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We study the twisted Hopf-algebra symmetries of observer-independent canonical spacetime non-

commutativity, for which the commutators of the spacetime coordinates take the form ½x̂�; x̂�� ¼ i���

with observer-independent (and coordinate-independent) ���. We find that it is necessary to introduce

nontrivial commutators between transformation parameters and spacetime coordinates, and that the form

of these commutators implies that all symmetry transformations must include a translation component.

We show that with our noncommutative transformation parameters the Noether analysis of the symmetries

is straightforward, and we compare our canonical-noncommutativity results with the structure of the

conserved charges and the ‘‘no-pure-boost’’ requirement derived in a previous study of �-Minkowski

noncommutativity. We also verify that, while at intermediate stages of the analysis we do find terms that

depend on the ordering convention adopted in setting up the Weyl map, the final result for the conserved

charges is reassuringly independent of the choice of Weyl map and (the corresponding choice of) star

product.
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I. INTRODUCTION

Over these past few years there has been strong interest
in the study of theories formulated in noncommutative
versions of the Minkowski spacetime. The most studied
possibility is the one of spacetime noncommutativity of
‘‘canonical’’ [1] form,

½x̂�; x̂�� ¼ i���; (1)

where x̂� are the spacetime coordinates (� 2 f0; 1; 2; 3g,
time coordinate x̂0) and ��� is coordinate independent. The
literature on this possibility is extremely large, because the
same formula (1) can actually represent rather different
physical scenarios, depending on the properties attributed
to ���. The earliest studies we are aware of are actually the
ones [2] in which richer properties were attributed to ���,
including some restrictions [2] on the admissible forms of
��� and the possibility of nontrivial algebraic properties
[3]. And this picture can find valuable motivation in the
outcome of certain heuristic analyses of limitations on the
localization of a spacetime point in the quantum-gravity
realm [2]. The formalism is much simpler if one analyzes
(1) assuming that ��� is a (dimensionful) number-valued
tensor [4–6], and this gives rise to a picture which could be
rather valuable, since it is believed to provide an accurate,
effective-theory description of string theory in the presence
of a certain tensor background [4–6]. The tensor back-
ground breaks the spacetime symmetries in just the way
codified by the tensor ���: the laws of physics are different
in different frames because ��� (transforming like a
Lorentz-Poincaré tensor) takes different values in different
frames. The third possibility is for ��� to be a number-
valued observer-independent matrix. This would, of

course, require the laws of transformation between inertial
observers to be modified in a �-dependent manner [7–9].
Preliminary results [10–12] suggest that this might be
accomplished by introducing a description of translations,
boosts, and space-rotation transformations based on the
formalism of Hopf algebras.
We intend to focus here on this third possibility, looking

for a deeper understanding of the structure of the Hopf-
algebra symmetry transformations and hoping to set the
stage for a more physical characterization of this novel
concept. In particular, we are interested in establishing
similarities and differences between the Hopf-algebra sym-
metries of canonical spacetimes and the Hopf-algebra
symmetries of the so-called �-Minkowski spacetime, for
which some of us recently reported a Noether analysis
[13,14].
The key ingredient which allowed [13,14] the comple-

tion (after more than a decade of failed attempts) of some
Noether analyses in the �-Minkowski case was the intro-
duction of ‘‘noncommutative transformation parameters’’
with appropriate nontrivial commutators with the space-
time coordinates. And interestingly, the form of the com-
mutators between transformation parameters and
spacetime coordinates turns out to be incompatible with
the possibility of a pure boost. We show here that analo-
gous structures appear in the analysis of the Hopf-algebra
symmetries of observer-independent canonical spacetime
noncommutativity. In this case we find that neither a pure
boost nor a pure rotation is allowed, and, combining these
results with the ones previously obtained for the
�-Minkowski case, we conjecture a (limited) universality
of a no-pure-boost uncertainty principle for Hopf-algebra
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symmetries of noncommutative Minkowski-like
spacetimes.

We also stress the significance of the fact that our
Noether analysis derives 10 conserved charges from the
Poincaré-like Hopf-algebra symmetries. This provides en-
couragement for the idea that these Hopf-algebra symme-
tries are truly meaningful in characterizing observable
aspects of the relevant theories, contrary to what was
feared by some authors (see, e.g., Ref. [15]), who had
argued that the Hopf-algebra structures encountered in
the study of canonical noncommutative spacetimes might
be just fancy mathematical formalizations of a rather trivial
breakdown of symmetry.

Guided again by intuition developed in our previous
studies of �-Minkowski spacetime [13,14,16], we also
expose an ordering issue for the so-called classical-action
description of the generators of symmetry transformations
in canonical noncommutative spacetime. While this issue
should be carefully monitored in future analyses of other
aspects of theories in canonical noncommutative space-
times, we reassuringly find that our result for the charges
has no dependence on this choice of ordering prescription.

II. TWISTED HOPF SYMMETRYALGEBRA AND
ORDERING ISSUES

Our first task is to show that the much studied [10–12]
‘‘twisted’’ Hopf algebra of (candidate) symmetries of ca-
nonical noncommutative spacetime can be obtained by
introducing rules of ‘‘classical action’’ [16] for the gener-
ators of the symmetry algebra. We start by observing that
the fields one considers in constructing theories in a ca-
nonical noncommutative spacetime can be written in the
form [1]

�ðx̂Þ ¼
Z

d4k ~�wðkÞeikx̂ (2)

by introducing ordinary (commutative) ‘‘Fourier parame-
ters’’ k�.

1

This provides for any given noncommutative function

�ðx̂Þ a ‘‘Fourier transform’’ ~�wðkÞ. In turn, this provides
the basis for introducing a ‘‘Weyl map’’ �w, which speci-

fies an auxiliary commutative function �ðcommÞ
w ðxÞ for any

given noncommutative function �ðx̂Þ:

�ðx̂Þ ¼ �wð�ðcommÞ
w ðxÞÞ � �w

�Z
d4k ~�wðkÞeikx

�

¼
Z

d4k ~�wðkÞeikx̂: (3)

It is easy to verify that this definition of the Weyl map �w

acts on a given commutative function by giving a non-
commutative function with full symmetrization (‘‘Weyl

ordering’’) on the noncommutative spacetime coordinates
[e.g., �wðeikxÞ ¼ eikx̂ and �wðx1x22Þ ¼ 1

3 ðx̂22x̂1 þ
x̂2x̂1x̂2 þ x̂1x̂

2
2Þ].

We shall stress that it is also legitimate to consider Weyl
maps with other ordering prescriptions, but before we do
that let us first use �w for our description of the relevant
twisted Hopf algebra. This comes about by introducing
rules of ‘‘classical action’’ for the generators of translations
and space rotations and boosts2:

PðwÞ
� eikx̂ � PðwÞ

� �wðeikxÞ � �wðP�e
ikxÞ ¼ �wði@�eikxÞ;

(4)

MðwÞ
��eikx̂ � MðwÞ

���wðeikxÞ � �wðM��e
ikxÞ

¼ �wðix½�@��eikxÞ: (5)

Here the antisymmetric ‘‘Lorentz-sector’’ matrix of opera-

tors MðwÞ
�� is composed as usual by the space-rotation gen-

erators RðwÞ
i ¼ 1

2 �ijkM
ðwÞ
jk and the boost generators

NðwÞ
i ¼ MðwÞ

0i . The rules of action codified in (4) and (5)

are said to be ‘‘classical actions according to the Weyl map
�w’’ since they indeed reproduce the corresponding clas-
sical rules of action within the Weyl map.
It is easy to verify that the generators introduced in (4)

and (5) satisfy the same commutation relations of the
classical Poincaré algebra:

½PðwÞ
� ; PðwÞ

� � ¼ 0; ½PðwÞ
� ;MðwÞ

��� ¼ i��½�P
ðwÞ
�� ;

½MðwÞ
��;M

ðwÞ
��� ¼ ið��½�M

ðwÞ
��� þ ��½�M

ðwÞ
���Þ:

(6)

However, the action of Lorentz-sector generators does not
comply with the Leibniz rule,

MðwÞ
�� ðeikx̂eiqx̂Þ ¼ ðMðwÞ

��eikx̂Þeiqx̂ þ eikx̂ðMðwÞ
��eiqx̂Þ

� 1
2�

��½��½�ðPðwÞ
�� e

ikx̂ÞðPðwÞ
� eiqx̂Þ

þ ðPðwÞ
� eikx̂Þ��½�ðPðwÞ

�� e
iqx̂Þ�; (7)

as one easily verifies using the fact that, from (1), it follows
that

eikx̂eiqx̂ ¼ eiðkþqÞx̂e�ði=2Þk����q
�

� �wðeiðkþqÞxe�ði=2Þk����q
�Þ: (8)

The translation generators, instead, satisfy the Leibniz
rule

PðwÞ
� ðeikx̂eiqx̂Þ ¼ ðPðwÞ

� eikx̂Þeiqx̂ þ eikx̂ðPðwÞ
� eiqx̂Þ; (9)

as one could have expected from the form of the commu-

1We use x̂ for noncommuting coordinates and x for the
auxiliary commuting ones.

2In light of (2) one obtains a fully general rule of action of
operators by specifying their action only on the exponentials
eikx̂. Also note that we adopt a standard compact notation for
antisymmetrized indices: A½��� � A�� � A��.
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tators (1), which is evidently compatible with classical
translation symmetry (while, for observer-independent
���, it clearly requires an adaptation of the Lorentz sector.)

In the relevant literature, observations of the type re-
ported in (7) and (9) are often described in terms of a Hopf
algebraic structure, specifying the coproduct

�PðwÞ
� ¼ PðwÞ

� � 1þ 1 � PðwÞ
� ;

�MðwÞ
�� ¼ MðwÞ

�� � 1þ 1 �MðwÞ
�� � 1

2�
��½��½�P

ðwÞ
�� � PðwÞ

�

þ PðwÞ
� � ��½�P

ðwÞ
�� �: (10)

Antipode and counit, the other two building blocks
needed3 for a Hopf algebra, can also be straightforwardly
introduced [18], but do not play a role in the analysis we
are reporting here.

It turns out that the coproducts (10) are describable as a
deformation of the classical Poincaré Lie algebra by the
following twist element:

F ¼ eði=2Þ���PðwÞ
� �PðwÞ

� : (11)

The form of the twist element is most easily obtained from
the structure of the star product, which is a way to repro-
duce the rule of product of noncommutative functions
within the Weyl map: eikx̂eiqx̂ � �wðeikx ? eiqxÞ. From

(8) we see that our star product must be such that eikx ?

eiqx ¼ eiðkþqÞxe�ði=2Þk����q
�
, and denoting by �F � Pð �f1 �

�f2Þ the representation of the inverse of the twist element
F�1 onA �A [whereA is the algebra of commutative
functions fðxÞ], we must have [10] �wðgðxÞ ? hðxÞÞ ¼
�wðPð �f1ðgÞÞð �f2ðhÞÞÞ, from which (11) follows.

Hopf algebras that are obtained from a given Lie algebra
by exclusively acting with a twist element preserve the
form of the commutators among generators, so that all the
structure of the deformation is codified in the coproducts.
And these coproducts are structured in such a way that for a
generatorG�, obtained by twistingG, the coproduct�� has
the form ��ðG�Þ ¼ F�ðGÞF�1.

Having established that by introducing classical action
according to �w for translations, space rotations, and
boosts one obtains a certain set of generators for a twisted
Hopf algebra, it is natural to ask if something different is
encountered if these generators are introduced with classi-
cal action according to a different Weyl map, such as the

Weyl map �1 defined by �1ðeikxÞ ¼ eik
Ax̂Aeik

1x̂1 , where
A ¼ 0, 2, 3.

A given field�ðx̂Þ with�w-Fourier transform
~�wðkÞ [in

the sense of (2)] has different Fourier transform, ~�1ðkÞ,
according to the Weyl map �1:

�ðx̂Þ ¼
Z

d4k ~�1ðkÞeikAx̂Aeik1x̂1 ; (12)

and, since eikx̂ ¼ eik
Ax̂Aeik

1x̂1eði=2ÞkAk1�A1 , the two Fourier
transforms are simply related:

~� 1ðkÞ ¼ ~�wðkÞe�ði=2ÞkAk1�A1 : (13)

Denoting by Pð1Þ
� and Mð1Þ

�� the generators with classical
action according to �1, one easily finds that they also
leave invariant the commutation relations (1). And, as
most easily verified [18] through a simple analysis of the

action of these generators on eikx̂ ¼ �wðeikxÞ ¼
�1ðeikxeði=2ÞkAk1�A1Þ, the following relations hold:

Pð1Þ
� ¼ PðwÞ

� � P�;

Mð1Þ
�� ¼ MðwÞ

�� þ 1
2�

A1½�1½�P��PA þ �A½�P��P1�:
(14)

Setting aside the difference betweenMð1Þ
�� andM

ðwÞ
�� , one

could say that the construction based on the twoWeyl maps
�w and �1 leads to completely analogous structures.
Again, one easily uncovers the structure of a twisted
Hopf algebra, the commutators of generators are unde-
formed, and all the structure of the deformation is in a
coproduct relation, which in the case of the �1 map takes
the form

�Mð1Þ
�� ¼ Mð1Þ

�� � 1þ 1 �Mð1Þ
��

� 1
2�

��½��½�P�� � P� þ P� � ��½�P���
þ 1

2�
A1½�A½�P�� � P1 þ �1½�P�� � PA

þ P1 � P½����A þ PA � P½����1�: (15)

This may be viewed again as the result of ‘‘twisting,’’
which in this case would be due to the following twist
element:

F 1 ¼ eði=2Þ�ABPA�PB
e�i�A1P

1�PA
; (16)

where A, B ¼ 0, 2, 3.

The two sets of generators fP�;M
ð1Þ
��g and fP�;M

ðwÞ
��g can

be meaningfully described as two bases of generators for
the same twisted Hopf algebra. However, we shall keep
track of the structures we encounter as a result of the

difference between Mð1Þ
�� and MðwÞ

�� , which, since these
differences merely amount to a choice of ordering con-
vention, we expect not to affect the observable features of
our theory.

III. NONCOMMUTATIVE TRANSFORMATION
PARAMETERS

Our analysis of canonical noncommutativity will be
guided by the description of symmetry transformations
for �-Minkowski spacetime noncommutativity reported
by some of us in Refs. [13,14].

3We are dealing with a Hopf algebra obtained by the ‘‘twist’’
of a known Lie algebra [10,12], and this twist gives automatic
prescriptions [17] for the coproduct, antipode, and counit that
must be introduced in order to obtain a closed Hopf algebra.
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After the failures of several other attempts, the criteria
adopted in Refs. [13,14] finally allowed us to complete
successfully the Noether analysis, including the identifica-
tion of some conserved (time-independent) charges asso-
ciated with the symmetries. We shall therefore assume that
those criteria should also be adopted in the case of canoni-
cal noncommutativity.

In Refs. [13,14] �-Poincaré symmetry transformations
of a function fðx̂Þ of the �-Minkowski spacetime coordi-
nates were described as fðx̂Þ ! fðx̂Þ þ dfðx̂Þ, where dfðx̂Þ
was parametrized as follows4:

dfðx̂Þ ¼ ið	�P� þ 
jRj þ �kNkÞfðx̂Þ; (17)

where 	�, 
j, �k are the transformation parameters (re-

spectively, translation, space-rotation, and boost parame-
ters), and P�, Rj, Nk are, respectively, translation, space-

rotation, and boost generators.
The properties of the transformation parameters 	�, 
j,

and �k were derived [13,14] by imposing the Leibniz rule
on d,

dðfðx̂Þgðx̂ÞÞ ¼ ðdfðx̂ÞÞgðx̂Þ þ fðx̂Þðdgðx̂ÞÞ: (18)

It turned out that this requirement cannot be satisfied by
standard (commutative) transformation parameters, so
Refs. [13,14] introduced the concept of ‘‘noncommutative
transformation parameters’’ as a generalization of the stan-
dard concept of transformation parameters that would
allow one to satisfy the Leibniz rule. These noncommuta-
tive transformation parameters were required to still act
only by (associative) multiplication on the spacetime co-
ordinates, but were allowed to be subject to nontrivial rules
of commutation with the spacetime coordinates. An intri-
guing aspect of the commutators between transformation
parameters and spacetime coordinates derived in
Refs. [13,14] is that they turn out to be incompatible with
the possibility of a pure boost. The structure of
�-Minkowski spacetime does allow pure translations and
pure space rotations, but when the boost parameters are not
set to zero then the space-rotation parameters also must not
all be zero.

We intend to introduce here an analogous description of
the twisted Hopf symmetry transformations of canonical
spacetimes. For the laws of transformation we adopt
Ansätze that are completely analogous to the one we
reported here in Eq. (17), which was adopted in Ref. [14]
and proved to be up to the task of derivation of
�-Minkowski conserved charges. Of course, at this early
stage of development of techniques for the Noether analy-
sis of theories with Hopf-algebra spacetime symmetries, it

would be interesting to explore other possible Ansätze, at
least for what concerns the possibility (which some of us
already stressed in Ref. [13]) of some dependence of the
results on the choice of ordering convention chosen in
Eq. (17). Rather than the form df� �aðTafÞ, with all
transformation parameters, �a, to the left and the actions
of symmetry generators on fields, ðTafÞ, to the right, one
could adopt [13] Ansätze of the type df� ðTafÞ�a or
perhaps df� ½ðTafÞ�a þ �aðTafÞ�=2. But in this first pa-
per on conserved charges for observer-independent canoni-
cal noncommutativity, we are satisfied with just showing
that such charges do exist (contrary to some conjectures in
the literature [15]), and for that purpose the use of Ansätze
of the type in Eq. (17) will turn out to be sufficient.
We start by analyzing the case of a pure translation

transformation:

dPfðx̂Þ ¼ i	�
ðwÞP�fðx̂Þ: (19)

Imposing the Leibniz rule, because of the triviality of the
coproduct of the translation generators (see previous sec-
tion), for this case of a pure translation transformation one
easily verifies that the condition imposed by compliance
with the Leibniz rule,

½fðx̂Þ; 	�
ðwÞ�P�gðx̂Þ ¼ 0; (20)

is also trivial and is satisfied by ordinary commutative
transformation parameters.
For the case of a pure Lorentz-sector transformation, we

start by considering the generators MðwÞ
�� , with classical

action according to the Weyl map �w, and introduce
once again transformation parameters analogous to the
ones in Eq. (17):

dLfðx̂Þ ¼ i!��
ðwÞM

ðwÞ
��fðx̂Þ: (21)

In this case, from the Leibniz-rule requirement (18), one
obtains

dLðfðx̂Þgðx̂ÞÞ ¼ i!��
ðwÞðMðwÞ

��fðx̂ÞÞgðx̂Þ
þ ifðx̂Þ!��

ðwÞðMðwÞ
��gðx̂ÞÞ; (22)

while from the coproduct rule �MðwÞ
�� codified in Eq. (10),

one obtains

dLðfðx̂Þgðx̂ÞÞ ¼ i!��
ðwÞ½ðMðwÞ

��fðx̂ÞÞgðx̂Þ þ fðx̂ÞðMðwÞ
��gðx̂ÞÞ

� 1
2ð�½�
���

 þ �½����

ÞðPfðx̂ÞÞ

� ðP
gðx̂ÞÞ�: (23)

Requiring that (22) be consistent with (23), one finds

½fðx̂Þ; !��
ðwÞ�MðwÞ

��gðx̂Þ ¼ �1
2!

��
ðwÞð�½�
���

 þ �½����

Þ

� ðPfðx̂ÞÞðP
gðx̂ÞÞ: (24)

This does not admit any solution of the type we are allow-
ing for the transformation parameters. In fact, in order to be

4The operator d, which implements a map from functions of
the noncommutative coordinates to objects of the form (17)
(which are products of transformation parameters with functions
of the noncommutative coordinates), is a ‘‘differential’’ in the
sense of Ref. [19], if it complies with the Leibniz rule.
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solutions of (24) the!
��
ðwÞ should be operators with a highly

nontrivial action on functions of the spacetime coordinates,
rather than being ‘‘noncommutative parameters,’’ acting by
simple (associative) multiplication on the spacetime
coordinates.

We conclude that, whereas pure translations are allowed
in canonical spacetimes, the possibility of a pure Lorentz-
sector transformation is excluded.

We find however that, while pure Lorentz-sector trans-
formations are not allowed, it is possible to combine
Lorentz-sector and translation transformations. In fact, if
we consider a transformation with

dfðx̂Þ ¼ i½	�
ðwÞP� þ!��

ðwÞM
ðwÞ
�� �fðx̂Þ; (25)

then from the Leibniz-rule requirement, one obtains

½½fðx̂Þ; 	�
ðwÞ� þ 1

2!
��
ðwÞð�½�����

 þ �½����
�ÞðPfðx̂ÞÞ�

� P�gðx̂Þ þ ½fðx̂Þ; !��
ðwÞ�MðwÞ

��gðx̂Þ ¼ 0; (26)

which can be satisfied by transformation parameters of the
type we are allowing. The properties of these transforma-
tion parameters can be inferred observing that this relation
(26) must be valid for every choice of the functions fðx̂Þ
and gðx̂Þ, which leads us to impose that the term propor-

tional to P�gðx̂Þ and the term proportional to MðwÞ
��gðx̂Þ be

separately null, thus obtaining

½fðx̂Þ; 	�
ðwÞ� ¼ �1

2!
��
ðwÞð�½�����

 þ �½����
�ÞPfðx̂Þ;

½fðx̂Þ; !��
ðwÞ� ¼ 0: (27)

These requirements imply the following properties of the
transformation parameters:

½x̂�; 	�
ðwÞ� ¼ � i

2
!��

ðwÞð�½�����
� þ ��½����

�Þ; (28)

½x̂�; !��
ðwÞ� ¼ 0; (29)

which are consistent with our criterion for noncommuta-
tive transformation parameters, since they introduce in-
deed a noncommutativity between transformation
parameters and spacetime coordinates, but in a way that
is compatible with our requirement that the transformation
parameters act only by (associative) multiplication on the
spacetime coordinates.

We conclude that Lorentz-sector transformations are
allowed but only in combination with translation trans-
formations. Indeed (28) is such that whenever !ðwÞ � 0
then also 	ðwÞ � 0. And interestingly, the translation-

transformation parameters, which can be commutative in
the case of a pure translation transformation, must comply
with (28), and therefore be noncommutative parameters, in
the general case of a transformation that combines a trans-
lation component and a Lorentz-sector component.

Since in the preceding section we raised the issue of

possible alternatives to the fP�;M
ðwÞ
��g basis, such as the

basis fP�;M
ð1Þ
��g obtained by a different ordering prescrip-

tion in the Weyl map used to introduce the ‘‘classical
action’’ of the generators, we should stress here that the
analysis of transformation parameters proceeds in exactly

the same way if one works with the basis fP�;M
ð1Þ
��g;

however, the noncommutativity properties of the transfor-
mation parameters are somewhat different. In the case

fP�;M
ð1Þ
��g one ends up considering transformations of

the form

dð1Þfðx̂Þ ¼ i½	�
ð1ÞP� þ!��

ð1ÞM
ð1Þ
���fðx̂Þ; (30)

and it is easy to verify that the transformation parameters
must satisfy the following noncommutativity require-
ments:

½x̂�; 	�
ð1Þ� ¼ � i

2
!

��
ð1Þ�

��
�� ½x̂�; !��

ð1Þ � ¼ 0; (31)

where ��
���ð�½�����

þ�½����
�Þ��A1½�A½����

�1
�þ

�1½����
�A

�þ�A½����
��1

þ�1½����
��A

�.
We shall show that, even though the differences between

MðwÞ
�� and Mð1Þ

�� require different forms of the commutators
between transformation parameters and spacetime coordi-
nates, these two possible choices of convention for the
description of the symmetry Hopf algebra lead to the
same conserved charges.

IV. CONSERVED CHARGES

We now test our formulation of twisted Hopf-algebra
symmetry transformations in the context of a Noether
analysis of the simplest and most studied theory formu-
lated in canonical noncommutative spacetime: a theory for
a massless scalar field �ðx̂Þ governed by the following
Klein-Gordon-like equation of motion:

h�ðx̂Þ � P�P
��ðx̂Þ ¼ 0: (32)

Consistently with the analysis reported in the previous
section, we want to obtain conserved charges associated
with the transformations of the form

��ðx̂Þ ¼ �d�ðx̂Þ ¼ �i½	�
ðwÞP� þ!

��
ðwÞM

ðwÞ
����ðx̂Þ; (33)

where the first equality holds because the field we are
considering is a scalar.
We take as a starting point for the Noether analysis the

action

S ¼ 1

2

Z
d4x̂�ðx̂Þh�ðx̂Þ; (34)

which (as one can easily verify [18]) generates the equation
of motion (32) and is invariant under the transformation
(33):
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�S ¼ 1

2

Z
d4x̂ð��ðx̂Þh�ðx̂Þ þ�ðx̂Þh��ðx̂Þ

� dð�ðx̂Þh�ðx̂ÞÞÞ

¼ 1

2

Z
d4x̂�ðx̂Þ½h; ���ðx̂Þ ¼ 0: (35)

Of course, the charges are to be obtained for field
solutions of the equation of motion, and therefore we can
use (32) to rewrite (35) in the following way:

�S ¼ 1

2

Z
d4x̂�ðx̂Þh��ðx̂Þ

¼ 1

2

Z
d4x̂P�½�ðx̂ÞP���ðx̂Þ � ðP��ðx̂ÞÞ��ðx̂Þ�:

(36)

Then using the commutation relations of the infinitesimal
parameters obtained in Eq. (27), one can further rewrite �S
in the following insightful manner:

�S ¼ �i
Z

d4x̂ð	ðwÞ
� P�T

�� þ!


ðwÞP�J

�

Þ; (37)

with

T�� ¼ 1
2ð�ðx̂ÞP�P��ðx̂Þ � ðP��ðx̂ÞÞP��ðx̂ÞÞ;

J�
 ¼ 1
2ð�ðx̂ÞP�MðwÞ


�ðx̂Þ � ðP��ðx̂ÞÞMðwÞ

�ðx̂ÞÞ

� 1
4ð�½��
�

� þ ��½�
�
�Þ½ðP��ðx̂ÞÞP�P��ðx̂Þ

� ðP�P��ðx̂ÞÞP��ðx̂Þ�: (38)

It is rather easy to verify that by spatial integration of the
zeroth components of the ‘‘currents’’ T�� and J�
, one
obtains time-independent charges. Denoting these charges
with Q�, K
,

Q� ¼
Z

d3x̂T0
�; K
 ¼

Z
d3x̂J0
; (39)

and using the ordering convention (2) for the Fourier
expansion of a generic field which is a solution of the
equation of motion,

�ðx̂Þ ¼
Z

d4k�ðk2Þ ~�ðwÞðkÞeikx̂; (40)

upon integration over the spatial coordinates,5 one finds

Q� ¼ 1

2

Z
d4kd4q�ðk2Þ�ðq2Þ ~�ðwÞðkÞ ~�ðwÞðqÞðq0 � k0Þq�

� �ð3Þð ~kþ ~qÞeiðk0þq0Þx̂0eði=2Þðk0þq0ÞðkiþqiÞ�i0

� e�ði=2Þk�q���� ; (41)

K
 ¼ 1

2

Z
d4kd4q�ðk2Þ ~�ðwÞðkÞ

�
iq½

@

@q
�
½�ðq2Þ ~�ðwÞðqÞ�

� 1

2
�ðq2Þð�½��
�

� þ ��½�
�
�Þk�q� ~�ðwÞðqÞ

�

� ðk0 � q0Þ�ð3Þð ~kþ ~qÞeiðk0þq0Þx̂0eði=2Þðk0þq0ÞðkiþqiÞ�i0

� e�ði=2Þk�q���� : (42)

Then integrating in d4k, and observing that inK
 the term

� 1
2 ð�½��
�

� þ ��½�
�
�Þk�q� ~�ðqÞ gives a null contribu-

tion, one obtains

Q� ¼ 1

2

Z d4q

2j ~qj�ðq
2Þ ~�ðwÞðqÞq�f ~�ðwÞð� ~q; j ~qjÞðq0 þ j ~qjÞ

� eiðq0�j ~qjÞx̂0e�ði=2Þðq0�j ~qjÞqi�0i þ ~�ðwÞð� ~q;�j ~qjÞ
� ðq0 � j ~qjÞeiðq0þj ~qjÞx̂0e�ði=2Þðq0þj ~qjÞqi�0ig; (43)

K
 ¼ i

2

Z d4q

2j ~qj�ðq
2Þ ~�ðwÞðqÞq½

�
ðq0 þ j ~qjÞ

�
�

@

@q
�
~�ðwÞð� ~q; j ~qjÞ

�
eiðq0�j ~qjÞx̂0e�ði=2Þðq0�j ~qjÞqi�0i

þ ðq0 � j ~qjÞ
�

@

@q
�
~�ðwÞð� ~q;�j ~qjÞ

�

� eiðq0þj ~qjÞx̂0e�ði=2Þðq0þj ~qjÞqi�0i
�
: (44)

One can then use the fact that �ðq2Þ imposes q0 ¼ �j ~qj,
and the presence of factors of the types ðq0 � j ~qjÞe�ðq0þj ~qjÞ

and ðq0 þ j ~qjÞe�ðq0�j ~qjÞ, to obtain the following explicitly
time-independent formulas for the charges:

Q� ¼ 1

2

Z d4q

2j ~qj�ðq
2Þ ~�ðwÞðqÞq�f ~�ðwÞð� ~q; j ~qjÞðq0 þ j ~qjÞ

þ ~�ðwÞð� ~q;�j ~qjÞðq0 � j ~qjÞg; (45)

K
 ¼ i

2

Z d4q

2j ~qj�ðq
2Þ ~�ðwÞðqÞq½

�
ðq0 þ j ~qjÞ

� @ ~�ðwÞð� ~q; j ~qjÞ
@q
�

þ ðq0 � j ~qjÞ @
~�ðwÞð� ~q;�j ~qjÞ

@q
�

�
:

(46)

V. ORDERING-CONVENTION INDEPENDENCE
OF THE CHARGES

In light of the ‘‘choice-of-ordering issue’’ we raised in
Sec. II, which, in particular, led us to consider the examples

of two possible bases of generators, the fP�;M
ðwÞ
��g basis

and the fP�;M
ð1Þ
��g basis, and especially considering the

fact that in Sec. III we found that in different bases the
noncommutative transformation parameters should have
somewhat different properties (different form of the com-5Our spatial Dirac deltas are such that

R
d3x̂eik

ix̂i ¼ �ð3Þð ~kÞ.
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mutators with the spacetime coordinates), it is interesting
to verify whether or not the result for the charges obtained

in the previous section working with the fP�;M
ðwÞ
��g basis is

confirmed by a corresponding analysis based on the

fP�;M
ð1Þ
��g basis.

When adopting the fP�;M
ð1Þ
��g basis, the symmetry

variation of a field is described by

��ðx̂Þ ¼ �dð1Þ�ðx̂Þ ¼ �i½	�
ð1ÞP� þ!

��
ð1ÞM

ð1Þ
����ðx̂Þ;

(47)

rather than (33). And going through the same types of steps
discussed in the previous section, the analysis of the sym-
metry variation of the action (34) then leads to [18] the
following formulas for the currents:

T��ð1Þ ¼ 1
2ð�ðx̂ÞP�P��ðx̂Þ � P��ðx̂ÞP��ðx̂ÞÞ; (48)

J�ð1Þ

 ¼ 1

2ð�ðx̂ÞP�Mð1Þ

�ðx̂Þ � P��ðx̂ÞMð1Þ


�ðx̂ÞÞ
þ �1

4�
��

½P��ðx̂ÞP�P��ðx̂Þ

� P�P��ðx̂ÞP��ðx̂Þ�; (49)

where we used again the compact notation���

, introduced

in Sec. III.

The current T��ð1Þ is manifestly equal to the current T��

obtained in the previous section using the P�, M
ðwÞ
�� basis.

Therefore the corresponding charges also coincide:

Qð1Þ
� �

Z
d3x̂T0ð1Þ

� ¼
Z

d3x̂T0
� ¼ Q�: (50)

The current J
�ð1Þ

 does differ from J

�

 of the previous

section in two ways: in place of the factor���

 of J

�ð1Þ

 one

finds in J�
 the factor �½
��
�

� þ ��½�
�
�, and there are

two (operator) factors Mð1Þ
�� in places where in J

�

 one, of

course, has MðwÞ
�� . Still, once again the final result for the

charges is unaffected:

Kð1Þ

 �

Z
d3x̂J0ð1Þ
 ¼ K
: (51)

This is conveniently verified by following the ordering
conventions of Eq. (12) in writing the generic solution of
the equation of motion,

�ðx̂Þ ¼
Z

d4k�ðk2Þ ~�ð1ÞðkÞeikAx̂Aeik1x̂1 ; (52)

thereby obtaining, after spatial integration, the following

formula for Kð1Þ

:

Kð1Þ

 ¼ 1

2

Z
d4kd4q�ðk2Þ ~�ð1ÞðkÞ

�
iq½

@

@q
�
½�ðq2Þ ~�ð1ÞðqÞ�

� 1

2
�ðq2Þ���


k�q� ~�ð1ÞðqÞ
�
ðk0 � q0Þ�ð3Þð ~kþ ~qÞ

� eiðk0þq0Þx̂0eði=2Þðk0þq0ÞðkiþqiÞ�i0e�ði=2Þk�q����

� e�ði=2ÞðkAk1þqAq1Þ�A1 : (53)

And, using observations that are completely analogous to
some we discussed in the previous section, one easily

manages [18] to rewrite Kð1Þ

 as follows:

Kð1Þ

 ¼ i

2

Z d4q

2j ~qj
~�ð1ÞðqÞ�ðq2Þq½

�
ðq0 þ j ~qjÞ @

@q
�

� ½ ~�ð1Þð� ~q; j ~qjÞe�iðqA�j
A
q1�j1þð1=2Þðj ~qjþq0Þ�01Þ�

þ ðq0 � j ~qjÞ @

@q
�
½ ~�ð1Þð� ~q;�j ~qjÞ

� e�iðqA�j
A
q1�j1þð1=2Þð�j ~qjþq0Þ�01Þ�

�
: (54)

This formula for Kð1Þ

 is easily shown to reproduce the

corresponding formula for K
, using the fact that, as we

showed in Sec. III, ~�ð1ÞðkÞ ¼ ~�ðwÞðkÞe�ði=2ÞkAk1�A1 .
This result establishes that the values of the charges

carried by a given noncommutative field can be treated
as objective facts, independent of the choice of ordering
prescription adopted in the analysis. Working with differ-
ent ordering prescriptions one arrives at different formulas
[for example, (46) and (54)] expressing the charges as
functionals of the Fourier transform of the fields.
However, these differences in the formulas are just such
to compensate for the differences between the Fourier
transforms of a given field that are found adopting different
ordering conventions, and therefore the values of the
charges carried by a given noncommutative field can be
stated in an ordering-prescription-independent manner.

VI. CLOSING REMARKS

The fact that we managed to derive a full set of 10
conserved charges from the twisted Hopf-algebra symme-
tries that emerge from observer-independent canonical
noncommutativity certainly provides some encouragement
for the idea that these (contrary to some expectations
formulated in the recent literature [15]) are genuine physi-
cal symmetries. And this viewpoint is strengthened by our
result on the ordering-convention independence of the
charges.
The characterization of ‘‘noncommutative transforma-

tion parameters’’ introduced by some of us in
Refs. [13,14], for the analysis of theories in
�-Minkowski noncommutative spacetime, proved to be
valuable also in the present study of canonical noncommu-
tativity. This type of transformation parameters objectively
does the job (without any need of ‘‘further intervention’’)
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of allowing one to derive conserved charges, but it still
requires some work for what concerns establishing its
physical implications and its realm of applicability. Is
this only an appropriate recipe for deriving conserved
charges? Or can we attribute to it all the roles that trans-
formation parameters have in a classical-spacetime theory?
A first step toward exploring these issues could be to
consider alternative Ansätze for the description of the
symmetry transformations, which may, in particular, adopt
different choices of ordering convention (in the sense dis-
cussed here in parts of Sec. III) with respect to the one we
chose for the Ansatz in Eq. (25) [inspired by its
�-Minkowski predecessor (17)].

It would be interesting to probe from alternative per-
spectives the obstruction we found for implementing pure
boost (and pure space-rotation) transformations. Within
our analysis this obstruction appears to be of the same
type of the obstruction for the realization of pure boosts
encountered in some previous studies [14] of theories in
�-Minkowski spacetime. Since, to our acknowledge, ca-
nonical and �-Minkowski spacetimes are the only ex-
amples of noncommutative versions of Minkowski
spacetime that one can single out with some reasonable
physical criteria (see, e.g., Ref. [20] and references
therein), if we could firmly establish that in both cases
pure boosts are not allowed, it might then be natural to
conjecture a universal ‘‘no-pure-boost principle’’ emerging
from the general structure of spacetime noncommutativity.

A lot remains to be done for a proper characterization of
the physical/observable implications of observer-

independent canonical noncommutativity. The type of non-
commutativity of transformation parameters which we
encountered might imply that the concept of angle of
rotation around a given axis is ‘‘fuzzy’’ in a canonical
spacetime, a possibility which could be further explored
by attempting to introduce explicit angular variables in
these noncommutative geometries. And, of course, it is
of paramount importance to establish by which measure-
ments a theory with observer-independent canonical non-
commutativity can be distinguished from a corresponding
classical-spacetime theory. This issue would be most natu-
rally addressed in the context of a theory of quantum fields
in the noncommutative spacetime, which we have post-
poned to future work, but even within analyses of classical
fields in canonical spacetime, such as the one we reported
here, a preliminary investigation of ‘‘observability issues’’
could be attempted. Newmeasurement-procedure ideas are
needed in order to test the novel possibility of an obstruc-
tion for the realization of a pure Lorentz-sector transfor-
mation. And more work is also needed for a proper
operative characterization of the differences between the
charges obtained here for a theory with observer-
independent canonical noncommutativity and the corre-
sponding charges of a theory in classical spacetime.
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