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We present exact solutions describing rotating, inhomogeneous dust with generic initial data in 2þ 1

dimensional anti-de Sitter space-time and show how they are smoothly matched to the Banados-

Teitelboim-Zanelli (BTZ) solution in the exterior. The metrics, which are the rotational analogues of

the 2þ 1 dimensional LeMaitre-Tolman-Bondi family, are described by their angular momentum and one

additional constant which, together with the angular momentum, determines the energy density of the dust

cloud. The weak energy condition gives a constraint on the angular momentum profile inside the cloud.

Solutions can be stationary or time dependent, but only the time-dependent solutions can be matched

consistently to a BTZ exterior. No singularity is formed in either the stationary or the time-dependent

cases.
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I. INTRODUCTION

Exact solutions in general relativity are valuable tools to
explore the range of possible behaviors allowed by
Einstein’s field equations. They are also useful as compari-
sons for numerical or approximate analytical solutions.
Among these, solutions describing the gravitational col-
lapse of matter are of considerable interest.

During the collapse of a neutral body, one expects the
space-time outside it to relax into the space-time of a
Schwarzschild or, more generally, a Kerr black hole, while
the matter itself undergoes continual collapse until a sin-
gularity, either covered or locally naked, of space-time
forms. However, the matter may also avoid the singular
region entirely either halting in a self-sustaining object,
dissipating or, when rotation is present, even passing
through a white hole into another universe. To examine
the range of possibilities exact solutions describing black
hole interiors with various forms of (preferably rotating)
matter are essential.

Spherical, nonrotating gravitational collapse has been
studied with various forms of matter and the indication is
that all the outcomes listed above may in principle be
realized for regular initial data [1]. Critical behavior in
the parameters, p, of the initial data have also been dis-
covered [2–6]: above some critical value of the parameter a
singularity is formed, below it the matter eventually dis-
sipates and at it the solutions are oscillatory [7]. Of special
interest is the fact that the critical values appear to be
independent of spherical symmetry or the type of matter
considered.

Compared to the spherical case, solutions with rotating
matter smoothly matched to an exterior stationary vacuum
are still poorly understood, although for some restricted
classes of perfect fluids stationary solutions can be ob-

tained [8,9] by using a generalization of the solution gen-
eration procedure of [10–12]. The problem with obtaining
general solutions is essentially in the complexity of the
field equations.
A simpler setting for studying possible effects of rota-

tion is the stationary solution of Banados, Teitelboim, and
Zannelli (BTZ) in 2þ 1 dimensions. The BTZ solution
[13,14] is given in stationary coordinates as

ds2 ¼ �fðrÞdt2 þ dr2

f
� r2

�
d�� J2

r2
dt

�
2
; (1)

where

fðrÞ ¼ �r2 �Mþ J2

r2
(2)

and M and 2J are conserved charges associated with the
Killing vectors @t and @�. They are interpreted as the mass

and angular momentum of the black hole, respectively, (we
take 8�G ¼ 1). The solution can be obtained by nonstan-
dard identifications in anti-de Sitter (AdS) space [13,15],
and there is no curvature singularity. There are, however,
two horizons at which the Lapse vanishes,

r2� ¼ M

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�J2

M2

s �
; (3)

an outer one at rþ and an inner (Cauchy) horizon at r�.
Closed timelike curves exist within the Cauchy horizon,
but there is evidence [16] that the Cauchy horizon is
unstable by mass inflation. It is of interest to know the
fate of matter in the interior of the BTZ black hole and, in
particular, if these features survive for reasonable initial
data. For example the static BTZ black hole admits just one
horizon and no curvature singularity, but when a collapsing
and nonrotating dust interior is matched to the BTZ exte-
rior a singularity does form at the center [17,18]. Circularly
symmetric null fluid collapse was examined by Husain
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[19], who found a variety of static limits, including the
BTZ black hole but also other ‘‘hairy’’ black holes, de-
pending on the equation of state. Self-similar perfect fluids
were analyzed by Hirschmann et. al. [20] with interesting
results showing both naked and covered singularities. Chan
et. al. [21,22] found a rotating interior containing null dust
and were able to show explicitly that mass inflation [23]
causes the inner (Cauchy) horizon to become unstable. In
this paper, we obtain exact, time-dependent interiors rep-
resenting rotating, timelike dust. Our solutions can be
thought of as the rotational analogues of the LeMaitre-
Tolman-Bondi models in 2þ 1 dimensions.

Another, somewhat different motivation for exact solu-
tions describing gravitational collapse stems from the fact
that quantum gravitational effects in the vicinity of gravi-
tational singularities are of fundamental interest. In a
couple of recent publications [24,25], we developed a
canonical, midisuperspace quantization of 2þ 1 dimen-
sional collapse without rotation with interesting results.
Not only was it possible to obtain Hawking radiation, along
with gray-body factors that result from relaxing the near
horizon approximation, but canonical quantization also
provided a new and transparent interpretation of the en-
tropy of the BTZ black hole: the black hole is viewed as a
single shell formed by the collapse of many dust shells,
each of which occupies one of the energy levels available
to the single final-state shell. The energy spectrum of the
single shell in the final state as obtained from canonical
quantization coincides with the spectrum obtained in [26],
where it was proposed that because the asymptotic sym-
metry group of 2þ 1 dimensional gravity with a negative
cosmological constant is generated by two copies of the
Virasoro algebra [27], its degrees of freedom should be
described by two conformal field theories (CFT’s) at in-
finity. Explicitly counting the microstates of the black hole
in the canonical theory yields an area law which, when
compared to the Bekenstein-Hawking entropy, connects
the boundary term at the center with the central charge of
the AdS/CFT approach. This connection is potentially far
reaching, but it was established only in the absence of
rotation. In order to fully compare the results of the AdS/
CFT approach and the midisuperspace quantization pro-
gram it is essential to quantize the system with rotation. To
carry this out, exact interior solutions are required.

The plan of this paper is as follows. In Sec. II, we obtain
the equations of motion for rotating dust collapse in 2þ 1
dimensions in the comoving frame. Einstein’s equations
determine both the velocity and the spatial gradient of the
radius of collapsing shells, while also providing an inte-
grability condition that relates the energy function and the
angular momentum. We solve this integrability condition
and examine the restrictions imposed by the weak energy
condition on the angular momentum profile. In Sec. III, we
solve the equations of motion for the dust shells. There are
(critical) stationary solutions and time-dependent solu-

tions. The time-dependent solutions are oscillatory and,
in both cases, the evolution does not lead to the formation
of a singularity. In Sec. IV, we address the matching con-
ditions. Because the interior solutions are obtained in a
comoving (hence corotating) frame, it is not possible to
directly match them to the BTZ solution as given in (3),
which is given in stationary coordinates. Therefore, we first
obtain the transformations that take the stationary BTZ
system to a comoving system. The transformations are
analogous to those obtained for nonrotating black holes
in [28]. Our derivation is based on an exact solution of the
geodesic equations, given in the Appendix A. This allows
us to directly compare the interior metric representing the
dust filled space-time with the exterior vacuum (BTZ)
metric. We show that the stationary interiors cannot be
matched to the BTZ vacuum unless the Arnowitt-Deser-
Misner (ADM) mass is negative. They may, however, serve
as 2þ 1 dimensional cosmologies. We conclude in Sec. V
with a few comments concerning the formation of trapped
surfaces. Throughout, we follow the conventions of
Weinberg [29].

II. ROTATING DUST BALL IN 2þ 1 ADS GRAVITY

We consider a general axially symmetric metric in 2þ 1
dimensions of the form

ds2 ¼ e2Aðdt� Cd’Þ2 � e2Bdr2 � ðR2 þ C2e2AÞd’2;

(4)

where A, B,C, andR are regarded as functions of (t, r). The
function Rðt; rÞ represents the curvature radius of the
cloud. In the presence of a negative cosmological constant,
Einstein’s equations are of the form

G�� þ�g�� ¼ �8�G3T��; (5)

where G3 is the 2þ 1 dimensional Newton constant, G��

is the Einstein tensor, �� (�> 0) is the cosmological
constant, and T�� is the stress energy tensor (in what

follows we set 8�G3 ¼ 1). We take the metric in (4) to
be sourced by dust, so

T�� ¼ "ðt; rÞU�U�; (6)

where "ðt; rÞ represents the energy density of the collaps-
ing dust cloud.

A. Comoving frame

In comoving coordinates, the only nonvanishing com-
ponent of T�� is T00 ¼ "ðt; rÞ. The spatial components of
the conservation equations then imply that

e2ðA�BÞA0 ¼ 0 C _Aþ _C ¼ 0; (7)

where dots refer to a derivatives with respect to t and
primes to derivatives with respect to r. The first of (7)
requires that A ¼ AðtÞ is independent of r and the second
may be solved in terms of one integration function of r,
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Cðt; rÞ ¼ KðrÞe�AðtÞ: (8)

It is possible to gauge fix so that A ¼ 0 making the metric
in (4) of the form

ds2 ¼ dt2 � 2KðrÞdtd’� e2Bðt;rÞdr2 � R2ðt; rÞd’2: (9)

The metric describes rotating dust with angular velocity

�ðt; rÞ ¼ � K

R2
(10)

and two nonvanishing components, !r’ ¼ �!’r ¼ �K0,
of the vorticity. We assume that both K and K0 are non-
vanishing throughout the cloud except perhaps at the
boundary. Uniform rotation occurs when K0 ¼ 0; it is
straightforward to show that the only solution of timelike
dust with uniform rotation is the vacuum (BTZ) solution
(this appears not to be the case for null dust [21]). The time
component of the conservation equations then reduces to

@tð"eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ R2

p
Þ ¼ 0: (11)

Its solution determines the energy density of the dust,

"ðt; rÞ ¼ F0ðrÞe�Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ R2

p ; (12)

in terms of the metric functions and one unknown integra-
tion function, FðrÞ, whose gradient is required to be posi-
tive by the weak energy condition.

B. Field equations

With (9) we find that

Gtr þ
Gr’

K
¼ 0 ) ðK2 þ R2Þ _B� R _R ¼ 0; (13)

which equation is solved by

e2B ¼ R2 þ K2

W2
; (14)

where W ¼ WðrÞ is a function only of r, which we take to
be greater than zero.1

The angular and radial components of Einstein’s equa-
tions now give an expression for the acceleration,

G’’ ¼ Grr

W2

¼ 4�ðK4 þ R4Þ �W2K02 þ 4R3 €R

þ 4K2ð2�R2 þ _R2 þ R €RÞ ¼ 0; (15)

which may be integrated and its solution given in terms of
one integration function E ¼ EðrÞ as

_R 2 ¼ ��R2 þ ðE� 2�K2Þ � 4�K4 þ K02W2 � 4K2E

4R2
:

(16)

Inserting this solution into Gt’ ¼ 0 simplifies the equation
to give a condition on the spatial gradient, R0ðt; rÞ,
Gt’ ¼ 0 ) R0

¼ R

�
� EK

W2K0 þ
W 0

2W
þ K00

2K0

�

þ 1

R

�
� EK3

W2K0 �
1

2
KK0 þ K2W 0

2W
þ K2K00

2K0

�
: (17)

As both _R and R0 are determined by the field equations,
there must be one integrability condition that enforces
consistency. This is indeed the case and it is provided by
the (t, r) component of the field equations which gives a
Riccati equation for E,

Gtr ¼ 0 ) 2E2K þW2K0ðE��K2Þ0 � EWðWK0Þ0 ¼ 0:

(18)

(This condition can also be obtained by equating appro-
priate derivatives of (16) and (17).) It can be viewed as
prescribing E in terms of the metric functions W and K up
to a constant of integration. WhenK0 � 0, the equation can

be solved by quadratures since one of its solutions is E ¼ffiffiffiffi
�

p
WK0. The general solution turns out to be

E ¼
ffiffiffiffi
�

p
WK0 coth

�
2

ffiffiffiffi
�

p Z K

W
drþH0

�
; (19)

whereH0 is an arbitrary constant. So the particular solution
we started with is theH0 ! 1 limit of the general solution.

The limitH0 ! �1 gives another particular solution, E ¼
� ffiffiffiffi

�
p

WK0.
The time-time component of the equations determines

the energy density of the dust ball. Directly comparing
Gtt ¼ �"ðt; rÞ with (12) gives

F0ðrÞ ¼ � 2E2K2

W3K02 þ
2Eþ 2�K2

W
�

�ðWK0Þ0
2K0

�0
; (20)

which the weak energy condition requires to be positive.
First viewing F0 as a function of Ewe conclude that Emust
lie between the roots of the equation F0 ¼ 0, both of which
must be real. Then taking into account (19), we find that
this amounts to a fairly complicated constraint on the
angular momentum profile K and the value of H0.
Equation (20) can be formally integrated using the inte-
grability condition in (18) and we obtain FðrÞ,

FðrÞ ¼ EK

WK0 �
ðWK0Þ0
2K0 þ

Z r E

W
dr; (21)

so long as K0 � 0. We will show in Sec. IV that consistent
matching requires K0 to vanish at the boundary of the
matter with the BTZ vacuum. As K0 approaches zero,
(18) gives

1One could work with a dimensionless label coordinate,

� ¼
Z dr

W

but we have chosen to keep r and hence WðrÞ arbitrary.
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E ¼ W2K00

2K
; (22)

and only the last term in (21) survives in the limit. One can
now explicitly verify that all the independent field equa-
tions are satisfied.

In summary, the solutions are completely determined by
the angular momentum and one arbitrary constant. The
weak energy condition provides a complicated relationship
between the angular momentum, its derivatives, and the
constantH0, constraining the shape of the angular momen-
tum profile. In the following section we integrate the
remaining Eq. (16) for Rðt; rÞ.

III. EXACT SOLUTIONS

The Ricci scalar depends linearly on the energy density,
so a curvature singularity must form when R2 þ K2 ¼ 0.
The Kretschmann scalar also diverges only in this limit,
therefore there is no good reason to terminate the space-
time at R ¼ 0 and one should be able to continue the
solution into the region �K2 < R2 < 0. This suggests
that R2 ¼ 0 is just a coordinate singularity and that R2 þ
K2 ¼ 0 should be interpreted as a ring singularity.
However, the azimuthal Killing vector � ¼ @’ becomes

timelike when R2 < 0. Since its orbits must be periodically
identified, closed timelike curves will exist in a neighbor-
hood of the ring singularity.

We choose the negative square root in (16) (to describe
collapse) and integrate the equation, thereby getting

1

2

Z dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x2 þ Axþ B

4

q ¼ �tþ QðrÞ
2

ffiffiffiffi
�

p ; (23)

where we have set x ¼ R2,

A ¼ E� 2�K2; B ¼ 4�K4 þ ðWK0Þ2 � 4EK2;

(24)

and QðrÞ is an arbitrary function or r, which should be
compatible with (17). By transforming to y ¼ xþ K2, it

becomes clear that real solutions exist only so long as E �ffiffiffiffi
�

p jWK0j, and we find2

R2 þ K2 ¼ E

2�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 ��W2K02p

2�
sinð2

ffiffiffiffi
�

p
t�QÞ: (25)

Thus R2 þ K2 is strictly positive at all times and no strong

curvature singularity will form. The solution E ¼ffiffiffiffi
�

p jWK0j of (18), obtained in the H0 ! 1 limit, deter-
mines a stationary (time-independent) solution. In this
case, the dust is in a self-sustaining distribution with
vanishing radial velocity, but for the weak energy condition
to hold it is necessary for

K0 >
1

2
ffiffiffiffi
�

p
�ðWK0Þ0

2K0

�0
(26)

to be verified throughout the dust cloud.
For all finite values of H0 the solutions are oscillatory.

Equation (17) may be satisfied only if QðrÞ is an arbitrary
constant, Q0. This constant then determines the physical
radius of any shell at the initial time, say t ¼ 0

R2ð0; rÞ ¼ E� 2�K2

2�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 ��W2K02p

2�
sinðQ0Þ; (27)

and reflects a limited freedom in our choice of initial
scaling, i.e., the shell radius Rðt; rÞ at the initial time. For
instance, if we take Q0 ¼ 0 and use (27) to reexpress the
function FðrÞ in terms of the initial energy density profile,
we find

FðrÞ ¼
Z r

"ð0; r0ÞK
2 þ R2

W

��������t¼0;r0
dr0

¼ 1

2�

Z r
"ð0; r0Þ Eðr

0Þ
Wðr0Þ dr

0: (28)

Furthermore, the initial radial velocity profile is obtained
from (16),

v2
0ðrÞ ¼ _R2ð0; rÞ ¼ E2 ��W2K02

2ðE� 2�K2Þ : (29)

Thus, if the dust cloud begins with zero initial radial

velocity then E ¼ ffiffiffiffi
�

p
WK0 and the dust continues in sta-

tionary flow. For a general E (compatible with the positive
energy condition),

R2ðt; rÞ ¼ E� 2�K2

2�

�
1�

ffiffiffi
2

p
v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� 2�K2
p sinð2

ffiffiffiffi
�

p
tÞ
�

(30)

reexpresses the solution (25) in terms of the initial velocity
profile, v0ðrÞ.

IV. MATCHING TO THE BTZ EXTERIOR

In the previous section we obtained collapsing dust
solutions with rotation in the comoving system. For the
solutions to represent the interior of a black hole, they
should be shown to go over smoothly to a stationary
exterior vacuum space-time. In 2þ 1 dimensions with a
negative cosmological constant, this is given by the BTZ
solution in (3), which we write here as

ds2 ¼ fð ~RÞdT2 � d ~R2

fð ~RÞ �
~R2

�
d�� J

~R2
dT

�
2
; (31)

where

fð ~RÞ ¼ �~R2 �Mþ J2

~R2
: (32)

T, ~R, and � are stationary coordinates, and it is not

2This is also indicated by the solution (19) of the integrability
condition (18).
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possible to directly compare the angular parts of the co-
moving dust solutions as is usually done in the absence of
rotation. Instead we first use the solutions of the geodesic
equations to set up a comoving coordinate system for the
BTZ metric and then compare the interior and exterior in
the usual way.

A. Comoving Coordinates for the BTZ vacuum

The equations for timelike geodesics of the BTZ space-
time can be integrated exactly in terms of two constants of
the motion, P and L, representing the energy and angular
momentum of the orbits, respectively [30]. For our pur-
poses we need only the velocities (see, the Appendix).
With proper time as affine parameter, they may be ex-
pressed as

UT ¼ 1ffiffiffi
f

p cosh�; UR ¼ ffiffiffi
f

p
sinh� cos�;

U� ¼ 1

R
sinh� sin�þ J

~R2
ffiffiffi
f

p cosh�;

(33)

where

cosh� ¼
ffiffiffiffi
P

f

s
� JL

~R2
ffiffiffi
f

p ; sin� ¼ L
~R sinh�

: (34)

Consider a system of coordinates (t, r, ’) that are comov-
ing with respect to these orbits; in this system, Ut ¼ 1 and
U’ ¼ Ur ¼ 0. Assuming that the transformation between
the canonical BTZ coordinates and this comoving system
depends only on (t, r), we write

dT
d ~R
d�

0
@

1
A¼

cosh�ffiffi
f

p T0 0ffiffiffi
f

p
sinh�cos� ~R0 0

1
R sinh� sin�þ J

~R2
ffiffi
f

p cosh� �0 1

0
BBB@

1
CCCA

dt
dr
d’

0
@

1
A:

(35)

Because P and L are constant along geodesics, they may be
viewed as functions of r. There is therefore some freedom
in our choice of the comoving coordinates. We may fix this
freedom by imposing coordinate conditions in such a way
as to obtain the simplest form for the BTZ metric in the
comoving system. For example, requiring gtr ¼ 0 we find

T0 ¼ ~R0

f
tanh� cos�; (36)

but we must verify that the condition is compatible with the
integrability of the function Tðt; rÞ. From (36),

Tðt; rÞ ¼ hðtÞ þ
Z d ~R

f
tanh� cos� (37)

and therefore

_T ¼ _hþ
_~R

f
tanh� cos� ) cosh�ffiffiffi

f
p ¼ _hþ sinh2�cos2�ffiffiffi

f
p

cosh�
;

(38)

where we have used (35). Inserting � and � from the

solutions in (34) we find that _hðtÞ is independent of r if

and only if PðrÞ ¼ 1 and LðrÞ ¼ �J. This gives _h ¼ 1 and
therefore

t ¼ T �
Z d ~R

f
tanh� cos�: (39)

This choice of P and L also ensures that

�0 ¼ J ~R0
~R2f

tanh� cos� (40)

is compatible with the integrability of �, for we have

� ¼ ’þ gðtÞ þ
Z Jd ~R

~R2f
tanh� cos� ) _�

¼ _gþ J _~R
~R2f

tanh� cos�; (41)

and using (35) together with (34) we easily determine _g �
0. Thus

’ ¼ ��
Z Jd ~R

~R2f
tanh� cos�: (42)

With (36) and (40), the transformation from stationary to
comoving coordinates becomes

dT

d ~R

d�

0
BB@

1
CCA¼

cosh�ffiffi
f

p ~R0
f tanh�cos� 0

ffiffiffi
f

p
sinh�cos� ~R0 0

1
R sinh�sin�þ J

~R2
ffiffi
f

p cosh� J ~R0
~R2f

tanh�cos� 1

0
BBBBB@

1
CCCCCA

�
dt

dr

d’

0
BB@

1
CCA (43)

and the BTZ metric can be expressed in comoving coor-
dinates with the line element

ds2 ¼ dt2 þ 2Jdtd’� R02

1þ J2= ~R2
dr2 � ~R2d’2: (44)

Note that

_R 2 ¼ fsinh2�cos2�

¼ ��~R2 þ ð1þM��J2Þ þ J2ð1þMÞ
~R2

(45)

has the same structure as (16), with constant coefficients
determined by M and J. Its solution can be given as
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R2ðt; rÞ ¼ 1þM��J2

2�

� 1þMþ�J2

2�
sin½2

ffiffiffiffi
�

p
t�QðrÞ�; (46)

where QðrÞ remains arbitrary. It will be seen that R2ðt; rÞ is
bounded from above but not from below. Thus the comov-
ing coordinates cover only a portion of the space-time. This
happens because there exists a radial upper bound for the
geodesics of massive particles [30]. Nevertheless, the
upper bound for Rðt; rÞ is larger than the radius of the outer
horizon and (44) is sufficient for verifying the matching
conditions between the interior and the exterior space-
times.

B. Matching conditions

Direct comparison between the first fundamental forms
describing the interior in (4) and the exterior in (44) on the
boundary r ¼ rb, shows that one may identify the coordi-
nates t and ’ along with KðrbÞ ¼ Kb ¼ �J and the physi-
cal radius Rðt; rbÞ ¼ ~Rðt; rbÞ¼def RbðtÞ. Comparing the
expressions for the radius function, we find that K0

b ¼
K0ðrbÞ ¼ 0,

1þMþ�J2 ¼ Eb; (47)

and QðrbÞ ¼ Q0 ¼ 0. Because the vorticity at the bound-
ary is vanishing, there is an infinite discontinuity in the
density F0ðrÞ there, but F itself remains continuous across
the boundary.

We must also ensure that the second fundamental forms
match. The second fundamental form of the boundary
surface in the interior has three nonvanishing components,
viz.,

Kin
t’ ¼ Kin

’t ¼ WK0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ R2

p
��������rb

; Kin
’’ ¼ WRR0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ R2
p

��������rb

;

(48)

and in the exterior there is only one nonvanishing compo-
nent,

Kout
’’ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ R2

b

q
: (49)

Clearly, K0
b ¼ 0 as before and

R0
b ¼

J2

WbRb

þ Rb

Wb

: (50)

This is guaranteed in the limit as r ! rb if Eb ¼
W2

bK
00
b=2Kb which, as shown in (22) solves the integrability

condition (18) with K0
b ¼ 0. We conclude that while the

vorticity must vanish, K00ðrÞ cannot vanish at the boundary
and moreover that K00

b=Kb > 0 when the BTZ mass is

positive.
On the other hand we had obtained stationary interiors

when E takes the critical value E ¼ ffiffiffiffi
�

p
WK0. Evidently,

then Eb ¼
ffiffiffiffi
�

p
WbK

0
b ¼ 0 for the stationary interiors and,

by (47), these metrics cannot be consistently matched to
the BTZ vacuum except when the ADM mass is negative.
They may, however, serve as inhomogeneous, rotating 2þ
1 dimensional cosmologies.

V. CONCLUDING REMARKS

Much can be said about the nature of the singularity
formed in gravitational collapse by examining the expan-
sion, �, of a congruence of twist free null geodesics [31].
However, if one is interested only in the trapped surfaces
(� ¼ 0) there is a simpler but equivalent approach which
we now briefly illustrate for the vacuum given in the time-
dependent form of (44). Consider null geodesics in this
space-time. The existence of an azimuthal Killing vector
field, � ¼ @’, implies a locally conserved quantity

��U
� ¼ g’tU

t þ g’’U
’ ¼ L; (51)

where U� ¼ dx�=d	 is tangent to a geodesic and L may
be interpreted as the angular momentum carried by it.
Therefore, according to (51), a congruence of null geo-
desics carrying zero angular momentum (such a congru-
ence is twist free and hypersurface forming) satisfies

U’ ¼ J

R2
Ut; (52)

so the null condition,

�
1þ J2

R2

�
Ut2 � R02

1þ J2=R2
Ur2 � R2

�
U’ � J

R2
Ut

�
2 ¼ 0;

(53)

requires that along these geodesics

dtn
dr

¼ � R0

1þ J2=R2
; (54)

where the positive sign refers to outgoing geodesics and the
negative sign to infalling ones. The radius along an out-
going null ray is then given by Rn ¼ RðtnðrÞ; rÞ, where
tnðrÞ is the integral curve of (54), and the horizons are
determined as the extrema of Rn,

dRn

dr
¼ 0 ¼ _Rn

dtn
dr

þ R0
n: (55)

Substituting (54) for outgoing radial geodesics and using
(45), we find the condition

R0
n

� _Rn

1þ J2=R2
n

þ 1

�

¼ R0
n

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��R2

n þ 1þM��J2 þ J2ð1þMÞ
R2
n

q
1þ J2=R2

n

þ 1

�
¼ 0:

(56)

Assuming that R0
n � 0, the condition becomes
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��R2
n þ 1þM��J2 þ J2ð1þMÞ

R2
n

¼
�
1þ J2

R2
n

�
2
;

(57)

which admits three real solutions (provided that M>
4�J2), two of which are positive,

R�2
n ¼ M

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�J2

M

s �
: (58)

These will be recognized as the inner and outer horizons of
the BTZ black hole, as determined in the introduction from
the vanishing of the Lapse function in the stationary frame.
The third root, R2

n ¼ �J2, may be ignored as there is no
reason to extend the vacuum solution to negative values of
R2 [13].

We may apply the same reasoning to determine the
formation of an apparent horizon in the dust filled region.
With U’ ¼ �K=R2, the null condition requires that along
these twist free null geodesics

dtn
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
n þ K2

p
W

: (59)

The turning points of an outgoing ray are then given by

0 ¼ dRn

dr
¼

� _Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
n þ K2

p
W

þ R0
n

�
; (60)

and thus we find that the condition for the formation of an
apparent horizon is

� _Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
n þ K2

q
¼ WR0

n; (61)

where _Rn is given in (16) and R0
n in (17).

For the stationary solutions, this is just the condition
R0 ¼ 0, i.e., at shell crossings. For the time-dependent
solutions, the condition once again yields a cubic equation
for R2

n and therefore admits at least one real root.
Unfortunately, while the equation itself is straightforward
to solve, the solutions are difficult to analyze without
making further assumptions on the shape of the angular
momentum profile in the dust ball. This goes beyond the
scope of the present work.

In this paper we have examined timelike dust collapse
with rotation in 2þ 1 dimensions. A simplification of
Einstein’s equations was achieved by going to the comov-
ing coordinate system. We found that all solutions are
determined by one function (K, the angular momentum)
and one arbitrary constant (H0), and we examined the
limits on K and H0 imposed by the weak energy condition.
We determined stationary as well as oscillatory, time-
dependent solutions, but no singularity formation. To
match the solutions in the comoving system to the BTZ
black hole, we found a comoving system for the black hole,
explicitly giving the transformations from the stationary to
the comoving frames. We demonstrated that the time-

dependent solutions can be matched to a BTZ exterior
with positive ADM mass provided that K00

b=Kb > 0 at the

boundary, but the stationary solutions cannot be so
matched. Thus the stationary space-times may be thought
of as 2þ 1 dimensional, inhomogeneous cosmologies, but
not as black hole interiors. We have also presented a
simplified approach to addressing the issue of trapped
surfaces, although the conditions imposed by Einstein’s
equations are not as transparent as they are in the case of
circular collapse and we could recover little information
from the solutions without specializing to particular cases.
However, the solutions do not at first glance seem to make
a good toy model for analytically examining critical be-
havior because there are not varied outcomes and so it is
not clear how useful such specializations might prove.
The cases of zero and positive cosmological constant

(dS) may also be addressed from our expressions, in the
first case by taking the limit as � ! 0 and in the second
case by analytic continuation.
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APPENDIX

In this appendix we obtain the geodesics given in (33)
and (34) for the BTZ space-time. The condition for being
timelike,

fUT2 � f�1U
~R2 � ~R2

�
U� � J

~R2
UT

�
2 ¼ 1; (A1)

allows us to reexpress the four velocities in terms of a
‘‘boost’’ and a rotation according to,

UT ¼ 1ffiffiffi
f

p cosh� U
~R ¼ ffiffiffi

f
p

sinh� cos�

U� � J

2 ~R2
UT ¼ 1

~R
sinh� sin�:

(A2)

The geodesic equations can be written as

dUT

ds
þdlnf

ds
UT� 2J

f ~R

�
U�� J

~R2
UT

�
U

~R¼0

dU
~R

ds
þf0

2

�
fUT2�U

~R2

f

�
� ~Rf

�
U�2�J2UT2

~R4

�
¼0

dU�

ds
� 2J2

f ~R3

�
U�� J

~R2
UT

�
U

~Rþ2U
~R

~R

�
U�þJðlnfÞ0

~R
UT

�
¼0:

(A3)

Subtracting the first from the last, we arrive after some
manipulation at the equation

d

ds

�
U� � J

~R2
UT

�
þ 2

~R

�
U� � J

~R2
UT

�
U

~R ¼ 0; (A4)
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which is solved by

U� � J
~R2

UT ¼ L
~R2

; (A5)

where L is constant on geodesics. Inserting this into the
equation for UT , we find that it can be integrated to yield

UT ¼
ffiffiffiffi
P

p
f

� JL

f ~R2
(A6)

where P is also constant on geodesics. Combining this with

(A2)

cosh� ¼
ffiffiffiffi
P

f

s
� JL

~R2
ffiffiffi
f

p (A7)

and, using (A5) in (A2),

sin� ¼ L

R sinh�
: (A8)
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