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Black hole mimickers are possible alternatives to black holes; they would look observationally almost

like black holes but would have no horizon. The properties in the near-horizon region where gravity is

strong can be quite different for both types of objects, but at infinity it could be difficult to discern black

holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon prop-

erties, and their connection with far away asymptotic properties, of some candidates to black mimickers.

We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically

symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole

mimickers, we study nonextremal "-wormholes on the threshold of the formation of an event horizon,

of which a subclass are called black foils, and gravastars. Within the charged extremal black hole

mimickers we study extremal "-wormholes on the threshold of the formation of an event horizon, quasi-

black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or

not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of

full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the

gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list

ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows:

wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes,

wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational

astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas

nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their

mimickers seems to be less difficult than one could think of it.
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I. INTRODUCTION

In recent years, it has been debated in the literature about
possible alternatives to black holes, the black hole mim-
ickers, which would look observationally almost like black
holes but would have no horizon. The existence of such
objects can, in principle, put in doubt astrophysical data
which otherwise are considered as observational confirma-
tion in favor of black holes [1]. On one hand, it is clear that
the properties in the near-horizon region where gravity is
strong can be quite different for both types of objects. On
the other hand, the statements about the difficulties in
discerning black holes from their mimickers are usually
related to measurements at spatial infinity. Thus, one
should insist on the question: Can an observer at infinity
catch the difference between both types of objects in some
indirect way, or even rule out some possible mimicker? In
our view, the answer is positive and is connected with key
properties, namely, regularity or singularity, of the corre-
sponding geometries. It turns out that the requirement of

full regularity up to an arbitrary neighborhood of the
gravitational radius of the object enables one to rule out
the potential mimickers in most of the cases.
The goal of the present work is to examine the near-

horizon properties, and their connection with far away
asymptotic properties, of some candidates to black mim-
ickers. We study spherically symmetric configurations, and
make two major divisions, or classes, on those candidates.
First, uncharged or charged but nonextremal objects, and
second extremal objects. Within the uncharged or charged
but nonextremal one can invoke as black hole mimickers,
nonextremal "-wormholes on the threshold of the forma-
tion of an event horizon, some of which are called black
foils [2] (see [3] for the construction with other purposes of
"-wormholes, which actually can also act as mimickers),
and gravastars [4]. Within the extremal charged class one
can invoke extremal "-wormholes on the threshold of the
formation of an event horizon, quasi-black holes [5] (see
also [6]), and wormholes on the basis of quasi-black holes
from Bonnor stars, to name a few. We want to elucidate
whether or not the objects belonging to these two classes
remain regular in the near-horizon limit. The arguments of
[5] which rule out nonextremal limiting configurations as
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becoming singular do not apply to the wormhole case [2].
Thus, we carry out the corresponding analysis anew for
both classes of objects.

II. EQUATIONS AND SETUP FOR MIMICKERS

For our purposes we write a generic spherically sym-
metric metric as

ds2 ¼ � expð2�ðr; �iÞÞdt2 þ dr2

Vðr; �iÞ þ r2ðd�2

þ sin2�d�2Þ; (1)

where r is the radial coordinate, and the �i are ge-
neric parameters that depend on each situation we are
studying. For instance, when treating wormholes one
has i ¼ 1; :::; 4, and �i ¼ ðrþ; r�; "; r0Þ, such that
expð2�ðr; �iÞÞ ¼ expð2�ðr; rþ; r�; "; r0ÞÞ and Vðr; �iÞ ¼
Vðr; rþ; r�; "; r0Þ. Here rþ is the radius of the would-be
horizon when " is zero, r� is the radius of the other
possible horizon, " is in principle a small quantity, and
r0 is the radius of a possible matter shell, satisfying r0 �
rþ. In other situations, e.g., for gravastars, one has �i ¼ r0
and, possibly, the energy density and the pressure should be
somehow included. For the metric (1) the components of
the Riemann tensor in an orthonormal frame, the hat frame,
are equal to

KðrÞ � Rt̂ r̂
t̂ r̂
¼ �Vð�00 þ�02Þ � V 0

2
�0; (2)

NðrÞ � Rt̂ �̂
t̂ �̂

¼ �V

r
�0; (3)

FðrÞ � R�̂ �̂

�̂ �̂
¼ 1

r2
ð1� VÞ; (4)

HðrÞ � R�̂ r̂
�̂ r̂

¼ �V 0

2r
; (5)

where a prime denotes derivative with respect to r. Here
these components of the Riemann tensor have a simple
physical meaning. The KðrÞ component in Eq. (2) yields
the radial geodesic deviation, the NðrÞ component in
Eq. (3) yields the angular deviation, and analogously for
the FðrÞ and HðrÞ components in Eqs. (4) and (5). In
summary, they describe the deviation of geodesics in the
corresponding directions. In general, forcing a matching at
r0, with r0 > rþ, surface stresses Sba appear, which, in a
coordinate frame, are equal to [7,8]

8�� � �8�Stt ¼ � 2

r0

��
dr

dl

�
þ
�

�
dr

dl

�
�

�
; (6)

8�S � 8�S��

¼ 1

r0

��
dr

dl

�
þ
�

�
dr

dl

�
�

�
þ

�
d�

dl

�
þ
�

�
d�

dl

�
�
; (7)

S�� being equal to S��, and l being the proper radial
distance. Now, if metric (1) represents a wormhole, then
the areal radius rðlÞ should have a local minimum at the
throat. Thus, we have two branches emerging out of the

minimum radius, one with ðdrdlÞþ ¼ ffiffiffiffiffiffiffiffiffiffi
VðrÞp

and the other

with ðdrdlÞ� ¼ � ffiffiffiffiffiffiffiffiffiffi
VðrÞp

. Then,

8�� ¼ � 4

r0

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

q
; (8)

8�S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p
r0

þ
�
d�

dl

�
þ
�

�
d�

dl

�
�
: (9)

There are also the bulk stress-energy components, but
those do not interest us here and do not need computation.
In some situations one has to deal here with naked be-

havior. This means there are cases in which the Kretsch-
mann scalar and other curvature quantities are finite on the
horizon in a static coordinate system, but some of those
quantities may blow up in a freely falling frame. Such a
kind of behavior is called naked behavior, and many in-
stances of it have been found [9–16]. Another example is
with quasi-black holes [5]. One of the features typical of
quasi-black holes consists of precisely showing naked
behavior on and beyond the quasihorizon surface. In addi-
tion, metrics obtained by gluing two spacetimes can have a
similar behavior, but now the surface stresses, which are
finite in a static coordinate frame, blow up in a free-falling
frame. Thus, since we have found in Eqs. (2)–(7) the cur-
vature and surface stresses in a static frame for the space-
time in question, we now examine the behavior of the same
quantities for a free-falling frame. Consider then a radial
local boost from a static frame with four-velocity u� to a
free-falling frame with the velocity �u�. Under a boost the
four-velocity transforms according to �u� ¼ u� cosh��
n� sinh�, where the orthonormal vector n� is pointing in
the radial outward direction, and � is the velocity boost
parameter. In relation to the tidal forces in the bulk, the
curvature components (2) and (3) in the orthonormal basis
responsible for tidal forces transform according to

�K ¼ K; (10)

�N ¼ N � Zsinh2� ¼ H þ E2 expð�2�ÞðN �HÞ; (11)

where a bar means a quantity evaluated in the freely falling
frame, Z ¼ H � N [see Eq. (5) for the definition of H],
cosh� ¼ expð��ÞE, and E is the energy of the particle
frame (see e.g. [5] for more details). The most interesting
situation arises when K is finite (so, the Kretschmann
scalar is also finite) but �N diverges. The corresponding
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horizons can be called truly naked [13,14]. In relation to
the surface stresses, it is useful to define the quantity

�� ¼ S�� �u
� �u�; (12)

which represents the energy density of the shell as ob-
served by the observer with the four-velocity �u�. In a static

frame �� ¼ � ¼ �Stt. Then, considering a boosted motion
along a radial geodesic with energy E, one obtains

�� ¼ �Stt expð�2�ÞE2: (13)

This is a useful expression for analyzing naked behavior of
wormholes and other objects. For the wormhole case it
reduces to

�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p
2�r0

expð�2�ÞE2; (14)

where r0 is the radius at which the shell is located and we
took into account (8).

III. MIMICKERS OF NONEXTREMAL
BLACK HOLES

A. Non-extremal wormholes on the basis of
"-metrics with surgery

1. Basics

There are many ways of making wormholes [17,18].
In this section we are interested in making wormholes
from charged metrics, more general than the Reissner-
Nordström metric, but for certain choices the metrics can
be reduced to the Reissner-Nordström metric. Even for this
metric one probably can think of many manners of making
wormholes. We are interested in two different ways that
easily lead to the threshold of black hole formation, and the
discussion of how they mimic black holes. Then we com-
pound both ways into one single way.

The first way is the surgery approach (see, in particu-
lar, Sec. 15.2.1 of [18]). Pick up a spherically symmetric
metric of the form ds2 ¼ � expð2�ðr; rþ; r�; r0ÞÞdt2 þ

dr2

Vðr;rþ;r�;r0Þ þ r2ðd�2 þ sin2�d�2Þ, where rþ is the radius

of the would-be horizon, r� is the radius of the other
possible horizon, and r0 is the radius of a possible matter
shell, satisfying r0 � rþ. Take for instance the nonextre-

mal Reissner-Nordström metric, where expð�Þ ¼ ffiffiffiffi
V

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rþ

r Þð1� r�
r

q
Þ, with r� ¼ GM� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2M2 �GQ2
p

and

rþ � r�,M and Q being the mass and electrical charge of
the object, respectively, and G is Newton’s constant (we
use c ¼ 1). Cut the metric at some r0 and join the resulting
spacetime with a symmetric branch. This is a nonextremal
Reissner-Nordström surgery (the Schwarzschild surgery,
with no charge and so r� ¼ 0, being a particular case of
this), resulting in a nonextremal wormhole with a thin shell
of matter at r0, the throat. In brief, one places at some

radius, r0, a thin shell which separates two regions, with
nonextremal geometries, with r0 also defining the throat.
Then, one introduces another radial coordinate l, such that
r ¼ rðlÞ with r0 ¼ rð0Þ, and which covers the whole of the
manifold, �1< l <1. The function rðlÞ is monotoni-
cally decreasing for the branch l < 0, which we call the
‘‘ �’’ branch, and monotonically increasing for l > 0, the
‘‘ þ’’ branch. In general, giving this construction, surface
stresses Sba appear.
A second way, i.e., another approach, to build

wormholes, is through metrics of the type

ds2 ¼ �expð2�ðr; rþ; r�; "ÞÞdt2 þ dr2

Vðr;rþ;r�;"Þ þ r2ðd�2 þ
sin2�d�2Þ, where " is a small quantity, rþ is the radius of
the would-be horizon when " is zero, and r� is the radius
of the other possible horizon [2,3]. Metrics of this type,
depending on the parameter ", can be generically call
"-spacetimes, which in special cases can become
wormholes, i.e., "-wormholes. In [2] the model with met-

ric ds2 ¼ �ðV þ "2Þdt2 þ dr2

V þ r2ðd�2 þ sin2�d�2Þ was
considered, where thus expð�ðr; "ÞÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V þ "2
p

, with V
being chosen appropriately. In turn, in [3] the model

with metric ds2 ¼ �ð� ffiffiffiffi
V

p þ "Þ2dt2 þ dr2

V þ r2ðd�2 þ
sin2�d�2Þ was considered, where thus expð�Þ ¼ �

ffiffiffiffi
V

p þ
", with V being chosen appropriately and with � being an
additional parameter. Thus, a generic "-metric of the type
given above yields a generic spacetime that comprehends
the two cited models, one model studied in [2], the other in
[3]. One can calculate the Riemann tensor for the "-metric,
and of course, since spacetime is not empty, there is a
smooth energy-momentum tensor associated to the met-
ric but we do not need to calculate it here. All these
"-spacetimes are smooth. Now, take the "-metric to con-
struct a wormhole, i.e., an "-wormhole. Since for the
construction we need to impose some more conditions, in
particular, on the potentials� and V of the "-metric, let us
adopt the following approach. First, as above, one intro-
duces the radial coordinate l, such that r ¼ rðlÞ and�1<
l <1. The function rðlÞ is monotonically decreasing for
the ‘‘ �’’ branch, l < 0, and monotonically increasing for
the ‘‘ þ’’ branch, l > 0. Second, the dependence of the
function� on the parameter ",� ¼ �ðr; "Þ, which can be
of the type of the models considered above [2,3], is such
that expð�ðrþ; 0ÞÞ ¼ 0, and the dependence of the function
V on the parameter " is also such that Vðrþ; 0Þ ¼ 0, so in
the limit " ! 0 the original wormhole configuration in-
deed approaches a black hole. Third, if the first derivative
dr
dl is continuous at the throat, we have dr

dl ¼ 0 (see [17]).

When V does not depend on " at all, the throat is situated
on the possible would-be horizon. This is the approach
used in [2,3] to build a wormhole. This approach is smooth
as long as " � 0. As a particular instance of this approach,
one can choose V as being Reissner-Nordström, V � ð1�
rþ
r Þð1� r�

r Þ, as usual. For rþ � r� one has a nonextremal

choice for V, the case r� ¼ 0, i.e., Q ¼ 0, yielding the
Schwarzschild potential V as a particular case, the one
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chosen in [2,3]. Such "-wormholes have been called foils
in [2]. When " ¼ 0 we have the full nonextremal Reissner-
Nordström metric.

So, let us compound both approaches, the surgery
approach of [17,18], and the " approach of [2,3].

Write then a generic "-metric with surgery as ds2 ¼
� expð2�ðr; rþ; r�; "; r0ÞÞdt2 þ dr2

Vðr;rþ;r�;";r0Þ þ r2ðd�2 þ
sin2�d�2Þ; i.e., from (1) one chooses

expð2�ðr; �iÞÞ ¼ expð2�ðr; rþ; r�; "; r0ÞÞ;
Vðr; �iÞ ¼ Vðr; rþ; r�; "; r0Þ;

(15)

where " is a small quantity, rþ is the radius of the would-be
horizon (if " ¼ 0), and r0 is the radius of a possible matter
shell, satisfying r0 � rþ. Since we are studying here non-
extremal metrics we have, when " ¼ 0, that VðrþÞ ¼ 0
and V0ðrþÞ � 0. Essentially, what we have done is a sur-
gery on "-metrics, nonextremal Reissner-Nordström (with
Schwarzschild included) metrics being particular " ¼ 0
instances. This can also be thought of as a one-parametric
deformation of the original "-wormhole metric by gluing
two branches at the throat r0, with r0 > rþ. Now, given the
general "-metric with surgery, (1) and (15), and the corre-
spondent wormhole construction, we are interested in get-
ting a spacetime that mimics a black hole. It is then not
hard to understand that there are two distinct situations to
obtain spacetimes on the threshold of being black holes. If
there is no shell, then wormholes approach black holes
when " ! 0. If there is a shell but " ¼ 0 then the worm-
hole throat approaches the horizon when r0 ! rþ. There-
fore, there is a play of two small parameters " and r0 � rþ
and the limiting procedure should be considered with great
care. It gives rise to two distinct situations, depending on
the order one takes the limiting procedures. Situation BT:
This situation is achieved by in the end turning the worm-
hole metric into the metric of a black hole (B) (i.e., tak-
ing " ! 0 as the last operation), after first having moved
the shell towards the minimum throat (T) radius (i.e.,
taking r0 ! rþ as the initial operation). Formally, this
means taking the limits in the following order BT �
lim"!0 limr0!rþ . Situation TB: This situation is achieved

by, in the end the location of the shell approaches the throat
(T) (i.e., taking r0 ! rþ as the last operation), after first
turning the wormhole metric into a black hole (B) (i.e.,
taking " ! 0 as the initial operation). Formally, this means
taking the limits in the following order TB �
limr0!rþ lim"!0 . Note the case considered in [2] for the

metric (1) is a particular instance of the BT situation, since
there r0 ¼ rþ always, and one only takes the " ! 0 limit.
So the situation BT is the one that yields black foils,
following the nomenclature of [2]. One can calculate
from Eqs. (3)–(5) that the components NðrÞ, FðrÞ, and
HðrÞ of the Riemann tensor are always finite, and from
Eq. (6) that both limits when applied to� � �Stt give zero,
i.e., lim"!0 limr0!rþ � ¼ 0 ¼ limr0!rþ lim"!0 �. But for

the quantities K, S � S�� and
�� [see Eqs. (2), (7), and (13)]

the situation may be different depending on the order one
takes the limits.
Now, as we have been seeing, in treating this problem

there are many levels of distinction. First, we can specify
two models of "-metrics with surgery which depend on
the parameter " and r0, namely, the model considered in

[2], where expð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þ "2

p
, and V is nonextremal, or

some appropriate generalization of it, which we will call

Model 1, and the model given in [3], where expð�Þ ¼
�

ffiffiffiffi
V

p þ " and V nonextremal, or some appropriate general-
ization of it, which we will call Model 2. Second, within
each of the two cases provided by Model 1 and Model 2,
we should study the situations BT and TB. Furthermore, as
we want to examine the regularity of the system under
discussion, the relevant quantities which we are going to
calculate are the spacetime curvature components, and the
surface stresses which appear on the glued boundary, i.e.,
the shell. We will also study the naked behavior of each
case. So, within each situation we have to study the be-
havior of the scalars, and in addition the naked behavior.
Thus we have eight distinct cases to analyze. We consider
these eight cases, each in turn.

2. Models

Here we consider the one-parametric deformation,
Eqs. (1) and (15), such that for " ¼ 0 our metric represents
the gluing of two nonextremal black holes. Note that in this
nonextremal case the function V of the metric (1) does
not need to contain the parameter ", so we put V ¼
Vðrþ; r0; rÞ.

a. Model 1

Let the metric have the form (1) together with (15). For
Model 1 choose the metric potentials as

expð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þ "2

p
; (16)

where VðrÞ can be any function that satisfies VðrþÞ ¼ 0
and V0ðrþÞ � 0. For instance V can be Reissner-
Nordström, VðrÞ � ð1� rþ

r Þð1� r�
r Þ with r� ¼ GM�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2M2 �GQ2
p

and rþ � r�, with the case r� ¼ 0 being
the Schwarzschild case, the one chosen in [2]. Let us now
work out generically the general behavior of this model,
i.e., how the curvature and stress-tensor quantities behave,
and also work out generically the naked behavior. Then we
apply these behaviors to the two situations BT and TB. In
doing so, we will display the properties of the quantities K,
S, which characterize regular or singular general behavior,

and the properties of the quantities �N, �� which character-
ize non-naked or naked behavior. As for understanding the
general behavior note that, from Eqs. (2) and (7) explicit
calculations give
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K ¼ �V

2

V00

V þ "2
� 1

4

"2V 02

ðV þ "2Þ2 ; (17)

and

8�S ¼ 2

r0

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

q
þ V 0ðr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p
"2 þ Vðr0Þ

: (18)

In relation to naked behavior, note that since from (3)

one has N ¼ � V
r �

0 ¼ � VV0
2rð"2þVÞ , and from (5) one has

H ¼ � V0
2r , one finds Z ¼ H � N ¼ �"2 V0

2rðVþ"2Þ . Thus,

from (11)

�N ¼ V 0

2r

�
E2"2

ðV þ "2Þ2 � 1

�
: (19)

With this we can now study the situations BT and TB.
Situation BT: As for the general behavior, one has that

for a nonextremal system VðrþÞ ¼ 0 and V 0ðrþÞ � 0.
Then, it follows from Eq. (17) that

Kðrþ; "Þ ¼ �V 02ðrþÞ
4"2

; (20)

and so,

lim
"!0

lim
r0!rþ

Kðr0; "Þ ¼ �1: (21)

Correspondingly, the Kretschmann scalar Kr ¼
R��	
R

��	
 also diverges. It was shown in [2] for the

choice V ¼ 1� rþ
r that for " � 0 there exist geodesics

which have no analogue for the Schwarzschild black hole
metric. The timelike particles which move along them
oscillate between turning points, which are situated at
different sides of the throat. However, the problem is that
in the limit " ! 0 these geodesics pass through a region of
a strong gravitational field. This gives rise to tidal forces in
the radial direction which are of order "�2r�2þ . If " is
exponentially small [2], the tidal forces are exponentially
large. In addition, from Eq. (18), it follows that

lim
"!0

lim
r0!rþ

8�Sðr0; "Þ ¼ 0: (22)

Now let us analyze the naked behavior. Here one has, �N �
"�2, �K ��"�2 ! . So, �N ! 1, �K ! �1. Thus, there is
infinite contraction in the longitudinal direction and infi-
nite transversal stretching. Moreover, since VðrþÞ ¼ 0 and
expð�ðrþ; "ÞÞ � 0, we obtain immediately from (14) and
(16) that in the situation BT one has

�� ¼ 0: (23)

Situation TB:As for the general behavior, now one finds,
Kðr0; 0Þ ¼ � 1

2V
00ðr0Þ. So,

lim
r0!rþ

lim
"!0

Kðr0; "Þ ¼ �V 00ðrþÞ
2

; (24)

a result equal to that of a black hole. Also, 8�Sðr0; 0Þ ¼

2
r0

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p þ V0ðr0Þffiffiffiffiffiffiffiffi
Vðr0Þ

p , so

lim
r0!rþ

lim
"!0

8�Sðr0; "Þ ¼ þ1: (25)

Note that Eq. (25) is in agreement with the behavior of
surface stresses of a wormhole obtained by gluing two
copies of the Schwarzschild metric (see Eq. 15.46 of
[18]). Now let us analyze the naked behavior. One has,
�N ¼ N ¼ � V0ðrþÞ

2r , so �N is finite and negative. Thus, one

obtains finite deformation in both directions. Moreover, it
also follows from (13) that in the situation TB

�� ! �1; (26)

i.e., �� diverges. Thus, a free-falling observer encounters
diverging surface energy density. The same conclusion
applies to the flux J ¼ S�� �u

� �e�.

Concluding here Model 1, we can say that there are two
nonequivalent limits, but each of them is ‘‘bad’’ in that in
the BT situation the Kretschmann scalar diverges, whereas
in the TB situation it is the surface stresses that diverge.

b. Model 2

Let the metric have the form (1) together with (15). For
Model 2 choose the metric potentials as

expð�Þ ¼ �
ffiffiffiffi
V

p þ "; (27)

with � and " being parameters. In [3] the model with V ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rþ

r

q
, was considered, in which case, when " ¼ 0 one

has the Schwarzschild metric see also [15]. Here, VðrÞ can
be any function that satisfies VðrþÞ ¼ 0 and VðrþÞ0 � 0, a
typical example being the Reissner-Nordström V potential.
As for the general behavior, again after some calculations,
we obtain

Kðr; "Þ ¼ ��

2

ffiffiffiffi
V

p
V 00

"þ �
ffiffiffiffi
V

p ; (28)

and

8�S ¼ 2

r0

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

q
þ �V 0ðr0Þ

"þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0Þ

p : (29)

Now let us analyze the naked behavior. Also, again
after some calculations, we obtain NðrÞ ¼ � V

r �
0 ¼

� �
ffiffiffi
V

p
V0

2rð"þ�
ffiffiffi
V

p Þ , so it follows from (11) that

�N ¼ V 0

2r

�
E2"

ð"þ �
ffiffiffiffi
V

p Þ3 � 1

�
(30)

With this we can now study the situations BT and TB.
Situation BT: As for the general behavior, in this situ-

ation one finds

lim
"!0

lim
r0!rþ

Kðr0; "Þ ¼ 0; (31)

and
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lim
"!0

lim
r0!rþ

8�Sðr0; "Þ ¼ 1: (32)

Now let us analyze the naked behavior. One has �K ! 0,
and

�N ! �1: (33)

So one finds no longitudinal deformation, and an infinite
transversal stretching. Taking into account that VðrþÞ ¼ 0,
exp½�ðrþ; "Þ� � 0, we obtain immediately from (14) that

in situation BT one finds �� ¼ 0.
Situation TB: As for the general behavior in this situ-

ation, one finds

lim
r0!rþ

lim
"!0

Kðr0; "Þ ¼ �V 00ðrþÞ
2

; (34)

and

lim
r0!rþ

lim
"!0

8�Sðr0; "Þ ¼ 1: (35)

Now let us analyze the naked behavior. One finds, finite
transversal stretching and finite longitudinal contraction
(V 00ðrþÞ> 0) or stretching (V 00ðrþÞ< 0). It follows from
(14) and (16) that in the situation TB,

�� ! 1; (36)

i.e., it diverges. Thus, a free-falling observer encounters
diverging surface energy density in the situation TB. The
same conclusion applies to the flux J ¼ S�� �u

� �e�.

Concluding here Model 2, we can say that in both
situations, BT and TB, the curvature components remain
finite but the limiting values of K do not coincide.
Moreover, in both situations the surface stresses diverge.

c. Overall conclusions for Models 1 and 2

As an overall conclusion for the situation TB in Models
1 and 2, we find the results agree for both models. This can
be explained and generalized as follows. Since, in the
situation TB, the limit " ! 0 is taken first, the dependence

of the metric on " drops out in the final expressions for the
curvature and surface stresses, so any model gives the same
result. In addition, assuming that for " ¼ 0 one has
expð2�Þ ¼ V, and taking into account that VðrþÞ ¼ 0
and expð�ðrþ; "ÞÞ � 0, we obtain immediately from (14)

that in the situation BT, �� ¼ 0, and in the situation TB, ��
diverges. This holds independently of the kind of the model
used. Thus, a free-falling observer encounters diverging
surface energy density in the situation TB. The same
conclusion applies to the flux J ¼ S�� �u

� �n�. In the non-

extremal cases just studied, it turned out that each of the
limits under discussion is singular: either the Kretschmann
scalar or surface stresses on the throat (or both) diverge.
Thus, the limit is singular. In other words, a black hole
mimicker made from a wormhole, and, in particular, a
black hole foil, is not smooth. It is convenient to summa-
rize the results in a table shown in Fig. 1.

3. Remarks: naked behavior and observable
differences between nonextremal black holes

and nonextremal "-wormholes

Although the singular or almost singular behavior of
these black hole mimickers based on "-wormholes casts
doubts on their real existence, it is worth our while to study
a little more on the effects of such mimickers on infalling
sources and their detection by far away observers. Intui-
tively it is clear that there should be some observational
effects if infalling sources are distorted by stronger than
normal tidal fields.
First, we point out that indeed the fact that tidal forces

grow unbound when " ! 0 can be used, in principle,
to distinguish a black hole from an "-wormhole which
mimics it. Suppose a small mass falling freely into a
massive body, such as an "-wormhole. Consider, for ex-
ample, the situation BT. One can compare two approaches.
In the first approach, one neglects the size of the small mass
and considers the geodesic along which such a pointlike
small mass moves [2]. Then, if the throat is very close to
the would-be horizon and subsequent pulses are emitted
near the throat, the intervals of time measured at infinity,

Configuration Kr Curvature in free-falling frame Energy densit y

in free-falling

frame Σ̄

Surface stress S

Model 1, situation BT infinite N̄ → ∞ , K̄ → − ∞ 0 0

Model 1, situation TB finite finite infinite infinite

Model 2, situation BT finite N̄ → ∞ 0 infinite

Model 2, situation TB finite finite infinite infinite

FIG. 1. Table summarizing the main features of the Models 1 and 2 for nonextreme mimickers, in each situation BTor TB, studied in
the text.
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grow unbound as �t�� ln" in the limit " ! 0. So an
observer at infinity cannot distinguish the fall of matter into
a wormhole with vanishingly small " from absorption of
matter by a black hole, if the interval of observation time is
less than �t, by construction a very long interval, see [2]
for details. In the second approach, however, one takes the
finiteness of the size of the free-falling small mass into
account. Then, the overall picture changes since, due to the
growing tidal forces, the small mass gets deformed. If the
small mass is a luminescent source, such a change can in
principle be detected by an observer at infinity. Moreover,
such changes happen much quicker than the typical times
needed to penetrate the immediate vicinity of a horizon.
The intervals of time during which the size of a small mass
changes can be estimated from Eq. (20) and the geodesic
deviation equation. For a process occurring near the throat
it yields for the proper time the value ��� rþ", so that
�� ! 0, as " ! 0. The corresponding interval of time �t

at infinity is�t ¼ ��ffiffiffiffiffiffiffiffi�g00
p � rþ is finite. Therefore, in case of

stretching, an observer at infinity would see an extended
distorted image of an infalling small mass. If the tidal
forces are infinite, as they can be in some of the cases
shown above for "-wormholes, then the stretching is cor-
respondingly large. Of course, it is also possible that
infinite contraction in some direction converts an extended
small mass to zero size in this direction, see [11]. For the
usual black holes, tidal forces are also present but such
forces are much weaker than for "-wormholes, where near
the throat they can be as large as one likes for sufficiently
small ". Thus, the key point is to look not to single geo-
desics as in [2], but to the separation between geodesics
of the same congruence. Such a separation delivers, to an
observer at infinity, meaningful information about the re-
gion of strong gravity where a black hole or a "-wormhole
can be situated, and such information has very different
properties, which depend on the massive body in question.

Second, we indicate what further physical changes could
be expected by performing some interesting estimates of
the effects. Here, one can take advantage of known results
(see [8], section 32.6). Suppose then that a box of small
proper mass m and proper length l is freely falling towards
an object of massM. To simplify we consider an uncharged
object,Q ¼ 0. From [8] one finds that the radial tidal force
exerted on the box is equal to F ¼ � 1

4mlK where K
has the meaning of a tidal radial acceleration. Indeed, K
is given precisely in Eq. (2). For the Schwarzschild met-
ric one has K ¼ 2M

r3
, so that near the horizon of a

Schwarzschild black hole, where r � rþ ¼ 2M, one ob-
tains the value Kbh � 1

4M2 . However, for Model 1, if we

correspondingly choose the metric potential as VðrÞ ¼ 1�
2M
r in the situation BT, it follows from (20) that near the

would-be horizon one hasK � 1
4"2M2 ¼ Kbh

"2
. Let us suppose

that a distant observer is able to recover from observational
data the value ofK. If the observer thinks that the measured
value of K is due to a Schwarzschild black hole, he should

ascribe a massMbh to it. However, if the object turns out to
be a black hole mimicker, then, for the sameK, the value of
the actual mass will be much greater, given by Mm �
"�1Mbh. If, in addition, the observer, knowing the mass
M of the object, in this caseM ¼ Mm, insists on explaining
it in terms of the usual black hole metric, he will find that
Mbh � Mm, and will certainly start asking about the ‘‘hid-
den mass.’’ This example shows that ‘‘hidden mass’’ in
some situations may arise simply because the metrics of a
black hole or of a black hole mimicker were not properly
discerned.

B. Gravastars

As far as gravastars are concerned, they contain, by
construction, a thin layer of normal matter with positive
density � and positive radial pressure p on the border of the
tension matter with vacuum. In the model suggested in [4]
the stiff matter equation of state with p ¼ � was chosen.
Then, it follows immediately from the field equations and
the conservation laws that, as the border approaches the
gravitational radius, the gradient of the pressure becomes
infinite. One can, in general, admit discontinuous radial
pressure, giving rise to a surface pressure on the boundary
between matter and vacuum. However, this surface pres-
sure and other surface stresses also grow unbounded in the
horizon limit. Surely the more the border approaches the
horizon, the better a black hole mimicker it becomes, but,
at the same time, the closer the system approaches the
singular state. This does not exclude in advance the astro-
physical significance of gravastars as compact vacuumlike
geometries, but it shows that they can hardly pretend to be
good black hole mimickers.
In more detail, to see that the surface stresses go

unbounded, we introduce the quantity b ¼ expð�Þ, so

that we can rewrite Eq. (7) as 8�S ¼ 1
r0
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðr0 þ 0Þp �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðr0 � 0Þp � þ 1

bðr0Þ ½ðdbdlÞþ � ðdbdlÞ��, where we have taken

into account that the continuity of the first fundamental
form demands bþ ¼ b� ¼ bðr0Þ. In the outer region we
have the Schwarzschild metric, so ðdbdlÞþ > 0. Let the radius

of the shell approach that of the would-be horizon, i.e.,
r0 ! rþ, and bðrþÞ ¼ 0. By definition of a gravastar,
actually there is no horizon in the system, so the function
b cannot cross r at rþ at all. In the inner region, either
ðdbdlÞ� ¼ 0 or ðdbdlÞ� < 0. Thus, since there is a 1=b ðr0 !
rþÞ term in 8�S, and the other terms remain finite and
nonzero, we find that 8�S ! 1. This makes the gravastar
unphysical in the near-horizon limit. It is worth noting that
this conclusion and its derivation are very close to the
statement that quasi-black holes cannot be nonextremal,
if only finite surface stresses are allowed (see Sec. IV of
[5]). The only difference is that in the whole inner region
ðdbdlÞ� ! 0 everywhere for quasi-black holes whereas for
gravastars ðdbdlÞ� can be nonzero there. However, in the

present context, only the vicinity of the would-be horizon
is relevant, so the conclusions are similar.
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IV. MIMICKERS OF EXTREMAL BLACK HOLES

A. Wormholes on the basis of extremal
"-metrics with surgery

1. Basics

In Sec. III A on wormholes on the basis of nonextremal
"-metrics with surgery, we have discussed wormhole con-
figurations which mimic nonextremal black holes. Here we
consider the one-parametric deformation (1) such that for
" ¼ 0 our metric represents the gluing of two extremal
Reissner-Nordstöm black holes. Note that in the nonextre-
mal case, when using metric (1) we have chosen a function
V which itself does not contain the parameter ". However,
now such a simple construction cannot be implemented.
Our goal is to trace the relationship between a wormhole
metric with a generic " parameter (" � 0), and a black hole
metric (" ¼ 0). If we start from Eq. (1) with rþ ¼ r�, i.e.,
V ¼ ð1� rþ

r Þ2, we encounter the immediate difficulty that
spacetime is geodesically complete and represents an infi-
nitely long horn, so one cannot speak about a wormhole at
all. Therefore, we should deform the extremal Reissner-
Nordström metric in a somewhat different way and include
the parameter " not only into the function � but into V as
well. Let us make the simplest choice for Vðr; "Þ, namely,

VðrÞ ¼
�
1� rþ

r

��
1� r�

r

�
; with r� ¼ rþð1� 
ð"ÞÞ;

(37)


ð"Þ being such that 0 	 
ð"Þ 	 1, and 
ð0Þ ¼ 0. At some
r0 > rþ, we glue two copies of the spacetime, the ‘‘ þ’’
branch to the ‘‘ �’’ branch. Then, the behavior of K and S
follows from Eqs. (17) and (18). Note that if 
 ¼ constant
and 
 	 1 we return to the deformed nonextremal
Reissner-Nordström case and the results (21) and (22)
are reproduced, 
 ¼ 1 being the Schwarzschild case.

2. Models

a. Model 1

Using (16), i.e., expð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þ "2

p
, and (37), we can

study Model 1 in the extremal case.
Situation BT: As for the general behavior one finds

lim
"!0

lim
r0!rþ

Kðr0; "Þ ¼ � �

4r2þ
; with � ¼ lim

"!0

�



"

�
2
;

(38)

and

lim
"!0

lim
r0!rþ

8�Sðr0; "Þ ¼ 0: (39)

Let us analyze the naked behavior. In principle, the quan-
tity � may be finite or infinite depending on the model
for 
ð"Þ. From Eq. (38), longitudinal contraction is finite if
� is finite, or infinite if � is infinite. The value of �N which

determines transverse deformation can be found from
Eq. (19). Then, we obtain that in the limit under discussion

�N ¼ �E2

2r2þ
; (40)

where � ¼ lim"!0


"2
. Then we have transverse stretching

which is finite if � is finite, or infinite if � is infinite. The

stress component �� is finite, indeed zero, in the limit.
Situation TB: As for the general behavior one finds

lim
r0!rþ

lim
"!0

Kðr0; "Þ ¼ � 1

r2þ
; (41)

lim
r0!rþ

lim
"!0

Sðr0; "Þ ¼ 1

4�rþ
: (42)

Note that when � ¼ 4 in the situation BT, the quantities K
for two situations coincide. Let us analyze the naked be-
havior. Here there is finite longitudinal contraction, and no
transverse deformation since, according to Eq. (19), �N ! 0
in the limit under consideration. Thus, the only manifesta-
tion of naked behavior is connected with the surface
stresses. According to (14), the quantity �� behaves as

�� ! �1; (43)

i.e., it diverges in situation TB.

b. Model 2

Using Eq. (27), i.e., expð�Þ ¼ �
ffiffiffiffi
V

p þ ", and (37), we
can study Model 2 in the extremal case.
Situation BT: As for the general behavior one finds

lim
"!0

lim
r0!rþ

Kðr0; "Þ ¼ 0; (44)

lim
"!0

lim
r0!rþ

Sðr0; "Þ ¼ �
ffiffiffiffi
�

p
4�rþ

: (45)

Let us analyze the naked behavior. There is no deformation
in the radial direction. The behavior of �N, which is respon-
sible for transverse deformation, can be obtained from (30)
and coincides with (40) in the limit under discussion. Thus,
again transverse stretching is finite if � is finite, or infinite
if� is infinite. Note that it follows from the definitions of�
and� that� ¼ lim"!0�
. According to the definition (37)
of 
ð"Þ, lim"!0
ð"Þ ¼ 0. Therefore, if � is finite, � ¼ 0,

then K, S, �N, and �� are finite (moreover, S ¼ �� ¼ 0), so
naked behavior is absent in this case. On the other hand, as
� ¼ lim"!0

�

 , in case � � 0 the quantity � diverges and

so does �N. This means transverse stretching is infinite.
Situation TB: As for the general behavior one finds,

lim
r0!rþ

lim
"!0

Kðr0; "Þ ¼ � 1

r2þ
; (46)
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lim
r0!rþ

lim
"!0

Sðr0; "Þ ¼ 1

4�rþ
: (47)

Let us analyze the naked behavior. One finds finite con-
traction in the longitudinal direction and no transverse
deformation. However,

�� ! �1; (48)

i.e., it diverges.

c. Overall conclusions for Models 1 and 2

As an overall conclusion, assuming that for " ¼ 0, one
has expð2�Þ ¼ V; and taking into account that VðrþÞ ¼ 0,
exp½�ðrþ; "Þ� � 0, we obtain immediately from (14)

that in the situation BT, �� ¼ 0, and in the situation TB,
�� diverges. This holds independently of the kind of the
model, and is valid for the nonextremal spacetimes, as well
as for the extremal spacetimes. Thus, a free-falling ob-
server encounters diverging surface energy density in the
situation TB. The same conclusion applies to the flux
J ¼ S�� �u

� �n�.

3. Remarks: Lightlike shells and classical electron models

a. Lightlike shells

One essential feature of the almost extremal configura-
tions under discussion consists of the fact that we deal with
shells which are timelike but become lightlike in the limit
when they are approaching thewould-be horizon. A natural
question arises: what happens if we start out our analysis
with two extremal black hole spacetimes, i.e., putting " ¼
0 and r0 ¼ rþ and the shell in-between the two spacetimes
lies on the event horizon and so is lightlike? More pre-
cisely, we are interested whether the stresses on the shell
remain finite or become infinite. One can expect from our
previous results that they are finite but this is not so obvious
in advance. We have seen already that taking different
limiting procedures in the near-horizon limit is a rather
delicate issue. Moreover, the formalism for lightlike shells
[19,20] somewhat differs from that for timelike ones, so we
perform our analysis anew. We restrict ourselves to the
case of taking two extremal Reissner-Nordström black
holes. The reason for this choice is that only extremal
black holes are good candidates for gluing without severe
singularities, i.e., the gluing procedure maintains a finite
Kretschmann scalar throughout the spacetime as well as
finite stresses on the glued surface. This case is also a
Majumdar-Papapetrou case, and could be analyzed in the
next section as well, but since it is also a limit of what
has been done above, namely, the null limit of a time-
like wormhole throat with two extremal external vacuum
spacetimes, we discuss it now. To match two extremal
Reissner-Nordström spacetimes at the lightlike surface
r0 ¼ rþ we follow the general formalism for lightlike
shells [19,20]. We write the metric in Kruskal-type

coordinates ds2 ¼ �HðU;VÞdUdV þ r2ðU;VÞðd�2 þ
sin2�d�2Þ: Let the surface r0 ¼ rþ correspond, say, to
U ¼ 0. Then, the effective energy density is � ¼
� 	��

16�r2
, (see, e.g., equation (3.99) of [19]). Here 	�� ¼

½ð@g��@x� Þþ � ð@g��@x� Þ��N�, where the indexes ‘‘þ’’ and ‘‘�’’

refer to the different sides of the shell, and the null vector
N� is such that k�N

� � 0, with k� being a null tangent
vector. Now, the only nonvanishing components of k� and
N�, are by construction kV and NU. Since there is no rest
frame in the null case, the measured energy density �
depends on the chosen observer. To check that it is finite
and nonzero, it is sufficient to check that ½ð @r@UÞþ � ð @r@UÞ�� is
finite and nonzero. For this purpose, it is sufficient to
exploit the result of [21] where it is shown that @r

@U ¼ �1
on the horizon. In our case, as we deal with two black holes
instead of a single one, the coordinate r increases on both
sides of the shell. Thus, @r

@U has different signs and takes the
values �1 on each side. So indeed, the difference is equal
to 2 and is finite and nonzero. In general, there are other
contributions to the effective stress-energy tensor of the
shell due to effective pressures and currents, but it is easy to
show that in our case they are absent. It is worth noting that
the gluing in our case differs from the gluing between
different extremal Reissner-Nordström black holes consid-
ered in [22] in that we replaced the usual metric inside the
horizon by their ‘‘�’’ branch. It also differs from the
wormhole construction used in [23] where two spheres
were cut out from a vacuumMajumdar-Papapetrou system,
or more precisely, they were cut from a single spacetime
containing two extremal Reissner-Nordström black holes.

b. Classical electron models

As a by-product of this lightlike shell construction, and a
very interesting one, we have just found a configuration
that represents a regular wormhole configuration which is
also a black hole. More important perhaps, in addition, it
can serve as a classical model for an elementary particle in
that (i) the system is characterized by a minimum number
of fixed parameters like mass and charge, and (ii) it is free
of a central singularity inside. We are aware that it is not
entirely of electromagnetic nature because it has stresses
on the horizon, a kind of Poincaré stress. But, anyway, such
a surface stress, can be considered as a mild singularity
when compared to the usual central singularity. In this
model a free-falling observer can penetrate to the inside
but, of course, cannot return back to the original asymp-
totic region due to the existence of a horizon. So the worm-
hole is an untraversable one. Thus, the body under discus-
sion combines features of an untraversable wormhole and a
regular black hole, and can be called a worm-black hole.
Since the proper distance to the extremal horizon is infi-
nite, such a hybrid construction is similar to the null
wormholes, or N-wormholes for short, see [24]. Note that
it differs from configurations representing quasi-black
holes. For example, in some quasi-black hole models, see
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[5], there is a region r 	 rþ which becomes degenerate in
the quasihorizon limit. This region is missing in our worm-
black hole model, since the black hole metric beyond the
horizon is replaced by a branch with an areal radius that
grows away from the horizon. It also differs from the
model considered in [21] where the external Reissner-
Nordström part was glued to the Bertotti-Robinson metric
that leads to surface stresses that vanish in the horizon limit
in the static frame but grow unbounded in the free-falling
one, and as a result, the inner region becomes impenetrable
for a free-falling observer (see [5] for details).

B. Quasi-black holes

Another candidate for the role of a black hole mimicker
is a quasi-black hole. Roughly speaking, it is an extremal
object that appears when the system approaches the qua-
sihorizon as nearly as one likes, along a family of quasi-
static configuration. It was argued in [5] that such a limit
can correspond to an extremal quasihorizon only if we
restrict ourselves to static configurations which are regular
in the strong sense. The latter means that the Kretschmann
scalar should be finite everywhere in the system, and sur-
face stresses at the quasihorizon should be finite as well.
There are subtleties in the nontrivial relation between
regular and singular features of quasi-black holes [5]. For
example, the whole region can look degenerate from the
viewpoint of a distant observer and, nevertheless, the
Kretschmann scalar remains finite in that region.

In more detail, consider the static spherically symmetric
metric (1), and let it represent a spacetime in which there is
an inner matter configuration attached to an asymptotic flat
exterior region. The �i in (1) stands for the radius r0 of the
configurations and possibly some other parameters con-
nected with the particular object one is analyzing. For
instance, the parameter " also enters in the analysis, and
here has a slightly altered meaning. It means a small de-
viation from a quasi-black hole, rather than from a black
hole solution as in Sec. III A, see also below.

Suppose the spacetime in question has the following
properties: (a) the function VðrÞ in (1) attains a minimum
at some r
 � 0, such that Vðr
Þ ¼ ", with " <<1, this
minimum being achieved either from both sides of r
 or
from r > r
 alone, (b) for such a small but nonzero " the
configuration is regular everywhere with a nonvanishing
metric function expð2�Þ, at most the metric contains only
delta-function like shells, and (c) in the limit " ! 0 the
metric coefficient expð2�Þ ! 0 for all r 	 r
. These three
features define a quasi-black hole. In turn, these three
features imply that, there are infinite redshift whole regions
when " ! 0, a free-falling observer finds in his own frame
infinitely large tidal forces in the whole inner region,
showing thus naked behavior, although the curvature sca-
lars are finite. Moreover it has some form of degeneracy
since, although the spacetime curvature invariants remain
perfectly regular everywhere, in the limit, outer and inner

regions become mutually impenetrable and disjoint. For a
free-falling external nearby observer it is as if a null
singular horizon is being formed. For external far away
observers the spacetime may be said to be naively indis-
tinguishable from that of extremal black holes. However, if
one makes experiments with infalling luminescent ex-
tended small masses, one might find differences, since as
discussed previously [5], due to the naked behavior, quasi-
black holes enlarge grossly the tidal forces on an infalling
small mass when compared to the tiny effect of an extremal
black hole on the same small mass. Thus, as with the
extremal "-metrics studied before, the naked behavior
shows that quasi-black holes are not such good mimickers
as was previously thought, but they are still better than
black foils [2] where the singularity is more severe.
A further important property is that quasi-black holes

must be extremal. For a quasi-black hole the metric is well
defined and everywhere regular. However, when " ¼ 0,
quasi-black hole spacetimes become degenerate, almost
singular, see [5]. The quasi-black hole is on the verge of
forming an event horizon, but it never forms one, instead a
quasihorizon appears.
In summary, quasi-black holes have normal general

behavior and singular naked behavior. Quasi-black holes
may appear from Bonnor stars, i.e., systems composed of
extremal charged dust and vacuum, from self-gravitating
Higgs magnetic monopole systems, and from composite
spacetimes even in the case of pure electrovacuum, in
which these vacuum systems are composed of an exterior
Reissner-Nordström part glued to an inner Bertotti-
Robinson spacetime or of an exterior Reissner-Nordström
part glued to an inner Minkowski spacetime, see [5] for a
full discussion and references.

C. Wormholes on the basis of quasi-black holes
from Bonnor stars

1. Basics

Bonnor stars are Majumdar-Papapetrou matter systems
with either a sharp or smooth boundary to an exterior
vacuum. Since Bonnor stars are paradigmatic to under-
stand the formation of quasi-black holes (see [5]), it is
interesting to use those stars on the threshold of forming a
quasi-black hole to understand whether wormholes on the
basis of quasi-black holes which can be formed from
Bonnor stars can mimic extremal black holes or not. This
is an interesting variant, although with similarities, to
wormholes on the basis of extremal "-metrics. We use
Bonnor stars, both in their compact version [25,26] as
well as in their extended one [27].

2. Wormholes on the basis of quasi-black holes from
compact Bonnor stars

Now, we start from the configuration which contains
Majumdar-Papapetrou matter inside and vacuum outside,
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a compact Bonnor star [25,26]. Let us have a compact
object, a Bonnor star, with extremal dust for r 	 r0, joined
to an extremal Reissner-Nordström metric for r � r0. The
potential VðrÞ can be written as

VðrÞ ¼
�
1��ðrÞ

r

�
2
; (49)

with the mass density � and the function �ðrÞ being

connected through 4�� ¼ �0
r2
ð1� �

r Þ. The function �ðrÞ
can be interpreted as the proper mass enclosed within a
sphere of a radius r. In addition, for extremal dust, one has
�ðrÞ ¼ eðrÞ, where eðrÞ is the electric charge within this
sphere. At the boundary r0, one has �ðr0Þ ¼ M, and
eðr0Þ ¼ Q, such that M ¼ Q, M and Q being the total
mass and charge, respectively.

To construct a wormhole, one can take the following
procedure. Cut the solution somewhere in the interior at
some radius r1 < r0 and discard the region r < r1. One
obtains a Majumdar-Papapetrou matter region for r1 	
r < r0, and a vacuum region for r0 	 r <1. For definite-
ness, let this spacetime be situated on the left. A symmetric
right branch, also containing interior and exterior, is again
cut at the radius r1 < r0, and glued to the symmetric left
branch, producing thus a boundary shell at r1. Then, it
follows from the field equations that the left branch is
given by

expð�Þ ¼ exp

�Z r

r0

dr
�

r2ð1� �
r Þ
�
; r1 	 r 	 r0;

expð�Þ ¼ 1�M

r
; r0 	 r <1;

(50)

and that the proper radius l and the coordinate radius r are
related by

dr

dl
¼ �ð1��

r
Þ: (51)

As the Bonnor star is here a compact object, the proper
distance from r1 to r0 is finite, and tends to zero in the limit
r1 ! r0. Therefore, in this limit, the matter between
right and left boundaries becomes negligible and the con-
struction corresponds to gluing two extremal Reissner-
Nordström black holes in the situation TB of Sec. III A.
Thus in the limit of our interest, r1 ! r0 ! M, it is not
surprising that the results coincide with (42) and (47)
where rþ ¼ M. Indeed, one finds

K ¼ finite; (52)

and

8�S ¼ 2

Q
¼ 2

M
; (53)

being finite as well. We have putM ¼ Q, as is the case for
these systems.

There is yet another procedure to produce a wormhole.
In the above considerations, we performed a symmetric

construction, in the sense that the ‘‘þ’’ and ‘‘�’’ branches
differed by the sign of dr

dl only. Now, we start again from a

compact Bonnor star configuration which contains matter
inside and vacuum outside. We want to preserve this
feature, and so we have to make a nonsymmetric deforma-
tion. Thus, we change the procedure and consider the
following construction. Again, a Bonnor star is made of
Majumdar-Papapetrou matter for r 	 r0, which in turn is
joined to an extremal Reissner-Nordström metric for r �
r0. Now, in the region r 	 r0, the left ‘‘�’’ branch, choose
the distribution with dr

dl 	 0. The potential VðrÞ can be

written again as in Eq. (49). Then, for the left branch, it
follows from the field equations that

expð�Þ ¼ exp

�Z r

r0

dr
�

r2ð1� �
r Þ
�
; 0 	 r 	 r0; (54)

and

dr

dl
¼ �

�
1��

r

�
: (55)

It is worth paying attention that because of the property
dr
dl < 0, the matter distribution which was originally com-

pact turned after deformation into a noncompact one since
at left infinity l ! �1, where � ! 0, dr

dl ! �1. For the

right ‘‘ þ’’ branch we use the extremal Reissner-
Nordström metric with the mass M ¼ Q, which gives

expð�Þ ¼ 1�M

r
; r0 	 r <1; (56)

and

dr

dl
¼ 1�M

r
: (57)

In the limit r0 ! M, � ! M ¼ Q one finds that

K ¼ finite; (58)

and

8�S ¼ 2

Q
¼ 2

M
; (59)

being finite as well. We have putM ¼ Q, as is the case for
these systems.
Thus, extremal quasi-black wormholes made of

Majumdar-Papapetrou matter are possible. Their distinc-
tive feature is the presence of finite nonzero surface
stresses on the horizon. Curvature components remain
finite. It is worth noting that, although in this subsection
we did not introduce the parameter " explicitly, actually its
role is played, say, by the difference r0 �M in the sense
that this quantity is responsible for the deviation of the
spacetime from its limiting state (a quasi-black hole or two
quasi-black holes glued together).
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3. Wormholes on the basis of quasi-black holes
from extended Bonnor stars

Here we exploit the distribution of extremal charged
dust given in [27]. Near the quasi-black hole limit, the first
order corrected quasihorizon has radius r
 given by

r
 ¼ q

�
1þ 3

4

�
2c2

q2

�
1=3 þ :::

�
; (60)

where c is the parameter that yields the deviation from the
Reissner-Nordström solution, and q is a quantity with units
of electric charge, which is indeed the total charge Qwhen
c ¼ 0 from the outset (see [5,27] for details). The quasi-
black hole limit is such that c � q, with c ! 0. In a sense,
the dimensionless parameter c=q here corresponds to the "
parameter in the "-wormhole construction of a previous
section. Then the solution has asymptotics near the quasi-
horizon r
 given by

V ¼ 9

24=3

�
c

q

�
4=3 þ 2ðr� r
Þ

q2
þ :::; 2 (61)

and

expð�Þ ¼ 21=3
�
c

q

�
2=3 þ 2

3

ðr� r
Þ
q

þ 22=3

9c2=3q4=3
ðr� r
Þ2:::: (62)

Consider again the ‘‘ þ’’ and ‘‘ �’’ branches, symmetric
relative to the first order corrected quasihorizon radius in
the region r � r
, but with different signs of dr

dl . Each
branch has the same dependence of the metric potential,
Eqs. (61) and (62), on r. Thus, for simplicity, we restrict
ourselves to the analog of the situation BT considered
previously, which translated to here means taking the
limits as follows, limc

q!0 limr
!rþ . Then, simple calcula-

tions show that

K ¼ finite; (63)

and

8�S ¼ 2

Q
¼ 2

M
; (64)

being finite as well. In (64) we have put Q ¼ q in the limit
c ! 0 andM ¼ Q also in this limit, whereM is the mass of
the configuration. In the limit under consideration the
metric in the region r > r
 is given by the extremal
Reissner-Nordström metric, whereas in the immediate vi-
cinity of the quasihorizon the metric is described by the
Bertotti-Robinson metric. Therefore, as in the preceding
subsection, our construction gives two extremal Reissner-
Nordström black holes glued along the quasihorizon with
different signs of dr

dl on opposite sides.

V. DISCUSSION AND CONCLUSIONS

We have studied wormhole and other configurations as
possible mimickers of black holes. We have separated the
configurations into nonextremal and extremal.
For wormholes, we have examined separately two limit-

ing procedures in which the wormhole throat approaches
the black hole horizon. In the first procedure, we fix the
location of an observer (exactly on the throat). Then, we
change the spacetime (making a wormhole on the verge of
being a black hole). This is the situation BT. In the second,
we change spacetime (making a wormhole on the verge of
a black hole), then place the shell outside the throat and
move it toward the throat (which coincides with the hori-
zon). This is the situation TB. This procedure is carried out
for nonextremal and extremal configurations separately. In
the nonextremal case it turned out that each of the limits
under discussion is singular: either the Kretschmann scalar
or surface stresses on the throat (or both) diverge. Thus, the
limit is singular. In other words, a mimicker of a nonex-
tremal black hole, made from a nonextremal wormhole,
including the black foil of [2], is not smooth. We have
summarized the results for the nonextremal case in a table.
For the extremal case both the Kretschmann scalar and
surface stresses remain finite. This pronounced distinction
between properties of the limiting configurations in the
nonextremal and extremal cases is one counterpart of the
conclusion made in [5] that quasi-black holes can be only
extremal. However, one should not forget about some
subtleties connected with the fact that singular behavior
can, in general, manifest itself not only in the value of the
Kretschmann scalar. Even if this scalar is finite, a naked
behavior is possible or even inevitable as was shown in the
present paper and in [5] (see, e.g., Sec. V of [5] for a
discussion about other subtleties in which the singular
features of quasi-black holes are revealed). There is also
another candidate for the role of a nonextremal black hole
mimicker, a gravastar [4]. However, the corresponding sur-
face stresses grow unbounded when the radius approaches
the gravitational radius, as we have seen.
From an astrophysical viewpoint, the situation BT in the

nonextremal case, i.e., a black foil, is more interesting
since it implies no necessity of making a shell by hand.
It is the case considered in [2]. One of the questions raised
in [2] is whether it is possible or not to distinguish between
a true nonextremal black hole, a Schwarzschild black hole
say, and a wormhole. The main conclusion of [2] is that it is
impossible to distinguish for any finite time in the limit
under discussion. This conclusion is reached on the basis of
considering properties of bodies moving along separate
fixed geodesics and emitting signals detected at infinity.
However, if from single geodesics we shift our attention to
a congruence of geodesics, it turns out that the strong
gravity forces on the near-horizon region leave their im-
print on the form of a moving body and, thus, on the
properties of signals which an observer at infinity is detect-
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ing. If the surface of the body is luminescent, an observer at
infinity would see either a finite width instead of a point, a
continuous detection instead of separate pulses, and so on.
It is essential that in the case discussed in [2], the corre-
sponding proper time of deformation tends to zero when
the curvature grows unbounded, with the time at infinity
being finite. Thus, at least in principle, an observer can
distinguish between a black hole and an almost singular
wormhole. The singular nature of the limit in the nonex-
tremal case makes also questionable the applicability of the
membrane paradigm used in [2]. The key point in this
paradigm consists in boundary conditions according to
which a free-falling observer sees a finite value of physical
fields on the horizon (see [17], Sec. II). However, in the
problem under discussion, typically, this observer as well
as the geometry itself become ill defined. Only in some
cases (see Model 2, situation TB) the curvature compo-
nents remain finite in the free-falling frame. But even in
such situations the infinite surface stresses on the horizon
surface make the physical meaning of the membrane para-
digm unclear since this paradigm relies heavily on the
concept of a regular surface.

Objects based on nearly extremal wormholes, although
of less interest astrophysically perhaps, have a much better
behavior in the sense that both the geometry and surface
stresses remain finite. Moreover, typically there is no
naked behavior. In this case, the effect of strong curvature
is much less pronounced than in the case of quasi-black
holes where a naked behavior is typical [5]. In this sense, a
wormhole composed on the basis of two extremal black
holes seems to be the best mimicker of an extremal black
hole. As by-product, we have obtained a model of a regular
black hole.

Thus, if we try to arrange a ranking of black hole
mimickers, both nonextremal and extremal, the list looks
as follows from top to bottom: wormholes on the basis of
extremal black holes or on the basis of quasi-black holes,
quasi-black holes, wormholes on the basis of nonextremal
black holes (and within these the best are black foils), and
gravastars. Bearing in mind that in observational astro-
physics it is difficult to find extremal configurations (the
would-be best mimickers), whereas nonextremal configu-
rations are really bad mimickers, the task of distinguishing
black holes from their mimickers seems to be less difficult
than one could think of it.
In the present paper we have restricted ourselves to static

spherically symmetric spacetimes. Meanwhile, in a recent
work [28] the status of black hole mimickers is undermined
in the rapidly rotating case as well since it is argued that
they are unstable. We have also circumscribed our discus-
sion to particular wormholes, gravastars and quasi-black
holes [2–6], since these objects are well adapted to our goal
of examining the near-horizon properties and their connec-
tion with far away asymptotic properties. However, there
are many other objects with properties that make them also
potential black hole mimickers (see, e.g., [29–32]) and
which are worthy of study within our formalism.
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