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We consider a modification of the standard Einstein theory in four dimensions, alternative to R. Jackiw

and S.-Y. Pi, Phys. Rev. D 68, 104012 (2003), since it is based on the first-order (Einstein-Cartan)

approach to general relativity, whose gauge structure is manifest. This is done by introducing an additional

topological term in the action which becomes a Lorentz-violating term by virtue of the dependence of the

coupling on the space-time point. We obtain a condition on the solutions of the Einstein equations, such

that they persist in the deformed theory, and show that the solutions remarkably correspond to the classical

solutions of a collection of independent 2þ 1-dimensional (topological) Chern-Simons gravities. Finally,

we study the relation with the standard second-order approach and argue that they both coincide to leading

order in the modulus of the Lorentz-violating vector field.
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I. INTRODUCTION

A few years ago, a modification of Maxwell’s electro-
magnetism in four dimensions was proposed which con-
siders a kind of Chern-Simons (CS) term in the actionR
dx4V��

����A�F��, where Lorentz symmetry is explic-

itly broken by an external vector V� [1]. There is growing
literature on the study of this proposal and its consequences
[2–4].

In a recent work [5], we emphasized that broken Lorentz
symmetry (abbreviated as BLS) could be obtained from
physically realistic background configurations in nonlinear
relativistically invariant electrodynamics. It was also
pointed out that standard Chern-Simons terms (in 2þ 1
dimensions [5]) are automatically present in a BLS action
when we search for planar features (thus turning dimen-
sional reduction unnecessary). In fact, the BLS action is
actually a CS theory in ð2þ 1Þ dimensions embedded in
ð3þ 1Þ dimensions, and by itself, it does not encode any
information on the field dependence in the direction of the
external (for instance, spacelike) vector V: if z is its affine
parameter, i.e. V ¼ @

@z , then we get a foliation of the space-

time in ð2þ 1Þ hypersurfaces �z parameterized by z (and
V is orthogonal to each hypersurface1). Therefore, the BLS
action may be written as

SBLS ¼
Z L

0
dzSCS½AðzÞ;�z�; (1)

where

SCS½AðzÞ;�z� ¼
Z
�z

LCS ¼
Z
�z

AðzÞ ^ dAðzÞ; (2)

is the Chern-Simons action for the 1-form gauge field AðzÞ
on a three-dimensional manifold�z. Thus, the dependence
of this field on the parameter z is not determined by this
theory. It only has to satisfy usual convergence conditions.
For example, if the interval ð0; LÞ extends to ð�1;þ1Þ,
AðzÞ has to be an square-integrable function [A 2 L2ðIRÞ].
In this sense, we can interpret the BLS action simply as a
sum of Chern-Simons theories on manifolds �z.
Remarkably notice that this describes an eventual situation
of confinement of the electromagnetic field (photon) into a
ð2þ 1Þ manifold, which does not result from a constraint
of the charged matter into a planar sample. The present
approach actually constitutes an attempt of naturally ex-
tending to gravity some of these ideas.
On the other hand, a Chern-Simons modification of

gravity in four dimensions via a BLS term was recently
introduced by Jackiw and Pi [6] in a similar way as that for
electrodynamics. However, this approach is based on the
second-order formulation of general relativity, where the
most relevant aspects of the Maxwell theory, related to the
gauge structure, are hidden. This is actually the main
motivation to construct an alternative formulation where
the gauge structure is emphasized. In this work, we con-
sider a BLS/CS deformation of standard gravity but alter-
natively based on first-order Cartan’s formalism (see
appendix), which treats the Riemann tensor as an standard
gauge curvature for the spin connection which may be
viewed as a gauge variable of SOð1; 3Þ. Thus, such an
approach is closer in spirit to the Chern-Simons deforma-
tion of electrodynamics [1].
Another very important subject naturally appears in this

context: to determine the space of solutions of the de-
formed theory and, in particular, under what conditions it
contains solutions of standard Einstein gravity. The ques-
tion of the persistence of the GR-solutions in the second-
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1Notice that if the space-time (or the space-time region con-
sidered in the integration) is simply connected, the condition of
existence of this z coordinate is equivalent to gauge invariance of
the action, namely, dV ¼ 0.
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order approach to CS modified gravity was analyzed from
the beginning [6] up to recently [7,8]. The role played by
the Pontryagyn constraint (a vanishing Pontryagyn gravi-
tational index) in this problem was first emphasized in
Ref. [8], where it was observed that the satisfaction of
this constraint is a necessary but not sufficient condition
for these solutions. This issue is also analyzed in this paper
and it is shown that the problem presents some different
aspects in the present Einstein-Cartan (EC) formulation. In
particular the constraint found for persistent GR solutions
is different here but the Pontryagyn constraint is also a
necessary condition as in the standard (second-order) con-
text [8]. It may be argued furthermore that this problem (in
EC) reduces to solve a collection of pure (source-free)
Chern-Simons theories.

This article is organized as follows. In Sec. II we de-
scribe and analyze the BLS/CS deformation of the
Einstein-Cartan gravity, as well as some interesting fea-
tures of the model. In Sec. III, we study the persistence of
the standard GR solutions and observe the relation of this
problem with pure Chern-Simons theories in 2þ 1 dimen-
sions. In Sec. IV, we discuss the relation between the
Einstein-Cartan formulation with the standard second-
order approach [6]. Final remarks are given in Sec. V.

II. CHERN-SIMONS MODIFIED GRAVITY

The model we are going to consider here assumes a
nonlinear (but relativistic) dynamics which induces a
modification of this kind (BLS) on the standard Einstein
theory [6,9]. In this sense, it may furthermore be argued
that BLS/CS does not need to be introduced by hand, but it
can naturally appear in some realistic physical situations;
for example, according to the philosophy adopted for
electrodynamics [5], in the presence of background gravi-
tational fields and/or when nonuniform distributions of
matter are considered.

We use both the abstract index notation2 (see appendix
for more details), and forms notation (by omitting abstract
subindices) whenever it is convenient. So, greek indices
�; �; . . .3 denote the element of a tetrad (vierbein) basis
ðeaÞ�, and consequently components of any tensor in this
basis.

Let us propose a Chern-Simons modification of general
relativity (GR) in the first-order formalism (see appendix):

S½e; w;�� ¼ 1

2�2

Z
M
dx4ðe� ^ e� ^ �R��

� �R�
� ^ R�

�Þ þ Smatter½��; (3)

where the two-form R�
� ¼ dw�

� þ w�
� ^ w�

� is defined

as the SOð1; 3Þ field strength for the gauge field w
�
a . The

scalar � is, in principle, a pointwise function of the geome-
try observables, as the curvature tensor, and of some ‘‘ex-
tra’’ (matter) field, denoted by �. So, the embedding
variable is considered itself as a dynamical variable rather
than a fixed external quantity.
Notice then that Lorentz symmetry is preserved in a

fundamental sense. If one assumes that a more fundamen-
tal unified theory of matter and gravity is nonlinear, a
saddle point expansion about background solutions typi-
cally shall give origin to a BLS term (and even spontaneous
BLS terms) with a fixed � of this form [10]. This may be
easily argued for sufficiently generic nonlinear (toy) theo-
ries, in similar ways as that for electrodynamics (see
Ref. [5]).
The first term corresponds to the usual GR action in the

Einstein-Cartan representation, the second one is the
Chern-Simons modification, where we have assumed that
the coefficient � may depend on the curvature components
and/or other (matter) fields. In such a sense, this term
should be viewed as an interaction term. This may be
expressed as

SBLS=CS ¼ 2
Z
M
dx4ðd� ^LCSÞ; (4)

where

Ka � ð�LCSÞa � �abcdðw�
b R

�
cd � 1

3w
�
b w

�
cw

�
d Þ (5)

is the Chern-Simons current density whose divergence is
the topological number called the gravitational Pontryagyn
density, P � �RR � ð�abcdR�

abR
�
cdÞ.

For simplicity, let us restrict ourselves to the case when �
does not depend on the geometric variables ea�, w�

a .

Notice, remarkably, that the matter fields are coupled to
the geometry through the topological term. The third term
of (3) encodes the dynamics of the field � but we do not
give here any explicit Lagrangian [5,11]. However, we can
notice that. in general, the gravitational Pontryagyn density
constitutes a source (which is a topological charge) for the
equation of motion of �, i.e.,

1

�0ð�Þ
�
ra

�
	Lmatter

	ra�

�
� 	Lmatter

	�

�
¼ P; (6)

where we have assumed that � is only a pointwise function
of � but not of its derivatives.
In particular, if we consider the simplest case, where

� � �, and Smatter½�� is a Klein-Gordon field on a curved
space-time:

ðrara �m2Þ� ¼ P: (7)

Let us notice that if Smatter � 0, by varying the action
with respect to � one obtains an additional equation of
motion which constrains the space-time geometry, the
Pontryagyn constraint:

2Abstract index notation is a mathematical notation for tensors
and spinors, which uses indices to indicate their type. Thus the
index is not related to any basis or coordinate system.

3Which are raised and lowered with the Minkowski metric

��.
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P ¼ 0: (8)

Because this action is dipheomorphism invariant, the
Einstein tensor Ga

�, defined in the EC approach as the

variation of the action with respect to tetrad, is divergence
free in this case. Simultaneously, so as in the second-order
formulation [6], one may verify here that raG

a
� /

Pea�@a�, when the CS contribution to the covariant diver-

gence (through the equation of motion for the spin con-
nection found below) is taken into account. Therefore, the
Pontryagyn constraint implies that this divergence vanishes
[8]. In contrast, if one adopts a more genuine BLS point of
view, where � is assumed to be an external arbitrary
function of the space-time point (a background field), in
principle this constraint could not be satisfied, and con-
sequently, the conservation of energy momentum of the
system would be also violated. However, there is no con-
ceptual problem with this fact, which is consistent with
translation/boost symmetry violation caused by the pres-
ence of the BLS-external field. So the Pontryagyn con-
straint must be imposed if one requires that this symmetry
be respected by the theory.

Let us now derive the equations of motion for the
geometry. Varying the action with respect to e�a , we have

ea�R
��
ab ¼ �2T0�

b ¼ �2e�T0
ab; (9)

where one has defined T0
ab

:¼ Tab þ gabðTcdg
cdÞ=2, Tab

being the energy-momentum tensor, and the constant � is
related to the gravitation constant G by �2 ¼ 8�G, defin-
ing the torsion as

�� ¼ D ^ e� ¼ d ^ e� þ w�
� ^ e�; (10)

which vanishes in the standard formulation, constituting
the second Einstein-Cartan equation. Here, varying the
modified action with respect to w�

a , we obtain the equation

D ^� ðe� ^ e�Þ ¼ ð2�2Þ2d� ^ R��: (11)

The totally antisymmetric tensor, defined in the tangent
space, may be expressed as ����� ¼ �ðe� ^ e� ^ e� ^
e�Þ. Using this and multiplying both sides by e�e�, one

may finally express the equation of motion (11) in terms of
the torsion tensor as follows:

���
��e

� ^�� ¼ 2�2d� ^ R��: (12)

This determines the effect of the Chern-Simons deforma-
tion on the space-time geometry, through an effective
contribution to the torsion which depends on the external
field. So Eqs. (9) and (12) describe the deformed geometry
in the Einstein-Cartan formulation. The same equations of
motion might have been obtained directly by writing the
Einstein-Hilbert term of the action as

SEH½e; w� ¼ 1

2�2

Z
M
dx4�����e

� ^ e� ^ R��; (13)

which is convenient for some purposes. The corresponding
vacuum Einstein equation is obtained by varying this ac-

tion with respect to e�, and it may be expressed as

�����e
� ^ R�� ¼ 0: (14)

We would like to end this part by pointing out some
interesting features of this deformed theory. The gradient
of the external field � dictates the coupling of the geometric
degrees of freedom with the SOð1; 3Þ Chern-Simons three-
form Lagrangian

L CS ¼ w�� ^ R�� � 1
3w

�
� ^ w�

� ^ w�
�

� w ^ R� 1
3w ^ w ^ w: (15)

In fact, this may be expressed as ra� � gVa ( ) g �
jd�j � 0) where V is a unit vector in the gradient direction.
In the limit g ! 0 the standard torsion-free Einstein theory
is recovered and, on the other hand, when g ! 1, the CS
term governs the action. In fact, notice that if g is consid-
ered constant and we rescale the spin connection and define
the new gauge variable A�� � ffiffiffi

g
p

w�� and the field

strength F�� � dA�� þ g�1=2A�� ^ A��
��, the action

(3) may be written as (from now on, we set 2�2 ¼ 1)

SGrav½e; A;�� ¼
Z
M
dx4

�
g�1=2e� ^ e� ^ �F��

þ 1

2
V ^

�
A ^ F� 2

3
A ^ A ^ A

��
; (16)

where we have used the equivalence of the second term of
(3) with the Chern-Simons form. Thus, we can see in this
expression that, in this case, the first term is a first-order
perturbation in ð ffiffiffi

g
p Þ�1 while the second one, the Chern-

Simons action, may be seen as the free kinetic term.4 On
each level (hyper)surface of the field �ðxÞ, we have a
Chern-Simons action for the connection A�� in the group
SOð1; 3Þ, which contains the Lorentz-Poincaré group
ISOð1; 2Þ if the dreibein E�̂ð�̂; �̂ ¼ 0; 1; 2Þ, the gauge field
associated with translations on those hypersurfaces, is
identified with A�̂;3 and the spin connection A�̂ �̂ is the
gauge field associated with SOð1; 2Þ. This theory precisely
describes 3d gravity, which is exactly soluble (there are no
local degrees of freedom) and its quantization is well
understood [14]. By a similar argument as that for electro-
dynamics (shown in the introduction), we may observe that
in the large g limit, the theory becomes a collection of
decoupled Chern-Simons gravities on 2þ 1-dimensional
manifolds which foliate the space-time. The function �
parameterizes these hypersurfaces and g ¼ j�0j encodes
their density/number. So when this number is large the
theory approaches to the CS description.5 Apart from

4In this sense, we would like to mention the possibility of
recovering a theory with local degrees of freedom from a
topological theory through a perturbative method [10], in the
sense of Ref. [12] and also [13].

5This might be interpreted as a sort of macroscopic limit where
the microscopic components are 2þ 1-dimensional manifolds
equipped with CS theories. The reader may find some close
perspectives in Ref. [15].
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this, in the next section we are going to show that precisely
these planar Chern-Simons theories describe the Einstein
persistent solutions of the theory.

All these features naturally suggest an important ques-
tion: Could this strong/weak behavior be interpreted as
duality in some proper sense? Clearly, the answer could
have some relation with the paradigmatic holographic
principle (t’ Hooft 1993 and Susskind 1995) [16], and it
shall be carefully analyzed elsewhere [17].

III. BLS/CS DEFORMATION AND PERSISTENCE
OF SOLUTIONS

Let us study some remarkable aspects of the problem of
the persistence of the solutions in the Einstein-Cartan
formulation of BLS/CS gravity. Consider the decomposi-
tion of the curvature

R�� ¼ r�� ^ V þ F̂��: (17)

Let us assume that � parameterizes a foliation of the space-
time f��g�, thus we may define the projector h � g� V �
V (h � gþ V � V, if V is timelike) on each hypersurface

of the foliation, then F̂��
ab � hcaR

��
cd h

d
b � hRh. Therefore,

Eq. (12) may be expressed as

���
��e

� ^�� ¼ d� ^ F̂��: (18)

If we also consider the spin-connection one form decom-
position w�� � ���V þ ŵ��, where ŵ��

a � hcaw
��
b �

hw��, and use dV ¼ dd� ¼ 0, one may verify that F̂��

is the curvature corresponding to the connection ŵ��.
Notice that the theory is torsion free if and only if the

connection ŵ��, defined on the 2þ 1-embedded surfaces
and valued on the de Sitter group in 2þ 1 dimensions,
SOð1; 3Þ, is such that the associated (three-dimensional)
curvature vanishes, which reveals an interesting structure
related to the homotopic classes. So, the condition for the
persistence of EC solutions reads

F̂ �� ¼ 0; (19)

where F̂�� is the curvature of the gauge variable corre-
sponding to the de Sitter group of the �� submanifolds.
Therefore, such connections on appropriate foliations, rep-
resent torsion-free geometries, and furthermore (remark-
ably), the solutions coincide with those of standard
Einstein theory. Then, for each solution of (19), a pure
gauge, one has a persistent solution. They may be ex-
pressed as

ŵ �
� ¼ G��dG�1

��; G 2 SOð1; 3Þ: (20)

Finally, one may use this form in the EC equations, and in
this way, to construct all the GR (torsion-free) preserving
solutions. Therefore, we may remarkably notice the exis-
tence of a correspondence between the classical solutions
of pure source-free Chern-Simons theories (defined on a
collection of 2þ 1-dimension manifolds which foliate the

space-time) and the solutions of standard Einstein gravity,
provided that they are solutions of full theory (3).
Notice that the present preserving condition is stronger

than the Pontryagyn constraint P ¼ 0. In fact, by using
(17), we get

P ¼ �ðR�� ^ R��Þ
¼ ððr�� ^ V þ F̂��Þ ^ ðr�� ^ V þ F̂��ÞÞ
¼ �ð2r�� ^ V ^ F̂�� þ F̂�� ^ F̂��Þ; (21)

which vanishes for the solutions of (19). In agreement with
this, in Ref. [8] it was already found that the Pontryagyn
constraint is a necessary but not sufficient condition for
persistence of solutions of the theory in the second-order
formulation. This is important to check out consistency
with the vanishing of the divergence of the energy-
momentum tensor discussed in the previous section, even
when the field � is considered external. In fact, for (vac-
uum) persistent solutions, the Pontryagyn constraint is
satisfied, and therefore, the Einstein tensor is divergence
free as expected.
The question of the persistence constitutes an appropri-

ate ambient to discuss the relation of this approach with the
standard second-order formulation [6], since in both, it
reflects the contribution to the equation of motion of the
CS deformation. In fact in the second-order formulation,
the persistence is ruled out by a vanishing Cotton tensor,
which in standard notation is expressed as

C ¼ �rc��
cdeðareR

bÞ
d þ ð �rðc �rdÞ�Þ�RdðabÞc; (22)

where �Ra
b
ef ¼ 1

2 �
efcdRa

bcd, and this is related to the

curvature tensor in the tetrad notation as Ra
bcde

�
a eb� ¼

R
��
cd for a given external field �. This curvature is associ-

ated to the canonical covariant derivative, �ra, which is
torsion free and compatible with the metric gab. The
precise relation between these conditions of persistence
will become clear in the next section.
Finally, we would like to remark that in nearly flat

regions of the space-time (e.g. the spacial infinity of
asymptotically flat solutions) the GR solutions are pre-
served independently of the magnitude of g ¼ jd�j. In
particular, for all asymptotically flat space-time of the
undeformed GR theory, the right-hand side of Eq. (12)
vanishes, and BLS is undetectable near of the spacial
infinity.

IV. EINSTEIN-CARTAN APPROACH VS THE
STANDARD FORMULATION

Solving Eq. (12) [using (10)] for the spin coefficientsw
�
a

in terms of e�a and @a� and replacing the solution into (9),
we recover the modified Einstein equation for the tetrad e�a
(or, equivalently, for the metric gab) which may be seen as
the equation of motion of a formulation of the theory
whose only variable is the metric; however, this is a priori
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inequivalent to the standard second-order Jackiw-Pi ap-
proach [6]. Because of the presence of the torsion in this
description one may trivially argue that the geometries
described by the solutions of both formulations are very
different. However, here we are going to discuss this ques-
tion more carefully.

Let first us show that in fact one can solve Eq. (12) and
find out a solution for w

�
a in terms of e�a and @a� even in

modified gravity. We may do that by constructing a sort of
perturbation scheme in the deformation parameter g,
where each order in the expansion may be iteratively
solved in terms of the lower ones. It shall be emphasized,
however, that this procedure, developed here to study some
properties of this formulation and its relation with the
second-order formalism, should not be seen as a method
to solve the equations of motion since it generates an
equation for the tetrad whose order, in principle, grows
as the power of g, which would require a consistent trun-
cation to be solved. Because of this, it is convenient to
solve the Eqs. (9) and (12) as a first-order system of
coupled equations.

Consider the solution of Eq. (12) to be w�� ¼ W�� þ
K�� where W�� is the undeformed torsion-free
(Christoffel) spin connection and K�� is the contortion
one-form, then

�� ¼ K�� ^ e�: (23)

Substituting this into Eq. (12) we obtain

���
��e

� ^ K�
 ^ e
 ¼ gV ^ ðR��½W� þW�
� ^ K��

þ K�
� ^W�� þ R��½K�Þ; (24)

where

R��½W� ¼ dW�� þW�
� ^W��;

R��½K� ¼ dK�� þ K�
� ^ K��:

(25)

Let us consider now a solution K being an analytic
function of g, which here is assumed to be constant for
simplicity. By consistency with the definition we clearly
see that Kðg ¼ 0Þ ¼ 0. The zeroth order equation is � ¼
0, which may be solved in terms of the frame and its partial
derivatives

W�� ¼ f��ðe; @aeÞ: (26)

Then, let us consider Taylor’s expansion in powers of g:

K�� � X1
n¼1

gnk
��
n ; �� � X1

n¼1

gn�
�
n ; �

�
n � k

��
n ^ e�:

(27)

Substituting this into Eq. (12), we get to first order

���
��e

� ^ k
�

1 ^ e
 ¼ V ^ R��½W� þ oðgÞ; (28)

which may be easily solved for k1 (or �1) in terms ofW��,

dW��, and e�,6 which furthermore by virtue of (26) may
be expressed in terms of e�. Finally, one may use the same
procedure iteratively; order by order, the right-hand side of
the resulting equation will depend on the lower ones,
namely,

���
��e

� ^ k
�

nþ1 ^ e
 ¼ V ^

�
dk

��
n þW�

� ^ k��n

þ kn
�
� ^W��

þ Xn�1

m¼1

km
�
� ^ k��n�m

�
: (29)

Therefore, one may conclude that kn, 8 n � 1 by induc-
tion, and consequently the full connection w��, may be
expressed in terms of e� as claimed above. Notice that only
at the trivial order (g ! 0), the corresponding deformed
Einstein equation results to be a second-order equation in
partial derivatives of the variable e�a (or gab). In principle,
higher powers in g generically would contribute with
higher order derivatives to this equation; however, it is
possible that derivatives of the tetrad fields of orders higher
than 3 in the deformed Einstein equation may be elimi-
nated by using the Bianchi or other identities. A general
calculation in this sense is a bit complicated technically
and not very illuminating for our purposes here. We are
able to clarify, however, the relation of the present formu-
lation with the third order (in the tetrad field) equations of
motion of the standard formulation [6].
Plugging the solution w�� ¼ W��ð¼ f��ðe; @aeÞÞ þ

gk
��
1 þ . . . , back into (3), we obtain the CS deformed

action for the tetrad field. Considering up to the first order
in g, we may express this as

S½e� ¼
Z
M
e� ^ e� ^� ðR��½W� þ gDW ^ k

��
1 Þ

þ
Z
M
gV ^LCS½W� þ o2ðgÞ; (30)

where W is the (torsion-free) Christoffel connection ex-
pressed in terms of the tetrad [Eq. (26)] and DW is the
correspondent covariant derivative. The second term may
then be integrated by parts and expressed as g

RðDW ^�

ðe� ^ e�ÞÞ ^ k��
1 up to boundary terms. This finally van-

ishes due to the torsion-free condition. Therefore, by defi-
nition of the Christoffel connection (encoded in W), this
action is coincident with that of Jackiw-Pi expressed in the
first-order Einstein-Cartan language. The variation of this
action with respect to the tetrad, may then be expressed as

Ra
� þ Ca

� ¼ 0; (31)

where Ca
� corresponds to the variation of the last term of

(3) with respect to the tetrad which coincides with the

6The solution reads �
�
1 ¼ � 3

4 �
��

��ðV ^ R��½W�Þabcec� þ
oðgÞ.
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Cotton tensor (Ca
�e� ¼ Cab) by definition. The same

result is obtained by plugging the first-order solution (28)
into the (vacuum) Einstein equation (9).

So, we may conclude that the present Einstein-Cartan
formulation of CS modified gravity coincides with the
standard approach (Ref [6]) to first order in the modulus
of the breaking vector gð¼ jd�jÞ.

Notice in addition that if the constraint (19) is satisfied
for all order in g, then the full connection w also satisfies
the torsion-free condition; thus w ¼ W, and K ¼ 0. Thus
as in the procedure above, substituting this solution into the
action (3) gives the results

S½e� ¼
Z
M
e� ^ e� ^ �R��½W�; (32)

where the constraint (19) was used to eliminate the last
term of (30). The corresponding equation of motion re-
duces to the vacuum Einstein equation, Ra

� ¼ 0. In other
words, the persistence condition (19) implies that the
Einstein equation remains undeformed as expected. In
particular to first order in g, consistency with Eq. (31)
requires that the Cotton tensor vanishes identically when
condition (19) is satisfied. In this way, we have used the
statement on the agreement to first order of both formula-
tions, to argue that our persistence condition (19) not only
guarantees that the space-time is torsion-free, but also that
furthermore the metric satisfies the unmodified Einstein
equation.

A. Spherically symmetric solution and nonperturbative
(in)equivalence

Concerning the equivalence of both formulations be-
yond the first order of the g expansion, we shall verify
here that the Schwarzschild solution, which is persistent in
the Jackiw-Pi formulation for a particular choice of d�, but
is not a solution of the present theory, in particular, the
second order already breaks down that persistence. This
fact contradicts the nonperturbative equivalence of both
formulations.

Let us consider the Schwarzschild solution given by the
tetrad [18]:

e0 ¼ f1=2ðrÞdt; e1 ¼ f�1=2ðrÞdr; e2 ¼ rd�;

e3 ¼ r sin�d�; fðrÞ ¼ 1� 2M=r; (33)

and the particular choice � � g�1
0 t, where g0 is an arbitrary

constant. In Ref. [6] it was shown that this is an exact
solution of the theory in the standard formulation, and in
Ref. [8] it was extended to other choices of the breaking
vector. In the present case this vector does not have a
constant modulus; however, we may define an expansion
as (27) controlled by the parameter g0. Namely, V � e0,

d� ¼ gV � g0f
�1=2V.

Equation (28) gives the (first-order) torsion for the
Schwarzschild space-time. The right-hand side of that

equation is determined by the components of the curvature
orthogonal to dt, associated with the torsion-free connec-
tion of the Schwarzschild solution:

R12 ¼ AðrÞdr ^ d�; R13 ¼ AðrÞ sin�dr ^ d�;

R23 ¼ 2ð1� fÞ sin�d� ^ d�;
(34)

where AðrÞ � � 2M
r2
f�1=2. The corresponding nontrivial

contortion coefficients may be directly obtained by plug-
ging (23) into (28) and solving a linear algebraic system of
equations. The nontrivial coefficients are

k12ð1Þ ¼
�
s1
2
� s2

�
e3; k13ð1Þ ¼

�
s1
2
þ s2

�
e2; k23ð1Þ ¼�s1

2
e1;

(35)

where

s1 ¼ 2ð1� fÞ
r2

¼ 4M

r3
; s2 ¼ f1=2A

r
¼ � 2M

r3
: (36)

On the other hand, the modified (vacuum) Einstein equa-
tion reads

�����e
� ^ ðR��½W� þDWK

�� þ 

�K
�
 ^ K��Þ ¼ 0:

(37)

So, the condition for the persistence of the solution for the
tetrad (33) in the EC approach is

�����e
� ^ ðDWK

�� þ 

�K
�
 ^ K��Þ ¼ 0: (38)

The first order of this equation is trivial since this solution
is persistent in the standard approach [6], thus we may
formulate the persistence condition for the following order
as

�����e
� ^ ðDWf

�1k��ð2Þ þ f�1

�k
�

ð1Þ ^ k��ð1Þ Þ þ oðg0Þ ¼ 0:

(39)

In fact, we are going to observe that this equation cannot be
satisfied and consequently, that the Schwarzschild metric is
not a solution in the EC formulation. The second-order
contortion coefficients may be obtained by solving the
equation

���
��e

� ^ k�
ð2Þ ^ e
 ¼ f1=2V ^ ðDWf
�1=2k��

ð1Þ Þ; (40)

which is similar in form to Eq. (28) and may be solved in
the same way. Substituting kð1Þ by the solution (35), and

using that dH ¼ f1=2H0e1, 8 H ¼ HðrÞ, it may be easily
shown that

k1�ð2Þ ¼ 0: (41)

Therefore, it is convenient to search for the component
� ¼ 2 of the right-hand side of (39) which, by virtue of
(41), reduces to
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�2013e
2 ^ e0 ^ ðf�1k12ð1Þ ^ k23ð1ÞÞ

¼ f�1 s1
2

�
1

2
s1 � s2

�
e0 ^ e1 ^ e2 ^ e3

¼ f�1s21e0 ^ e1 ^ e2 ^ e3 � 0; (42)

where we have also multiplied by e2 and used that k0�ð1Þ ¼
k
0�
ð2Þ ¼ 0 and the antisymmetry of �����. This is clearly in

contradiction with the condition (39). Thus, the
Schwarzschild metric is not a solution to the deformed
Einstein equation in the EC approach which means that
equivalence with the standard formulation is lack. So, we
may conclude this section by emphasizing that both for-
mulations approach each other to leading order in g, but
they are inequivalent because the contribution of the higher
orders is not trivial.

V. FINAL REMARKS

This work consists in the natural application to gravity
of some ideas about theories with a Chern-Simons term in
four dimensions, which breaks the Lorentz symmetry
through a formulation where the gauge structure of the
theory is explicit [5].

We found the conditions to get persistent GR solutions.
They have a simple geometric interpretation and link with
topological gauge theories. In a forthcoming paper, we will
focus on the study of these and other exact solutions of the
deformed theory.

Finally, we analyzed the relation between the present
Einstein-Cartan formulation of CS-Lorentz-violating grav-
ity and the standard one proposed by Jackiw and Pi [6],
based on a Taylor expansion in powers of the modulus of
the external breaking vector.
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APPENDIX: THE ABSTRACT INDEX NOTATION
AND EINSTEIN-CARTAN FORMALISM

In this work, we shall use the abstract index notation
[18], namely, a tensor of type ðn;mÞ shall be denoted by
Ta1...an
b1...bm

, where the Latin index stands for the numbers and

types of variables on which the tensor acts and not as the
components themselves on a certain basis. Then, this is an
object having a basis-independent meaning. In contrast,
Greek letters label the components, for example T��

� de-
notes a basis component of the tensor Tab

c . We start off with
the Cartan’s formalism of GR. We introduce [18] an or-
thonormal basis of smooth vector fields ðe�Þa, satisfying

ðe�Þaðe�Þa ¼ 
��; (A1)

where 
�� ¼ diagð�1; 1; 1; 1Þ. In general, ðe�Þa is re-

ferred to as vielbein. The metric tensor is expressed as

gab ¼ ðe�Þaðe�Þb
��: (A2)

From now on, component indices�; �; :: will be raised and
lowered using the flat metric 
�� and the abstract ones,

a; b; c . . . with space-time metric gab.
Now we define the Ricci rotation coefficients, or spin-

connection,

ðw��Þa ¼ ðe�Þbraðe�Þb; (A3)

where wa�� is antisymmetric, and, together with (A1), is

equivalent to the compatibility condition

ragbc ¼ 0: (A4)

From (A3) we have

rae
�
b þ w��

ae�b ¼ @ae
�
b þ �c

abe
�
c þ w��

a ¼ 0;

(A5)

where �c
ab are the Christoffel symbols connection. It is

useful to define the part of the covariant derivative referred
only to the internal indices correspondent to the spin-
connection w��

a, denoted by Da.
The antisymmetric part of (A5) (with the convention of

antisymmetrization ð. . .Þ½ab� ¼ ðð. . .Þab � ð. . .ÞbaÞ=2 reads

r½ae�b� ¼ �w��
½ae

�
b�
��: (A6)

In the standard Einstein formulation of GR, the connec-
tion is assumed to be torsion free. This is expressed by

ðD ^ e�Þab � D½ae�b� ¼ @½ae�b� þ w��
½ae

�
b�
�� ¼ 0:

(A7)

The components of the Riemman’s tensor in this orthonor-
mal basis are given as follows:

Rab
�� :¼ 2@½aw��

b� þ 2w�

½aw

��
b�

�: (A8)

Equations (A7) and (A8) are the structure equations of GR
in Cartan’s framework.
Einstein’s equation in this framework reads

e�
aRab

�� ¼ �2e�T0
ab; (A9)

where one has defined T0
ab

:¼ Tab þ gabðTcdg
cdÞ=2, Tab

being the energy-momentum tensor, and the constant � is
related to the gravitation constant G by �2 ¼ 8�G.
Equations (A5) and (A9) are a system of coupled first-

order nonlinear equations for the variables ðe; wÞ which
determine7 the dynamics of GR.
This yields the so-called ‘‘Einstein-Cartan formalism’’;

we obtain, thereby, a first-order Einstein-Hilbert action
which can be expressed as

7Together with the antisymmetry condition for wa.
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S ¼ 1

2�2

Z
dxDeRab

��e�
ae�

b; (A10)

where e ¼ ð� detgÞ1=2 ¼ detðe�aÞ. If we wish to consider
a nonvanishing cosmological constant, �, Rab

�� must be

replaced by

Rab
�� þ�e½�ae

��
b: (A11)
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