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We analyze renormalizability properties of noncommutative (NC) theories with a bifermionic NC

parameter. We introduce a new four-dimensional scalar field model which is renormalizable at all orders

of the loop expansion. We show that this model has an infrared stable fixed point (at the one-loop level).

We check that the NC QED (which is one-loop renormalizable with a usual NC parameter) remains

renormalizable when the NC parameter is bifermionic, at least to the extent of one-loop diagrams with

external photon legs. Our general conclusion is that bifermionic noncommutativity improves renormaliz-

ability properties of NC theories.
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I. INTRODUCTION

It is well-known [1] that noncommutative (NC) field
theories have renormalizability problems due to the so-
called UV/IR mixing [2–4]. To overcome this difficulty,
one modifies the propagator by adding an oscillator term
[5–7] in order to respect the Langmann-Szabo duality [8],
or by adding a term with a negative power of the momen-
tum [9]. Supersymmetry also improves the renormalizabil-
ity properties of NC theories (see, e.g., [10]). Some
versions of NC supersymmetry (those which are based
on the nonanticommutative superspace [11,12], see also,
[13,14]) have a nilpotent NC parameter, so that the star
product terminates at a finite order of its expansion. It was
demonstrated [15] that having a nilpotent NC parameter
does not necessarily imply supersymmetry. In [15] a nil-
potent (bifermionic) NC parameter was introduced in a bo-
sonic theory, giving rise to many attractive properties of
that model. The aim of this work is to study to which extent
having a nilpotent (or bifermionic) NC parameter influ-
ences the renormalization. We shall consider nonsuper-
symmetric theories in order to separate the effects of
nilpotency from the effects of supersymmetry.

A suitable framework for such an analysis was sug-
gested in [15], where it was proposed to consider a bifer-
mionic NC parameter

��� ¼ i����; (1)

where �� is a real constant fermion (a Grassmann odd
constant), ���� ¼ �����. The (anti-) commutators of the
NC algebra

½x�; x�� ¼ i����; f��; ��g ¼ 0; ½x�; ��� ¼ 0

(2)

satisfy the graded Jacobi identities.
Note that bifermionic constants appear naturally in pseu-

doclassical models of relativistic particles [16,17]. The

mechanism is as follows. In the pseudoclassical mechanics
of particles with spin (e.g., in the Berezin-Marinov formu-
lation [18]), the Dirac brackets of the coordinates are even
elements of the Grassmann algebra quadratic in anticom-
muting spin variables, see [19]. A quasiclassical approxi-
mation in the spin degrees of freedom may be viewed as
a result of partial quantization of the space coordinates
only. In this case, their commutators have the bifermionic
structure.
Because of the anticommutativity of ��, the expansion

of the usual Moyal product terminates at the second term,

f1 ? f2 ¼ exp

�
i

2
���@x�@

y
�

�
f1ðxÞf2ðyÞjy¼x

¼ f1 � f2 � 1

2
����@�f1@�f2: (3)

The star product, therefore, becomes local.
In [15] a bifermionic NC parameter was used to con-

struct a two-dimensional field theory model which, in
contrast to usual time-space NC models, has a locally
conserved energy momentum tensor, a well-defined con-
served Hamiltonian, and can be canonically quantized
without any difficulties. Besides, the model appears to be
renormalizable. In the present work we study whether
bifermionic noncommutativity helps renormalize theories
in four dimensions.
First we explore a model which is a four-dimensional

version of the model suggested in [15] (this is nothing else
than NC’4 with an additional interaction included to make
it less trivial). We find that for a bifermionic NC parameter
this model becomes renormalizable at all orders of the loop
expansion. We also study the one-loop renormalization-
group equations and find an infrared stable fixed point
where all couplings vanish.
From the technical point of view, having a bifermionic

NC parameter looks similar to expanding the theory in �
and keeping just a few leading terms. The ultraviolet prop-
erties of the expanded and full theories are rather different,
and, sometimes, expanded theories behave worse (see, e.g.,
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[20]). The reason is that, on one hand, the propagator in
expanded theories does not have an oscillatory behavior,
and, on the other hand, dangerous momentum-dependent
vertices appear. All these problems appear also in theories
with bifermionic noncommutativity, but there is also an
effect which improves the ultraviolet behavior. Namely,
some divergent terms vanish due to �2 ¼ 0. Here we take
the NC QED (which is one-loop renormalizable if the
standard NC parameter is used) and demonstrate that
with a bifermionic NC parameter this model remains re-
normalizable at least for one-loop diagrams with external
photons.

II. A SCALAR FIELD MODEL

The action of the model we consider in this section reads

S ¼
Z
d4x

�
1

2
ð@�’1Þ2 þ 1

2
ð@�’2Þ2 þ 1

2
ð@�’Þ2

� 1

2
m2

1’
2
1 �

1

2
m2

2’
2
2 �

1

2
m2’2

� ei

2
½’1; ’2�? ? ’ ? ’� �

24
’4
?

�
; (4)

which is a four-dimensional version of a model suggested
in [15]. The motivations for taking this particular form
of the model are as follows. Since any symmetrized star
product with a bifermionic parameter is equivalent to the
usual commutative pointwise product, we need at least two
fields, ’1 and ’2, to construct a nontrivial polynomial
interaction term. As was explained in [15], even two fields
are not enough, so we take another scalar field ’ to con-
struct the interaction term with a coupling constant e. We
also added a self-interaction term ’4

? ¼ ’ ? ’ ? ’ ? ’ to
make the dynamics more interesting. e and � are real cou-
pling constants.

In [15] it was demonstrated that a two-dimensional
model with the same Lagrange density as in (4) is renor-
malizable. It is relatively easy to achieve renormalizability
in two dimensions. For example, there is a model of NC
gravity in two dimensions for which the entire quantum
generating functional of Green functions can be calculated
nonperturbatively at all orders of the loop expansion [21]
by using methods developed earlier in the commutative
case [22]. Here, to be closer to physics, we consider a four-
dimensional model (4).

Because of our choice (1) of the NC parameter, the
interaction part of the action (4) looks rather simple,

Sint ¼
Z
d4x

�
ei

2
ð��@�’1Þð��@�’2Þ’2 � �

24
’4

�
: (5)

Now we are ready to derive the Feynman rules for our
model. The propagators are the standard propagators of
massive scalar fields. There are two vertices, the standard
’4 vertex and a new vertex, which depends on the NC
parameter (see, Fig 1).
The main observation which proves the renormalizabil-

ity of (4) is that any diagram with an internal line of either
the ’1 or ’2 field vanishes. Indeed, any internal line of
these fields inevitably connects two ‘‘new’’ vertices and,
therefore, receives a multiplier ð� � kÞ2 ¼ 0, where k is the
corresponding momentum. Power-counting renormaliz-
ability of our model follows then by standard arguments,
precisely as in the commutative case. Consider a diagram
with N vertices and 2K external legs. This diagram has
1
2 ð4N � 2KÞ ¼ 2N � K internal lines, giving the total

power of the momenta in the integrand �2ð2N � KÞ.
The momenta of the internal lines are restricted by N �
1 delta functions, where�1 corresponds to conservation of
the total momenta of all external legs. Putting all this
together, we obtain that the degree of divergence is 4�
2K, as in the commutative ’4 theory. The power-counting
divergent diagrams are the ones with two or four external
legs. The diagrams containing ’ legs only are precisely the
same as in the commutative case, and they are renormal-
ized in precisely the same way. Let us consider the dia-
grams with ’1 and ’2 legs. There are three types of such
diagrams (see Fig. 2)
The diagram on Fig. 2(a) is proportional to ðp�Þ2,

and, therefore, vanishes. The diagram on Fig. 2(b) contains

FIG. 2. The three divergent diagrams.

FIG. 1. The standard ’4 vertex and the new vertex
� ie

2 �p1�p2.
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ðp1�Þðp2�Þðp3�Þðp4�Þ ¼ 0, due to momentum conserva-
tion, p1 þ p2 ¼ p3 þ p4. The diagram of Fig. 2(c) is at
most logarithmically divergent. Therefore, their divergent
parts are proportional to the lowest power of the external
momenta, i.e., to ðp1�Þðp2�Þ. It is easy to see, that such
divergences can be removed by a renormalization of the
coupling e in the action (4). We conclude that the model (4)
with a bifermionic NC parameter is renormalizable at all
orders of the loop expansion.

The renormalization of all parameters related to the field
’ (the renormalization ofm, � and of the wave function ’)
is not sensitive to the presence of the other fields ’1 and
’2. There is no renormalization of the mass or of the wave
function ’1 or ’2. By comparing combinatoric factors
appearing in front of the relevant Feynman diagrams, and
using the standard result [23] for commutative ’4 theory in
the dimensional regularization scheme, one can derive a
relation

3
�e

e
¼ ��

�
¼ �

16�2

3

�
(6)

between infinite one-loop renormalizations of the charges
e and �. The � function for � is well-known [23]

�� ¼ ���þ 3�2

16�2
þOð�3Þ: (7)

From the relation (6) one can obtain the anomalous dimen-
sion of the coupling e, �e, using the fact that the bare
coupling is renormalization-group invariant,

�
de0
d�

¼ 0; e0 ¼ ��e

�
1þ �

16�2

1

�

�
:

Explicitly,

�
d

d�
e0 ¼ ��

�
�eþ e�

16�2

�
þ��

�
�e

�
1þ �

16�2

1

�

�

þ e

16�2

1

�
��

�
¼ 0;

which implies

�e ¼ �
�
�eþ e�

16�2
þ e

16�2

1

�
��

��
1� �

16�2

1

�

�

¼ ��eþ �e

16�2
þOðe�2Þ:

Now we can remove the regularization by setting � ¼ 0
and solve the renormalization-group equations

�
d

d�
�ð�Þ ¼ ��ð�ð�ÞÞ; �

d

d�
eð�Þ ¼ �eðeð�ÞÞ

(8)

for the running couplings �ð�Þ and eð�Þ. The initial con-
ditions are �ð�0Þ ¼ �, eð�0Þ ¼ ewith�0 being a normal-
ization scale. Since �� does not depend on e, the equation
for �ð�Þ may be solved first, giving the well-known result

�ð�Þ ¼ �

�
1� 3

16�2
� ln

�

�0

��1
: (9)

Solving then the equation for eð�Þ we obtain

eð�Þ ¼ e

�
1� 3�

16�2
ln
�

�0

��1=3
: (10)

In the limit �! 0 both couplings vanish, and we have an
infrared stable fixed point. Note, that eð�Þ vanishes slower
than �ð�Þ while approaching the fixed point.

III. NONCOMMUTATIVE QED WITH
BIFERMIONIC PARAMETER

Let us consider NC QED in Euclidean space with the
classical action

Scl ¼
Z
d4x

�
1

4g2
F̂2
�� þ � ði	�D�Þ 

�
(11)

where D� ¼ @� � iA� ?  and

F̂ �� ¼ F�� � iðA� ? A� � A� ? A�Þ;
F�� ¼ @�A� � @�A�:

The 	 matrices satisfy f	�; 	�g ¼ 2��� and are Hermi-

tian, ��� ¼ diagð1; 1; 1; 1Þ. For the ordinary NC parameter,

this theory is known to be one-loop renormalizable [24,25].
But an expansion in � can violate renormalizability al-
ready at one loop, as was demonstrated in [20] in the
framework of the Seiberg-Witten map.
Here we check whether NC QED remains renormaliz-

able at one loop if the NC parameter is bifermionic (1). To
simplify our analysis we consider the case when only  is
quantized while A� remains a classical background field.

One can check that this corresponds to retaining all dia-
grams with external photons in the Lorentz gauge. Re-
normalizability in such a simplified model means that the
one-loop divergence is proportional to the correspond-

ing term in the classical action (11), namely, to F̂2
��. The

effective action can be formally written as

W ¼ � lndet 6D ¼ � 1

2
lndet 6D 2 (12)

where 6D is the Dirac operator on noncommutative R4 in
the presence of an external electromagnetic field,

6D ¼ i	�ð@� � iA�?Þ ¼ i	�

�
@� � iA� þ i

2
�@A��@

�
;

�@ � ��@�: (13)

To avoid writing too many brackets we adopt the conven-
tion that the derivative only acts on the function which is
next to it on the right (ignoring, of course, any number of
�’s or other derivatives which may appear in between). For
example, �@A��@ ¼ ð�@A�Þ�@ is a first-order differential

operator.
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It is convenient to use the zeta-function regularization of
functional determinants [26,27], so that the regularized
effective action (12) reads Wreg ¼ 1

2 
ð 6D 2; sÞ�ðsÞ where


ð 6D 2; sÞ ¼ TrL2ðð 6D 2Þ�sÞ. In the physical limit, s! 0,
the regularized effective action diverges, and the divergent
part reads

Wdiv ¼ 1

2s

ð 6D 2; 0Þ: (14)

Usually, 6D 2 is an operator of Laplace type, so that the
heat trace

Kð 6D 2; tÞ ¼ TrL2ðe�t 6D 2Þ (15)

exists and admits an asymptotic expansion

Kð 6D 2; tÞ ’ X
k�0

tðk�nÞ=2akð 6D 2Þ (16)

as t! þ0. Here n is the dimension of the underlying
manifold. A review of the heat kernel expansion can be
found in [28] for commutative manifolds, and in [29]
for the NC case. Let us assume that the expansion (16) is
valid for the operator (13). (This will be demonstrated in
a moment.) Then, by using the Mellin transform, one
can show


ð 6D 2; 0Þ ¼ a4ð 6D 2Þ (17)

in n ¼ 4 dimensions. There is no good spectral theory for
differential operators with symbols depending on fermi-
onic parameters. To be on the safe side, we shall evaluate
(17) by two independent methods.

First, we use existing results on the heat kernel expan-
sion on NC manifolds. The operator

6D 2 ¼ �
�
ð@� � iA�?Þ2 � i

4
½	�; 	��F̂��?

�
; (18)

(where partial derivatives act all the way to the right), has
left star-multiplications only (meaning that in the eigen-
value equation 6D 2 ¼ � all background fields multiply
 from the left), and, therefore, falls into the category
considered in [30,31]. The calculations made in [30]1 are
regular at� ¼ 0 and survive an expansion to a finite order
in � [see, Eqs. (15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26) there]. Note that such a statement is not true for
operators having both right and left star multiplications
[32,33]. Anyway, we are allowed to use the results of
[30,31] for the operator (18). First, we bring 6D 2 to the
standard form

6D 2 ¼ �ðr̂�r̂� þ Ê?Þ; r̂� � @� þ !̂�?; (19)

where

!̂ � ¼ �iA�; Ê ¼ � i

4
½	�; 	��F̂��: (20)

Then, according to [30,31], the asymptotic expansion (16)
exists and the coefficient a4 reads

a4 ¼ 1

ð4�Þ2
1

12

Z
d4x trð6Ê ? Êþ �̂�� ? �̂��Þ (21)

with �̂�� ¼ ½r̂�; r̂��. By substituting (20) in (21) and

taking the trace, we obtain

a4ð 6D 2Þ ¼ 1

ð4�Þ2
2

3

Z
d4xF̂�� ? F̂��: (22)

The other method we use does not rely on the star-
product structure, but rather uses an expanded form of
the operator

6D 2 ¼ �ð@2 � 2iA�@� � ið@�A�Þ � A2Þ
� ið�@ÞA�ð�@Þ@� � i

8
½	�; 	��ð�@ÞF��ð�@Þ

� i

2
ð�@Þ@�A�ð�@Þ � A�ð�@ÞA�ð�@Þ

� 1

4
½	�; 	��ð�@ÞA�ð�@ÞA� þ i

4
½	�; 	��F��: (23)

The coefficient a4 can be read off from the seminal paper
by Gilkey [34] by identifying corresponding invariants. For
any Laplace type operator of the form

P ¼ �ðg��@�@� þ a�@� þ bÞ (24)

one identifies g�� with a Riemannian metric [to enable
such an identification the leading symbol must be a unit
matrix in spinorial indices—a property which is fortu-
nately true for the operator (23)]. There is a unique con-
nection ! such that P may be presented as

P ¼ �ðg��r�r� þ EÞ; (25)

where the covariant derivative r ¼ r½R� þ! contains
the Riemann connection and a gauge part. The zeroth-
order part reads E ¼ b� g��ð@�!� þ!�!� �!��

�
��Þ,

where ���� is the Christoffel symbol of the metric g��. One

also introduces the field strength tensor ��� ¼ @�!� �
@�!� þ ½!�;!��.
In n ¼ 4 the relevant heat kernel coefficient reads

a4ðPÞ ¼ 1

ð4�Þ2
1

12

Z
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞ

q
trð6E2 þ������g

��g��

þ ½R2 � terms�Þ: (26)

The terms quadratic in the Riemann curvature tensor are
not written explicitly. The model was initially formulated
in flat Euclidean space, so that there are no distinctions
between upper and lower indices. Whenever we need to
contract a pair of indices with the effective metric g��, the
metric is written explicitly.

1The paper [30] treated the case of a NC torus, and the case of
a NC plane was done in [31]. In the present context distinctions
between the torus and the plane are not essential.
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Let us restrict ourselves to the terms which are of zeroth
and second order in �. From Eq. (23) one can read off the
metric g��

g�� ¼ ��� þ i

2
�@ðA��� þ A���Þ;

g�� ¼ ��� � i

2
�@ðA��� þ A���Þ;

(27)

the Christoffel symbol

���� ¼ i

4
���@½��F� þ ��F� � �ð@�A� þ @�A�Þ�;

and a� and b,

a� ¼ i

8
½	; 	���@F��� þ i

2
�@@�A��

� þ A��@A��
�

� 2iA�;

b ¼ 1

4
½	�; 	���@A��@A� � i

4
½	�; 	��F�� � i@A� A2:

From these expressions we calculate the gauge connection

!� ¼ 1

2
g��ða� þ g����Þ

¼ �iA� � 1

2
ð�@ÞA�ð�AÞ þ i

4
ð�@Þ�F�

þ i

16
½	; 	���@F���;

and the trace of E2 and �2 follow

trE2 ¼ 2F̂��F̂�� þ 2iF��ð�AÞð�@ÞF��;
F̂�� ¼ F�� þ ið�@ÞA�ð�@ÞA�;

trg�g������� ¼ �4F̂��F̂�� þ 4iF��ð�@ÞF��ð�AÞ:
The Riemann tensor for the metric (27) is at least of the

second order in �. Therefore, the curvature square terms
are at least of the fourth order in � and must be neglected.

Finally, we are able to compute a4,

a4ð 6D 2Þ ¼ 1

ð4�Þ2
2

3

Z
d4xF̂��F̂��;

which is in agreement with (22).
The two methods we used above to calculate the heat

kernel coefficient a4 differ in the way we treated deriva-
tives contained in the star product. In the second method
these derivatives modify the first and the second order parts
of the corresponding differential operator, and, therefore,
the effective metric and the effective connections are
changed. According to the first method, the star product as
a whole is considered as a multiplication, i.e., as a zeroth-
order operator. This ensures regularity of the heat kernel
expansion [30,31] for small �. For more general NC
Laplacians (containing both right and left star multiplica-
tions) this regularity is lost [32,33]. However, let us con-

sider the heat operator hðtÞ ¼ e�tðP0þP2Þ where P0 does not
depend on �, while P2 is at least bilinear in the (fermionic)

parameter. Obviously, hðtÞ can be expanded in series in P2,
and convergence is not an issue, since the expansion ter-
minates. These simple arguments show that in a more gen-
eral case the second method will probably work, while the
first one will probably not.
By collecting together (14), (17), and (22), we see that

the divergent part of the effective action is proportional to

F̂2
�� and may be cancelled by a renormalization of the cou-

pling g in the classical action (11). Therefore, the model
(11) with quantized spinor and background vector fields is
renormalizable.

IV. CONCLUSIONS

In this paper we have studied the renormalization prop-
erties of NC theories in four dimensions with a bifermionic
NC parameter. We have found a scalar model which is
renormalizable at all orders of the loop expansion, thus
adding a new example to a (not very rich) family of renor-
malizable nonsupersymmetric NC theories in four dimen-
sions. We have also found that this model has an infrared
stable fixed point at the one-loop level.
We also took another model, the NC QED, which is one-

loop renormalizable with the usual NC parameter, and
checked that the introduction of a bifermionic NC parame-
ter does not destroy the one-loop renormalizability at least
in the sector with external photon legs. We conclude that
bifermionic noncommutativity is renormalization friendly.
Thus it seems to be a rather promising version of non-
commutativity, worth being taken seriously, and prompting
further studies.
The first problem to be addressed is a physical inter-

pretation of the bifermionic noncommutativity. Probably,
a more physically motivated choice would be ��� /
��½	�; 	���, where � is a Majorana anticommuting spinor
[15]. Then � may be interpreted as a spinor field whose
fluctuations are frozen by some mechanism. To push for-
ward such an interpretation one should be able to consider
a nonconstant �, and, consequently, a position-dependent
noncommutativity. Of course, in such a case corresponding
star product will not terminate at a finite order of the
expansion (cf. [35]), but the very structure of the expansion
will simplify considerably. This may be another applica-
tion of bifermionic noncommutativity.
To incorporate the bifermionic noncommutativity in the

context of noncommutative geometry one has to find a cor-
responding C� algebra. This task is complicated by the
presence of two different multiplications in the algebra and
by the second term in (3) which does not look as a bounded
operator in an L2 norm.
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