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I derive and systematically analyze scalar glueball correlation functions in both the hard-wall and

dilaton soft-wall approximations to holographic QCD. The dynamical content of the holographic

correlators is uncovered by examining their spectral density and by relating them to the operator product

expansion, a dilatational low-energy theorem and a recently suggested two-dimensional power correction

associated with the short-distance behavior of the heavy-quark potential. This approach provides holo-

graphic estimates for the three lowest-dimensional gluon condensates or alternatively their Wilson

coefficients, the two leading moments of the instanton size distribution in the QCD vacuum and an

effective UV gluon mass. A remarkable complementarity between the nonperturbative physics of the

hard- and soft-wall correlators emerges, and their ability to describe detailed QCD results can be assessed

quantitatively. I further provide the first holographic estimates for the decay constants of the 0þþ glueball

and its excitations. The hard-wall background turns out to encode more of the relevant QCD physics, and

its prediction fS ’ 0:8–0:9 GeV for the phenomenologically important ground-state decay constant agrees

inside errors with recent QCD sum rule and lattice results.
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I. INTRODUCTION

Despite more than three decades of intense experimental
and theoretical scrutiny the long predicted glueball states
[1] of quantum chromodynamics (QCD) remain stubbornly
elusive [2,3]. The slow pace of theoretical progress reflects
the extraordinary complexity of the infrared Yang-Mills
dynamics which generates both the gluonic bound states
and their mixing with quarkonia. New analytical ap-
proaches for dealing with strongly coupled gauge theories,
as they have recently emerged from gauge/gravity general-
izations of the AdS/CFT correspondence [4,5], should
therefore find rewarding and much needed applications in
the glueball sector.

Until now such applications have focused on the glue-
ball mass spectra, which were among the first holograph-
ically calculated observables in a variety of more or less
QCD-like gauge theories [6] (for a review and current
developments see e.g. Refs. [7]). More recently, glueball
spectra were also obtained in the first bottom-up [8] pro-
posals for the holographic QCD dual [9–12] as well as in
back-reacted models [13,14].

In the present paper I am going to extend the holo-
graphic analysis of glueball properties beyond the spec-
trum, by focusing on the gauge physics content of the
glueball correlation function and its spectral density. I
will relate the holographic predictions to QCD information
from the operator product expansion (OPE), a low-energy
theorem based on the anomalous Ward identity for the
dilatation current, and a recently advocated, effective UV
gluon mass. The calculations will be based on two alter-
native AdS/QCD backgrounds, namely, theAdS5 geometry
with a ‘‘hard-wall’’ IR brane cutoff (of Randall-Sundrum

type [15]) in the fifth dimension [16] and the dilaton-
induced soft wall [17], which both proved phenomenolog-
ically successful in the meson sector [10,17,18].
A second major objective will be to provide the first

holographic estimates for the decay constants of the scalar
glueball and its excitations, i.e. for the glueball-to-vacuum
matrix elements of the lowest-dimensional gluonic QCD
interpolator. These on-shell observables are of particular
interest because they contain fundamental information on
glueball structure and govern the spacial extent of the
glueball (Bethe-Salpeter) wave functions. Lattice indica-
tions for an exceptionally small size of the lowest-lying
scalar glueball [19], for example, should translate into an
unusually large value of its decay constant. Evidence for
such an enhancement was indeed found in instanton vac-
uum models [20] as well as in those QCD sum-rule analy-
ses which include instanton contributions to the OPE
coefficients [21,22].
The decay constants, which are the first glueball observ-

ables besides the low-lying spectra for which direct
(quenched) lattice results are now available [23], also
play a crucial role in the theoretical analysis of glueball
production and decay rates. For this reason, their accurate
prediction will be instrumental in eventually meeting the
two longstanding challenges of glueball physics, i.e. the
establishment of unambiguous glueball signatures and
their experimental identification. As a case in point, the
decay constants provide critical nonperturbative input for
the calculation of glueball production amplitudes in the
‘‘gluon-rich’’ radiative heavy-quarkonium decays which
are currently measured at BES [24].
The paper is structured as follows: in Sec. II I define the

dual bulk dynamics on which the following study will be
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based, and I derive general expressions for the scalar
glueball correlator and the decay constants in IR-deformed
AdS5 duals with a nontrivial dilaton background. In
Sec. III I focus on the two AdS/QCD backgrounds men-
tioned above (i.e. hard and soft wall) and derive exact
analytical expressions for the corresponding correlators
and their spectral functions. I then analyze the results by
confronting them with the OPE of the QCD correlator
(including nonperturbative contributions to the Wilson co-
efficients), the dilatational low-energy theorem which gov-
erns its low-momentum behavior, and the contributions of
an effective UV gluon mass. This strategy provides holo-
graphic estimates for various QCD vacuum scales, i.e.
three-gluon condensates (or alternatively their Wilson co-
efficients) and the two leading moments of the instanton
size distribution, as well as for an effective UV gluon mass.
In Sec. IV I obtain holographic predictions for the (ground
and excited state) glueball decay constants and compare
them to other available theoretical results. Section V, fi-
nally, contains a summary of the paper and my
conclusions.

II. DUAL DYNAMICS OF THE SCALAR
GLUEBALL

The gauge/string correspondence [4,5] maps string theo-
ries in curved, ten-dimensional spacetimes into gauge
theories which live on the d dimensional boundaries. For
UV-conformal gauge theories like QCD with d ¼ 4, the
dual spacetime metric factorizes into a five-dimensional
noncompact manifold which close to its boundary ap-
proaches the anti–de Sitter space AdS5ðRÞ of curvature
radius R, and a five-dimensional compact Einstein space
X5 (where e.g. X5 ¼ S5ðRÞ for the maximally supersym-
metric gauge theory) with the same intrinsic size scale. The
corresponding line element is [16]

ds2 ¼ gMNðxÞdxMdxN

¼ e2AðzÞ
R2

z2
ð���dx�dx� � dz2Þ þ R2ds2X5

(1)

(in conformal Poincaré coordinates) where ��� is the four-

dimensional Minkowski metric. Conformal invariance of
the dual gauge theory in the UV requires the absence of
AdS deformations (i.e. AðzÞ ! 0) as z! 0. Supergravity
solutions suggest the additional presence of a nontrivial
dilaton background �ðxÞ, and potentially of other back-
ground fields (including Ramond-Ramond axions, tachy-
ons etc., see e.g. Ref. [14,25]) which do, however, not play
an explicit role in the AdS/QCD duals considered below.

A. Bulk action and holographic glueball correlator

The scalar QCD glueballs are interpolated by the lowest-
dimensional gluonic operator carrying vacuum quantum
numbers,

O SðxÞ ¼ Ga
��ðxÞGa;��ðxÞ; (2)

(where Ga
�� is the gluon field strength) which also figures

prominently in the anomalous dilatational Ward identity
and in the corresponding low-energy theorems
(cf. Appendix). Since the conformal dimension of OS is
� ¼ 4 (at the classical level), the AdS/CFT dictionary [5]
prescribes its dual string modes ’ðx; zÞ to be the normal-
izable solutions of the scalar wave equation in the bulk
geometry (1) (and potentially other background fields)
with the UV behavior ’ðx; zÞ!z!0z��ðxÞ. The latter im-
plies that the square mass [26] m2

5R
2 ¼ �ð�� dÞ ¼ 0 of

the bulk field ’ vanishes, and that its minimal action has
the form

S½’;g;�� ¼ 1

2�2

Z
ddþ1x

ffiffiffiffiffiffi
jgj

q
e��gMN@M’@N’ (3)

(where �2 can be related to the five-dimensional Newton
constant [25]) which breaks up as S ¼ SM þ S@M into bulk
and boundary contributions with

SM½’; g;�� ¼ � 1

2�2

Z
M
ddþ1x

ffiffiffiffiffiffi
jgj

q
� e��’½e�rMe

��gMN@N�’ (4)

(rM ¼ @M þ jgj�1=2@Mjgj1=2) and

S@M½’; g;�� ¼ 1

2�2

Z
@M
ddx½a3ðzÞe��’@z’� (5)

where a2ðzÞ � ðR2=z2Þ exp2AðzÞ is the warp factor. The
boundary @M consists of the UV brane z ¼ "! 0 and of
an additional IR brane at z ¼ zm in the hard-wall geometry.
Variation of the bulk action (4) with respect to ’ yields

the field equation

e�rMe
��gMN@N’ðx;zÞ ¼ ½��ð@M�ÞgMN@N�’ðx;zÞ ¼ 0

(6)

where � ¼ rMrM is the Laplace-Beltrami operator of the
metric (1). The action density of the solutions is finite only

on the boundary @M while Sðon�shellÞ
M ¼ 0. I now specialize

to dilaton fields � which depend exclusively on the fifth
dimension, i.e. � ¼ �ðzÞ. The d-dimensional Fourier
transform ’̂ðq; zÞ of the normalizable dual modes then
solves the reduced field equation

½@2z þ ðd� 1Þða�1@zaÞ@z � ð@z�Þ@z þ q2�’̂ðq; zÞ ¼ 0

(7)

with discrete on-shell momenta [27] q2 ¼ m2
n in both hard-

and soft-wall backgrounds. The eigenvalues m2
n determine

the glueball mass spectrum of the boundary gauge theory,
and the corresponding orthonormalized solutions will be
denoted  nðzÞ ¼ Nn’̂ðmn; zÞ.
Holographic glueball correlation functions are obtained

by differentiating the bulk action of the solutions with
respect to the boundary source [5]. The on shell action
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can be constructed with the help of the bulk-to-boundary

propagator K̂ðq; zÞ [5], which is the solution of the field

Eq. (7) subject to the UV boundary condition K̂ðq; "!
0Þ ¼ 1. Its spectral representation is therefore

K̂ðq; zÞ ¼ �R3

"3
X
n

 0
nð"Þ nðzÞ

q2 �m2
n þ i"0

(8)

(where the limit "! 0 at the end of the calculation is
implied) and automatically satisfies the IR boundary con-
dition imposed on the  nðzÞ. Hence one can write the
solution of Eq. (6) corresponding to a given boundary

source ’ðsÞðx0Þ as

’ðx; zÞ ¼
Z d4q

ð2�Þ4 e
�iqxK̂ðq; zÞ

Z
d4x0eiqx0’ðsÞðx0Þ (9)

and obtain the associated on-shell action (which plays the
role of a generating functional) by inserting Eq. (9) into the
surface action (5). Taking two functional derivatives with

respect to ’ðsÞ then yields the two-point correlation func-
tion

hTOSðxÞOSðyÞi ¼ i
Z d4q

ð2�Þ4 e
�iqðx�yÞ�̂ð�q2Þ (10)

of the scalar glueball where

�̂ð�q2Þ ¼ �R3

�2

�
e��ðzÞ

z3
K̂ðq; zÞ@zK̂ðq; zÞ

�
z¼"!0

: (11)

For� fields which vanish at the UV boundary (as does the
soft-wall dilaton considered below), furthermore, the bulk-
to-boundary propagator in the form (8) generates the spec-
tral representation

�̂ð�q2Þ ¼ �
�
R3

�"3

�
2X
n

 0
nð"Þ 0

nð"Þ
q2 �m2

n þ i �"

¼ �X
n

f2nm
4
n

q2 �m2
n þ i �"

(12)

of the correlator [where a prime denotes differentiation
with respect to z and (divergent) contact terms are not
written explicitly]. The pole residues of Eq. (12) at q2 ¼
m2
n define the decay constants of the nth 0þþ glueball

excitation as

fn :¼ 1

m2
n

h0jOSð0Þj0þþ
n i ¼ R3

�m2
n

 0
nð"Þ
"3

: (13)

The physical role of the decay constants as the glueball
‘‘wave functions at the origin’’ becomes more transparent
when viewing them as the coincidence limit of the Bethe-
Salpeter amplitudes

�nðxÞ ¼ h0j2tr
�
G��

�
� x

2

�
U

�
� x

2
;
x

2

�
G��

�
x

2

��
j0þþ
n i

(14)

(where the adjoint color parallel transporterUðx; yÞ ensures
gauge invariance and proper renormalization of the opera-
tors is understood). A smaller glueball size implies a higher
concentration of the wave function at the origin and con-
sequently a larger value of fn. Since the decay constants
are on-shell observables related to the bilinear part of the
bulk action, one expects them to be reasonably well pre-
dicted by Eq. (13) even though the dual dynamics (3)
contains operators of minimal dimension only.

B. Comments on the scalar dual dynamics

I have restricted the action (3), i.e. the dynamics of
fluctuations dual to scalar glueballs in a metric plus dilaton
background, to contain only operators with the minimal
number of fields and derivatives. This is appropriate for the
AdS/QCD candidates under consideration and will permit
me to derive analytical expressions for the exact correla-
tors. These restrictions also entail several typical limita-
tions of contemporary bottom-up models, however, which I
now discuss in view of their potential impact on the glue-
ball sector.
A first obvious limitation is the treatment of the metric

as a nondynamical background field, reflected in the fact
that the action (3) contains neither the Einstein-Hilbert
term nor higher-derivative corrections to it [28]. Graviton
fluctuations around the bulk metric are generally neglected
as well in bottom-up duals. If included, they could have a
direct bearing on the scalar glueball dynamics since fluc-
tuations around a nonconformal metric would generate a
scalar ‘‘radion’’ mode (related to the fifth or radial dimen-
sion component of the graviton) as it appears e.g. in
distance fluctuations between the branes of Randall-
Sundrum models [15,29] and in dynamical dilaton-gravity
models (see e.g. Ref. [13]). By mixing with the scalar field
in the bulk action (3) the radion would then modify the
glueball mass spectrum and the diagonalized correlator.
Since the mixing strength decreases with increasing mass
of the excitation dual to the radion (or mixed radion-
scalar), the standard neglect of the graviton dynamics e.g.
in hard-wall models is equivalent to the tacit assumption
that an a priori unspecified stabilization mechanism pushes
this mass up far enough for radion admixtures to become
negligible (ideally by breaking conformal symmetry ac-
cording to the QCD trace anomaly).
A more realistic holographic description of the glueball

sector would probably require the inclusion of further
operators, potentially of higher dimension, into the action
(3). Those may contain additional bulk fields, with prom-
ising candidates including spin-zero background fields
encoding condensates of relevant QCD operators and
flavor-carrying gauge fields [18] for the description of
quarkonium-gluoniummixing effects and for specific glue-
ball decay channels (see e.g. Ref. [30]). Operators contain-
ing a higher number of derivatives are potentially
important as well. They typically arise from stringy �0
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corrections in bulk regions where the curvature radius R of
the geometry becomes comparable to the string length ls.
In holographic duals of large-Nc gauge theories such re-
gions are expected to describe the UV regime where the
’t Hooft coupling 	 ¼ g2YMNc becomes small, i.e. where
	� ðR2=�0Þ2 & 1 [31]. The lack of asymptotic freedom in
current bottom-up duals (as well as in supergravity approx-
imations), i.e. the fact that AdS/QCD models remain
strongly coupled in the UV (although they approach a
conformal fixed point) [32], is therefore closely related to
the absence of higher-dimensional operators.

This discussion indicates that improvements of the AdS/
QCD approach will depend in no small measure on
whether a quantitative understanding for the impact of
the strongly coupled UV regime on holographic predic-
tions can be developed. In the present paper I propose a
strategy towards clarifying this issue which is based on the
comparison of holographic model predictions for hadronic
correlation functions with the QCD OPE. The OPE lends
itself particularly well to a systematic diagnosis of the UV
sector since it factorizes gauge-theory amplitudes into
short-distance mode contributions to the Wilson coeffi-
cients and long-distance physics contributions to local
operators. I am going to exploit this factorization property
below when searching for specific traces of the strongly
coupled UV regime in the two-point function of the scalar
glueball channel and will indeed find evidence for defi-
ciencies in the AdS/QCD description of the perturbative
Wilson coefficients (beyond the leading conformal loga-
rithm). Moreover, the results will suggest systematic im-
provement strategies for bottom-up duals.

In view of the issues raised above one may wonder
whether a decent holographic description of asymptoti-
cally free Yang-Mills theories at large Nc could at all be
achieved on the basis of a local five-dimensional action
(which may include a few higher-dimensional operators).
Fortunately, there are several indications for an affirmative
answer. A general argument due to Witten implies that the
locality of the five-dimensional bulk dynamics is ensured
by the large-Nc limit [33]. The bulk action may then be
viewed as an effective string field theory which contains an
elementary field for each string excitation (including those
of arbitrarily high spin) while higher-dimensional opera-
tors are suppressed by powers of 1=Nc [17]. Moreover, �0
corrections may be partially resummed e.g. into the dilaton
potential [14], and extensive QCD sum-rule [34] analyses
have shown that already a few leading OPE power correc-
tions, and hence hopefully the few corresponding light bulk
fields with controllably small �0 corrections, can capture at
least the essential properties of most hadronic ground
states.

III. HOLOGRAPHIC GLUEBALL CORRELATORS

The expressions derived above hold for all geometries of
the form (1) and for general dilaton backgrounds�ðzÞwith

�ð0Þ ¼ 0. In order to gain dynamical insight into the
holographic glueball correlator and to obtain quantitative
estimates for the decay constants, I will now consider two
specific AdS/QCD backgrounds, i.e. the AdS5 slice of the
hard IR wall geometry [16] and the dilaton soft wall of
Ref. [17]. In particular, I will derive analytical expressions
for the glueball correlator (11) and its spectral density in
the hard- and soft-wall backgrounds. Those will then be
analyzed by comparison with the QCD operator product
expansion, a dilatational low-energy theorem which gov-
erns the correlator at zero momentum, and an effective UV
gluon mass contribution of the type suggested in Ref. [35].
The pertinent QCD information is summarized in the
appendix.

A. Conformal symmetry breaking by an IR brane

A substantial part of the successful recent AdS/QCD
phenomenology (see e.g. [10,16,18,36,37]) was obtained
on the basis of the so-called ‘‘hard-wall’’ geometry [16].
This rather minimal deformation of the AdS5 metric ap-
proximately describes IR effects including confinement by
a sudden onset of conformal symmetry breaking in the
form of an IR brane at z ¼ zm, i.e.

e2A
ðhwÞðzÞ ¼ 
ðzm � zÞ; zm ’ ��1

QCD; �ðhwÞ � 0;

(15)

which reduces the five-dimensional bulk spacetime to an
AdS5 slice.
In this highly symmetric background an analytical ex-

pression for the holographic glueball correlator is straight-
forward to obtain. The bulk-to-boundary propagator

K̂ðq; zÞ, in particular, can be found by solving the field
equation (7) in the geometry (15), subject to the UV

boundary condition K̂ðq; "Þ ¼ 1 (with "! 0) and the

Neumann IR boundary condition @zK̂ðq; zmÞ ¼ 0. The re-
sult is [38]

K̂ðq; zÞ ¼ �

4
ðqzÞ2

�
Y1ðqzmÞ
J1ðqzmÞ J2ðqzÞ � Y2ðqzÞ

�
(16)

where J�, Y� are Bessel functions and K̂ð0; zÞ ¼ 1. After
plugging Eq. (16) into the general expression (11) and
analytically continuing to spacelike momenta Q2 ¼ �q2,
one ends up with the hard-wall glueball correlator

�̂ðQ2Þ ¼ R3

8�2
Q4

�
2
K1ðQzmÞ
I1ðQzmÞ � ln

�
Q2

�2

��
(17)

(K�, I� are McDonald functions [39]) where two contact
terms associated with UV divergent subtraction constants
were discarded.
It is instructive to find the spectral density �ðsÞ of the

correlator (17), which is defined by means of the dispersion
relation
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�̂ðQ2Þ ¼
Z 1

m2
1

ds
�ðsÞ
sþQ2

(18)

(where the necessary subtraction terms are again implied
but not written explicitly) and can be derived e.g. from the
well-known analyticity properties of the McDonald func-
tions [39] (and the causal pole definition) as the imaginary

part of �̂=� at timelike momenta. The result is

�ðsÞ ¼ R3

2�2z2m
s2

X1
n¼1

�ðs�m2
nÞ

J20ðj1;nÞ
(19)

from which one can read off the hard-wall mass spectrum
mn ¼ j1;n=zm [cf. Equation (42)]. The spectral weight (19)

is non-negative, in agreement with general principles, and
consists of a sum of zero-width poles, as expected at large
Nc where the (infinitely many) glueballs become stable
against strong decay. The leading large-s behavior of the
density (19) necessitates subtractions in Eq. (18) and en-
sures the leading logarithmic Q2 dependence of the corre-
lator (17).

The holographic result (17) can be compared to the QCD
short-distance expansion (A1) for Q� �2 > z�2

m . A stan-
dard procedure [18] for fixing the overall normalization
R3=�2 is to match the coefficients of the leading conformal
logarithm in Eqs. (17) and (A2), which yields

R3

�2
¼ 2ðN2

c � 1Þ
�2

: (20)

(For a discussion of the accuracy of such estimates see
Ref. [40].) Below I will specialize Eq. (20) to the phenom-
enologically relevant Nc ¼ 3 which seems—at least as far
as glueball properties are concerned—to be a surprisingly
good approximation to large Nc [41]. The nonconformal
part of the holographic correlator (17) describes nonper-
turbative contributions of the boundary gauge theory and
becomes

�̂ðnpÞðQ2Þ � R3

4�2

K1ðQzmÞ
I1ðQzmÞ Q

4 !Qzm�1 4

�

�
�
1þ 3

4

1

Qzm
þO

�
1

ðQzmÞ2
��
Q4e�2Qzm

(21)

in the OPE limitQ2 � �2
QCD � z�2

m . Equation (21) reveals

that the hard-wall glueball correlator contains no power
corrections and that all of its nonperturbative content has
an exponentialQ2 dependence (times powers ofQ2). In the
OPE (A1) this exponential behavior originates from small-
size instanton contributions to the Wilson coefficients.
Indeed, for Q� ���1 the direct instanton contribution
(A6) becomes

�̂ ðIþ �IÞðQ2Þ !Q ���1
2452�
 �nðQ ��Þ3e�2Q �� (22)

which has exactly the momentum dependence of the first

subleading term in the nonperturbative hard-wall correlator
(21). As shown in instanton vacuum models [20] and
directly from the IOPE in QCD sum rules [21,22], these
instanton-induced correlations are attractive and of rela-
tively short range� ��. Hence they reduce the mass and size
of the scalar glueball while increasing its decay constant.
For a quantitative comparison of holographic and

instanton-induced contributions one may approximately
equate Eq. (22) with the second term in Eq. (21). This
yields the expressions

�� ’ zm; �n ’ 3

2452�2


1

z4m
; (23)

for the average instanton size �� and the overall instanton
density �n in terms of the hard-wall IR scale zm. The relation
�� ’ zm is consistent with the duality between gauge-theory
instantons of size � and pointlike bulk objects (D instan-
tons or Dð�1Þ branes in the supersymmetric case [42])
localized at a distance z ¼ � from the UV boundary.
However, it also identifies the instanton’s average size ��
with the maximal size zm in the AdS5 slice, which is likely
to result in an overestimate. Indeed, the standard identifi-
cation z�1

m ��QCD ’ 0:33 GeV would imply ��� 0:6 fm,

i.e. almost twice the instanton-liquid model (ILM) value
��ILM � 0:33 fm [43]. As a consequence, �nILM ’ 0:5 fm�4

[43] would be underestimated by the second relation in
Eq. (23).
Besides other likely limitations of the hard-wall back-

ground including the strongly coupled UV dynamics, the
large estimate for �� may also reflect the absence of funda-
mental quark flavors in the simple dual dynamics (3). The
relations (23) (as well as other results below) may therefore
apply more accurately to pure Yang-Mills theory for which
several lattice studies indeed find larger average instanton
sizes �� ’ 0:4–0:5 fm [44]. In any case, one would not
expect the instanton scales of the QCD vacuum to be
precisely encoded in the hard-wall approximation. In
fact, it seems remarkable that this minimal background
can even semiquantitatively reproduce the key instanton
contribution to the short-distance expansion. For a fully
quantitative study of such corrections one should resort to
top-down gravity duals in which the relation between bulk
and boundary instantons can be traced exactly [42]. Such
investigations may also shed light on the interpretation of
the leading exponential contribution to Eq. (21) in terms of
gauge-theory physics.
It is interesting to confront the hard-wall correlator with

the QCD low-energy theorem (A7). The correlator (17)
vanishes at Q2 ¼ 0 since the removal of the contact terms
amounts to subtractions at Q2 ¼ 0. Even the contact terms

do not contain a finite (or infinite) contribution to �̂ð0Þ,
however, and neither does the nonperturbative part (21)
alone which would remain after subtracting the perturba-
tive contributions from the spectral density, as suggested in
the original definition [45]. (This is in contrast to the one-
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instanton contribution (A6) which contains a subtraction

term �̂ðIþ �IÞð0Þ ¼ 2752
 �n. The one-instanton approxima-
tion is not reliable at small Q2, however, where multi-
instanton and other long-wavelength vacuum field contri-
butions are likely to dominate the correlator.) From the
low-energy theorem (LET) perspective this is consistent
with the absence of power corrections and gluon conden-
sates in the hard-wall background. As a consequence, both
sides of Eq. (A7) vanish identically and the LET is trivially
satisfied. A more complex situation will be encountered in
the soft-wall background below.

The absence of condensate effects in the hard-wall
approximation is not surprising because their purely geo-
metrical encoding is known to require power-law deforma-
tions [46] of the warp factor AðzÞ in the infrared [47]. Since
large instantons generate finite gluon condensates, this
furthermore indicates that the correlator (17) receives
small-size instanton contributions only, in perfect agree-
ment with our above discussion which indeed implies

�ðhwÞ � zm ���1 (24)

because the instanton size cannot exceed the extension of
the AdS5 slice in the fifth dimension. Hence the simple
hard-wall approximation seems to capture the fact that an
essential part of the nonperturbative contributions to the
0þþ glueball correlator is hard compared to the OPE scale
� and therefore resides in the Wilson coefficients
[21,22,48]. Since the power corrections of the OPE (A2)
are suppressed by unusually small Wilson coefficients,
furthermore, the hard-wall background may indeed pro-
vide a reasonable first approximation to the scalar glueball
correlator.

B. Dilaton-induced conformal symmetry breaking

Awell-known shortcoming of the hard-wall background
(15) is that it predicts squared hadron masses to grow
quadratically with high radial, spin and orbital excitation
quantum numbers [10,36,49], in contrast to the linear
trajectories expected from semiclassical flux-tube models
[50]. This problem manifests itself also in the hard-wall
glueball spectra (cf. Eqs. (41) and (42)) which do not
reproduce the expected linear Pomeron trajectory [51,52].

The presence of a nontrivial dilaton background field
�ðzÞ / z2 was recently proposed as an economical remedy
for this problem in the meson [17] and glueball [12]
sectors. In the simplest version of the resulting gravity
dual, conformal symmetry breaking in the IR is the ex-
clusive task of the dilaton while the geometry (1) remains
undeformed AdS5, i.e.

AðswÞðzÞ � 0; �ðswÞðzÞ ¼ 	2z2: (25)

In the present section I derive and analyze the scalar
glueball correlator in this ‘‘dilaton soft-wall’’ background.
(Alternative holographic realizations of linear trajectories

have been obtained for mesons or glueballs in Refs. [53–
56] and for both mesons and baryons in Ref. [57].)
Although the background (25) is somewhat more com-

plex than the minimal hard-wall geometry (15), one can
still find a closed integral representation for the corre-
sponding scalar bulk-to-boundary propagator (8),

K̂ðq; zÞ ¼ q2

4	2

�
q2

4	2
� 1

�Z 1

0
dxð1� xÞx�½q2=ð4	2Þþ1�

� e�ðx=ð1�xÞÞ	2z2 ; (26)

which may be rewritten in terms of confluent hypergeo-
metric functions. Equation (26) is easily shown to be the
solution of the field equation (7) in the background (25)

which satisfies the UV boundary condition K̂ðq; 0Þ ¼ 1

and additionally K̂ð0; zÞ ¼ 1. Inserting the expression
(26) into Eq. (11) leads to

�̂ðQ2Þ ¼ �2
R3	2

�2

Q2

4	2

�
Q2

4	2
þ 1

�
lim
"!0

1

"2

�
Z 1

0
dxxQ

2=ð4	2Þe�ðx=ð1�xÞÞ	2"2 (27)

which is the exact soft-wall correlator at spacelike mo-
menta q2 ¼ �Q2. The remaining integral can be per-
formed analytically. This is conveniently done by
absorbing the small-" singularity into the integrand such
that the branch cut structure becomes manifest. One then
obtains

�̂ðQ2Þ ¼ � 2R3	4

�2

Q2

4	2

�
Q2

4	2
þ 1

�
�

�
Q2

4	2
þ 1

�

� lim
"!0

U

�
Q2

4	2
þ 2; 2; 	2"2

�
(28)

where Uða; b; zÞ is the (multivalued) confluent hypergeo-
metric function [39]. After taking the "! 0 limit and
discarding two divergent contact terms, one finally ends
up with

�̂ðQ2Þ ¼ � 2R3

�2
	4

�
1þ Q2

4	2

�
1þ Q2

4	2

�
 

�
Q2

4	2

��
(29)

in terms of the digamma function  ðzÞ ¼ �0ðzÞ=�ðzÞ [39].
As in the hard-wall case, I begin the analysis of the

correlator (29) by deriving its spectral density from the
dispersion relation (18) (where the lower boundary of the
integration region is now smin ¼ m2

0; see below) as the

imaginary part of �̂=� at timelike momenta. The analy-
ticity structure of the digamma function [39] and the causal
pole definition then imply

�ðsÞ ¼ 	2R3

2�2
sðs�m2

0=2Þ
X1
n¼0

�ðs�m2
nÞ: (30)

The spectral density (30) is non-negative for s � m2
0=2 and

consists, as its hard-wall counterpart (19) and as expected
at large Nc, of a sum of zero-width poles at the soft-wall

HILMAR FORKEL PHYSICAL REVIEW D 78, 025001 (2008)

025001-6



masses m2
n ¼ 4ðnþ 2Þ	2 (cf. Eq. (46)). The leading

large-s behavior again encodes the conformal large-Q2

behavior of the correlator.
In order to compare the holographic soft-wall correlator

to the OPE (A1) at Q2 � �2
QCD, I rewrite Eq. (29) for

Q2 � 4	2 by means of the asymptotic expansion for the
digamma function [39] and the Bernoulli numbers B2n ¼
ð�1Þn�12ð2nÞ!
ð2nÞ=ð2�Þ2n (
ðzÞ is Riemann’s zeta func-
tion) as

�̂ðQ2Þ ¼ � 2R3

�2
	4

�
1þ Q2

4	2

�
1þ Q2

4	2

�

�
�
ln
Q2

4	2
� 2	2

Q2
� X1

n¼1

B2n

2n

�
4	2

Q2

�
2n
��

¼ � 2

�2
Q4

�
ln
Q2

�2
þ 4	2

Q2
ln
Q2

�2
þ 225

3

	4

Q4
� 24

3

	6

Q6

þ 25

15

	8

Q8
þ . . .

�
: (31)

(In the last line I have adapted the correlator to the OPE
scale � by absorbing additional, finite pieces into the
contact terms.) Note that the expansion coefficients grow
factorially with the power of 	2=Q2, as expected from
QCD. The coefficients of the conformal logarithm in
Eq. (31) and in the hard-wall correlator (17) are identical.
This is because large momenta Q probe the z! 0 region
where neither the dilaton nor the IR brane affect the
correlator, so that the same AdS5-induced logarithm gov-
erns its behavior in both hard- and soft-wall backgrounds.
Hence comparison with the perturbative gluon loop of the
OPE (A2) fixes the normalization R3=�2 as in Eq. (20) and
as anticipated in the second line of Eq. (31).

In addition to the leading conformal logarithm, the
expansion (31) contains an infinite tower of power correc-
tions. Comparison with the OPE (A2) suggests them to be
related to the gauge-theory condensates

hODi � 	D ��D
QCD (32)

of D ¼ 4; 6; 8; . . . dimensional (local, gauge-invariant)
composite operators. The appearance of the scale factor
	D shows that the soft-wall power corrections are entirely
dilaton-induced, in contrast to those arising from (hadron
channel dependent) deformations of the metric in the geo-
metric approach [46] or from additional scalar background
fields. Tentatively equating the coefficients of theD ¼ 4, 6
and 8 terms (without Oð�sÞ corrections) to their OPE
counterparts in Eq. (A2) allows for a more quantitative
check of the holographic expansion (31). The resulting
relations for the three lowest-dimensional gluon conden-
sates (defined at the OPE scale �� 1 GeV) are

hG2i ’ � 10

3�2
	4; (33)

hgG3i ’ 4

3�2
	6; (34)

hG4i ’ � 8

15�3�s
	8: (35)

These holographic estimates indeed reproduce the order of
magnitude expected from QCD. This is mostly because

their scale is set by the dilaton IR parameter 	� ffiffiffi
2

p
�QCD

[57] which generates the mass gap and because the coef-
ficients in Eqs. (33) and (34) are more or less of order unity.
The sign of the most reliably determined four-dimensional
QCD gluon condensate hG2i � 0:4–1:2 GeV4 is positive,
however, in contrast to Eq. (33). QCD estimates of both
signs exist for the three-gluon condensate, namely, the

lattice prediction hgG3i ’ �1:5h�sG2i3=2 [58] and the
single-instanton value hgG3i ’ 0:27 GeV2h�sG2i. The
signs of Eqs. (33) and (35), furthermore, are at odds with
the factorization approximation [59]

hG4i ’ 9

16
hG2i2 (36)

for the four-gluon condensate combination (A4). These
shortcomings indicate that the tentative adoption of the
(leading-order) perturbative QCD Wilson coefficients for
the analysis of the holographic power corrections (31) is
questionable. It will be revised on more physical grounds
below. (Recall, furthermore, that the scalar background
field of the soft wall (25) does not correspond to a � ¼ 4
operator.)
In addition to the OPE-type power corrections of

Eq. (A2), the holographic soft-wall correlator (31) contains
a two-dimensional power correction (times a logarithm)
which cannot appear in the OPE since QCD lacks a corre-
sponding (gauge-invariant and local) composite operator.
However, a two-dimensional power correction of exactly
this type was advocated some time ago and argued to
improve QCD sum-rule results in several hadron channels
[35]. More specifically, when (possibly renormalon-
related) linear contributions to the heavy-quark potential
at short distances are approximately accounted for by an
effective gluon mass �	, the latter produces the correction
[35]

�̂ ðCNZÞðQ2Þ ¼ � 2

�2
Q4 ln

Q2

�2

�
1þ 6

�	2

Q2
þ . . .

�
(37)

to the leading logarithm of the glueball correlator which
has precisely the form of the second term in Eq. (31). The
appearance of this term supports previous arguments which
tentatively relate the quadratic behavior of the soft-wall
dilaton background field (25) or alternatively of AðzÞ
[13,53,57,60] to a two-dimensional power correction and
possibly to a two-dimensional nonlocal gluon condensate
[61]. Comparison of the �	2 correction in Eq. (37) with its
counterpart in Eq. (31) leads to the holographic estimate
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�	 2 ’ 2

3
	2 (38)

and with the approximate identification 	 ’ ffiffiffi
2

p
�QCD fur-

ther to �	2 ’ 0:15 GeV2 which is indeed of the expected
magnitude [35]. However, as in the case of the leading OPE
power corrections the sign turns out to be opposite to QCD
expectations, i.e. the square mass (38) is not tachyonic.

The complete reproduction of the Q2 dependence con-
tained in the QCD short-distance expansion (to leading
order in �s) by the soft-wall dynamics, albeit with the
signs of at least the leading power corrections opposite to
QCD expectations, suggests an interpretation which may
help to disentangle the holographic predictions for Wilson
coefficients and condensates even though they appear as
products in the power corrections. Indeed, the dimensions
of the condensates are generated by the operators of the
OPE which in turn are renormalized at relatively small
scales �� 1 GeV and hence IR dominated. This makes it
likely that the condensate part of the OPE and conse-
quently the form of the power corrections and their scaling
behavior are better reproduced by the strong-coupling
dynamics of the soft-wall model, and that the deviations
from the OPE should reside mainly in the Wilson coeffi-
cients (cf. Sec. II B). The lack of perturbative
Q2-dependence due to radiative Oð�sÞ corrections
(cf. Appendix) in the soft-wall correlator provides addi-
tional support for this interpretation. It could be further
tested by extending the comparison of holographic corre-
lators with the OPE to other hadron channels. Indeed, since
the condensates are universal (i.e. channel independent)
while the Wilson coefficients are not, one would expect
inconsistent soft-wall condensate predictions in different
hadron correlator channels when relying on the question-
able assumption that the soft-wall dynamics approximates
their Wilson coefficients.

Tentatively assuming that the soft-wall dynamics ap-
proximately reproduces the values of the QCD (or Yang-
Mills) condensates, on the other hand, one may obtain
holographic estimates for the Wilson coefficients. The
soft-wall prediction for the (leading-order) perturbative

gluon condensate coefficient CðQCD;loÞ
hG2i � B0, e.g., becomes

with hG2i ’ ð20=3Þ�4
QCD [22] and 	 ’ ffiffiffi

2
p

�QCD, �QCD ’
0:33 GeV [3]

CðswÞ
hG2i ’ � 8

�2
¼ � 2

�2
CðQCD;loÞ
hG2i : (39)

This prediction is of smaller size than the QCD value and
has the opposite sign. As discussed above, it is suggestive
to attribute at least part of these discrepancies to the
strongly coupled UV regime of the soft-wall model,
although the estimate (39) is prone to additional error
sources including the current uncertainties in the QCD
value of the gluon condensate and its sensitivity to the

presence of light quark flavors. The uncertainties in the
analogous predictions for the Wilson coefficients of
higher-dimensional operators would be further increased
by the less reliably known QCD values of the correspond-
ing condensates. One should note, finally, that the above
approximate separation of hard and soft (i.e. k _ �) con-
tributions to the holographic predictions would not work
for the gluon mass term since both the mass �	 and its
coefficient receive UV contributions.
The soft-wall correlator in its subtracted form (29) fails

to satisfy the low-energy theorem (A7): Eq. (33) (if taken
literally) implies a finite right-hand side (RHS) while

Eq. (29) gives �̂ð0Þ ¼ 0 (even before discarding the con-
tact terms), i.e. a vanishing left-hand side. Of course this
comparison should be considered naive since contact terms
are renormalization scheme dependent and devoid of in-
trinsic physical meaning. However, other subtraction pro-
cedures including the subtraction of the conformal
logarithm suggested in the original LET definition [45]
would lead to the same result. In fact, the simple soft-
wall background does not correctly represent the physics of
the QCD trace anomaly on which the LET (A7) is based:
the AdS5 metric (which is dual to the energy-momentum
tensor T�� of the gauge theory [62] on the flat boundary)

implies hT�� imetric ¼ 0 since the AdS5 Weyl anomaly van-
ishes [63], and there is no scalar background dual to the
� ¼ 4 gluon condensate operator which appears on the
RHS of the LET and in the matter anomaly contribution to
hT��i. [The soft-wall dilaton would naively correspond to a
local � ¼ 2 operator which does not exist in QCD but
arises in (e.g. effective dual color [64]) theories with
spontaneously broken gauge symmetry.]
To summarize, it is remarkable that the soft-wall back-

ground reproduces all qualitative features of the short-
distance QCD correlator, i.e. exactly those powers and
logarithms which appear in QCD, and even the hypotheti-
cal logarithmic corrections due to an UV gluon mass. The
signs (and sizes) of both leading power corrections differ
from those preferred in QCD, however, which I expect to
be at least partly due to the failure of the strongly coupled
UV regime to describe the perturbative QCD Wilson co-
efficients. Since QCD sum-rule analyses show that results
for ground-state masses and couplings (decay constants)
depend sensitively on magnitude and sign of the leading
power corrections, it is likely that the soft-wall predictions
will be contaminated by this shortcoming.
The addition of stringy corrections to the minimal bulk

action (3) may be a promising direction for improving the
soft-wall description in the UV. Indeed, first attempts to
allow for such higher-dimensional operators in the action
of holographic models [65–67] show that they can generate
substantial contributions to the power corrections. Similar
operators of stringy origin, including e.g. tachyon fields or
�0 corrections analogous to those considered in the vector
meson sector [66], can therefore be expected to improve
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the soft-wall prediction for the short-distance correlator in
the scalar glueball channel.

The comparison of the above results with those from the
hard-wall correlator in Sec. III A shows that the whole
nonperturbative momentum dependence of the known
IOPE (up to radiative corrections) is reproduced by the
holographic hard- and soft-wall correlators in a fully com-
plementary fashion: while the soft-wall correlator contains
all OPE power corrections of the types induced either by
gluon condensates or by an effective UV gluon mass, the
nonpertubative physics in the hard-wall correlator is ex-
ponential and includes a term which reproduces the behav-
ior of the leading instanton contributions. This
complementarity of the nonperturbative physics repre-
sented by both dual backgrounds is likely to persist in
other hadron correlators as well (at least at distances
smaller than the inverse QCD scale) and can be exploited
for diagnostic purposes, e.g. by tracing the impact of
different parts of the gauge dynamics on hadron observ-
ables (see below).

IV. GLUEBALL DECAY CONSTANTS

In the following section I obtain quantitative holo-
graphic predictions for the glueball decay constants (13)
in both hard-wall and dilaton soft-wall backgrounds and
discuss the underlying physics.

A. Hard-wall IR brane

The values of the glueball decay constants in the hard-
wall approximation may serve as a benchmark for the
results of more elaborate holographic duals. I calculate
them directly from the normalizable solutions [9,10]

 nðzÞ ¼ NnðmnzÞ2J2ðmnzÞ (40)

(where n ¼ 1; 2; 3; . . . ) of the massless field equation (7) in
the AdS5 slice (15), which I require to satisfy (in addition
to the AdS/CFT boundary condition  nðzÞ ! z� at z ¼
"! 0) either Dirichlet (D) or Neumann (N) boundary
conditions on the IR brane. The normalization constants
Nn are determined by the inner product of the eigenmodes,
i.e. by requiring

Rzm
0 dzðR=zÞ3 2

n ¼ 1. For Dirichlet bound-
ary conditions  nðzmÞ ¼ 0 one then obtains the masses
[9,10] and normalizations

mðDÞ
n ¼ j2;n

zm
; NðDÞ

n ¼
ffiffiffi
2

p

mðDÞ2
n R3=2zmjJ1ðj2;nÞj

(41)

while the alternative Neumann boundary conditions
 0
nðzmÞ ¼ 0 yield the spectrum [11] and normalization

constants

mðNÞ
n ¼ j1;n

zm
; NðNÞ

n ¼
ffiffiffi
2

p

mðNÞ2
n R3=2zmjJ0ðj1;nÞj

: (42)

Here jm;n denotes the nth zero of the mth Bessel function

[39]. Although the normalization constants do not affect
the mass spectra, they provide a crucial overall scale for the
decay constants.
From the general expression (13) for the decay constants

and the hard-wall eigenmodes (40) one then finds

fn ¼ lim
"!0

R3

�m2
n

 0
nð"Þ
"3

¼ Nn
2

R3

�
m2
n (43)

or more specifically for the above two IR boundary con-
ditions

fðDÞn ¼ 1ffiffiffi
2

p jJ1ðj2;nÞj
R3=2

�zm
; fðNÞn ¼ 1ffiffiffi

2
p jJ0ðj1;nÞj

R3=2

�zm
:

(44)

The expression for fðNÞn can alternatively be obtained by
comparing the spectral density (19) of the Neumann hard-
wall correlator to the general spectral representation (12).
This provides a useful cross-check on the calculations.

After fixing the overall normalization factor R3=2=� by
comparison with the QCD gluon loop contribution accord-
ing to Eq. (20), both masses and decay constants are given
(by Eqs. (41), (42), and (44)) in terms of only one adjust-
able parameter, i.e. the IR scale z�1

m ��QCD of the hard-

wall geometry which has to be determined from indepen-
dent input. The resulting quantitative predictions for fn
will be discussed in Sec. IVC.

B. Dilaton-induced soft wall

In the AdS5-dilaton background (25), the solutions of
the scalar field equation (7) turn into Kummer’s confluent
hypergeometric functions [12]. The spectrum-generating
normalizable modes then form the subset of Kummer
functions whose power series expansion truncates to a
finite polynomial which turns out to be of generalized

Laguerre type Lð2Þ
n [39], i.e.

 nðzÞ ¼ Nn	
4z41F1ð�n; 3; z2	2Þ ¼ Nn	

4z4
n!

ð3Þn L
ð2Þ
n ð	2z2Þ

(45)

where n ¼ 0; 1; 2; . . . , ðaÞn � aðaþ 1Þðaþ 2Þ . . . ðaþ
n� 1Þ and 1F1 is a confluent hypergeometric function
[39]. The ensuing restriction to discrete eigenvalues q2 ¼
m2
n yields the glueball mass spectrum [12]

m2
n ¼ 4ðnþ 2Þ	2 (46)

and relates the mass gap m0 ¼ 2
ffiffiffi
2

p
	 to the dilaton back-

ground scale. In contrast to its hard-wall counterparts (41)
and (42), the soft-wall spectrum (46) grows linearly with n
and thus generates a Pomeron-type trajectory [51,52]. The
normalization constants Nn are obtained from the inner
product in the eigenmode space by demandingZ 1

0
dz

�
R

z

�
3
e�	2z2 2

nðzÞ ¼ 1 (47)
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which yields

Nn ¼ 	�1R�3=2ðInÞ�1=2 (48)

in terms of the integrals

In :¼
Z 1

0
d�e��2�51F

2
1ð�n; 3; �2Þ ¼

n!

ð3Þn
¼ 2

ðnþ 1Þðnþ 2Þ :

(Note that Nn / ðInÞ�1=2 ! 2�1=2n for n� 3, and to a
rather good approximation already for n * 3.)

From the general expression (13) one then obtains the
glueball decay constants in the soft-wall background as

fðswÞn ¼ 4I�1=2
n

	3R3=2

m2
n�

¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

nþ 2

s
	R3=2

�
: (49)

This expression shows that the fðswÞn increase by only about
40% from n ¼ 0 to n ¼ 1 and approach the universal

value fðswÞ1 ¼ 	R3=2=ð ffiffiffi
2

p
�Þ towards higher excitation lev-

els rather fast, in contrast to the weak but unbounded
increase of their hard-wall counterparts (44).

Equation (49) can be checked by alternatively deriving it

from the spectral density (30), and the factor R3=2=� can
again be estimated by Eq. (20) which continues to hold in
the soft-wall background. The dilaton scale 	 will be
approximately determined in Sec. IVC.

C. Quantitative analysis

I restrict the quantitative decay-constant estimates to the

glueball ground state, i.e. to fðhwÞ1 � fðhwÞS and fðswÞ0 �
fðswÞS , since only fS will be of phenomenological relevance

in the foreseeable future and since independent theoretical
information on it is currently available. (The extension to
higher resonances by means of formulas (44) and (49) is of
course immediate.) After having fixed the correlator nor-
malization R3=�2 according to Eq. (20) in both back-
grounds, it remains to determine the IR scale z�1

m ð	Þ of
the hard- (soft-) wall gravity dual. In order to get an idea of
how the uncertainties involved in different scale-setting
approaches affect the decay-constant predictions, I will
discuss several alternative possibilities.

A commonly adopted strategy for fixing the IR scale is
to match the holographic ground-state mass to lattice re-
sults. Uncertainties of this method include the still rather
large scale-setting ambiguity of quenched lattice predic-
tions [68] and the neglected light-quark effects (including
quarkonium mixing and decay channels) which may sub-
stantially reduce the quenched scalar glueball masses [69].
Nevertheless, the quenched masses can serve as a useful
benchmark for scale-setting purposes, especially because it
is not clear how far quark effects are accounted for in the
simple dual dynamics which I consider here.

I therefore base my first estimate on a typical quenched
glueball mass mS ’ 1:5 GeV [23,52,70], which coincides
with the mass of the experimental glueball candidate
fð1500Þ and fixes the IR scale of the Dirichlet

(Neumann) hard wall at zðDÞ�1
m ¼ 0:29 GeV (zðNÞ�1

m ¼
0:39 GeV) and that of the soft wall at 	 ¼ 0:43 GeV.

(Note that the values for zm and 	=
ffiffiffi
2

p
are indeed rather

close to �QCD, as assumed in the qualitative estimates of

Sec. III.) When inserted into Eqs. (44) and (49), these
scales lead to the predictions

fðDÞS ¼ 0:77 GeV; (50)

fðNÞS ¼ 0:87 GeV (51)

in the hard-wall geometry and to the about 3 times smaller
value

fðswÞS ¼ 0:28 GeV (52)

in the soft-wall background. Since both of the parameters
which underlie these results were fixed in the glueball
sector and in the absence of quarks (recall that the estimate
(20) is based on the free gluon loop), the above values are
probably best associated with pure Yang-Mills theory.
Alternatively, one can determine the value of the hard IR

wall cutoff in the classical hadron sector, e.g. from a fit to�
and � meson properties as in Refs. [10,18]. The typical
result is z�1

m ’ 0:35 GeV and yields

fðDÞS ¼ 0:93 GeV; (53)

fðNÞS ¼ 0:78 GeV: (54)

The corresponding ground-state glueball mass predictions

are then mðDÞ
S ¼ 1:80 GeV and mðNÞ

S ¼ 1:34 GeV (where

mS � m1). The latter is significantly smaller than most
quenched lattice results but close to the fð1270Þ and to
results of K-matrix analyses of scalar resonance data [71],
mixing schemes with only one 0þþ multiplet below
1.8 GeV [72], a topological knot model [73] and the
QCD sum-rule prediction mS ¼ 1:25	 0:2 GeV [22].
One might speculate that fixing z�1

m in the flavored meson
sector takes some light-quark effects into account and
hence corresponds to a lower, unquenched value of the
scalar glueball mass (at least under Neumann IR boundary
conditions). For an alternative estimate of the soft-wall IR
mass scale 	 (which has not yet been determined in the
meson sector), finally, one can use its approximate relation

	 ’ ffiffiffi
2

p
�QCD ’ 0:49 GeV (cf. e.g. Ref. [57]) to the QCD

scale �QCD � 0:33 GeV [3] (for three light-quark flavors).

This yields the soft-wall prediction

fðswÞS ¼ 0:31 GeV (55)

which is similar to the first soft-wall estimate (52) but
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corresponds to a significantly smaller glueball mass

mðswÞ
S ¼ 1:37 GeV.
The above results may be summarized as follows:

(i) whereas the hard-wall results for the ground-state
mass can differ by more than 30% for Dirichlet vs
Neumann IR boundary conditions, the decay-constant pre-
dictions remain in the smaller range

fðhwÞS ’ 0:8–0:9 GeV; (56)

and (ii) the soft-wall results for the ground-state decay
constant center consistently around less than half of the
hard-wall value,

fðswÞS ’ 0:3 GeV: (57)

The substantial difference between the hard- and soft-wall
predictions can be traced to the different slope of the
normalized dual modes at the UV brane (i.e. for z ¼ "!
0). (An analogous but less pronounced difference between
the slopes of hard- and soft-wall modes was found in the
rho meson sector [74].) The larger slope of the hard-wall
mode translates into a larger Bethe-Salpeter amplitude at
the origin and hence into a smaller size of the scalar
glueball.

In view of the sign problem which afflicts the leading
nonperturbative contributions to the soft-wall glueball cor-
relator at distances larger than the inverse QCD scale
(cf. Sec. III B), and because of the exceptional size of the
missing exponential contributions, one would expect the
soft-wall results in the spin-0 glueball sector to be less
reliable than their hard-wall counterparts. This expectation
is corroborated by the first (quenched) lattice simulation of

glueball decay constants [23] which finds fðlatÞS ¼ 0:86	
0:18 GeV. This lattice result is inside errors fully consis-

tent with the IOPE sum-rule value fðIOPEÞS ¼ 1:050	
0:1 GeV [22], the instanton-liquid model result fðILMÞ

S ¼
0:8 GeV [20] and our above holographic hard-wall result
(56). The soft-wall result (57), on the other hand, is clearly
incompatible with the lattice prediction.

Further insight into the holographic glueball dynamics
can be gained by interpreting the above results on the basis
of the structural complementarity between the nonpertur-
bative physics accounted for in the soft- and hard-wall
correlators (i.e. power vs exponential contributions,
cf. Sec. III). Since the large exponential contributions to
the hard-wall correlator can at least partially be associated
with small-scale instantons and are absent in the soft-wall
correlator, one infers that the instanton contribution can
more than double the value of the decay constant. The
mentioned IOPE sum-rule analyses [21,22] arrived at the
same conclusion. Moreover, even the perturbative and hard
instanton contributions alone (i.e. without the unusually
small power corrections and thus comparable to the hard-
wall physics) were found to provide reasonable approxi-
mations to the 0þþ QCD glueball sum-rule results for the

ground-state mass and decay constant [21]. The neglect of
the hard instanton contributions, on the other hand, leads to

the substantially smaller prediction fðOPEÞS ¼ 0:390	
0:145 GeV [75] which is consistent with the soft-wall
result (57) but not with the lattice value.

V. SUMMARYAND CONCLUSIONS

I have analyzed the scalar glueball dynamics contained
in two approximate holographic QCD duals, viz. the hard-
wall IR brane geometry and the dilaton soft-wall back-
ground. The article focuses on the 0þþ glueball correlation
function and its spectral density for which I have obtained
closed analytical expressions in both gravity duals. A
systematic comparison with the QCD physics content of
the instanton-improved operator product expansion, a di-
latational low-energy theorem and an additional, two-
dimensional power correction then provides several new
insights into the holographic representation of hadron
physics as well as estimates for various bulk parameters
of the QCD vacuum and predictions for the glueball decay
constants.
In both dual backgrounds the spectral densities are found

to be non-negative, in agreement with general principles,
and to consist of an infinite sum of zero-width glueball
poles, as expected in the limit of a large number of colors.
In their representation of specific nonperturbative glueball
physics (at momenta larger than the QCD scale), however,
both holographic duals turn out to complement each other
in a mutually exclusive fashion: the soft-wall correlator
contains all known types of QCD power corrections (to
leading order in the strong coupling), generated either by
condensates or by an effective UV gluon mass, while
sizeable exponential corrections as induced by small-scale
instantons are found in the hard-wall correlator. (This
complementarity may in fact suggest to combine brane-
and dilaton-induced IR physics into improved QCD duals.)
As a consequence, the soft-wall correlator provides

holographic estimates for either the three lowest-
dimensional gluon condensates or their Wilson coeffi-
cients, as well as for the effective gluon mass (potentially
associated with a two-dimensional nonlocal ‘‘conden-
sate’’), whereas the hard-wall correlator allows for predic-
tions of the two leading moments of the instanton size
distribution. All holographic estimates turn out to be of
the order of magnitude expected from QCD, which is at
least partly a consequence of the fact that the IR scale of
both dual backgrounds is set by �QCD. The predicted signs

of the two leading dilaton-induced power corrections,
however, are opposite to those of standard QCD estimates
(and in conflict with the factorization approximation for
the four-gluon condensate). I have argued that these short-
comings provide evidence for the short-distance physics in
the OPEWilson coefficients to be inadequately reproduced
(beyond the leading conformal logarithm) by the strongly
coupled UV regime of bottom-up models. In conjunction
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with the absence of the sizeable exponential contributions,
this casts particular doubts on soft-wall results for glueball
observables.

A second main objective of the analysis was to provide
first holographic estimates for the decay constants of the
0þþ glueball and its excitations, which contain valuable
size information and are of direct importance for experi-
mental glueball searches. The analysis shows that the
decay constants probe aspects of the dual dynamics to
which the mass spectrum is less sensitive, and thus provide
a new testing ground for the development of improved
QCD duals. The hard- and soft-wall predictions for the
ground-state decay constant fS differ by more than a factor
of 2, as do the corresponding QCD sum-rule results with
and without hard instanton contributions. In fact, as in the
sum-rule analyses the enhancement of fS and the conse-
quently reduced size of the scalar glueball in the hard-wall
background can be traced to the strong instanton-induced
attraction (over relatively short distances of the order of the
average instanton size) which the exponential contribu-
tions to the hard-wall correlator generate. It is remarkable
that the simple hard-wall approximation can reproduce
these small-instanton effects, which are known to be ex-
ceptionally strong in the 0þþ glueball correlator. Their
absence and the other shortcomings mentioned above ren-
der the soft-wall predictions for the glueball decay con-
stants unreliable, while the hard-wall prediction

fðhwÞS ’ 0:8–0:9 GeV agrees inside errors with IOPE sum-

rule and lattice results.
The above arguments for the instanton-induced origin of

the decay constant enhancement provide an example for
how the complementary nonperturbative physics in the
hard- and soft-wall backgrounds, which should for the
most part generalize to other hadron channels, may be
exploited to trace differences in the holographic predic-
tions of both backgrounds to different origins in the soft
gauge dynamics. The absence of instanton contributions to
the soft-wall correlator provides another example: since
the soft-wall background was designed to reproduce the
linear trajectories of excited mesons, it indicates that in-
stanton effects are not directly involved in the underlying
flux-tube formation, in agreement with QCD expectations.

The above results demonstrate that the comparison of
holographic predictions with QCD information at the cor-
relator level can provide very specific and quantitative
insights into the gauge dynamics which different dual
backgrounds encode. This holds, in particular, for com-
parisons with the QCD operator product expansion. Owing
to its ability to factorize contributions from short- and
long-distance physics to gauge-theory amplitudes, the
OPE allows for a transparent analysis and systematic im-
provement of several typical shortcomings of holographic
models, including those which are rooted in their strongly
coupled UV sector. These limitations notwithstanding, the
amount of glueball dynamics found to be represented in

even the simplest holographic duals is encouraging and
indicates that the bottom-up approach may indeed provide
a viable and systematically improvable approximation to
holographic QCD.
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APPENDIX: SYNOPSIS OF QCD RESULTS

The instanton-improved operator product expansion
(IOPE)

�̂ ðIOPEÞðQ2Þ ¼ �̂ðOPEÞðQ2Þ þ �̂ðIþ �IÞðQ2Þ (A1)

of the scalar QCD glueball correlator, which holds at
spacelike momenta Q2 ¼ �q2 � �2

QCD, is currently

known up to operators of dimension eight, radiative cor-
rections to the Wilson coefficients up to Oð�2

sÞ, and small-
size (or ‘‘direct’’) instanton contributions of Oð@0Þ to the
Wilson coefficient of the unit operator [21,22]. The stan-
dard part, with purely perturbative coefficients, has there-
fore the form (cf. [22,75] and references therein)

�̂ðOPEÞðQ2Þ ¼
�
A0 þ A1 ln

�
Q2

�2

�
þ A2ln

2

�
Q2

�2

��
Q4 ln

�
Q2

�2

�

þ
�
B0 þ B1 ln

�
Q2

�2

��
hG2i

þ
�
C0 þ C1 ln

�
Q2

�2

�� hgG3i
Q2

þD0

hG4i
Q4

:

(A2)

The full set of coefficients Ai–Di can be found in Ref. [22].
Those needed for comparison with the holographic results
below are A0 ¼ �ðN2

c � 1Þ=ð4�2Þ and (for the number of
colors (light flavors) NcðNfÞ ¼ 3 [76]) B0 ¼ 4þ
49�s=ð3�Þ, C0 ¼ 8 (where a small anomalous dimension
correction has been neglected) andD0 ¼ 8��s. The gluon
condensates are defined at the OPE scale � as

hG2i :¼ hGa
��G

a;��i; hgG3i :¼ hgfabcGa
��G

b�
� G

c��i;
(A3)

hG4i :¼ 14hðfabcGb
��G

�c
� Þ2i � hðfabcGb

��G
c
�	Þ2i: (A4)

Contributions from instantons larger than the inverse
OPE scale are accounted for in the condensates. Small-
scale (or direct) instantons (and anti-instantons) contribute
to the Wilson coefficients, on the other hand, and affect
dominantly the coefficient of the unit operator [21,22,48].
In the glueball channel, the latter is given by [22,48]

HILMAR FORKEL PHYSICAL REVIEW D 78, 025001 (2008)

025001-12



�̂ ðIþ �IÞðQ2Þ ¼ ð4�Þ2��2
s

X
Iþ �I

Z
d�ndirð�Þ½ðQ�Þ2K2ðQ�Þ�2

(A5)

(K2 is a McDonald function [39]) where � and ndirð�Þ
denote the size and density of small instantons with � �
��1 in the vacuum. The nonperturbative contributions
(A5) are known to be particularly important in the spin-0
glueball channels, i.e. comparable to the contributions
from the perturbative coefficient and of equal or larger
size than the power terms at Q2 * �2

QCD. The expression

(A5) can be approximated as

�̂ ðIþ �IÞðQ2Þ ’ 2552
 �n½ðQ ��Þ2K2ðQ ��Þ�2 (A6)

where the instanton density is approximated by the spike
distribution ndirð�Þ ¼ 
 �n�ð�� ��Þwhich becomes exact at
large Nc and where �� and �n are the average instanton size
and density in the vacuum. The coupling �s=� ’ 0:2 is
fixed at a typical instanton scale and the factor 
 ’ 0:66
excludes contributions from instantons with � >��1 [22].

Further information on the behavior of the QCD glueball
correlator is available in the opposite limit Q2 ! 0.
Indeed, the value of the correlator at zero momentum
transfer is governed by the low-energy theorem (LET) [45]

�̂ð0Þ ¼ 32�

�sb0
hG2i þOðmqÞ (A7)

where b0 ¼ 11Nc=3� 2Nf=3, mq are the light quark

masses for flavor q, and UV renormalization of both sides
by a dispersive subtraction of high-frequency field contri-
butions is implied [45]. The appearance of the gluon
condensate in Eq. (A7) reflects the fact that the LET is a
consequence of the anomalous Ward identity for the QCD
dilatation current. Additional information on the glueball
correlator has been obtained from several versions of the
instanton-liquid vacuum model (ILM) in Ref. [20],
whereas direct lattice information on the (point-to-point)
correlator seems currently not to exist.
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