð0Þ ¼ C, where
C is an arbitrary positive parameter; (ii) substitute the
solutions for �ðqÞ and DðqÞ in the (regularized) integrals
on the rhs of (9), together with the obtained value for Gð0Þ,
and denote the result by ��1

regð0Þ; (iii) check that the self-

consistency requirement ��1
regð0Þ ¼ C�1 is satisfied; if not,

(iv) a new Cmust be chosen and the procedure repeated. In
practice, due to the aforementioned ambiguity, we cannot
pin down�ð0Þ completely, and we will restrict ourselves to
providing a reasonable range for its value.
We have solved the system for a variety of initial values

for C, ranging between 1–50 GeV�2, and obtained from
(12) the corresponding ��1

regð0Þ. On physical grounds one

does not expect the perturbative expression �pertðk2Þ to

hold below 5–10 GeV2, and therefore, when computing
��1

regð0Þ, s should be chosen around that value. For values of
C between 10–25 GeV�2 the corresponding��1

regð0Þ can be
made equal to C�1 by choosing values for s within that
(physically reasonable) range. For example, for C ¼
14:7 GeV�2, the value of the lattice data at the origin, we
must choose s � 10 GeV2. The solutions for �ðqÞ, DðpÞ,
and 1þGðqÞ obtained for that special choice, C ¼
14:7 GeV�2, are shown in Fig. 2. In order to enforce the
equality ��1

regð0Þ ¼ C�1 for higher values of C one must

assume the validity of perturbation theory uncomfortably
deep into the infrared region; for example, for C ¼
50 GeV�2 one must choose s below 1 GeV2. We empha-
size that the nonperturbative transverse gluon propagator,
being finite in the IR, is automatically less singular than a
simple pole, thus satisfying the corresponding Kugo-Ojima
(KO) confinement criterion [16], essential for ensuring an
unbroken color charge in QCD [17]. Note that for q2 �
10 GeV2 both gluon propagators (lattice and SDE) shown
in Fig. 2 may be fitted very accurately using a unique
functional form, given by ��1ðq2Þ ¼ aþ bðq2Þc�1.
Specifically [measuring q2 in GeV2 and the �2 per degrees
of freedom], the lattice data are fitted by a ¼ 0:07, b ¼
0:15, and c ¼ 2:54 (�2 � 10�2), while our SDE solution is
described setting a ¼ 0:07, b ¼ 0:77, and c ¼ 2:01 (�2 �
10�4).
Let us now consider the ghosts. The Dðp2Þ obtained

from the ghost SDE diverges at the origin, in qualitative
agreement with the lattice data. From the SDE point of
view, this divergent behavior is due to the fact that we are
working in the LG and the vertex �� employed contains no
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1=p2 poles, as suggested by previous lattice studies [18].
The rate of divergence of our solution is particularly inter-
esting, because it is related to the KO confinement criterion
for the ghost [16], according to which the nonperturbative
ghost propagator (in the LG) should be more singular in the
infrared than a simple pole. Motivated by this, we proceed
to fit the function p2Dðp2Þ [see inset in right panel of
Fig. 2]. First we use a fitting function of the form
p2Dðp2Þ ¼ c1ðp2Þ�� (p2 in GeV2); a positive � would
indicate that the SDE solution satisfies the KO criterion.
Our best fit, valid for p2 � 10, gives the values � ¼ 0:02
and c1 ¼ 1:30, which lead to a �2 � 10�3. Interestingly
enough, an even better fit may be obtained using a quali-
tatively different, physically motivated functional form,
namely p2Dðp2Þ ¼ 1 � 2 lnðp2 þ 3Þ (with 3 acting
as a gluon ‘‘mass’’). Our best fit, valid for the same range,
gives 1 ¼ 1:3, 2 ¼ 0:05, and 3 ¼ 0:05, with �2 �
10�6. This second fit suggests that p2Dðp2Þ reaches a finite
(positive) value as p2 ! 0. Even though not conclusive,
our fitting analysis seems to favor a ghost propagator
displaying no power-law enhancement, in agreement
with recent results presented in [19]; clearly, this question
deserves further study.

Turning to the tadpole contributions Tc of (11), the
subtraction of 0 ¼ R

k k
�2 regularizes Tc, yielding a rather

suppressed finite value for Treg
c . For example, using the first

ghost fit, we get (s0 � 1 GeV2)

16�2T
reg
c ¼�2

Z s0

0
dy½yDðyÞ � 1� þ

Z s0

0
dy½y2D2ðyÞ � 1�

��2�2s0 lns0; (13)

which is numerically negligible.

IV. DISCUSSION

The present work has focused on the derivation of an
infrared finite gluon propagator from a gauge-invariant set
of SDEs for pure QCD in the LG, and its comparison with
recent lattice data. Following the classic works of [15], the
finiteness of the gluon propagator is obtained by introduc-
ing massless poles in the corresponding three-gluon vertex.
The actual value of ��1

regð0Þ has been treated as a free

parameter and was chosen to coincide with the lattice point
at the origin. The curves shown in Fig. 2 were then ob-

tained dynamically, from the solution of the SDE system,
for the entire range of momenta. Comparing the solution
for the gluon propagator with the lattice data we see that,
whereas their asymptotic behavior coincides (perturbative
limits), there is a discrepancy of about a factor of 2–2.5 in
the intermediate region of momenta, especially around the
fundamental QCD mass scale [reflected also in the differ-
ent values of the two sets of fitting parameters ða; b; cÞ]. In
the case of the ghost propagator the relative difference
increases as one approaches the deep infrared, given that
both curves diverge at a different rate. These discrepancies
may be accounted for by extending the gluon SDE to
include the ‘‘two-loop dressed’’ graphs, omitted (gauge
invariantly) from the present analysis, and/or by supplying
the relevant transverse parts of the vertex given in (6). We
hope to be able to make progress in this direction in the
near future.
In our opinion, the analysis presented here, in conjunc-

tion with the recent lattice data, fully corroborates
Cornwall’s early description of QCD in terms of a dynami-
cally generated, momentum-dependent gluon mass [9]. In
this picture the low-energy effective theory of QCD is a
nonlinear sigma model, known as massive gauge-invariant
Yang-Mills theory, obtained from the generalization of
Stückelberg’s construction to non-Abelian theories [20].
This model admits vortex solutions, with a long-range pure
gauge term in their potentials, which endows them with a
topological quantum number corresponding to the center
of the gauge group [ZN for SUðNÞ], and is, in turn, respon-
sible for quark confinement and gluon screening [21,22].
Specifically, center vortices of thickness�m�1, wherem is
the induced mass of the gluon, form a condensate because
their entropy (per unit size) is larger than their action. This
condensation furnishes an area law to the fundamental
representation Wilson loop, thus confining quarks. On the
other hand, the adjoint potential shows a roughly linear
regime followed by string breaking when the potential
energy is about 2m, corresponding to gluon screening [23].
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