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We study nonperturbative moduli superpotentials with positive exponents, i.e. the form like AeaT with a

positive constant a and the modulus T. These effects can be generated, e.g., by D-branes which have

negative Ramond-Ramond charge of the lower-dimensional D-brane. The scalar potentials including such

terms have quite a rich structure. There are several local minima with different potential energies and a

high barrier, whose height is of OðM4
pÞ. We discuss their implications from the viewpoints of cosmology

and particle phenomenology, e.g. the realization of inflation models, avoiding the overshooting problem.

This type of potential would be useful to realize the inflation and low-energy supersymmetry breaking.
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I. INTRODUCTION

Moduli fields play an important role in string phenome-
nology and cosmology. Several couplings in 4D low-
energy effective field theory are given as functions of
vacuum expectation values (VEVs) of moduli. Thus, we
need a stabilization mechanism of moduli. However, some
moduli fields T have a flat potential perturbatively, while
others may be stabilized by nontrivial background such as
flux compactification [1,2]. Nonperturbative effects are
assumed to stabilize such moduli. The form of nonpertur-
bative terms in the superpotential behaves like e�aT , where
T is a modulus field and a is a positive constant, and such
terms would be induced by gaugino condensation and/or
stringy nonperturbative effects. Such a potential may gen-
erate a hierarchically small energy scale compared with the
Planck scale Mp ¼ 2:4� 1018 GeV. That may be relevant

to supersymmetry breaking and/or cosmological aspects,
e.g. inflation models [3].

The bumps generated by the above terms e�aT are not
high in several models of moduli stabilization, in particu-
lar, in models leading to low-energy supersymmetry break-
ing. That may lead to problems. For example, a simple
model has a local minimum leading to a finite VEV of T
and the runaway vacuum, which is the minimum corre-
sponding to T ! 1, and there is a low bump between
them. In such a model, we need fine-tuning of initial
conditions in order not to overshoot the minimum with a
finite VEV of modulus [4]. Also, such a low bump may
have a problem from the viewpoint of inflation. Suppose
that the inflaton Z is different from T. We need the positive

vacuum energy deriving inflation and it would be higher
than the above bump. Then, the modulus would run away
to infinity during the inflation. Similarly, finite temperature
effects may also destabilize the modulus [5]. Furthermore,
if the modulus T is the inflaton, it seems difficult to realize
the inflation and low-energy supersymmetry breaking in a
simple model [6,7].
In Ref. [8], it was pointed out that nonperturbative terms

with positive exponents like eaT , where a > 0, can be
induced in string-derived effective supergravity theory.
Suppose that the gauge kinetic function f is written as f ¼
mS� wT with m, w> 0 and S is stabilized with a heavy
mass of OðMpÞ by flux compactification. Then, the gau-

gino condensation of such a sector induces a nonperturba-
tive term like eaT for the light modulus T. Some aspects of
such a term, e.g. moduli stabilization and supersymmetry
breaking, have been in Ref. [8].1 Here we study more about
nonperturbative terms with positive exponents like eaT

(a > 0). They could generate high barriers in the scalar
potential, whose heights would be of OðM4

pÞ. We study

implications of such terms from the viewpoints of cosmol-
ogy and particle phenomenology, in particular, the over-
shooting problem, realization of inflation models, and low-
energy supersymmetry breaking.
This paper is organized as follows. In Sec. II, we explain

how nonperturbative terms with positive exponents like
eaT can be generated in the superpotential, and study the
form of the scalar potential. In Sec. III, we study their
implications on cosmology and particle phenomenology.
In Sec. IV, we apply the racetrack inflation. Section V is
devoted to the conclusion and a discussion.
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1See also Refs. [9,10]. In particular, Ref. [10] has studied
realization of the model solving the fine-tuning problem in the
minimal supersymmetric standard model [11].

PHYSICAL REVIEW D 78, 025007 (2008)

1550-7998=2008=78(2)=025007(8) 025007-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.025007


II. NONPERTURBATIVE MODULI
SUPERPOTENTIALWITH POSITIVE EXPONENTS

For concreteness, we consider a supergravity model,
which could be derived from type IIB superstring theory
as its low-energy effective theory, although our supergrav-
ity model might be derived from other types of superstring
theories such as type IIA superstring theory and heterotic
string/M theory.2 In well-known Calabi-Yau models, there
are three types of closed string moduli fields, the dilaton S,
the Kähler (volume) moduli and complex structure (shape)
moduli U�. For simplicity, we consider the model with a
single Kähler modulus T, but extensions to models with
several Kähler moduli are straightforward. Following
Ref. [2], we assume that the dilaton S and complex struc-
ture moduli U� are stabilized by the flux-induced super-
potential WfluxðS;U�Þ [12]. That implies that those moduli
fields have heavy masses ofOðMpÞ. Here and hereafter we
use the unit that Mp ¼ 1.

In order to stabilize the remaining light modulus T, one
often assumes the gaugino condensation in the hidden
sector with the gauge kinetic function fa, which induces
the following term in the superpotential,

Wnp ¼ Ae�ð2�=NaÞfa ; (1)

where A ¼ OðM3
pÞ and we have assumed that the hidden

sector is described by a N ¼ 1 pure super-Yang-Mills
(SYM) theory of SUðNaÞ. Note that we use the normaliza-
tion of the holomorphic gauge kinetic function fa such that
the gauge coupling ga at cut-off scale is obtained as

4�

g2a
¼ ReðfaÞ; (2)

except nonholomorphic terms from �-model anomalies.
Thus, in the simple model with the holomorphic gauge
kinetic function at tree level fa ¼ T like the gauge sector
on D7-brane,3 the gaugino condensation induces4

Wnp ¼ Ae�ð2�=NaÞT: (3)

However, the gauge kinetic function is written as a linear
combination of two or more moduli in several string theo-
ries like heterotic string/M theory [14] and type II string

theories with magnetized D-branes and/or intersecting D-
branes [13,15–17]. For example, a stack of magnetized D7-
branes has the following gauge kinetic functions:

fa ¼ maSþ waT; (4)

where ma and wa correspond to Ramond-Ramond (RR)
charges of D3-brane and one of D7-brane, respectively,
which are carried by the single magnetized D7-brane. On
the magnetized D7-brane, they are positive rational num-
bers determined by magnetic fluxes and winding numbers.5

Similar gauge kinetic functions can be derived from other
string theories including heterotic string/M theory and
type IIA superstring theory. When the gaugino condensa-
tion happens in theN ¼ 1 pure SYM of SUðNaÞ with this
gauge kinetic function (4), the following term in the super-
potential is induced:

Wnp ¼ Ae�ð2�=NaÞðmaSþwaTÞ: (5)

We assume that the dilaton S is already stabilized with the
mass ofOðMpÞ by the flux compactification. Thus, here we

replace S by its VEV S0.
6 Then, the superpotential reduces

to the form A0e�aT with A0 ¼ Ae�ð2�=NaÞmaS0 and a ¼
2�
Na

wa, and its form is almost the same as the superpotential

(3). However, the coefficient A0 can be hierarchically sup-
pressed compared with M3

p, because of the factor

e�ð2�=NaÞmaS0 .
On the other hand, the following form of gauge kinetic

function

fa ¼ maS� waT; (6)

with positive rational numbers ma and wa, can also be
derived from supersymmetric magnetized D9-brane which
carries negative RR charge of the D7-brane [19],7 as well

2Definitions of modulus in type IIA and IIB superstring
theories and heterotic string/M theory are different from each
other.

3Hereafter we use a symbol of fa as a holomorphic gauge
coupling at string tree level.

4From this equation, a factor of A can include VEVs of
complex structure moduli U�, whose effects come from thresh-
old corrections to gauge coupling by heavy mode in N ¼ 2
supersymmetry (SUSY) sector of open string. For the (non)
perturbative corrections to gauge coupling, see Ref. [13].

5The form of gauge couplings in this paper can be found in
compactifications of toroidal orbifold at least. However, in
generic Calabi-Yau compactifications this changes due to the
geometric curvature terms. For example, OðR2Þ terms exist in
ma of a gauge coupling on the (magnetized) D7-brane [18]. Then
we may have negative ma of it as magnetized D9-branes which
have negative D3-brane charges [19]. At any rate, we will
mention the case which is independent of geometric curvature
terms.

6Such replacement by S0 is valid in the case that the dilaton
mass is much larger than the mass of the Kähler modulus T [20–
22]. (See e.g. Ref. [23] for the model that both S and T are light
moduli). This condition is satisfied with the cases that we study.

7This means that we have (almost) a vanishing Fayet-
Iliopoulos D-term on the magnetized D9-brane. For example,

in T6=ðZ2 � Z2Þ orientifold [hðþÞuntwist
1;1 ¼ 3], the condition is

proportional to the equation, e.g., D / 1
m ReðSÞ þ

1
wi ReðTiÞ þ 1

wj ReðTjÞ � 1
wk ReðTkÞ ’ 0 with 8 wi, m> 0, while a hol-

omorphic gauge coupling on the magnetized D-brane is given by

f ¼ mSþ wiTi þ wjTj � wkTk. Here i, j, k ¼ 1, 2, 3, i � j �

k � i, and we omitted the contributions of matter fields.
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as heterotic string/M theory and type IIA superstring the-
ory, when ma ReðSÞ � wa ReðTÞ> 0.8 As the magnetized
D7-brane,ma and�wa correspond to the RR charge of the
D3-brane and one of the D7-brane, respectively, which are
carried by the single magnetized D9-brane. The gaugino
condensation in the hidden sector of N ¼ 1 pure SYM of
SUðNaÞ with this gauge coupling induces the following
nonperturbative term in the superpotential,9

Wnp ¼ Ae�ð2�=NaÞðmaS0�waTÞ: (7)

Here, we have assumed that the dilaton is stabilized with a
heavy mass of OðMpÞ and replaced S by its VEV S0. The

superpotential (7) corresponds to the form A0eaT with the

positive exponent a ¼ 2�wa

Na
, and that leads to the moduli

potential quite different from one only with negative ex-
ponents, i.e. A0e�aT . The region around waT ¼ maS0 cor-
responds to the strong gauge coupling region, where it
would not be reliable to consider only the term

Ae�ð2�=NaÞfa in the superpotential. The strong gauge cou-
pling region would correspond to 4�=g2 ¼ ReðfaÞ & 1,
i.e.,

ma ReðS0Þ � wa ReðTÞ & 1: (8)

Outside of this region (8) the above superpotential (7) is
reliable.

The F-term scalar potential VF is written as

VF ¼ eK½jDTWj2KT �T � 3jWj2�; (9)

with DTW � KTW þWT and

K ¼ �3 lnðT þ �TÞ; (10)

where KT andWT denote first derivatives of K andW by T,
respectively. The gravitino mass m3=2 is obtained as

m2
3=2 ¼ eKjWj2. The scalar potential VF including the

above superpotential (7) has quite a high barrier around
waReðTÞ � maReðS0Þ,10 and its reliable height is at least

VF � jAj2e�4�=Na , where we have estimated atReðfaÞ � 1.
Thus, this barrier height is almost of OðM4

pÞ when

4�=Na � 1. That has significant implications in cosmol-
ogy and particle phenomenology. We shall study them in
the next sections.

III. POTENTIAL FORMS AND THEIR
IMPLICATIONS

Here, let us study implications of the following total
superpotential,

Wtot ¼ W0 þ
X
a

Aae
�ð2�=NaÞðmaS0þwaTÞ

þX
b

Abe
�ð2�=NbÞðmbS0�wbTÞ; (11)

where 8Aa, Ab ¼ OðM3
pÞ. In particular, the third term is

important. The first term corresponds to the VEV of the
flux-induced superpotentialWfluxðS;U�Þ and/or nonpertur-
bative terms including only the dilaton S, i.e.,

Aae
�ð2�=NaÞmaS0 .

We consider the corresponding F-term scalar potential
VF, which would have several local minima. Also we add
the uplifting potential, E=ðT þ �TÞn following [2] and the
total potential is obtained as

V ¼ VF þ E

ðT þ �TÞn : (12)

Such uplifting potential can be generated by anti D3-brane
[2].11 We tune the constant E such that one of the local
minima has a small positive vacuum energy, V ’ 10�120.
This potential V has quite a rich structure. First of all, the

potential V as well as VF has a barrier with height of
OðM4

pÞ around T � mbS0=wb. Such a high barrier would

be useful to avoid the overshooting problem and destabi-
lization due to inflation driving energy and finite tempera-
ture effects. Furthermore, this potential may have several
local minima with hierarchically different potential ener-
gies. That would be useful to realize both inflation and low-
energy supersymmetry breaking.

A. Superpotential with a single term

One of the simplest models is the model with the follow-
ing total superpotential:

Wtot ¼ Ae�ð2�=NÞðmS�wTÞ: (13)

This superpotential is R-symmetric. As shown in Ref. [27],
the SUSY point DTW ¼ 0 corresponds to a local maxi-
mum of the F-term scalar potential VF and it has a SUSY
breaking local minimum at ReðTÞ ¼ 2=a, where
a ¼ 2�w=N.12 This local minimum always has a negative
vacuum energy VF < 0. We need the uplifting term
E=ðT þ �TÞn to realize a de Sitter vacuum. Then, we require

8In D-brane systems a gauge coupling at tree level on a D-
brane is given by a VEVof linear combination of moduli, which
means effective volume wrapped by the D-brane. Especially, in a
type IIB O3/O7 system tree level gauge coupling would be
reliable as long as ReðTÞ=ReðSÞ ¼ R4 > 1, where R is a radius
of compactification normalized by string length �01=2 in the
string frame. In the heterotic case, a (linear) combination of
moduli appears at 1-loop (or next �2=3

11 ) order.
9For gauge couplings fka ¼ mSþ wi

aTi þ wj
aTj � wk

aTk,
where a represents a label for stacks of the magnetized D9-
branes, i, j, k ¼ 1, 2, 3, i � j � k � i, it is sufficient for us to
have a superpotential, e.g., W ¼ A1e

�a1f
1
1 þ A2e

�a2f
2
2 þ

A3e
�a3f

3
3 , which prevents each modulus from running away to

infinity, though in T6=ðZ2 � Z2Þ orientifold, studies for the
stabilization of open string moduli are important [24].
10Then we will need a condition that ma > wa from the
condition that ReðTÞ=ReðS0Þ> 1. For details, see Ref. [8].

11Similar uplifting is possible by spontaneous SUSY breaking
sectors [25,26].
12A similar potential was discussed for twisted moduli [28].
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V ¼ VF þ E=ðT þ �TÞn ’ 0 and @TV ¼ 0.13 These provide
the following condition:

1
3a

2t2 þ 1
3ðn� 7Þatþ ð4� 2nÞ ¼ 0; (14)

where t ¼ 2ReðTÞ. For example, for n ¼ 2, this condition
is satisfied when

2ReðTÞ ¼ 5

a
¼ 5N

2�w
; (15)

and in this case the total scalar potential is given as

VðtÞ ¼ ajA0j2
3t2

½e5 þ eatðat� 6Þ�; (16)

where A0 ¼ Ae�2�mS0=N. For a small value of ReðTÞ, cor-
rections to the Kähler potential would be important. In
order to realize the minimum with ReðTÞ ¼ Oð4�Þ from
Eq. (15), we need N=w ¼ Oð10Þ �Oð100Þ. At the mini-
mum, SUSY is broken and the F term of the modulus T,

FT ¼ �eK=2KT �TDTW; (17)

is evaluated as

FT

T þ �T
¼ � 2

3
m3=2; (18)

where the gravitino mass m3=2 is given as m3=2 ¼
A0e5=2=ð2ReðTÞÞ3=2. For ReðTÞ ¼ Oð4�Þ, the F term FT

is sizable compared with the anomaly mediation. Similarly,
for n ¼ 3, the above condition (14) is satisfied when

2ReðTÞ ¼ 2þ ffiffiffiffiffiffi
10

p
a

¼ ð2þ ffiffiffiffiffiffi
10

p ÞN
2�w

; (19)

and the total scalar potential is given as

VðtÞ ¼ ajA0j2
3t3

½2ð ffiffiffiffiffiffi
10

p � 1Þe2þ
ffiffiffiffi
10

p
þ eatatðat� 6Þ�: (20)

The size of FT=ðT þ �TÞ is of Oðm3=2Þ, as is the case with
n ¼ 2.

All of the above aspects are different form the super-
potentialWtot ¼ A0e�aT with a > 0, whose scalar potential
has no local minimum. Thus, the total superpontential (13)
gives the simplest model for modulus stabilization, that is,
the superpotential with a single term. Also, this is the
simplest model from the viewpoint to realize the modulus
mediation. (See also Ref. [23].)

The real part of T can be stabilized by this simple R-
symmetric superpotential, but the potentials with and with-
out the uplifting term do not include ImðTÞ. This aspect
may be important from the viewpoint of the QCD axion.14

(See e.g. Ref. [29] and references therein.)

B. Superpotential with two terms: The KKLT type and
racetrack type

Next, we consider models of the total superpotentials
with only two terms. Among them, the KKLT type of the
total superpotential,

Wtot ¼ W0 þ Ae�ð2�=NÞðmS0þwTÞ; (21)

with m � 0, w> 0 and the racetrack type,

Wtot ¼ A1e
�ð2�=N1Þðm1S0þw1TÞ þ A2e

�ð2�=N2Þðm2S0þw2TÞ;
(22)

with ma � 0, wa > 0 (a ¼ 1, 2) are well known. The
corresponding F-term scalar potentials VF have local min-
ima determined by DTW ¼ 0, i.e.,

Re ðTÞ � �m

w
ReðS0Þ þ N

2�w
lnðA=W0Þ; (23)

for 2�w
N ReðTÞ ¼ Oð10Þ in the KKLT type and

Re ðTÞ � �m1N2 þm2N1

w1N2 � w2N1

ReðS0Þ

þ 1

2�ðw1=N1 � w2=N2Þ ln
�
A1w1N2

A2w2N1

�
; (24)

for 2�wa

Na
ReðTÞ ¼ Oð10Þ (a ¼ 1, 2) in the racetrack type,

respectively. In both models, ImðTÞ is determined at local
minima. These vacua remain even after we add the uplift-
ing potential E=ðT þ �TÞn tuning E such that these vacua
have almost vanishing energies. Both models have the
runaway behavior at ReðTÞ ! 1, and such runaway vac-
uum and local minima are separated by not high bumps.
For example, the KKLT model has a low bump, whose
height is of OðjW0j2Þ ¼ ðm2

3=2M
2
pÞ, when one tunes the

constant E in the uplifting potential such that the above
local minimum has almost vanishing vacuum energy. Thus,
the inflaton potential energy must be lower than the height
of ðm2

3=2M
2
pÞ to avoid the runaway behavior. Since it means

Hinf <m3=2 with Hinf being the Hubble parameter during

inflation [6], inflation of a very low-energy scale or a very
heavy gravitino mass is required. For such a low-energy
inflation, a conceptually new flatness problem is reintro-
duced and phenomenologically the detection of tensor type
perturbation is hopeless. On the other hand, a very heavy
gravitino is not desired from the viewpoint of weak scale
supersymmetry as a solution to the hierarchy problem.
Similarly, the racetrack model has a low bump between
the local minimum and the runaway vacuum. Such forms
of potentials would have problems, and one of them is the
overshooting problem, that is, we need the fine-tuning of
initial conditions for realizing the local minimum with a
finite value of T. Otherwise, the value of ReðTÞ runs away
to infinity, ReðTÞ ! 1. Furthermore, it would be difficult
to realize inflation models in the above types of potentials.
We will discuss this point in Sec. III C.

13In order to obtain the minimum, the condition that 1
2a

3t3 �
4a2t2 þ ð13� nðnþ1Þ

2 Þatþ 3ðnðnþ 1Þ � 6Þ> 0 must be satis-
fied, too.
14The decay constant in this model would be ofOðMpÞ or order
of the grand unified theory scale. We would need some mecha-
nism to lead to the cosmologically allowed window of the decay
constant.
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Now, let us study other types of the total superpotentials
with two terms,

Wtot ¼ W0 þ Ae�ð2�=NÞðmS0�wTÞ; (25)

with m, w> 0 and

Wtot ¼ A1e
�ð2�=N1Þðm1S0þw1TÞ þ A2e

�ð2�=N2Þðm2S0�w2TÞ;
(26)

with m1 � 0, m2, wa > 0 (a ¼ 1, 2). These may look
similar to the KKLT type and the racetrack type of super-
potentials. However, the second terms in both superpoten-
tials have positive exponents for T for certain regions of
ReðTÞ, and that leads to quite different features. The cor-
responding scalar potentials VF as well as V have barriers
around wReðTÞ � mReðS0Þ and w2 ReðTÞ � m2 ReðS0Þ,
respectively. They have local minima corresponding to
DTW ¼ 0, i.e.,

Re ðTÞ � N

2�w
lnðW0=AÞ þm

w
ReðS0Þ; (27)

for Wtot (25), and

ReðTÞ � m2N1 �m1N2

w1N2 þ w2N1

ReðS0Þ

þ 1

2�ðw1=N1 þ w2=N2Þ ln
�
A1w1N2

A2w2N1

�
; (28)

for Wtot (26). Since obviously there is a barrier of OðM4
pÞ

for small ReðTÞ because of the Kähler potential K ¼
�3 lnðT þ �TÞ, the above local minima are surrounded by
high barriers of OðM4

pÞ. Thus, the overshooting problem

would be avoided, that is, we do not need the fine-tuning to
realize the above local minima. This aspect would also be
useful for realization of the inflation as we will discuss in
Sec. III C.

Finally, among the class of superpotentials with only
two terms, let us consider the following:

Wtot ¼ A1e
�ð2�=N1Þðm1S0�w1TÞ þ A2e

�ð2�=N2Þðm2S0�w2TÞ;
(29)

with ma, wa > 0 (a ¼ 1, 2), which satisfies m1=w1 <
m2=w2, w1=N1 >w2=N2, and m1=N1 >m2=N2. We re-
strict ourselves to the region 0 & ReðTÞ & m1 ReðS0Þ=w1.
That looks similar to the racetrack superpotential, but the
sign of exponents for T is opposite. In this case, there is the
local minimum,

ReðTÞ � m1N2 �m2N1

w1N2 � w2N1

ReðS0Þ

þ �1

2�ðw1=N1 � w2=N2Þ ln
�
A1w1N2

A2w2N1

�
: (30)

Note that in this region of parameters the first term is
positive.

In the superpotential with three or more terms, the
corresponding scalar potential has a richer structure.

There are several local minima with different potential
energies in addition to the runaway vacuum and/or there
is a high barrier, whose height would be of OðM4

pÞ. That
would be useful, e.g. to realize the inflation and low-energy
supersymmetry breaking.

C. Stability during inflation

As discussed in the previous sections, Secs. III A and
III B, the behavior of the total superpotential with the
positive exponent term AeaT (a > 0) is quite different
from the total superpotential without such a term. The
bump of the scalar potential without the positive exponent
term would be much lower than the Planck scale. That
would have several problems such as the overshooting
problem and instability due to finite temperature effects
and/or vacuum energy deriving inflation. On the other
hand, the scalar potential with the positive exponent term
would have a high barrier, whose reliable height is almost
of OðM4

pÞ. That would be useful to avoid the above prob-

lems. Here, we consider the inflation model, where some
field Z other than the modulus T plays a role as the inflaton.
Suppose that we have a supergravity inflation model

with the inflaton Z, when the degree of freedom of the
modulus T is frozen (by hand). We write its potential as
VinfðZ; �ZÞ, and its value during the inflation would be much
higher than heights of the above bumps of the superpoten-
tial without the positive exponent term, e.g. VinfðZ; �ZÞ �
jW0j2 in (21). However, the inflation is difficult to be
realized when we consider the modulus T as the dynamical
field, which will spoil original inflationary dynamics, e.g.
the slow-roll condition. If the F term is dominant in this
inflation model, the total potential would behave like

VðT; �T; Z; �ZÞ � Vmodulus þ VinfðZ; �ZÞ
ðT þ �TÞ3 þ 	 	 	 ; (31)

during the inflation, where Vmodulus denotes the scalar
potential stabilizing T when VinfðZ; �ZÞ is absent. Note
that VinfðZ; �ZÞ � jW0j2. Then, T runs away to infinity. If

the D-term potential VD ¼ g2

2 D
2 is dominant during the

inflation and the T dependence appears only through the
gauge coupling g2 � 1=ðT þ �TÞ, the total potential would
behave like

VðT; �T; Z; �ZÞ � Vmodulus þ VinfðZ; �ZÞ
ðT þ �TÞ þ 	 	 	 (32)

during the inflation, and in this model T runs away to
infinity. Also, in other cases, it would be difficult to realize
the inflation model of Z for the dynamical T with a low
bump potential.
However, the situation is different when the total super-

potential includes a positive exponent term,

Ae�ð2�=NÞðmS0�wTÞ. The scalar potential Vmodulus has a
high barrier around ReðTÞ ¼ mReðS0Þ=w, and its height
is of OðM4

pÞ. Thus, ReðTÞ does not run away to infinity
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during the inflation, when its initial value is smaller than
the location of high barrier, that is, ReðTÞ would be stabi-

lized at e�ð2�=NÞ½mðS0þ �S0Þ�wðTþ �TÞ� � VinfðZ; �ZÞ during the
inflation and its mass would be larger than the inflation
Hubble value by a factor ð2�w=NÞReðTinfÞ ¼ Oð10Þ.15
Hence, the positive exponent term would be useful to
stabilize the modulus during the inflation if we have a
supergravity inflation model with the inflation Z. In the
next section, we consider the inflation model, where the
modulus is the inflaton.

IV. APPLICATION EXAMPLE: RACETRACK
INFLATION

Here, we show one application example of the super-
potential (11), discussing the inflation model, where the
modulus is the inflaton. We consider the following total
superpotential,

Wtot ¼ W0 þ
X

a¼1;2

Aae
�ð2�=NaÞðmaS0þwaTÞ

þ A3e
�ð2�=N3Þðm3S0�w3TÞ; (33)

with m1;2 � 0, m3, wa > 0 for a ¼ 1, 2, 3. When A3 ¼ 0,
the above superpotential (33) corresponds to one in the
racetrack inflation model [30]. (See also Ref. [31].)
Actually, when we choose parameters appropriately, e.g.
[30]

N1

w1

¼ 100;
N2

w2

¼ 90; W0 ¼ � 1

25 000
;

A1e
�ð2�=N1Þm1S0 ¼ 1

50
; A2e

�ð2�=N2Þm2S0 ¼ � 35

1000
;

(34)

there is a saddle point at ðReðTÞ; ImðTÞÞ ¼ ð123:22; 0Þ and
the two minima ðReðTÞ; ImðTÞÞ ¼ ð96:130;
22:146Þ for
A3 ¼ 0. Around the saddle point, the slow-roll inflation
can be realized. That is, at the saddle point, we obtain " ¼
0 and � ¼ �0:006097. The slow-roll parameters " and �
are defined as

" � M2
p

2

1

V2

�
dV

d�

�
2
; � � M2

p

1

V

d2V

d2�
; (35)

for the canonically normalized inflaton �.
Figure 1(a) shows the scalar potential around the saddle

point for A3 ¼ 0, and the section along the direction
ImðTÞ ¼ 0 is shown in Fig. 1(b). The bump around
ReðTÞ � 130 is low and the modulus ReðTÞmay overshoot
the saddle point and run away to infinity.
Now, we add the third term of the superpotential (33)

such that it lifts up the runaway direction without violating
the potential behavior around the saddle point. For ex-
ample, when we tune the parameters as16

A3 ¼ 1; m3S0 ¼ 68:8�; w3 ¼ 1; N3 ¼ 20;

(36)

the scalar potential becomes as shown in Fig. 2. The height
of the barrier around ReðTÞ � 210 is of OðM4

pÞ and that

would be helpful to avoid the overshooting problem. In
addition, at the saddle point, we obtain " ¼ 0 and � ¼
�0:006 850, that is, the potential behavior around the
saddle point, which is important to realize the inflation,
does not change. Indeed, before the inflaton rolls down to
the minimum ðReðTÞ; ImðTÞÞ ¼ ð96:130; 22:146Þ, we can
realize N ¼ 130 e-foldings when we use the initial con-
ditions ðReðTÞ; ImðTÞÞ ¼ ð123:22; 0:1Þ, which is a vicinity
of the saddle point. This number of e-folds is almost the

FIG. 1 (color online). The graph (a) shows a racetrack type scalar potential derived from Eq. (33) with A3 ¼ 0 (rescaled by 1016).
Inflation begins in a vicinity of the saddle point at ReðTÞ ¼ 123:22, ImðTÞ ¼ 0. The graph (b) shows a slice of the potential along
ImðTÞ ¼ 0.

15The ReðTinfÞmeans fixed value during inflation by Z field and
will satisfy an inequality that hReðTÞi< ReðTinfÞ & mReðS0Þ=w. 16Then this potential is valid for 68:8�=m3 < ReðTÞ< 68:8�.
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same as the one obtained in Ref. [30]. Thus, adding the
superpotential term with positive exponent is useful to lift
up the runaway direction.

Furthermore, we could construct other racetrack infla-
tion models with the following superpotential:

W ¼ W0 þ Ae
aT þ BebT; (37)

with a, b > 0. We will study such possibilities elsewhere
[32].

V. CONCLUSION AND DISCUSSION

We have studied moduli superpotentials with positive
exponents. The corresponding scalar potentials have quite
a rich structure. There are several local minima with differ-
ent potential energies and a high barrier of OðM4

pÞ as well
as the runaway vacuum. This form of the scalar potentials
has significant implications from the viewpoints of cos-
mology and particle phenomenology, e.g. the realization of
inflation models, avoiding the overshooting problem, and

destabilization due to finite temperature effects. This type
of potential would be useful to realize the inflation and
low-energy supersymmetry breaking. Thus, it would be
interesting to study a new type of inflation model with
positive exponent terms. In addition, we have shown that
the modulus can be stabilized by a single term superpo-
tential with positive exponent. That is one of the simplest
models for the modulus stabilization and SUSY breaking.
It would be interesting to apply this form of the potential to
several phenomenological and/or cosmological aspects,
e.g. the QCD axion.
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