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Quasibreathers (QB) are time-periodic solutions with weak spatial localization introduced in G. Fodor

et al. in [Phys. Rev. D 74, 124003 (2006)]. QB’s provide a simple description of oscillons (very long-

living spatially localized time dependent solutions). The small amplitude limit of QB’s is worked out in a

large class of scalar theories with a general self-interaction potential, in D spatial dimensions. It is shown

that the problem of small amplitude QB’s is reduced to a universal elliptic partial differential equation. It

is also found that there is the critical dimension, Dcrit ¼ 4, above which no small amplitude QB’s exist.

The QB’s obtained this way are shown to provide very good initial data for oscillons. Thus these QB’s

provide the solution of the complicated, nonlinear time dependent problem of small amplitude oscillons in

scalar theories.
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I. INTRODUCTION

Static scalar lumps (finite energy particlelike solutions
in scalar field theories) are known to be absent in more than
two spatial dimensions (D> 2), however very long-lived
oscillating lumps have been observed in scalar theories
with rather general self-interaction potentials in spatial
dimensions D< 7 [1–8]. These states (baptized oscillons
in Ref. [6]) are of quite some interest, in spite of the fact
that they eventually decay, since oscillons evolve from
rather generic initial data in a remarkably large class of
theories.

In 2 spatial dimensions, extremely long-living breather-
type objects, with lifetimes of the order of 106 in natural
time units, have been found both in the sine-Gordon (sG)
model [9], and in the �4 model [10]. In 3 spatial dimen-
sions spherically symmetric oscillons in the �4 scalar
model with lifetimes � 104 have been found [2,3,6] and
investigated in detail [7,11–13]. Breather-like objects
(called pulsons or pseudobreathers) have been extensively
studied in 2, 3, and 4 spatial dimensions in the sine-Gordon
model [9,14–17]. Recently oscillons have been numeri-
cally observed starting from rather generic initial data in
spontaneously broken SU(2) gauge theories (for the case
when the mass ratio of the Higgs field to the W boson is
� 2), [18]. More recently 3 dimensional numerical simu-
lations have shown [19] that long-living oscillons are
present in the SUð2Þ � Uð1Þ model, i.e. in the full bosonic
sector of the standard model of electroweak interactions,
which is clearly of great potential interest. According to the
findings of Refs. [20,21] nonsymmetric oscillons evolve
towards symmetric ones (at least in 1þ 2 dimensions),
indicating that the long time evolutions will be dominated
by spherically symmetric configurations.

Oscillons are already interesting in their own right as
very long-living lumps, appearing in many physical theo-

ries, whose existence is due to the nonlinearities. They are
expected to have important effects on the dynamics of
various systems (including the Early Universe), since
they retain a considerable amount of energy. Importantly,
oscillons can easily form in physical processes such as the
QCD phase transition, where oscillon like objects in the
axion field have been observed [22], in vortex-antivortex
annihilation [23] and in domain collapse [24]. In [25]
oscillating field configurations (I-balls) were found in po-
tentials where the quadratic term dominates. Once formed,
oscillons could considerably influence the dynamics of the
system as has been suggested for the case of the bubble
nucleation process [26]. Oscillon formation has been re-
ported after supersymmetric hybrid inflation [27]. A
slightly different mechanism for the formation of long-
lived objects (quasilumps) during first order phase transi-
tions has been investigated in [28]. The persistence of
oscillons in one spatial dimension in an expanding back-
groundmetric has been reported in Ref. [29]. Most recently
in a study of semiclassical decay of topological defects
possible oscillons formation has been reported [30].
Infinitely long-lived oscillons with finite energy, com-

monly known under the name of breathers, are rather
exceptional. Simple heuristic arguments indicate that spa-
tially localized time periodic solutions (breathers) do not
exist in generic theories [31], and that under a general
perturbation breathers are unstable [32]. In 1 spatial di-
mension the absence of small amplitude breathers in a
scalar theory with �4 interaction has been demonstrated
in Refs. [33,34]. More generally it has been shown in
Ref. [35] that the only nontrivial 1þ 1 dimensional scalar
theory with real analytic self-interaction potential which
admits breather solutions is the sine-Gordon (sG) theory.
Interestingly in a recent work [36] a whole family of non-
radiating solutions of the 1þ 1 dimensional ‘‘signum-
Gordon’’ model has been found. This illustrates that one
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can expect new and surprising phenomena in theories
where the interaction potential is not smooth. Oscillating
scalar field lumps also exist in a scalar model where the
potential has a logarithmic singularity [37,38]. This poten-
tial is the only case when the temporal and spatial evolution
of field can be separated.

On the other hand, bounded, time periodic solutions of
nonlinear wave equations inRD are abundant. By perform-
ing a Fourier decomposition in time, the problem of finding
bounded, time periodic solutions is reduced to solve an
infinite set of coupled nonlinear partial differential equa-
tions (PDE’s). Even the simplest cases, such as D ¼ 1 or
spherical symmetry, when the Fourier amplitudes satisfy
an infinite set of ordinary differential equations (ODE’s),
are nontrivial to analyze, but it is clear that a plethora of
bounded solutions exist. The class of bounded, time peri-
odic solutions in RD contains families of breatherlike
objects, which have a well-defined core, outside of which
the fields fall of rapidly, but barring exceptional cases, in
the far field region there is also a radiative tail, which
corresponds to a standing wave. Because of the asymptoti-
cally standing wave asymptotics, such objects are only
weakly localized in space. The energy density of the core
is much larger than that of the tail, however, the total
energy contained in the tail is infinite. Considering such
a weakly localized object in a finite volume, V, its total

energy, E, is proportional to E / V1=D. Such objects can be
thought of as radiating lumps, whose energy loss is com-
pensated by a flux of radiation coming from infinity, ren-
dering the system time periodic. In [13] a special class has
been singled out in the huge phase space of bounded, time
periodic solutions, obtained by minimizing the energy in
the radiative tail. Solutions belonging to this class have
been called as quasibreathers (QB’s). Even if the QB’s are
not physical objects by themselves in the whole space,RD,
because of containing an infinite amount of energy, never-
theless a finite piece of them (containing the core and even
part of the tail) constitutes a very good approximation to
oscillons in aRD, as demonstrated in detail in the�4 scalar
theory in D ¼ 3 [13].

In this paper we carry out a systematic analysis of
bounded, time dependent solutions in a D dimensional
scalar theory with a rather general class of self-interaction
potential in the limit when the amplitude, ", of the solution
goes to zero. This way we obtain a rather general method to
find small amplitude QB’s. Following Refs. [31,33,35] we
derive a formal series solution in " whose terms are all
bounded both in time and space. We show that demanding
boundedness in time necessarily leads to periodicity, and
that the time and space dependence of the solution sepa-
rates. We derive a single master equation determining the
spatial dependence of the leading term in the series, which
turns out to be universal for the class of scalar theories we
consider. This equation is a nonlinear elliptic PDE with a
cubic nonlinearity. It turns out that exponentially localized

solutions of the master equation exist in spatial dimension,
D< 4. While in D ¼ 1 the solution is unique, for D> 1
there is an infinite family of exponentially localized solu-
tions. In the case of spherical symmetry, members of this
family can be characterized by the number of their nodes.
Solutions with nodes contain considerably higher energies
than the fundamental one, nevertheless they also corre-
spond to oscillons. The higher order terms in the small
amplitude series can be obtained from linear inhomoge-
neous PDE’s whose source terms are determined by the
localized solution of the master equation. Each term of the
small amplitude expansion obtained this way is exponen-
tially localized, and one could think that it represents a
breather. In general this series is, however, not convergent,
it is rather an asymptotic one. This fact reflects the absence
of ‘‘genuine’’ breathers with spatial localization. One can
think of this series as an excellent approximation of QB’s
whose radiative tail is smaller than any power of ".
Therefore the small amplitude series provides only the
exponentially localized core part of the QB. Since the
amplitude of the radiative tail is so small this does not
really matter and in fact the oscillon states corresponding
to such initial data for small values of " do have very long
lifetimes. Even the first few terms in the small amplitude
expansion yield quite good initial data for long-living
oscillon states, as demonstrated by our numerical simula-
tions for the standard �4 theory for the spherically sym-
metric case in D ¼ 2 and D ¼ 3. As already mentioned,
one of the interests of the small amplitude QB’s, is that
they can be identified with the core part of small amplitude
oscillons, which radiate very weakly, and hence they have a
very long lifetime. We have verified this by numerical
simulations, namely, we shown in dimensions D ¼ 1, 2,
3 that small amplitude QB’s do provide excellent initial
data for long-lived oscillons.
We have also computed the energy of the QB’s approxi-

mated by the small amplitude series, which corresponds to
the energy content of their core and this is of course always
finite. We have shown that the energy of the QB core is a
monotonously decreasing function of the frequency near
the mass threshold in dimensions D � 2. This implies the
absence of a critical frequency minimizing the energy in
dimensions D � 2, in agreement with known numerical
results. For D> 2 the energy of the small amplitude QB’s
increases without bound as their frequency approaches the
mass threshold. This implies the existence of a critical
frequency where the energy is minimized.
As it has been already mentioned, well (exponentially)

localized QB’s with a finite energy core exist only for D<
4. In higher dimensions, D � 4 the exponential localiza-
tion property of the core of the QB’s is lost and in fact the
very existence of a well-defined core is problematic. In
Ref. [8] it has been already suggested that oscillons cease
to exist, for dimensions greater than 5 or 6 depending on
the details of the potential. According to the findings of
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Ref. [39] the lifetimes of oscillons decreases rapidly as the
dimensionality of space is increased, and the QB picture
does not give a good description. We have pushed further
the analysis of small amplitude oscillons in higher dimen-
sions to understand the situation better. We shall present
our results in dimensions D � 4 in a sequel to this paper
[40]. Without going into too much detail, we can state the
following. Small amplitude oscillons do exist in dimen-
sions D � 4, without any apparent limitation for D. These
small amplitude oscillons in dimensions D � 4 are, how-
ever, qualitatively different from their lower dimensional
counterparts. In particular, they are not well (exponen-
tially) localized, and they cannot be described by QB’s in
the sense of Ref. [13]. The energy of higher dimensional
small amplitude oscillons also becomes quite large, there-
fore they are probably less interesting physically than
genuine QB’s, however, by choosing suitable initial data,
they can still have very long lifetimes. Their large energy
content may explain that such oscillons inD> 4 are some-
what more difficult to be found.

The plan of our paper is the following: In Sec. II first the
class of scalar models to be studied is introduced, then the
small amplitude expansion in D spatial dimension is car-
ried out. We derive the master equation without any sym-
metry assumptions, and calculate the QB solution to order
4 in the " expansion as well. The energy of the QB’s is also
computed, and in the last subsection the existence of the
critical dimension D ¼ 4 is derived above which no small
amplitude QB’s exist. Section III is devoted to a detailed
numerical analysis of the solutions of the spherically sym-
metric master equation and the explicit computations of the
higher order terms in the " expansion in spatial dimensions
D ¼ 2, 3. In Sec. IV results on the numerical time evolu-
tion of QB initial data up 6th order in " is presented for
D ¼ 2, 3.

II. THE SMALL AMPLITUDE EXPANSION

In this section we carry out a detailed analysis of the
small amplitude limit of QB’s of the NLWE (2) inD spatial
dimensions, without any symmetry assumptions. It turns
out that bounded nontrivial small amplitude solutions are
periodic in time, and that the time and spatial dependence
completely separates. In subsection II B we derive a uni-
versal elliptic PDE, referred to as the master eq. governing
the behavior of the solutions. Next, in subsection II C the
solution is obtained up to order 4 in " in a general class
potentials, and up to order 6 for theories with a symmetric
potential, such as the sine-Gordon model.

The small amplitude expansion has been originally mo-
tivated by a search for exactly time-periodic solutions of
1þ 1 dimensional �4 theory by Fourier expansion [41].
The asymptotic behavior of the leading mode has sug-
gested rescalings of the time and space coordinates with
scaling factors depending on the small parameter ". Segur
and Kruskal [33] has shown that the " expansion does not

represent a localized breather solution in the 1þ 1 dimen-
sional�4 theory, and they calculated the energy loss rate of
the approximate, very slowly decaying oscillating state.
Kichenassamy [35] has realized that it is not necessary to
perform a Fourier expansion together with the small am-
plitude expansion. Periodicity actually follows from the
assumption that the field remains bounded during the
whole time evolution. In the present paper we generalize
the method of [35] to fields evolving on 1þD dimensional
background. In this case the resulting differential equations
for the spatial dependence cannot be solved in closed form,
even if spherical symmetry is assumed. A similar expan-
sion on 1þ 1 dimensional expanding background has been
applied in [42]. The theory investigated in [42] is based on
a potential which is symmetric around its minimum, and
consequently only even coefficients appear in the Fourier
expansion of the time evolution.

A. The class of theories considered

We consider a scalar theory in a 1þD dimensional flat
Minkowski spacetime, with a general self-interaction po-
tential, whose action can be written as

A ¼
Z

dtdDx

�
1

2
ð@t�Þ2 � 1

2
ð@i�Þ2 �Uð�Þ

�
; (1)

where � is a real scalar field, @t ¼ @=@t, @i ¼ @=@xi and
i ¼ 1; 2; . . . ; D. The equation of motion following from (1)
is a nonlinear wave equation (NLWE) which is given as

��;tt þ �� ¼ U0ð�Þ ¼ �þ X1
k¼2

gk�
k;

where � ¼ XD
i¼1

@2

@x2i
:

(2)

In Eq. (2) the mass of the field is chosen to be 1, and it has
been assumed that the potential, Uð�Þ, can be written as a
power series in �, where the gk are real constants. For the
standard �4 theory this interaction potential is simply

Uð�Þ ¼ 1
8�

2ð�� 2Þ2; U0ð�Þ ¼ �� 3
2�

2 þ 1
2�

3;

(3)

i.e. g2 ¼ � 3
2 , g3 ¼ 1

2 and gi ¼ 0 for i � 4 in this case.

Note that in our previous paper, Ref. [13], a different
scaling of the�4 potential has been used, making the value

of the mass to bem ¼ ffiffiffi
2

p
instead of the present valuem ¼

1 used in this paper. For the sine-Gordon potential Uð�Þ ¼
1� cosð�Þ, we have g2i ¼ 0 and g2iþ1 ¼ ð�1Þi=ð2iþ
1Þ!.
The energy corresponding to the action (1) can be writ-

ten as

E ¼
Z

dDxE; E ¼ 1
2ð@t�Þ2 þ 1

2ð@i�Þ2 þUð�Þ; (4)

where E denotes the energy density.
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B. Derivation of the master equation

We are looking for small amplitude solutions, therefore
we expand the scalar field, �, in terms of a parameter " as

� ¼ X1
k¼1

"k�k: (5)

In order to obtain nontrivial solutions of Eq. (2) their
characteristic scale must also become "-dependent. The
size of smooth configurations is expected to increase for
decreasing values of ", therefore it is natural to introduce
new spatial coordinates by the following rescaling

�i ¼ "xi: (6)

One must also allow for the " dependence of the time-scale
of the configurations, therefore a new time coordinate is
introduced as

� ¼ !ð"Þt: (7)

!ð"Þ is assumed to be analytic near the threshold, ! ¼ 1,
and it is expanded as

!2ð"Þ ¼ 1þ X1
k¼1

"k!k: (8)

After these rescalings Eq. (2) takes the following form

�!2 €�þ "2�� ¼ �þ X1
k¼2

gk�
k: (9)

In Eq. (9) and in the rest of this section an overdot stands
for the derivative with respect to the rescaled time coor-
dinate, �, and all spatial derivatives are taken with respect
to the rescaled coordinates �i. Substituting the " expansion
of the scalar field, �, and of !2 into (9) the equations
determining the first three lowest order terms are:

€� 1 þ�1 ¼ 0; (10)

€� 2 þ�2 þ g2�
2
1 þ!1

€�1 ¼ 0; (11)

€�3 þ�3 þ 2g2�1�2 þ g3�
3
1 � €�1 � ��1 þ!1

€�2

þ!2
€�1 ¼ 0: (12)

As it is clear from Eqs. (10)–(12) the time dependence has
been separated from the spatial one, and we have obtained
a set of harmonic oscillator equations. Now the solution of
Eq. (10) is clearly given by

�1 ¼ p1 cosð�þ �Þ; (13)

where p1 and � are functions of the spatial variables �i.
That is, the lowest order term of the solution is just a
harmonic oscillator in time, with frequency ! ¼ 1 (note
that this is the samewith respect to both time coordinates, �
and t at this order). This distinguished value of the fre-

quency,! ¼ 1, corresponds to the threshold determined by
the mass of the scalar field.
As Eq. (11) is a linear inhomogeneous equation, its

solution is easily obtained:

�2 ¼ p2 cosð�þ �Þ þ q2 sinð�þ �Þ
þ g2

6
p2
1½cosð2�þ 2�Þ � 3�

þ!1

4
p1½2� sinð�þ �Þ þ cosð�þ �Þ�: (14)

Since we are looking for bounded solutions, it is necessary
to impose!1 ¼ 0. This amounts to demanding the absence

of the resonance term !1
€�1 in Eq. (11). Substituting the

solutions for �1 and �2 into Eq. (12) one obtains yet
another forced oscillator equation for the time dependence
of �3:

€�3 þ�3 þ ðp1��þ 2r�rp1Þ sinð�þ�Þ
� ½�p1 þ!2p1 þ �p3

1 � p1ðr�Þ2� cosð�þ�Þ
þ 1

12
p3
1ð2g22 þ 3g3Þ cosð3�þ 3�Þ

þ g2p1½q2 sinð2�þ 2�Þ þ p2 cosð2�þ 2�Þ þ p2� ¼ 0;

(15)

where we have introduced the combination

� ¼ 5
6g

2
2 � 3

4g3; (16)

which will play an important rôle in the following. For the
standard �4 theory (3), this parameter takes the value � ¼
3=2. For the sine-Gordon potential � ¼ 1=8.
As already explained we are looking for bounded solu-

tions, therefore it is necessary to guarantee the absence of
resonance terms also in Eq. (15). The vanishing of the
coefficient of the sinð�þ �Þ terms implies

rðp2
1r�Þ ¼ 0; (17)

and from this equation one immediately derives the follow-
ing conditionZ

�
�rðp2

1r�Þ ¼
Z
@�

�p2
1n � r��

Z
�
p2
1ðr�Þ2 ¼ 0:

(18)

Assuming that the integrand of the boundary term vanishes
sufficiently fast we conclude thatr� ¼ 0. Our assumption
is quite reasonable since we are looking for bounded
solutions in time and localized in space. Therefore �
must be a constant which can be absorbed by a shift in
the time variable. From now on we set � ¼ 0. Then the
vanishing of the coefficient of the resonance term propor-
tional to cos� implies

�p1 þ!2p1 þ �p3
1 ¼ 0: (19)

A necessary condition that this equation admit exponen-
tially localized solutions is!2 < 0, which we shall assume
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from now on. In this case we can set !2 ¼ �1 by a
simultaneous rescaling of �i and p1. This rescaling corre-
sponds to choosing a different parametrization " for a
solution with a specific frequency !.

By an analytic redefinition of the expansion parameter,
", and by rescalings, all coefficients !i can be made to
vanish for i > 2. This means that by a suitable transforma-
tion of the expansion parameter, ", one can always achieve
that the following relation between the frequency, !, and
the expansion parameter, ", holds:

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
: (20)

In terms of the physical time coordinate, t, the configura-
tion oscillates with frequency !. This is the physically
important frequency characterizing these periodic solu-
tions. Apart from the leading order behavior, the precise
choice of how " depends on ! is physically irrelevant.

After setting !2 ¼ �1, it is easy to see [multiplying
(19) with p1 and integrating] that � > 0 is a necessary
condition for the existence of bounded solutions vanishing
at infinity. Assuming � > 0, by rescaling p1 one obtains

�S� Sþ S3 ¼ 0; S ¼ p1

ffiffiffiffi
�

p
: (21)

This master equation constitutes an important result equa-
tion of our paper. Quite remarkably Eq. (21) is universal for
the class of theories considered, and the dependence on the
parameters of the interaction potential enters only through
the combination � when reconstructing �1.

C. Higher orders in the " expansion

Let us now turn to the determination of some higher
order terms in the " expansion. Armed with the simple
form of the solution for p1 it is now easy to obtain the
explicit time dependence of �3 by integrating Eq. (15):

�3 ¼ q3 sin�þ p3 cos�þ p1

3

�
1

8

�
4

3
g22 � �

�
p2
1 cosð3�Þ

þ g2½q2 sinð2�Þ þ p2ðcosð2�Þ � 3Þ�
�
: (22)

In �3 two new functions, p3, q3 have appeared. The
absence of resonances at fourth order yields two condi-
tions:

�q2p
2
1 � q2 þ�q2 ¼ 0; (23)

which is the vanishing condition of coefficient of the term
of sin�, and another one

3�p2p
2
1 � p2 þ �p2 ¼ 0; (24)

which ensures the vanishing of the coefficient of cos�.
Let us first note, that quite remarkably q2 / p1 actually

solves Eq. (23). Therefore by shifting the time coordinate
by a suitable term of order " we can eliminate q2. In higher
orders of the " expansion, we have verified that up to order
"9 the vanishing of the coefficient of the terms proportional

to sin� leads to equations which are equivalent to Eq. (23).
We conjecture that this is in fact true to all orders, i.e. by a
suitable choice of the origin of the time coordinate � one
eliminate all terms proportional to sin�. This observation is
quite important because it implies that all small amplitude
QB-type solutions necessarily possess time reflection sym-
metry. This is of course what one would expect based on
simple physical intuition. Let us point out here, that all
long-lived oscillon configurations observed in time-
evolution simulations appear to show this symmetry to a
very high degree. Of course oscillons are not exactly time
reflection symmetric because they radiate some energy to
infinity. Moreover, time reflection symmetry has been
usually implicitly assumed when performing Fourier de-
composition in order to find time-periodic states. For all
these reasons it would be of interest to find a mathematical
proof of the validity of time reflection symmetry for peri-
odic solutions of NLWE’s.
There is no reason to expect that Eq. (24) admits

bounded solutions vanishing at infinity apart from those
corresponding to the translational and rotational symme-
tries, therefore from now on we set p2 � 0. The vanishing
of the coefficient of the cos� term in the fifth order equa-
tion yields

�p3 �p3 þ 3�p2
1p3 þg22

9
p1ð17p2

1 þ 19ðrp1Þ2Þ

þ p5
1

216
ð378g4g2 þ 36�g22 � 280g42 � 9�2 � 135g5Þ ¼ 0:

(25)

This is a linear, inhomogeneous equation. It can be brought
to a much simpler form by introducing a new variable Z
instead of p3:

p3 ¼ 1

�2
ffiffiffiffi
�

p
��

1

24
�2 � 1

6
�g22 þ

5

8
g5 � 7

4
g2g4 þ 35

27
g42

�
Z

� 1

54
�g22Sð32þ 19S2Þ

�
: (26)

Then Eq. (25) takes the compact form

�Z� Zþ 3S2Z� S5 ¼ 0: (27)

For the specific example of the standard �4 theory this
relation is simply

p3 ¼
ffiffiffi
2

p

3
ffiffiffi
3

p
�
65

8
Z� 8

3
S� 19

12
S3
�
: (28)

Integrating the corresponding equation for �5 a new un-
known function, p5 appears, in analogy to the third order
case.
To summarize, we have obtained the solution of the

NLWE (2) in the small amplitude expansion up to order
four. All terms have harmonic time dependence, and the
spatial part is determined by the two universal elliptic
PDE’s, Eqs. (21) and (27). There is no obstacle to continue
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the computation to higher orders, the general formulae
become then quite complicated of course. The small am-
plitude expansion of the solution of Eq. (9) up to order four
for general interaction potentials can be written as:

�1 ¼ p1 cos� (29)

�2 ¼ 1
6g2p

2
1ðcosð2�Þ � 3Þ (30)

�3 ¼ p3 cos�þ 1
72ð4g22 � 3�Þp3

1 cosð3�Þ (31)

�4 ¼ 1
360p

4
1ð3g4 � 5g2�þ 5g32Þ cosð4�Þ � 1

72ð8g2ðrp1Þ2
� 12g4p

4
1 þ 16g32p

4
1 � 24g2p1p3 � 23g2�p

4
1

� 8g2p
2
1Þ cosð2�Þ � g2p

2
1 � g2p1p3 þ 1

6g2�p
4
1

� g2ðrp1Þ2 þ 31
72g

3
2p

4
1 � 3

8g4p
4
1: (32)

A considerable simplification occurs when the scalar
self-interaction potential, Uð�Þ, is symmetric around its
minimum� ¼ 0. In this case g2i ¼ 0 for all i ¼ 1; . . . , and
all even power terms in the " expansion vanish, i.e. �2i ¼
0 for i ¼ 1; . . . . Since �2n contains only terms of the form
cosð2k�Þ with k ¼ 1; . . . n, and �2nþ1 contains only terms
proportional to cosðð2kþ 1Þ�Þ; with k ¼ 1; . . . n, this also
implies that for such symmetric potentials no even terms in
the Fourier expansion arise. In this case p3 is proportional
to Z and the equation determining the function p5 becomes
reasonably simple, it can be written as

�p5 � p5 þ 3S2p5 þ SZ

576
ffiffiffiffi
�

p ð3Z� 5S3Þ
�
15g5
�2

þ 1

�
2

þ S3

32
ffiffiffiffi
�

p ½ðrSÞ2 � S2�

� S7

576
ffiffiffiffi
�

p
�
315g7
�3

� 60g5
�2

þ 1

�
¼ 0: (33)

Then

�5 ¼ p5 cos�þ S5

1152
ffiffiffiffi
�

p
�
3g5
�2

þ 2

�
cosð5�Þ

� S

384
ffiffiffiffi
�

p
��

30g5
�2

þ 2

�
SZþ 12S2 � 12ðrSÞ2

�
�
15g5
�2

� 2

�
S4
�
cosð3�Þ: (34)

These expressions encompass, for example, the case of the
sine-Gordon model. The corresponding equations for the
�4 theory, in the case of spherical symmetry, will be listed
in Sec. III.

As we have already stressed several times, it is by now
well understood that spatially localized breathers of the
NLWE (2) do not exist in RD for general analytic poten-
tials, even if a general mathematical proof is known only in
D ¼ 1. Let us note here, that a remarkable example inD ¼
1 admitting nonradiating breather-type solutions in the

framework of ‘‘ V’’-shaped (nondifferentiable) potentials
evades this theorem [36]. In the case of analytic potentials,
where the theorem applies there is still a point to be
stressed. Assuming that exponentially decreasing solutions
of the master equation exist, all higher order terms in the
small amplitude expansion are also exponentially local-
ized, and they are periodic in time. As we have learned
from the example of the one-dimensional �4 theory [33]
the series solution in powers of " does not converge to a
breather, it is an asymptotic series. Nevertheless, to a given
order in the expansion for sufficiently small values of " the
corresponding sum yields a configuration with a spatially
well localized core. This time-periodic configuration cor-
responds to a QB whose standing wave tail is smaller than
"n for any n > 0. As it will be shown in Sec. IV such QB’s
constitute an excellent approximation to an oscillon.

D. The energy

In this subsection we evaluate the energy of small am-
plitude QB’s, in D dimension. In the rescaled coordinate
system, �, � , the energy of a configuration, Eq. (4) can be
written as

E ¼ 1

"D

Z
dD�E;

where E ¼ 1

2
ð1� "2Þð@��Þ2 þ "2

1

2
ð@i�Þ2 þUð�Þ:

(35)

Because of the periodic time dependence we shall compute
the energy density averaged over a period,

�E ¼ 1

2�

Z 2�

0
d�E; (36)

and in this subsection the bar over a quantity will denote its
time average. Using the results of the " expansion,

Eqs. (29)–(31), the time averaged energy density, �E, up
to fourth order in " can be written as

�E ¼ "2

2�
S2 � "4

216�3
½�S2ð64g22 þ 27�ÞðS2 þ 2Þ

� 54�2ðrSÞ2 � SZð135g5 � 378g2g4 þ 280g42

� 36�g22 þ 9�2Þ�: (37)

For the �4 theory the time averaged energy density takes a
much simpler form:

�E ¼ "2

3
S2 þ "4

�
1

6
ðrSÞ2 � 41

108
S2ðS2 þ 2Þ þ 65

36
SZ

�
S4:

(38)

Using the above results, the time averaged total energy,
�E, has the following " expansion in D dimension:

�E ¼ "2�D E0

2�
þ "4�DE1; where E0 ¼

Z
dD�S2; (39)

and E1 denotes the integral of the 4th order term in the
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energy density, (37) in RD. As one sees from Eq. (39) the
leading order behavior of the time averaged total energy is
�E / "2�D. This implies that the "-dependence of �E
changes essentially at D ¼ 2. In dimensions D> 2 the
total energy increases without any bound for decreasing
values of ". In D ¼ 2 �E tends to a constant, and for D< 2
it goes to zero as " ! 0. This also implies that the core
energy of a QB in dimensions D> 2 should exhibit a
minimum for some frequency !m. In fact, from Eq. (39)
one immediately finds

!2
m ¼ 1� "2m ¼ 1� 1

2�

ðD� 2ÞE0

ð4�DÞE1

: (40)

The above result can only be taken as an indication of the
minimum even if "m 	 1. The numerical values of E0 and
E1 will be given for the fundamental solutions in D ¼ 2
and D ¼ 3 in case of spherical symmetry in Sec. III. We

note that in D ¼ 1 Sð�Þ ¼ ffiffiffi
2

p
sechð�Þ, therefore E0 ¼ 4,

and the leading order " dependence of the energy is given
as �E ¼ 2"=�þOð"3Þ.

E. Critical dimension D ¼ 4

In the following we present some simple, although
important results concerning the existence of spatially
localized solutions of the master equation, (21). First spa-
tially localized solutions of (21) which have a limit for
j ~xj ! 1 should decrease exponentially, since those tend-
ing to a constant exhibit oscillatory behavior. Next we
show that exponentially localized solutions of Eq. (21)
cannot exist for D � 4, implying that small amplitude
QB’s exist only in dimensions D< 4. To see this, consider
the following virial identity derived from Eq. (21):

hð ~rSÞ2i þ hS2i � hS4i ¼ 0; (41)

where hfi :¼ R
dDxfðxÞ. Furthermore, another virial iden-

tity can be found from the scaling transformation ( ~x ! �~x)

of the action corresponding to (21),
R
dDx½ð ~rSÞ2 þ S2 �

S4=2�:

ðD� 2Þhð ~rSÞ2i þDhS2i �D

2
hS4i ¼ 0: (42)

From Eqs. (41) and (42) one immediately finds

2hS2i þ 1
2ðD� 4ÞhS4i ¼ 0; (43)

which equality can only be satisfied if D< 4.
The absence of small amplitude QB’s in more than 3

spatial dimensions does not imply per se that oscillons
would be also absent if D � 4. As a matter of fact we
have found that small amplitude oscillons exist in dimen-
sions D � 4, without any apparent limitation on D.
Interestingly, by choosing suitable small amplitude initial
data with increasing energy content one can achieve that
they have very long lifetimes. Various arguments and
numerical studies of spherically symmetric oscillons in

D-dimensions by Gleiser [8] led him to conjecture the
existence of a critical value of D (Dc * 6) above which
no long-lived oscillon states would exist. The existence of
higher dimensional small amplitude oscillons contradict
this conjecture, however, since these contain very large
amount of energies it may have been less obvious to start
with such initial data. Also for a fixed amount of energy,
the lifetime of oscillons exhibits a significant decrease for
D> 3. The results of the recent work [39] show that in
D ¼ 5 the lifetimes becomes as small as a few 100 (in
natural units). Let us mention here another interesting
point. In Ref. [8] a very long-lived oscillon state has
been exhibited in D ¼ 6. This object is not in the class
of small amplitude oscillons, and should be understood
better. In any case this provides another example how rich
the phase space of time dependent solutions of a simple
nonlinear wave equation can be.

III. SOLUTION OF THE MASTER EQUATION FOR
SPHERICAL SYMMETRY

In this section we consider spherically symmetric con-
figurations, in which case the PDE’s determining the func-
tions S, Z, etc. reduce to ODE’s. This simplifies of course
significantly the problem of solving both the master equa-
tion and the associated inhomogeneous ones. We exhibit
some numerical solutions of these equations in D ¼ 2 and
inD ¼ 3. We present the solution of the " expansion in the
�4 theory up to 6th order.
For spherically symmetric configurations the master

equation (21) takes the form

d2S

d�2
þD� 1

�

dS

d�
� Sþ S3 ¼ 0; (44)

where S is a function of the rescaled radial coordinate � ¼
"r. We note that this equation for D ¼ 3 has been already
applied for small amplitude oscillating states in the papers
of Bogolyubskii and Makhankov [3,4,43]. The argument in
these papers is based on the Fourier decomposition method
of [41], although there was no attempt made to go to higher
than "2 order in the expansion. In 1 spatial dimension the
solution of (44) vanishing at infinity is unique, it is given

explicitly by S ¼ ffiffiffi
2

p
sech�. In contradistinction to D ¼ 1,

for higher dimensions, 1<D< 4, the solution vanishing
at � ! 1 is not unique. Our numerical analysis indicates,
that for 1<D< 4 there is a family of localized solutions
of Eq. (44) indexed by the number of zeros (nodes) of Sð�Þ.
On Figs. 1 and 2 the first few members of this solution
family are exhibited in dimensionsD ¼ 2 andD ¼ 3. As it
has been shown in the previous section, there are no
solutions of Eq. (44) forD � 4, which tend to zero for � !
1. The values of S at the origin � ¼ 0 are tabulated in
Table I. It can be already expected that the fundamental
solution (without nodes), S0, is physically the most impor-
tant. Indeed, as we shall show later, oscillons correspond-
ing to solutions of the master equation with nodes contain
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more energy and have significantly smaller lifetimes than
those corresponding to nodeless ones, and they are also less
stable.

In the case of spherical symmetry, Eq. (27) determining
the third and fourth order terms in " takes the form

d2Z

d�2
þD� 1

�

dZ

d�
� Zþ 3S2Z� S5 ¼ 0: (45)

Since Eq. (45) is linear for the unknown, Z, with inhomo-
geneity S5 it admits a globally regular solution for any S
regular at � ¼ 0 and vanishing for � ! 1. Some numeri-
cal solutions of Eq. (45) are plotted on Figs. 3 and 4 in two
and three dimensions.

Solution for the �4 theory up to 6th order

As already discussed, the equation determining the func-
tion, Z, is universal for any choice of the potential Uð�Þ.
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 0  2  4  6  8  10  12  14
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ρ
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S3

FIG. 1. Solutions of the master equation (44) in D ¼ 2 with 0,
1, 2 and 3 nodes.
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FIG. 2. Solutions of the master equation (44) in D ¼ 3 di-
mensions with 0, 1, 2 nodes.

TABLE I. Central values of S for two and three dimensions.

number of nodes Sð� ¼ 0Þ
D ¼ 2 D ¼ 3

0 2.206 200 86 4.337 387 68

1 3.331 989 27 14.103 584 40

2 4.150 094 04 29.131 211 58

3 4.829 602 82 49.360 709 88
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FIG. 3. Solutions of Eq. (45) for Z corresponding to Swithout
and with 1 node in two dimensions. The central values are
1.450 76 and 0.601 857 5, respectively.
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FIG. 4. Solutions of Eq. (45) in three dimensions. The central
values of Z are �16:174 03 and �1290:021.
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Of course the terms in the small amplitude expansion do
depend on the potentialUð�Þ, and the reconstruction of�3

from Z using Eqs. (26) and (31) depends of the values of
the coefficients gi. In the rest of this paper we shall
concentrate on the �4 theory given by Eq. (3) and provide
the results of numerical simulations only for this case.

The equation determining the fifth order term in the
small amplitude expansion, �5, through p5 can be written
as

d2Y

d�2
þD� 1

�

dY

d�
� Y þ 3S2Y þ 4225

64
SZð3Z� 5S3Þ

þ 53DðD� 1Þ
�2

S

�
dS

d�

�
2 þ 106ðD� 1Þ

�
S2ðS2 � 1Þ dS

d�

þ 8287

48
S7 ¼ 0; (46)

where Y is defined by

p5 ¼
ffiffiffi
2

p

9
ffiffiffi
3

p
�
Y � 1235

32
S2Zþ 1503

16
Z� 24S� 17

3
S3

þ 11525

384
S5
�
: (47)

The solution of Eq. (46) corresponding to the fundamental
solution of the master Eq. S0, has the central value Y0ð0Þ ¼
�87:78183 in two dimensions and Y0ð0Þ ¼ 60 356:38 in
D ¼ 3. These actual values themselves have no physical
significance in view of the scaling freedom in the definition
of the function Y. Clearly, any constant could have been
included in front of the term Y in Eq. (47) without modify-
ing the final results for the magnitude of the �i’s in the "
expansion.

In the following we list the values of the terms of the
small amplitude expansion, �i, up to order six in the �4

theory, at the moment of time reflection symmetry, � ¼ 0:

�ð�¼0Þ
1 ¼

ffiffi
2
3

q
S (48)

�ð�¼0Þ
2 ¼ 1

3S
2 (49)

�ð�¼0Þ
3 ¼ 1

9

ffiffiffi
2

3

s �
195

8
Z� 8S� 35

8
S3
�

(50)

�ð�¼0Þ
4 ¼ 1

9

�
65

4
SZþ 10

�
dS

d�

�
2 þ 8

3
S2 � 125

12
S4
�

(51)

�ð�¼0Þ
5 ¼ 1

9

ffiffiffi
2

3

s �
Y � 2275

64
S2Zþ 1503

16
Z� 15

32
S

�
dS

d�

�
2

� 24S� 595

96
S3 þ 11 285

384
S5
�

(52)

�ð�¼0Þ
6 ¼ 2

27

�
SY þ 325

4

dS

d�

dZ

d�
þ 4225

128
Z2 � 8125

48
S3Z

þ 6589

48
SZ� 9223

32
S2
�
dS

d�

�
2 þ 88

3

�
dS

d�

�
2

þ 26DðD� 1Þ
�2

�
dS

d�

�
2 þ 52ðD� 1Þ

�
SðS2 � 1Þ dS

d�

þ 92

9
S2 � 35 417

288
S4 þ 21 467

144
S6
�
: (53)

These expressions are presented because they are needed to
provide good initial data for numerical time-evolution
simulations. They will be actually used in Sec. IV. Since

the range of �ð�¼0Þ
k increases very much with k, we depict

the product "k�ð�¼0Þ
k for some chosen values of " on

Figs. 5–8. On these four figures S0 and S1 are depicted in
spatial dimensions D ¼ 2 and D ¼ 3. In a given order in
the expansion, the value of " which brings the contribution
of lower order terms approximately to the same order of
magnitude will be used as an upper estimate for the range
of ", below which our expansion can still be expected to
yield an acceptable approximation. Generally speaking, in
an asymptotic expansion for a given (small) value of the
expansion parameter one can only sum terms up to such an
order until which all terms decrease. A simple comparison
of a QB corresponding to the fundamental solution, S0,
with another one corresponding to a solution with a single
node, S1, (compare Figs. 5 and 6), makes one to guess that
oscillons containing fundamental QB’s are likely to have
better stability properties and longer lifetimes, than those
containing QB’s based on solutions with nodes, at least in
D ¼ 3. Our numerical simulations show that this is indeed
the case (see Sec. IV). In two dimensions the difference
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FIG. 5. Contributions of the various "k order terms corre-
sponding to S0 to the scalar field, �, at the moment of time
symmetry � ¼ 0 in D ¼ 3. The value of " has been chosen to
be 0.125, which brings the contribution of different terms to the
same order. This value of " is an obvious upper limit for the
range of validity of our expansion.
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between the longevity and stability properties of oscillons
containing QB’s corresponding to solutions of the S
Eq. (21) with nodes is much less pronounced than in three
spatial dimensions. It is also apparent that the " expansion
is valid for significantly larger values of " in the two
dimensional case than in the three dimensional one.

In order to get an independent check on the validity of
the small amplitude expansion, we have compared some
QB’s up to order 6, with time-periodic QB’s obtained
previously by solving the NLWE (2) directly by Fourier
mode decomposition [13]. On Figs. 9 and 10 we depict �
computed to various orders in the "-expansion, and also the
QB obtained in Ref. [13] by Fourier mode decomposition
using very precise spectral methods provided by the
LORENE library [44]. The chosen frequencies correspond
to two states investigated in detail in [13]. Note that in

Ref. [13] the interaction potential had a different scale, and

the resulting threshold frequency was
ffiffiffi
2

p
as opposed to the

value 1 in the present paper. The periodic quasibreather
solutions chosen from Ref. [13] have frequencies ~! ¼
1:412 033 and ~! ¼ 1:398 665 (see Figs. 5 and 19 in
[13]). In the present conventions these values correspond
to frequencies ! ¼ 0:998 458 1 and ! ¼ 0:989 005 5. The
corresponding values of " are: " ¼ 0:055 510 39 and " ¼
0:147 878 7. It can be seen on Figs. 9 and 10 that for higher
values of ", only the leading term or eventually the first two
orders in the " expansion give meaningful results. The
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FIG. 6. "k�ð�¼0Þ
k corresponding to the solution S1, with one

node in the three dimensional case. Because of the sharp increase
of the higher order functions, the value of " was chosen to be
much smaller as for S0.
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k corresponding to S0 in the two dimensional

case. It can be seen that the value of the expansion parameter "
can be chosen here significantly larger than for D ¼ 3.
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FIG. 9. Comparison of the value of the field at � ¼ 0 obtained
by the " expansion to a very precise value obtained by a high
order Fourier mode decomposition for ! ¼ 0:989 005 5, i.e. for
" ¼ 0:147 878 7 in D ¼ 3. For such a large value of " the first
order approximation gives a remarkably good estimate in the
neighborhood of the central region. The contributions of the
higher order approximations make this agreement increasingly
worse in the neighborhood of the origin. Farther away from the
center, however, the third order approximation gives the best,
although not a very precise, result.
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relatively big error in these approximation cannot be de-
creased because of the asymptotic nature of the expansion.
As " gets smaller and the frequency ! gets closer to the
basis frequency 1, more and more higher order terms in the
" expansion can be used, and then the error also decreases
significantly. It can be seen on Fig. 10 that for the smaller
value " although the second, third and fifth order expansion
gives an improvement on the lower order values, the fourth
and sixth order expansion turns out to be less precise than
the third and fifth order expressions. We think that this is
related to the fact that the signature of the various order

contributions changes in pairs, i.e. �ð�¼0Þ
k is positive at the

center r ¼ 0 for k ¼ 1; 2; 5; 6 . . . and negative for k ¼
3; 4; 7; 8 . . . , as can be seen on Fig. 5. This alternating
improving and not improving behavior for odd and even
orders happens only for intermediate values of ". For even
smaller ", e.g. for " ¼ 0:01, the error decreases monotoni-
cally when increasing the order of the expansion.

Let us now come back to the "-expansion of the energy
(39) computed in subsection II D. From our results it is not
difficult to calculate numerically E0 and E1 in D ¼ 2 and
D ¼ 3. We find that the first two terms of the time averaged
energy in the "-expansion are given as:

�E � 3:9003þ 26:9618"2; for D ¼ 2;

�E � 6:299 08="þ 264:262"; for D ¼ 3:
(54)

This simple estimate Eq. (54) gives for the minimal value
of "m � 0:15428, which is unfortunately already too large
to be trusted. Nevertheless it can still be accepted as the

indication that such a minimal value,!m exists. For spheri-
cally symmetric oscillons in D ¼ 3 it has been found that
!m � 0:9659 [13]. This value of !m corresponds to "m �
0:2588 which value is way too large for us.

IV. TIME EVOLUTION

The precision and applicability of the " expansion can
be checked by using the field value obtained by the expan-
sion as initial data for a numerical time-evolution code
applied for our spherically symmetric scalar field system.
The field value given by Eqs. (5) and (48)–(53) at � ¼ t ¼
0 has been used as initial data for various " values inD ¼ 2
and D ¼ 3 spatial dimensions.
The applied numerical evolution code is a slightly modi-

fied version of the fourth order method of line code used in
[13] for studying oscillons and developed in [45] for the
study of spherically symmetric magnetic monopole con-
figurations. The spatial grid is chosen to be uniform in the
compactified radial coordinate R defined by

r ¼ 2R

	ð1� R2Þ ; (55)

where 	 is a constant which may be chosen differently
though for each choice of initial data. The whole range 0 �
r <1 of the physical radial coordinate r is mapped to the
interval 0 � R< 1, avoiding the need for explicitly de-
scribing boundary conditions at some large but finite ra-
dius. Since the characteristic size of the obtained oscillon
states is inversely proportional to " we chose 	 to be
proportional to ", keeping the oscillon occupying approxi-
mately the same region of the R coordinate range. For the
actual calculations we used 	 ¼ 5".
Using the radial coordinate R the field equation (2) takes

the form

�;tt ¼ 	2ð1� R2Þ3
2ð1þ R2Þ

� ð1� R2Þ
2ð1þ R2Þ�;RR � Rð3þ R2Þ

ð1þ R2Þ2 �;R

þ ðD� 1Þ
2R

�;R

�
�U0ð�Þ: (56)

Introducing the new variables

�t ¼ �;t (57)

�R ¼ �;R (58)

the problem can be interpreted as a system of first order
differential equations comprising (56) and (57), and�R;t ¼
�t;R for the three variables �, �t and �R. If Eq. (58) holds

at t ¼ 0 it is preserved by the evolution equations, thereby
it can be considered as a constraint. The third term inside
the bracket on the right-hand side of (56) cannot be directly
evaluated numerically at the center R ¼ 0. At the grid
point corresponding to the center this term is calculated
using the identity
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lim
r!0

�;R

R
¼ lim

r!0
�;RR: (59)

Since the evolution of the initial data provided by the "
expansion show different characteristics in two and three
dimensions we discuss these cases in different subsections.

A. D ¼ 3

In the three dimensional case, there are two different
types of oscillons, a stable and an unstable type. For the
frequency range !<!c � 0:967, (i.e. for " > 0:255),
oscillons are essentially stable. They slowly radiate energy
while their frequency, !ðtÞ, increases towards a critical
frequency!c. When they reach the critical frequency these
oscillons quickly disintegrate. Oscillons with!>!c have
one unstable decay mode, which can be suppressed by fine-
tuning the initial data. Close to the critical value of the
parameter in the initial data there can be two types of decay
mechanisms. One with a uniform outwards motion of the
energy, and another through a temporary collapse to a
small central region (see Fig. 4 of [13]). In order to find
such oscillons a very precise fine-tuning of the initial data
is necessary. For example in Ref. [13] this fine-tuning
corresponded to the classical bisection procedure between
two values of a suitable parameter in the initial data yield-
ing the two different decay modes. This way one obtains
very long-living oscillon states. The frequency of these
unstable oscillons decreases slowly towards !ðtÞ ! !c.

Remarkably the energy of QB’s as a function of their
frequency exhibits a minimum at ! � !c, (see Fig. 3 in
[11], Fig. 17 of [13] and Fig. 4 of [39]). Therefore it is
natural to assume that the two types of oscillons are also
distinguished by the same behavior of their energy as
function of their oscillon frequency.

Unfortunately, for values of " * 0:25 initial data ob-
tained by the " expansion are well outside the domain of
validity of the expansion. Using such initial data gives
decaying states which are unrelated to the stable oscillons
with the intended frequency. On the other hand the "
expansion yields good initial data for small amplitude
unstable oscillons. As a matter of fact the initial data
obtained this way makes a fine-tuning procedure of the
initial data unnecessary. For sufficiently small values of
" & 0:1 the first few terms (at least to order Oð"3Þ) of the
series expansion (48)–(53) already yield sufficiently good
initial data which evolve directly into long-living oscillon
states.

For the three dimensional case we present the results of
the time evolution of the initial data obtained up to order
six by the " expansion method for two choices of ". First
we consider initial data obtained from the basic solution S0
of (21) without nodes. As we will see shortly, those with
nodes provide initial data that leads to states of signifi-
cantly shorter lifetimes. Figure 11 shows the upper enve-
lope of the central value of � for the initial data belonging
to " ¼ 0:055 510 39. The decay method changes with the

order of the initial data. The amplitude peak on the evolu-
tion of the third and fourth order initial data reflects the
collapsing decay mode of the oscillon state. Although, in
general, lifetimes get longer for higher order approxima-
tions, this increase is not monotonic. In accordance with
Fig. 10, approximations of order 4 and 6 do not bring any
improvement on the functions of order 3 and 5. The time
evolution of the frequency of the oscillations is plotted on
Fig. 12. It can be seen that for this relatively high value of "
the first and second order approximation yields a shorter
living state quite different from the expected oscillon state
with frequency ! ¼ 0:998 458 1. On Fig. 13 the evolution
of a higher frequency initial data with " ¼ 0:01 is shown. It
can be seen that initial data with smaller " provide evolu-
tions with significantly longer lifetimes. Figure 14 shows
the initial stage of the evolution. It can be seen that
although for a short time the error of the solution decreases
monotonically with the order of the " expansion, for longer
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time intervals the fourth and sixth order approximations do
not improve on the previous order expansions.

Figure 15 shows the evolution of various order initial
data with the same " as on the previous two figures but

obtained by using the solution S1 of (21) with one node.
These are localized, although big size, high energy states.
The time dependence of these states is rather complex;
there is an interior part (r & 50) which after an initial time
interval ( � 1200) shows a complicated time dependence,
with large amplitude variations. The time dependence of
these states is close to being periodic for recurrent time
intervals. In the initial stages these initial data still evolve
close to a periodic configuration with the expected fre-
quency, although it can stay near this state much shorter
time than the evolution obtained using S0. Decreasing the
value of " increases the lifetime of these states as well, but
they still remain less stable and shorter living than the basic
states obtained by using S0.
On Fig. 16 the value of � as a function of the radial

coordinate r for subsequent time slices is plotted during a
half period of oscillation. For comparison, the correspond-
ing configuration obtained from initial data generated with
S0 is also presented. In case of S1 initial data the value of�
remains very close to zero at r ¼ 51:3. The energy density
E also remains very small at this radius, as can be seen on
Fig. 17. The total energy of the S0 configuration is E ¼
632:536, while the S1 configuration contains significantly
more energy, E ¼ 4061:88.

B. D ¼ 2

In two spatial dimensions there seems to be a single type
of oscillon, which is stable. Once formed, oscillons inD ¼
2 are not observed to disintegrate. Their energy is a mono-
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tonically decreasing function of the frequency. This ex-
plains the observation that all oscillon states are stable.
When they slowly emit energy by radiation they gradually
evolve through oscillon states with increasing frequency,
!ðtÞ ! 1. Oscillons evolve from a wide range of initial

data, by shedding most of the surplus energy quickly
during an initial state. However, in general, a slow periodic
change can be seen on the amplitude and on the frequency
of the oscillations, indicating a breathing type oscillation
of the oscillon as a whole. The amplitude of this low
frequency ringing depends on how closely the initial data
approaches a given pure oscillon state.
Since, similarly to the D ¼ 3 case, evolutions from

initial data obtained using solutions S of (21) with nodes
produce less stable and shorter living states, in the follow-
ing we present only numerical simulations corresponding
to the nodeless solution S0. In two dimensions the validity
domain of the expansion extends to significantly higher
values of ". On Fig. 18 we present time evolution results
for " ¼ 0:218 632 corresponding to ! ¼ 0:975 807 3. It
can be seen that at this high " value the approximation
improves up to order tree in the expansion, and then starts
to deteriorate in line with the asymptotic nature of the
expansion.
On Fig. 19 the " ¼ 0:055 510 39 case is presented. This

value of " with the corresponding frequency ! ¼
0:9984581 has been also studied in D ¼ 3 dimensions. In
this intermediate frequency case the first and second order
initial data still lead to decaying evolutions. Higher order
expansions tend to give improving approximations of an
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oscillon state ringing with a low frequency. Increasing the
order of the expansion gives smaller amplitude ringings,
thereby approaching a pure, very closely periodic, oscillon
state. Similarly to the three dimensional case, initial data of
order four and six yield larger error than order three and
five, which, however, does not change the overall improv-
ing tendency of the initial data.

The average amplitude and average frequency of the
presented states show extremely little change even for

much longer time periods than the ones presented on the
figures. The amplitude of the low frequency ringing de-
creases very slowly too. To determine the rate of change of
the amplitude and the corresponding slow energy loss by
radiation would require very high resolution numerical
runs requiring excessive processor time.

V. CONCLUSIONS

Small amplitude oscillons represent an important subset
of time dependent long-living lumps. We have shown that
they can be very well approximated by an asymptotic
series of localized, time-periodic breatherlike objects (qua-
sibreathers). We have developed a general framework to
derive the asymptotic series expansion of small amplitude
quasibreathers, in D spatial dimensions in general scalar
theories. We have derived a 2nd order elliptic PDE with a
cubic nonlinearity, universal for scalar models, which de-
termines these quasibreathers. Our numerical investiga-
tions in �4-theories show that the small amplitude
quasibreathers obtained by the asymptotic expansion, pro-
vide excellent initial data for long-living oscillons in D ¼
2 and D ¼ 3. We have found that small amplitude QB’s do
not exist for D � 4.
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