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The complete set of analytic solutions of the geodesic equation in a Schwarzschild-(anti-)de Sitter

space-time is presented. The solutions are derived from the Jacobi inversion problem restricted to the set

of zeros of the theta function, called the theta divisor. In its final form the solutions can be expressed in

terms of derivatives of Kleinian sigma functions. The different types of the resulting orbits are

characterized in terms of the conserved energy and angular momentum as well as the cosmological

constant. Using the analytical solution, the question whether the cosmological constant could be a cause of

the Pioneer anomaly is addressed. The periastron shift and its post-Schwarzschild limit is derived. The

developed method can also be applied to the geodesic equation in higher dimensional Schwarzschild

space-times.
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I. INTRODUCTION AND MOTIVATION

All solar system observations and almost all other ob-
servations related to gravity are perfectly described within
Einstein’s general relativity. This includes light deflection,
the perihelion shift of planets, the gravitational time-delay
(Shapiro effect) the Lense-Thirring, and the Schiff effect
related to the gravitomagnetic field, as well as strong field
effects governing the dynamics of binary systems and, in
particular, binary pulsars [1–3]. However, there are two
phenomena which do not fit into this scheme and still
represent a mystery; that is dark matter and dark energy.
Dark matter has been introduced to explain the galactic
rotation curves, gravitational lensing, structure formation,
or particular features in the cosmic microwave back-
ground. Dark energy is needed to describe the accelerated
expansion of the universe. All related observations like the
fluctuations in the cosmic microwave background, struc-
ture formation, and SN Ia are consistently described by an
additional energy-momentum component which appears in
the Einstein field equation as an additional cosmological
term

R�� � 1
2Rg�� þ�g�� ¼ �T�� (1)

where � is the cosmological constant which, using the
independent observations mentioned above, has a value
of j�j � 10�52 m�2.

As a consequence, it is necessary in principle to describe
all observations related to gravity within a framework
including the cosmological constant. However, due to the
smallness of the cosmological constant it seems unlikely
that this quantity will have a large effect on smaller, that is,
on solar system scales. In fact, it has been shown within an

approximation scheme based on the frame given by the
Schwarzschild-de Sitter space-time that the cosmological
constant plays no role in all the solar system observations
and also not in strong field effects [4,5]. Also within a
rotating version of this solution, the Kerr-de Sitter solution,
no observable effects arise [6]. Nevertheless, there has
been some discussion on whether the Pioneer anomaly,
the unexplained acceleration of the Pioneer 10 and 11
spacecraft toward the inner solar system of aPioneer ¼
ð8:47� 1:33Þ � 10�10 m=s2 [7] which is of the order of
cH where H is the Hubble constant, may be related to the
cosmological expansion and, thus, to the cosmological
constant. The same order of acceleration is present also
in the galactic rotation curves which astonishingly success-
fully can be modeled using a modified Newtonian dynam-
ics involving an acceleration parameter aMOND which
again is of the order of 10�9 m=s2. Because of this myste-
rious coincidence of characteristic accelerations appearing
at different scales and due to the fact that all these phe-
nomena appear in a weak gravity or weak acceleration
regime, it might be not clear whether current approxima-
tion schemes hold. This is one motivation to try to solve the
equations of motion of test particles in space-times with
cosmological constant analytically.
Furthermore, by looking at the effective potential of a

point particle moving in the Schwarzschild-de Sitter space-
time it can be seen that for a certain range of orbital
parameters a ‘‘switching on’’ of the cosmological constant
may result in a dramatic change of the orbital shape: for a
positive cosmological constant bound orbits may become
escape orbits and for a negative cosmological constant
escape orbits will become bound orbits, see Fig. 2. The
characteristic distance where this happens is given by

��1=2 which is of the order of 5 Gpc which is roughly
the radius of the visible universe and, thus, far outside the
solar system and our galaxy [8]. However, an orbit which is
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near to the separatrix of Schwarzschild geodesics may have
a larger sensitivity to a cosmological constant which per-
haps may not be accounted for to the required accuracy in a
perturbative approach. In other words, it might be that a
comparatively large acceleration cH � aPioneer � aMOND at
solar system or galactic distances may be the result of a
very small cosmological constant. Therefore, a definite
answer to this question can be given with the help of an
analytical solution only. In addition, the orbits of the
Pioneer spacecrafts had been reconstructed using orbit
determination programs relying on the first order post-
Newtonian approximation. The difference between this
approximation and the exact orbits with cosmological
constant may be even more pronounced.

There is further interest to understand explicitly the
structure of geodesics in the background of black holes
in anti-de Sitter space in the context of string theory and the
AdS/CFT correspondence. In addition, recently there also
has been a lot of work dealing with geodesics and integra-
bility in black hole backgrounds in higher dimensions in
the presence of a cosmological constant [9–13].

Besides these physically motivated reasons, it is also of
mathematical importance to derive an explicit analytical
solution of the geodesic equation in a Schwarzschild-de
Sitter space-time. Orbits of particles and light rays have
long been used to discuss the properties of solutions of
Einsteins field equations. In fact, the observation of light
and particles is the only way to explore the gravitational
field. All solutions of the geodesic equation in a
Schwarzschild gravitational field have been presented in
a seminal paper of Hagihara [14]. The solution is given in
terms of the Weierstrass }-function. With the same mathe-
matical tools one can solve the geodesic equation in a
Reissner-Nordström space-time [15]. The analytic solu-
tions of the geodesic equation in a Kerr and Kerr-
Newman space-time have also been given analytically
(see [15] for a survey). Here we expose for the first time
the complete elaboration of the analytic solution of a point
particle moving in a Schwarzschild-(anti) de Sitter space-
time presented in [16]. Also the entire set of possible
solutions is described and characterized. For a specialized
case, orbits in a Schwarzschild-(anti) de Sitter space-time
have been presented [17,18].

Here we consider the general case of geodesics in the
gravitational field of a spherically symmetric mass in a
universe with cosmological constant � (of any value),
described by the Schwarzschild-(anti) de Sitter space-
time. Because of the static metric and the spherical sym-
metry of the problem, the geodesic equation reduces to one
ordinary differential equation which can be integrated
formally by means of a hyperelliptic integral. Here we
explicitly solve this integral. Our calculations are based
on the mathematically very interesting inversion problem
of hyperelliptic Abelian integrals studied first by Jacobi,
Abel, Riemann, Weierstrass, and Baker in the 19th century

[19–22]. The general ansatz was stated by Kraniotis and
Whitehouse [23] and Drociuk [24] (see also [25]), but in
addition to these considerations we explicitly solve the
equations of motion by restricting the problem to the set
of zeros of the theta function, the so-called theta divisor.
This procedure makes it possible to obtain a one-parameter
solution of the, in our case, two-parameter inversion prob-
lem. This procedure was suggested by Enolskii, Pronine,
and Richter [26] who applied this method to the problem of
the double pendulum. The resulting orbits are classified in
terms of the energy and the angular momentum of the test
particle as well as of the value of the cosmological con-
stant. A detailed discussion of the resulting orbits is given.
The found analytical solution then is applied to the

question whether the cosmological constant might be the
origin of the anomalous acceleration of the Pioneer space-
craft. Over the whole mission, the influence of the cosmo-
logical constant leads to a modification in the orbit of the
Pioneers of the order of 10�4 m only. The found solution is
also used to derive the exact post-Schwarzschild approxi-
mation of the periastron shift. We also give one example
for the application of this method to analytically solve the
geodesic equation in higher dimensional Schwarzschild,
Schwarzschild-(anti-)de Sitter or Reissner-Nordström-
(anti-)de Sitter space-times.

II. THE GEODESIC EQUATION

We consider the geodesic equation

0 ¼ d2x�

ds2
þ
�
�

��

�
dx�

ds

dx�

ds
(2)

where ds2 ¼ g��dx
�dx� is the proper time along the geo-

desics and�
�

��

�
¼ 1

2
g��ð@�g�� þ @�g�� � @�g��Þ (3)

is the Christoffel symbol, in a space-time given by the
metric

ds2 ¼
�
1� rS

r
� 1

3
�r2

�
dt2 �

�
1� rS

r
� 1

3
�r2

��1
dr2

� r2ðd�2 þ sin2�d’Þ; (4)

which describes the spherically symmetric vacuum solu-
tion of (1). This Schwarzschild-de Sitter metric is charac-
terized by the Schwarzschild-radius rS ¼ 2M related to the
mass M of the gravitating body, and the cosmological
constant� (unless stated otherwise we use units where c ¼
G ¼ 1). The main features of this metric depending on the
value of the cosmological constant � are shown in Fig. 1.
For a general discussion of this metric, see e.g. [27,28].
The geodesic equation has to be supplemented by the
normalization condition g��

dx�

ds
dx�

ds ¼ � where for massive

particles � ¼ 1 and for light � ¼ 0.
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Because of the spherical symmetry we can restrict our
consideration to the equatorial plane. Furthermore, due to
the conserved energy and angular momentum

E ¼ gtt
dt

ds
¼
�
1� rS

r
� 1

3
�r2

�
dt

ds
; (5)

L ¼ r2
d’

ds
; (6)

the geodesic equation reduces to one ordinary differential
equation�

dr

d’

�
2 ¼ r4

L2

�
E2 �

�
1� rS

r
� 1

3
�r2

��
�þ L2

r2

��
: (7)

Together with energy and angular momentum conservation
we obtain the corresponding equations for r as functions of
s and t �

dr

ds

�
2 ¼ E2 �

�
1� rS

r
� 1

3
�r2

��
�þ L2

r2

�
; (8)

�
dr

dt

�
2 ¼ 1

E2

�
1� rS

r
� 1

3
�r2

�
2

�
�
E2 �

�
1� rS

r
� 1

3
�r2

��
�þ L2

r2

��
: (9)

Equations (7)–(9) give a complete description of the
dynamics.

Equation (8) suggests the introduction of an effective
potential

Veff ¼ 1

2

�
� 1

3
�L2 � �

rS
r
þ L2

r2
� rSL

2

r3
� �

3
�r2

�
(10)

shown in Fig. 2. It is worthwhile to note that for light, i.e.
� ¼ 0, the cosmological constant just gives a constant
contribution to the effective potential and, thus, does not
influence (7) and (8). However, it still influences the mo-
tion of light through the timing formula (9).

As usual, we introduce a new variable u ¼ rS=r and
obtain�
du

d’

�
2 ¼ u3 � u2 þ ��uþ ð�ð�� �Þ þ �Þ þ ���

1

u2

(11)

with the dimensionless parameters

� :¼ r2S
L2
; � :¼ E2 and � :¼ 1

3
�r2S: (12)

We rewrite (11) as �
u
du

d’

�
2 ¼ P5ðuÞ (13)

with

P5ðuÞ :¼ u5 � u4 þ ��u3 þ ð�ð�� �Þ þ �Þu2 þ ���:

(14)

If not stated otherwise, we take � ¼ 1 in the following.
Note that � � 0 and � � 0.
A separation of variables in (13) yields

’� ’0 ¼
Z u

u0

u0du0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðu0Þ

p ; (15)

where u0 ¼ uð’0Þ. In solving integral (15) there are two
major issues which have to be addressed. First, the inte-
grand is not well defined in the complex plane because of
the two branches of the square root. Second, the solution
uð’Þ should not depend on the integration path. If 	
denotes some closed integration path andI

	

uduffiffiffiffiffiffiffiffiffiffiffiffi
P5ðuÞ

p ¼ ! (16)

this means that

’� ’0 �! ¼
Z u

u0

u0du0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðu0Þ

p (17)

should be valid, too. Hence, the solution uð’Þ of our
problem has to fulfill

uð’Þ ¼ uð’�!Þ (18)

FIG. 1. The tt-component of the Schwarzschild-de Sitter
metric for various values for �. The dotted line corresponds
to the Schwarzschild metric. For 0<�< 1=ð9m2Þ there are two
horizons. The dashed line corresponds to the extremal
Schwarzschild-de Sitter space-time where the two horizons
coincide. For r < r� and r > rþ the radial coordinate becomes
timelike.

FIG. 2. The effective potential of a point particle with some
given L in a Schwarzschild-de Sitter space-time for different
cosmological constants.
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for every ! � 0 obtained from an integration (16). A
function u with the property (18) is called a periodic
function with period !. These two issues can be solved
if we consider Eq. (15) to be defined on the Riemann

surface X of the algebraic function x�
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p
.

III. THE INVERSION PROBLEM

Let X be the compact Riemannian surface of the alge-

braic function x�
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p
. It can be represented as the

algebraic curve

X :¼ fz ¼ ðx; yÞ 2 C2jy2 ¼ P5ðxÞg (19)

[29] or as the analytic continuation of
ffiffiffiffiffiffi
P5

p
. The last one

can be realized as a two-sheeted covering of the Riemann
sphere which can be constructed in the following way: let
ei, i ¼ 1; . . . ; 5, be the zeros of P5 and e6 ¼ 1 (for a
polynomial of 6th order the zero e6 is finite). These are
the so-called branch points. Now take two copies of the
Riemann sphere, one for each of the two possible values offfiffiffiffiffiffi
P5

p
, and cut them between every two of the branch points

ei in such a way that the cuts do not touch each other. These
are the so-called branch cuts, see Fig. 3. Of course, the two
copies have to be identified at the branch points where the
two values of

ffiffiffiffiffiffi
P5

p
are identical. They are then glued

together along the branch cuts in such a way that
ffiffiffiffiffiffi
P5

p
together with all its analytic continuations is uniquely

defined on the whole surface. On this surface x�ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p
is now a single-valued function. This construction

can be visualized as a ‘‘pretzel’’, see Fig. 3. For a strict
mathematical description of the construction of a compact
Riemannian surface, see [30], for example.

Every Riemannian surface can be equipped with a ho-
mology basis fai; biji ¼ 1; . . . ; gg 2 H1ðX;ZÞ of closed
paths as shown in Fig. 3, where g is the genus of the
Riemannian surface, see the next section. From the con-
struction of the Riemannian surface it is already clear that
integrals over these closed paths indeed do not evaluate to
zero and, hence, have to be periods of the solution of (15).
The task now is to analyze the details of periodic functions
on such Riemannian surfaces.

A. Preliminaries

Compact Riemannian surfaces are characterized by their
genus g. This can be defined as the dimension of the space
of holomorphic differentials on the Riemannian surface or,
topologically seen, as the number of ‘‘holes’’ of the
Riemannian surface. Let Pd ¼

P
d
s¼0 �sx

s be a polynomial

of degree d with only simple zeros and X be the Riemann
surface of

ffiffiffiffiffiffi
Pd

p
. Then the genus of X is equal to g ¼ ½d�1

2 �,
where ½x� denotes the largest integer less or equal than x
[31]. Hence, in our case of P5 the genus of the Riemann
surface is g ¼ 2.
In order to construct periodic functions on a Riemann

surface we first have to define a canonical basis of the space
of holomorphic differentials fdziji ¼ 1; . . . ; gg and of as-
sociated meromorphic differentials fdriji ¼ 1; . . . ; gg on
the Riemann surface by

dzi :¼ xi�1dxffiffiffiffiffiffiffiffiffiffiffiffi
PdðxÞ

p ; (20)

dri :¼
X2gþ1�i

k¼i
ðkþ 1� iÞ�kþ1þi

xkdx

4
ffiffiffiffiffiffiffiffiffiffiffiffi
PdðxÞ

p ; (21)

with �j being the coefficients of the polynomial Pd [31]. In

our case these differentials are given by

dz1 :¼ dxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ; dz2 :¼ xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ; (22)

dr1 :¼ 3x3 � 2x2 þ �x

4
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p dx; dr2 :¼ x2dx

4
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ; (23)

where � is defined in (12). We also introduce the period
matrices ð2!; 2!0Þ and ð2
; 2
0Þ related to the homology
basis

2!ij :¼
I
aj

dzi; 2!0
ij
:¼

I
bj

dzi;

2
ij :¼ �
I
aj

dri; 2
0
ij
:¼ �

I
bj

dri:

(24)

The differentials in (20) and (21) have been chosen such
that the components of their period matrices fulfill the
Legendre relation

FIG. 3. Riemannian surface of genus g ¼ 2, with real branch
points e1; . . . ; e6. Upper figure: Two copies of the complex plane
with closed paths giving a homology basis fai; biji ¼ 1; . . . ; gg.
The branch cuts (thick solid lines) are chosen from e2i�1 to e2i,
i ¼ 1; . . . ; gþ 1. Lower figure: The ‘‘pretzel’’ with the topo-
logically equivalent homology basis.
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! !0

 
0

� �
0 �1g
1g 0

� �
! !0

 
0

� �
t ¼ � 1

2
�i

0 �1g
1g 0

� �
;

(25)

where 1g is the g� g unit matrix, [31].

Finally we introduce the normalized holomorphic differ-
entials

d ~v :¼ ð2!Þ�1d~z; d~z ¼
dz1
dz2
..
.

dzg

0
BBBB@

1
CCCCA: (26)

The period matrix of these differentials is given by ð1g; �Þ,
where � is defined by

� :¼ !�1!0: (27)

It can be shown [32] that this normalized matrix � always is
a Riemannian matrix, that is, � is symmetric and its imagi-
nary part Im� is positive definite.

B. Jacobi’s inversion problem

Let us consider now the Abel map

A x0
:¼ X ! JacðXÞ; x�

Z x

x0

d~z (28)

from the Riemannian surface X to the Jacobian JacðXÞ ¼
Cg=� of X, where � ¼ f!vþ!0v0 j v; v0 2 Zgg is the
lattice of periods of the differential d~z. The image
Ax0ðXÞ of X by this continuous function is of complex

dimension one and, thus, an inverse map A�1
x0 is not

defined for all points of JacðXÞ. However, the
g-dimensional Abel map

Ax0 : S
gX ! JacðXÞ; ðx1; . . . ; xgÞt �

Xg
i¼1

Z xi

x0

d~z (29)

from the gth symmetric product SgX of X (the set of
unordered ‘‘vectors’’ ðx1; . . . ; xgÞt where xi 2 X) to the

Jacobian is one-to-one almost everywhere. Jacobi’s inver-
sion problem is now to determine ~x for given ~’ from the
equation

~’ ¼ Ax0ð ~xÞ: (30)

In our case g ¼ 2 this reads

’1 ¼
Z x1

x0

dzffiffiffiffiffiffiffiffiffiffiffi
P5ðzÞ

p þ
Z x2

x0

dzffiffiffiffiffiffiffiffiffiffiffi
P5ðzÞ

p ;

’2 ¼
Z x1

x0

zdzffiffiffiffiffiffiffiffiffiffiffi
P5ðzÞ

p þ
Z x2

x0

zdzffiffiffiffiffiffiffiffiffiffiffi
P5ðzÞ

p :

(31)

We will see later, that we can solve our problem (15) as a
limiting case of this Jacobi inversion problem.

C. Theta functions

The Riemannian surface of genus g has 2g independent
closed paths, each corresponding to a period of the func-
tions defined on these surfaces and, hence, to a period of
the solution u of (15). In order to construct 2g-periodic
functions, we need the theta function #: Cg ! C,

#ð~z; �Þ :¼ X
~m2Zg

ei� ~mtð� ~mþ2~zÞ: (32)

The series on the right-hand side converges absolutely and
uniformly on compact sets in Cg and, thus, defines a
holomorphic function in Cg. This is obvious from the
estimate Re ð ~mtði�Þ ~mtÞ � �c ~mt ~m for some constant c >
0, what follows from the fact that Re ði�Þ is negative
definite. The theta function is already periodic with respect
to the columns of 1g and quasiperiodic with respect to the

columns of �, i.e., for any n 2 Zg the relations

#ð~zþ 1g ~n; �Þ ¼ #ð~z; �Þ; (33)

#ð~zþ � ~n; �Þ ¼ e�i� ~ntð� ~nþ2~zÞ#ð~z; �Þ (34)

hold. We will also need the theta function with character-

istics [33] ~g, ~h 2 1
2Z

g defined by

#½ ~g; ~h�ð~z; �Þ :¼ X
~m2Zg

ei�ð ~mþ ~gÞtð�ð ~mþ ~gÞþ2~zþ2 ~hÞ

¼ ei� ~g
tð� ~gþ2~zþ2 ~hÞ#ð ~zþ � ~gþ ~h; �Þ: (35)

Later it will be important that for every ~g, ~h the set

�� ~gþ ~h
:¼ f~z 2 Cg j #½ ~g; ~h�ð~z; �Þ ¼ 0g, called a theta di-

visor, is a (g� 1)-dimensional subset of JacðXÞ, see [32] or
(49).
The solution of Jacobi’s inversion problem (31) can be

explicitly formulated in terms of functions closely related
to the theta function. First, consider the Riemann theta
function

#eðx; �Þ :¼ #

�Z x

x0

d ~v� ~e; �

�
; (36)

with some arbitrary but fixed ~e 2 Cg. The Riemann van-
ishing theorem, see e.g. [32], states that the Riemann theta
function is either identically to zero or has exactly g zeros
x1; . . . ; xg for which

Xg
i¼1

Z xi

x0

d ~v ¼ ~eþ ~Kx0 (37)

holds (modulo periods). Here ~Kx0 2 Cg is the vector of

Riemann constants with respect to the base point x0 given
by (�jj is the jth diagonal element)

Kx0;j ¼
1þ �jj

2
�X

l�j

I
al

�Z x

x0

dvj

�
dvlðxÞ: (38)

If the base point x0 is equal to 1, this vector can be

GEODESIC EQUATION IN SCHWARZSCHILD–(ANTI-)DE . . . PHYSICAL REVIEW D 78, 024035 (2008)

024035-5



determined by

~K 1 ¼ Xg
i¼1

Z e2i

1
d ~v; (39)

where e2i is the starting point of one of the branch cuts not

containing 1 for each i, see [31]. Hence, ~K1 can be
expressed as a linear combination of half-periods in this
case. For problems of hyperelliptic nature it is usually
assumed that the Riemann theta function #e does not
vanish identically. However, here we are interested in the
opposite case: we want to restrict Jacobi’s inversion prob-

lem (31) to the set of zeros of#ð� þ ~Kx0 ; �Þ, which is called
the theta divisor � ~Kx0

.

The solution of (31) and, thus, of (13) can be formulated
in terms of the derivatives of the Kleinian sigma function
�: Cg ! C,

�ð~zÞ ¼ Ce�ð1=2Þ ~zt
!�1 ~z#ðð2!Þ�1 ~zþ ~Kx0 ; �Þ; (40)

where the constant C can be given explicitly, see [31], but
does not matter here. Jacobi’s inversion problem can be
solved in terms of the second logarithmic derivative of the
sigma function called the generalized Weierstrass func-
tions

}ijð~zÞ ¼ � @

@zi

@

@zj
log�ð~zÞ ¼ �ið~zÞ�jð ~zÞ � �ð~zÞ�ijð ~zÞ

�2ð ~zÞ ;

(41)

where �i denotes the derivative of the sigma function with
respect to the ith component.

D. The solution of the Jacobi inversion problem

The solution of Jacobi’s inversion problem (30) can be
given in terms of generalized Weierstrass functions. Let X

be the Riemannian surface of
ffiffiffiffi
P

p
where P is without

restriction defined by PðxÞ :¼ P2gþ1
i¼0 �ix

i (this form can

always be achieved by a rational transformation). Then the
components of the solution vector ~x ¼ ðx1; . . . ; xgÞt are

given by the g solutions of

�2gþ1

4
xg �Xg

i¼1

}gið ~’Þxi�1 ¼ 0; (42)

where ~’ is the left-hand side of (30). Since ~x 2 S2X there
is no way to define an order of the components of ~x. In our
case of g ¼ 2, we can rewrite this result with the help of
the theorems by Vieta in the form

x1 þ x2 ¼ 4

�5

}22ð ~’Þ; x1x2 ¼ � 4

�5

}12ð ~’Þ: (43)

IV. SOLUTION OF THE EQUATION OF MOTION
IN SCHWARZSCHILD-(ANTI-)DE SITTER

SPACE-TIME

Now we apply the results of the preceding section to the
problem of the equation of motion in Schwarzschild-(anti-)
de Sitter space-time, Eqs. (13) and (15). As already men-
tioned before, the solution of the equation of motion can be
found as a limiting case of the solution of Jacobi’s inver-
sion problem in the case of genus g ¼ 2.

A. The analytic expression

To start with, we rewrite Jacobi’s inversion problem (31)
in the form

1 ¼
Z u1

1
dxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p þ
Z u2

1
dxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ;

2 ¼
Z u1

1
xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p þ
Z u2

1
xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ;

(44)

where

~ ¼ ~’� 2
Z 1

u0

d~z: (45)

Note that the right-hand side of (44) is exactly ~A1ð ~uÞ, the
image of the Abel map defined in (29), i.e. ~ ¼ ~A1ð ~uÞ. We
use the obvious identity (compare [26])

u1 ¼ lim
u2!1

u1u2
u1 þ u2

(46)

and insert the solution of Jacobi’s inversion problem (43).
Then

u1 ¼ � lim
u2!1

}12ð ~Þ
}22ð ~Þ

¼ lim
u2!1

�ð ~Þ�12ð ~Þ � �1ð ~Þ�2ð ~Þ
�2

2ð ~Þ � ��22ð ~Þ

¼ �ð ~1Þ�12ð ~1Þ � �1ð ~1Þ�2ð ~1Þ
�2

2ð ~1Þ � �ð ~1Þ�22ð ~1Þ
; (47)

where

~1 ¼ lim
u2!1

~ ¼ ~A1ð ~u1Þ (48)

with ~u1 ¼ ðu11Þ. Note that the definition of the sigma func-

tion (40) and, hence, of the generalized Weierstrass func-

tions (41) includes the vector of Riemann constant ~Kx0 with

x0 ¼ 1 in our case, which is given by

~K 1 ¼ �
1=2
1=2

� �
þ 0

1=2

� �
(see (39) or [32]).
The above limiting process also transfers Jacobi’s inver-

sion problem to the theta divisor � ~K1
. With ð2!Þ�1 ~1 ¼

ð2!Þ�1 ~A1ð ~u1Þ ¼
Ru11 d ~v and the theorem
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#

�
1=2
1=2

� �
;

0
1=2

� ��
ð~z; �Þ ¼ 0 , 9x: ~z ¼

Z x

1
d ~v (49)

proven by Mumford [32] it follows that

0 ¼ #

�
1=2
1=2

� �
;

0
1=2

� ��
ðð2!Þ�1 ~1; �Þ: (50)

Via Eq. (35), this is equivalent to

0 ¼ #

�
ð2!Þ�1 ~1 þ �

1=2
1=2

� �
þ 0

1=2

� �
; �

�
; (51)

and with (40) this means

�ð ~1Þ ¼ 0: (52)

We first use this result in (47) and obtain

u1 ¼ ��1ð ~1Þ
�2ð ~1Þ

: (53)

Theorem (49) also tells us that ð2!Þ�1 ~1 is an element
of the theta divisor � ~K1

, i.e. the set of zeros of

#

�
1=2
1=2

� �
;

0
1=2

� ��
;

and that, in the case g ¼ 2, � ~K1
is a manifold of complex

dimension one. Note that the restriction to the theta divisor
is only possible because 1 is a branch point what is
essential for the validity of theorem (49).

Since � ~K1
is a one-dimensional subset of C2, there is a

one-to-one functional relation between the first and the

second component of ð2!Þ�1 ~1. By the definition of
~1 in (47) and Eq. (45) we have

~1 ¼ lim
u2!1

~ ¼ lim
u2!1 ~’�2

Z 1

u0

d~z ¼
Z u1

u0

d~z�
Z 1

u0

d~z:

(54)

The physical coordinate ’ is given by (15),

’ ¼
Z u1

u0

zdzffiffiffiffiffiffiffiffiffiffiffi
P5ðzÞ

p þ ’0 ¼
Z u1

u0

dz2 þ ’0: (55)

We insert this in (54) and obtain

~1 ¼
R
u1
u0
dz1 �

R1
u0
dz1

’� ’0 �
R1
u0
dz2

 !
¼

R
u1
u0
dz1 �

R1
u0
dz1

’� ’0
0

 !
;

(56)

where ’0
0 ¼ ’0 þ

R1
u0
dz2 depends only on the initial val-

ues u0 and ’0. We choose for each ’ a ’1 such that

~’� :¼ ’1
’� ’0

0

� �

is equal to ~1. Then ð2!Þ�1 ~’� ¼ ð2!Þ�1 ~1 is an ele-
ment of the theta divisor � ~K1

and we finally obtain

rð’Þ ¼ rS
uð’Þ ¼ �rS �2ð ~1Þ

�1ð ~1Þ
¼ �rS �2ð ~’�Þ

�1ð ~’�Þ : (57)

This is the analytic solution of the equation of motion of a
point particle in a Schwarzschild-(anti-)de Sitter space-
time. This solution is valid in all regions of the
Schwarzschild-(anti-)de Sitter space-time and for both
signs of the cosmological constant and can be computed
with arbitrary accuracy. The explicit computation of the
solution is described in Appendix A.

B. Light trajectories

In the case of light trajectories, the situation simplifies
considerably. The equation of motion is then given by�

du

d’

�
2 ¼ u3 � u2 þ ��þ 1

3
� ¼: P3ðuÞ: (58)

Light rays are uniquely given and, thus, uniquely charac-
terized by the extremal distance to the gravitating body,
that is, the smallest or largest distance (in the case of a
Schwarzschild space-time, it is also possible—due to its
asymptotic flatness—to take the impact parameter as char-
acteristic of a light ray). This extremal distance u0 is
characterized by

du

d’

��������u¼u0
¼ 0; (59)

which gives u30 � u20 þ ��þ 1
3� ¼ 0. Then our equation

of motion is �
du

d’

�
2 ¼ u3 � u2 � u30 þ u20 (60)

which is the same type of equation as in Schwarzschild
geometry. With a substitution u ¼ 4xþ 1

3 this reads�
dx

d’

�
2 ¼ 4x3 � g2x� g3 (61)

where

g2 :¼ 1

12
; g3 :¼ 1

8

�
1

27
þ 1

2
ðu30 � u20Þ

�
(62)

are the Weierstrass invariants. This differential equation
can be solved directly in terms of elliptic functions, i.e.

rð’Þ ¼ rS
uð’Þ ¼

rS
4xð’Þ þ 1

3

¼ rS
4}ð’� ’0

0; g2; g3Þ þ 1
3

;

(63)

where } is the Weierstrass function [34,35] and ’0
0 is given

by the initial values ’0 and x0, ’
0
0 ¼ ’0 þ

R1
x0

dxffiffiffiffiffiffiffiffi
P3ðxÞ

p . The

corresponding light trajectories have been exhaustively
discussed in [14].
In a recent paper [36], Rindler and Ishak discussed light

deflection in a Schwarzschild-de Sitter space-time. Though
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the equation of motion is the same as in Schwarzschild
space-time, the measuring process for angles reintroduces
the cosmological constant in the observables. According to
their scheme, the exact angle between the radial direction
and the spatial direction of the light ray is now given by

tan ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rS
rð’Þ � 1

3�r
2ð’Þ

j r2ð’Þ
r2
0

ð1� rS
r0
Þ � ð1� rS

rð’ÞÞj

vuuut ; (64)

where in the expression dr=d’ from (7) the E2

L2 þ 1
3 � has

been replaced by the r0 related to u0. This now is valid for
all light rays, not only for those rays showing a small
deflection as discussed in [36].

V. THE CLASSIFICATION OF THE SOLUTIONS

A. General classification

Having an analytical solution at hand we can explore the
set of all possible solutions in a systematic manner. The
shape of an orbit depends on the energy E and the angular
momentum L of the particle under consideration as well as
the cosmological constant� (the Schwarzschild radius has
been absorbed through a rescaling of the radial coordinate).
These quantities are all contained in the polynomial P5ðuÞ
through the parameters �, � and � (12). Since r (and u)
should be real and positive it is clear that the physically
acceptable regions are given by those u for which E> Veff .
The zeros of P5 are related to the points of intersection of E
and Veff , and a real and positive P5 is equivalent toE> Veff

as can also be seen from (13). Hence, the number of
positive real zeros of P5 uniquely characterizes the form
of the resulting orbit.

Since P5 goes to �1 if x! �1 and to 1 if x! 1,
P5ð0Þ is positive if the number of positive real zeros of
P5 is even and negative if it is odd. If we denote by
e1; . . . ; en the positive real zeros, then it follows that the
physically acceptable regions are given by ½0; e1�;
½e2; e3�; . . . ; ½en;1� if n is even and by
½e1; e2�; . . . ; ½en;1� if n is odd. With respect to r we have
the following classes of orbits (see Fig. 4):

(i) the region ½0; e1� corresponds to escape orbits,
(ii) the region ½en;1� corresponds to orbits falling into

the singularity, i.e. to terminating orbits, and

(iii) the regions ½ei; eiþ1� correspond to bound orbits.

This means that for any arrangement of zeros of P5 there
exist terminating orbits. Furthermore, for an even number
of positive real zeros we have escape orbits and for more
than three real positive zeros we have bound orbits. The
case that there is no positive real zero corresponds to a
particle coming from infinity and falling to the singularity,
see Fig. 4. Quasiperiodic bound orbits exists only if there
are three or more positive zeros.
It can be shown that there are no more than four real

positive zeros for our polynomial (14): We decompose the
polynomial P5 into its (in general complex) zeros P5ðuÞ ¼
ðu� u1Þðu� u2Þðu� u3Þðu� u4Þðu� u5Þ. Multiplication
and comparison of the coefficients of the terms linear in u
yields

u1u2u3u4 þ u1u2u3u5 þ u1u2u4u5 þ u1u3u4u5

þ u2u3u4u5 ¼ 0: (65)

The assumption that all zeros are real and positive contra-
dicts Eq. (65). Therefore, in any case there are at most four
real positive zeros.
Figure 5 shows the arrangement of zeros of P5ðuÞ for

some chosen values of � as a ð�;�Þ—diagram. The code of
gray scales is as follows: black corresponds to four, dark
gray to three, gray to two, light gray to one, and white to no
positive real zero.

B. Discussion with respect to �

Based on Fig. 5 we are now discussing the orbits related
to different values of �. Each Plot in Fig. 5 comprises all
effective potentials (of the form shown in Fig. 2) for all
possible values of L and all particle energies E and, thus,
contains the complete information about all orbits in
Schwarzschild-(anti-)de Sitter space-times for a given
value of �.
(a) Let us first consider � ¼ 0. In this case the constant

term in P5ðuÞ vanishes and P5ðuÞ ¼ u2 ~P3ðuÞ so that
u ¼ 0 is a zero of P5ðuÞ with multiplicity 2. The
polynomial ~P3 corresponds to the Schwarzschild
space-time and has been extensively discussed in
[14]. Nevertheless, let us examine some regions of

FIG. 4. The five possibilities of having real positive zeros of P5ðuÞ. The allowed regions of particle motion are shaded in gray. The
zeros correspond to the zeros of Veff ¼ E in Fig. 2 (note that u ¼ 0 corresponds to r ¼ 0 and u ¼ 1 to r ¼ 0). Bound
nonterminating, quasiperiodic orbits exist only if there are three or more positive zeros.
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ð�;�Þ and possible orbits so that they can be directly
compared with orbits for � � 0. As seen in Fig. 5
(d), the straight line � ¼ 1 divides the plot in two
parts. For �< 1 there is an odd number of positive
real zeros, i.e. we may not have any escape orbits in
these regions. The light gray area corresponds to one
real positive zero and, therefore, it is only a termi-
nating orbit possible whereas in the dark gray region
there may be in addition a bound orbit. For � � 1
there is an even number of positive real zeros and,
thus, there is always an orbit which reaches infinity.
The gray region corresponds to two real positive
zeros and, hence, to a terminating and an escape
orbit. The white region represents the case of no
positive real zeros, i.e. an orbit which comes from
infinity and falls into the singularity. Also, beside
u ¼ 0 there is a further real zero with multiplicity 2
on the straight line � ¼ 1.

(b) Let us compare now this with the case �> 0, see
Fig. 5(e)–5(g). We immediately recognize that left
to the � ¼ 1 line the plot significantly changed. In
addition, we notice that for growing � this straight
line shifts a bit to the left. Left of the straight �-line
there is now one more positive real zero in each
region. This means that a particle which for � ¼ 0
is in a light gray region now is in a gray region and,
thus, may reach infinity. The same happens in the
region which was dark gray for � ¼ 0 and is now
black. A particle with �< 1 in the small band now
right of our straight line switched to a gray or white
region depending on its � value.
For a large positive cosmological constant the black
area will disappear, that is, there will no longer be
any bound orbit. This is clear from the following (cf.
Fig. 2): First we introduce �r :¼ r=rS. For � ¼ 0 the
effective potential Veff possesses two different ex-

FIG. 5. The zeros of P5ðuÞ in a ð�;�Þ-diagram for different values for the cosmological constant (� is along the x-axis, � along
the y-axis). The gray scales encode the numbers of positive real zeros of the polynomial P5: black ¼ 4, dark gray ¼ 3, gray ¼ 2,
light gray ¼ 1, white ¼ 0. In the plot for � ¼ 0 characteristic lines are shown (the left upper point of the dark gray region has the
coordinates (� ¼ 8

9 , � ¼ 1
3 ); the upper intersection point of the � ¼ 1 line with the dark gray region is at � ¼ 1

4 ).
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trema �r� if � < 1
3 . The smaller extrema �r� is a

maximum whereas the larger �rþ is a minimum.
The extrema are bounded by �r� < 3 and �rþ > 2

��
3> 3. If we add the term containing �> 0, which
is of the form of a parabola, �r� shifts to the left and
�rþ to the right. Thus, �r� < 3 and �rþ > 3 remain
valid. In general, a second maximum �r� > �rþ will
appear and Veff ! �1 for r! 1. It follows that
there will be no bound orbit if the minimum �rþ and,
thus, the maximum �r� disappears. This is fulfilled if
we choose � such large that the gradient is negative
for all �r > 3, for example �r2S >

1
18 � 1

54
1
� . Since

1
� > 3, the choice �r2S >

1
9 ensures that for any

choice of � < 1
3 there will be no bound orbits. This

is of course only a rough estimate which can be
improved.

(c) If �< 0, the situation changed the other way
around. We again immediately see that the right
side of the plot significantly changed. The straight
�-line is no longer so easy to identify, but if we take
into account the number of all real zeros, we can say
that it shifts to the right when the absolute value of�
growths. An exception to this is the part for small �.
There the line bends to the right and allows a switch
from the gray part for� ¼ 0 to the light gray part of
�< 0. Nevertheless, we can say that on the right
side of the plot we have now an additional real
positive zero and, thus, also an odd number of
positive real zeros. This means that a particle is no

longer able to reach infinity for any ð�;�Þ (cf.
Fig. 2). In the region being white for � ¼ 0 and
which now is light gray we have now a bound
terminating orbit. In the for � ¼ 0 gray region
which now is dark gray the escape orbit becomes
bound.

C. Plots of orbits

In Figs. 6–8 some of the possible orbits are plotted. The
figures are organized in order to highlight the influence of
the cosmological constant. For all orbits in each figure the
parameters � and �, that is, E and L, are the same. The
absolute value of the cosmological constant is chosen as
j�j ¼ 10�5 in all plots. All plots are created from the
analytical solution derived in Sec. IVA.
In Fig. 6 the parameters are � ¼ 0:92 and � ¼ 0:28

which belong to the dark gray region in Fig. 5(d). For a
vanishing cosmological constant this corresponds to a
bound periodic orbit and to a bound terminating orbit
ending in the singularity. The corresponding orbits are
shown in Figs. 6(a) and 6(b). For a positive cosmological
constant the overall structure changes considerably since
there will be a third type of orbits not present in the
Schwarzschild case. Beside the terminating and bound
orbits in Fig. 6(c) which both look quite similar to the
corresponding orbits in the Schwarzschild case there is an
escape orbit which is repelled from the potential barrier
related to the positive cosmological constant, Fig. 6(e).

FIG. 6. Orbits for � ¼ 0:92 and � ¼ 0:28. The upper row is for vanishing, the lower row for positive �. (a) and (c): bound orbits
with perihelion shift. (b) and (d) terminating orbit ending in the singularity. (e): Reflection at the �-barrier. There is no analogue of (e)
for � ¼ 0. Black circles always indicate the Schwarzschild radius.
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The next parameter choice is � ¼ 1:1 and � ¼ 0:2. For
vanishing � these parameters lay in the gray area of Fig. 5
(d) denoting two zeros and, thus, correspond to a quasihy-
perbolic escape orbit, Fig. 7(a), and a terminating orbit
ending in the singularity, Fig. 7(b). For the chosen � ¼
�10�5 km�2 the situation changes dramatically as can be
read off from Fig. 5(a) in comparison to Fig. 5(d): Now we
have three zeros and, thus, one bound orbit and one termi-
nating orbit ending in the singularity, see Figs. 7(c) and 7
(d). Switching on the negative cosmological constant
makes an escape orbit a bound orbit. This of course has
to be expected as one can see from Fig. 2 that there are no
escape orbits for negative cosmological constant.

Our third choice of parameters is � ¼ 0:8 and � ¼ 0:2.
For� ¼ 0, Fig. 5(d) this lays in the light gray region of one
zero where is a terminating orbit only. This orbit is shown
in Fig. 8(a). For a positive cosmological constant �> 0
these parameters are in a gray region with two zeros
indicating a terminating and an escape orbit, see Figs. 8
(b) and 8(c). The orbit in Fig. 8(c) again is a reflection at
the �-barrier.

VI. ON THE PIONEER ANOMALY

We apply the obtained analytical solution in order to
decide whether a nonvanishing cosmological constant may
have an observable influence on the Pioneer satellites.
From [37] we may deduce the energy and angular momen-
tum of the Pioneers after their last flybys at Jupiter and
Saturn, respectively, with respect to the barycenter of the

inner solar system, i.e. the Sun, Mercury, Venus, and Earth-
Moon. This means that we used the value

rS ¼ 2GM

c2
¼ 2:953 266 762 363 45 km; (66)

for the Schwarzschild radius, derived from GM ¼
1:000 005 65 k2 ðAU3=day2Þ with Gauss’ constant k ¼
0:017 202 098 95 defining the astronomical unit AU. Here
all numbers are taken with 12 digits what corresponds to
the today’s accuracy of solar system ephemerides.
In the case of Pioneer 10, the velocity at infinity v1 ¼

11:322 km s�1 taken from [37] gives us the energy per unit
mass EM ¼ c2 þ 1

2v
21 and therefore the parameter �,

� ¼ E2
M

c4
¼ 1:000 000 001 43: (67)

The angular momentum per unit mass is given by LM ¼
qv, where v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMð1qþ 1

2aÞ
q

is the velocity at periapsis

distance q; a is the semimajor axis. From this we derive the
parameter �,

� ¼ r2Sc
2

L2
M

¼ 2:855 572 373 82� 10�9: (68)

In the case of Pioneer 11 we obtain for the parameters �
and �

� ¼ 1:000 000 001 22;

� ¼ 1:340 740 574 59� 10�9:
(69)

FIG. 7. Orbits for � ¼ 1:1 and � ¼ 0:2. The upper row is for vanishing, the lower row for negative �.
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With these coefficients we now can determine the exact
orbits of Pioneer 10 and 11 in the cases � ¼ 0 and � ¼
10�45 km�2. From these exact orbits we calculated the
differences in position (in m) for a given angle ’ (in rad)
and the difference in the angle (in rad) for a given distance
r (in m) of a test particle moving in a space-time with and
without cosmological constant. The Pioneer anomaly ap-
peared in a heliocentric distance from about 20 to 70 AU.
For r in this range, we compute now ’�¼0ðrÞ � ’��0ðrÞ
with and without cosmological constant for both craft.
Regarding Pioneer 10, the difference is in the scale of
10�19 rad, which corresponds to an azimuthal difference
in position of about 10�6 m. For Pioneer 11, the difference
is in the scale 10�18 rad, which corresponds to an azimu-
thal difference in position of about 10�5 m.

The range of 20 to 70 AU corresponds to an angle
between 0:4� and 0:6� if ’0 ¼ 0 corresponds to the
periapsis. In this range, we compute the radial difference
r�¼0ð’Þ � r��0ð’Þ also for both craft. For Pioneer 10 we
obtain a difference in the scale of 10�5 m, for Pioneer 11 in
the scale of 10�4 m.

Therefore we can say, that for the present value of the
cosmological constant the form of the Pioneer 10 orbit
practically does not change. For a definite estimate of the
differences of the Pioneer orbits in Schwarzschild and
Schwarzschild-de Sitter space-time one of course has to
analyze the time course of these orbits. However, the time
variable is influenced by the cosmological constant in the
same way as the radial coordinate so that no change in our
statement will occur. Therefore, the influence of the cos-

mological constant on the orbits cannot be held responsible
for the observed anomalous acceleration of the Pioneer
spacecraft.

VII. PERIASTRON ADVANCE OF BOUND ORBITS

In the case that P5 has at least three real and positive
zeros, we may have a bound orbit for some initial values.
The periastron advance�peri for such a bound orbit is given

by the difference of the 2�-periodicity of the angle ’ and
the periodicity of the solution rð’Þ (which is the same as
the periodicity of uð’Þ). Let us assume that the bound orbit
corresponds to the interval ½ek; ekþ1�, where ek and ekþ1

are real and positive zeros of P5, and that the path ai
surrounds this real interval. Then the periastron advance
is given by

�peri ¼ 2�� 2!2i ¼ 2�� 2
Z ekþ1

ek

xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ; (70)

where 2!2i is an element of the (canonically chosen) 2� 4
matrix of periods ð2!; 2!0Þ of ffiffiffiffiffiffi

P5

p
, see Eq. (24). We now

calculate the post-Schwarzschild limit of this periastron
advance in the case that the considered bound orbit is also
bound in Schwarzschild space-time.

For doing so we first expand x=
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p
to first order in�

xffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p 	 1ffiffiffiffiffiffiffiffiffiffiffiffi
P3ðxÞ

p � 1

6
r2S

x2 þ �

x2P3ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
P3ðxÞ

p �; (71)

where P3ðxÞ ¼ x3 � x2 þ �xþ �ð�� 1Þ is the polyno-

FIG. 8. Orbits for � ¼ 0:8 and � ¼ 0:2. The upper graph is for vanishing, the lower graphs for positive �. There is no analogue of
(c) for � ¼ 0.
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mial for the corresponding Schwarzschild case given by
� ¼ 0.

In the next step we have to integrate both terms involv-
ing P3 within the Weierstrass formalism, see for example
[38]. Employing the substitution x ¼ 4zþ 1=3 we rewrite
P3 in a Weierstrass form

P3ðxÞ ¼ 42ð4z3 � g2z� g3Þ ¼ 42PWðzÞ; (72)

where

g2 ¼ 1
12 � 1

4� (73)

g3 ¼ 1
16ð 227 þ 2

3�� ��Þ (74)

are the Weierstrass invariants. We assume that the orbit
under consideration is bound not only in the
Schwarzschild-de Sitter but also in the corresponding
Schwarzschild space-time. This means that the three larg-
est real zeros of P5 are positive and, thus, the zeros z1 >

z2 > z3 >� 1
12 of PW are all real. The square root

ffiffiffiffiffiffiffi
PW

p
is

branched over z1, z2 and z3 and, thus, the elliptic function }
based on

ffiffiffiffiffiffiffi
PW

p
has a purely real period !1 and a purely

imaginary period !2. They are given by

!1 ¼
I
A

dzffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p !2 ¼
I
B

dzffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p (75)

where the path A runs around the branch cut from z3 to z2
and the path B around z2 and z1, both clockwise. The
branch of the square root in (75) is chosen such thatffiffiffiffiffiffiffi
PW

p
> 0 on ½z3; z2� and, thus,

ffiffiffiffiffiffiffi
PW

p
negatively imaginary

on ½z2; z1�. The branch points of } can be expressed in
terms of the periods: z1 ¼ }ð�1Þ, z2 ¼ }ð�2Þ and z3 ¼
}ð�3Þ with �1 ¼ !1=2, �2 ¼ ð!1 þ!2Þ=2 and �3 ¼
!2=2. The fundamental rectangle in the complex plane
spanned by the periods !1, !2 of } is denoted by R ¼
fx!1 þ y!2j0 � x; y < 1g, see Fig. 9.

Let the three biggest real and positive zeros of P5 be
given by x1 > x2 > x3 > 0. Then, for the canonical choice
of the matrix of periods ! of

ffiffiffiffiffiffi
P5

p
, the integration path ai

runs from x3 to x2 and back with conversed sign of the
square root. Let the path 	 be the preimage of ai by u�
}ðuÞ ¼ z in the fundamental rectangle R. For a positive
cosmological constant �, we have x3 < z3 < z2 < x2 and,
thus, 	 starts at some purely imaginary 	ð0Þ ¼ u1 2 R
with 0< Im ðu1Þ � Im ð�3Þ and goes straight to 	ð1Þ ¼
u1 þ!1. Then, for any rational function F, we obtainI

ai

FðzÞ dzffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p ¼
Z
	
Fð}ðuÞÞdu: (76)

This is derived from the differential equation

}0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4}ðuÞ3 � g2}ðuÞ � g3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PWð}ðuÞÞ

q
; (77)

where the branch of the square root was chosen to be
consistent with the sign of }0.

The integration of the first part on the right-hand side of
(71) is straightforward and yields the Schwarzschild periodI

ai

dxffiffiffiffiffiffiffiffiffiffiffiffi
P3ðxÞ

p ¼
I
ai

dzffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p ¼
Z u1þ!1

u1

du ¼ !1: (78)

The integration of the second part on the right-hand side of
(71) is more involved and is performed in Appendix B. As
a result we obtain the first order approximation of the
periastron shift with respect to �:

�peri ¼ 2��
I
ai

xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p
¼ 2��

�
!1 þ�

r2S
96

�X3
j¼1


1 þ zj!1

}00ð�jÞ2
�
1þ �

ð4zjþ 1
3Þ2
�

þ�

�
2
1 � 1

6!1

16}0ðu0Þ4
þ 6

16

}00ðu0Þ
}0ðu0Þ5

ð�
1u0 þ �ðu0ÞÞ
���

þOð�2Þ; (79)

where u0 is such that }ðu0Þ ¼ � 1
12 .

The terms in this expression involving �j and u0 can

partly be replaced by terms containing the Weierstrass
invariants g2 and g3. From the differential equation (77)
we derive

}0ðu0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4}ðu0Þ3 � g2}ðu0Þ � g3

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

432
þ g2

12
� g3

s
: (80)

The first derivative of (77) yields 2}00 ¼ 12}2 � g2 and,
thus, gives

}00ð�jÞ ¼ 6z2j � 1
2g2 and }00ðu0Þ ¼ 1

24 � 1
2g2; (81)

where the g2, g3, as well as the zeros of PW can be
expressed by � and �.
The result (79) gives the post-Schwarzschild periastron

shift in a closed algebraic form. The advantage of this
result is that no further integration is needed. Another
advantage lies in the fact that only elliptic functions and

FIG. 9. The fundamental rectangle R.
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related quantities are used which are well described and
tabulated in mathematical books and which are also well
implemented in common commercial math programs.
What is still left to do is to express the result (79) in terms
of, e.g., rmin and rmax or, equivalently, in terms of the
semimajor axis and the eccentricity. These quantities are
directly observable and also have the advantage that an
expansion in terms ofm=rmin andm=rmax can be performed
giving in addition a post-Newtonian expansion. This will
be described elsewhere.

Let us apply these formulas to the perihelion advance
of Mercury and compare with the results of Kraniotis
and Whitehouse, [23]. We take the values rS ¼
2953:25008 m for the Schwarzschild-radius, rS

L2
M

¼
1:184 962 712 826 864 1� 10�24 m2=s2 for the angular
momentum per unit mass LM and

ffiffiffiffiffiffiffi
EM

p ¼
0:029 979 245 417 779 875� 1010 m=s for the energy per
unit mass EM given in [23]. These values lead to the zeros

z1 ¼ 0:166 666 640 041 880;

z2 ¼ �0:083 333 317 283 501;

z3 ¼ �0:083 333 322 758 379

of PW and to the periods

!1 ¼ 3:141 592 904 522 524 6;

!2 ¼ 20:409 391 639 385 179 9i;

� ¼ 6:496 510 610 908 418 7i;

which all compare well to the results in [23]. Also the
physical data, i.e. the aphel rA, the perihel rP and the
perihelion advance in Schwarzschild-space-time �S, com-
pare well to [23] and also to observations [39]:

rA ¼ 6:981 708 938 652 731� 1010 m;

rP ¼ 4:600 126 052 898 539� 1010 m;

�S ¼ 42:980 165 arcsec cy�1:

(82)

Here we used the rotation period 87.97 days of Mercury
and 100 SI-years per century to determine the unit
arcsec cy�1.

The first order post-Schwarzschild correction�SdS
corr to the

perihelion advance can now be calculated from formula
(79). For a cosmological constant of � ¼ 10�51 m�2 we
obtain for the parameters which appear in the expansion
(79)


1 ¼ �0:261 799 370 013 130 8;

}02ðu0Þ ¼ �1:697 262 234 791 570 8� 10�16;

}00ðu0Þ ¼ 1:331 239 218 453 965 7� 10�8;

�ðu0Þ ¼ 1:012 109 319 614 658 4i:

This leads to a correction of

�SdS
corr ¼ 5:82� 10�17 arcsec cy�1: (83)

This result also compares well to [23] where the perihel
advance of Merkur does not change within the given
accuracy when considered in Schwarzschild-de Sitter
space-time. The value of the correction is also far beyond
the measurement accuracy of 0:002 arcsec cy�1 for the
perihelion advance of Mercury.
However, for an extreme case the influence of the cos-

mological constant on the periastron advance may become
more pronounced. The orbital data of quasar QJ287 re-
ported in [40,41] indicates that the correction to the peri-
astron advance �SdS

corr will be some orders of magnitude
larger than the correction in the case of Merkur. Indeed,
when we calculate from this data the energy parameter �
and the angular momentum parameter �,

� ¼ 0:982 166; � ¼ 0:092 317; (84)

we obtain

�SdS
corr 	 10�13 arcsec cy�1: (85)

VIII. GEODESICS IN HIGHER DIMENSIONAL
SCHWARZSCHILD SPACE-TIMES

We want to show here that our method for solving the
equation of motion in Schwarzschild-(anti-)de Sitter
space-times can also be applied to solve the geodesic
equation in, e.g., higher dimensional Schwarzschild
space-times. The metric of a Schwarzschild space-time in
d dimensions is given by [42]

ds2 ¼
�
1�

�
rS
r

�
d�3

�
dt2 �

�
1�

�
rS
r

�
d�3

��1
dr2

� r2d�2
d�2; (86)

where d�2
1 ¼ d’2 and d�2

iþ1 ¼ d�i þ sin2�id�
2
i for i �

1. Because of spherical symmetry, we again restrict the
considerations to the equatorial plane by setting �i ¼ �

2 for

all i. With the conserved energy E and angular momentum
L as well as the substitution u ¼ rS

r the geodesic equation

reduces to�
du

d’

�
2 ¼ ud�1 þ �ud�3 � u2 þ �ð�� 1Þ ¼ Pd�1ðuÞ;

(87)

where the parameters � ¼ r2
S

L2 and � ¼ E2 have the same

meaning as in the Schwarzschild-(anti-)de Sitter case (12).
For d ¼ 4 this equation reduces of course to the
Schwarzschild case [14]. For d ¼ 5 a substitution u ¼ 1

xþ
l where l is a zero of P4 reduces the differential equa-
tion (87) to �

dx

d’

�
2 ¼ b3x

3 þ . . .þ b0x
0: (88)

With an additional substitution x ¼ 1
b3
ð4y� b2

3 Þ this equa-
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tion acquires the form (61) which can be solved by
Weierstrass’ elliptic functions.

In the case of a d ¼ 6-dimensional Schwarzschild
space-time, however, the differential equation (87) com-
prises a polynomial of degree five on the right-hand side.
This now can be solved by means of our method. The only
difference is that the physical angle ’ is now given by

’� ’0 ¼
Z u

u0

du0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðu0Þ

p ¼
Z u

u0

dz1 (89)

what corresponds to dz1 rather than to dz2 as it was in the
Schwarzschild-(anti-)de Sitter case. This means that the
solution of the geodesic equation in six-dimensional
Schwarzschild space-time is given by

rð’Þ ¼ rS
uð’Þ ¼ �rS

�2ð’ ~�;6
Þ

�1ð’ ~�;6
Þ ; (90)

where

~’�;6 ¼ ’� ’0
0

’1

� �
:

Here ’1 is chosen in such a way that ð2!Þ�1 ~’�;6 is an

element of the theta divisor � ~K1
and ’0

0 ¼ ’0 þ
R1
u0
dz1

depends only on the initial values u0 and ’0.
The case d ¼ 7 corresponds to a polynomial P6 of

degree six. If we apply a substitution u ¼ 1
xþ l where l

is a zero of P6, we obtain the differential equation�
x
dx

d’

�
2 ¼ b5x

5 þ . . . b0x
0 (91)

with some constants bi. This can be solved in exactly the
same way as the differential equation (13). The solution is

rð’Þ ¼ rS
uð’Þ ¼ �rS

�2ð’ ~�;7
Þ

�1ð’ ~�;7
Þ ; (92)

where

’ ~�;7
¼ ’1

’� ’0
0

� �
and, again, ’1 is selected such that ð2!Þ�1’ ~�;7

is an

element of the theta divisor � ~K1
and ’0

0 ¼ ’0 þ
R1
u0
dz2.

The only difference to the solution of the geodesic equation

FIG. 10. Arrangement of zeros of the polynomial Pd�1 for
d ¼ 6. The gray scale code is the same as in Fig. 5.

FIG. 11. Orbits for chosen values of � and � in six-dimensional Schwarzschild space-time. The black circle indicates the
Schwarzschild radius.
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in Schwarzschild-(anti-)de Sitter space-time is that the
periods ! and !0 and, hence, the matrix � will be different
due to the different coefficients in the polynomials appear-
ing on the right hand side of each differential equation.

Figure 10 shows the arrangement of zeros for the six-
dimensional Schwarzschild space-time. The gray scale
code is the same as in the Schwarzschild-(anti-)de Sitter
case. There are no periodic bound orbits for any values of
� and � since the polynomial P6 possesses at most two
positive zeros. Some resulting orbits for chosen parameters
� and � from different regions in Fig. 10 are shown in
Fig. 11.

With our method it is also possible to analytically cal-
culate the orbits of particles and light rays in
Schwarzschild and Schwarzschild-(anti-)de Sitter space-
times of up to 11 dimensions and in Reissner-Nordström-
(anti-)de Sitter space-times of up to 7 dimensions.
Corresponding work is in progress [43].

IX. SUMMARYAND OUTLOOK

In this paper the explicit analytical solution for the
geodesic motion of a point particle in a Schwarzschild-
(anti-)de Sitter space-time has been presented. We were
able to explicitly determine all possible solutions and to
classify them.

Analytic solutions are the starting point for approxima-
tion methods for the description of real stellar, planetary,
comet, asteroid, or satellite trajectories (see e.g. [44]).
Analytic solutions of the geodesic equation can also serve
as test beds for numerical codes for the dynamics of binary
systems in the extreme stellar mass ratio case (extreme
mass ratio inspirals, EMRIs) and also for the calculation of
corresponding gravitational wave templates.

The methods presented here are not limited to the
Schwarzschild-de Sitter case. They also can be applied to
higher dimensional space-times like Schwarzschild-(anti-)
de Sitter space-times of up to 11 dimensions and Reissner-
Nordstöm-(anti-)de Sitter space-times of up to 7 dimen-
sions. Also for space-times as general as Plebański-
Demiański without acceleration the developed method
can be applied [45]. In this case polynomials of 6th order
appear which will slightly complicate the structure of the
orbits. It should be noted that this method, however, is not
capable to solve equations of motions with an underlying
polynomial of 7th or higher order. In such cases we have to
enlarge the number of variables to be three or more. Then
the Abel map is a mapping between 3 or higher dimen-
sional spaces and it is not clear how to constrain this
mapping in order to reduce the number of variables.
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APPENDIX A: EXPLICIT COMPUTATION OF THE
ANALYTICAL SOLUTION

We describe now in detail the explicit computation of
the analytical solution derived in Sec. IV. According to (12)
the parameters�, � and � are related the energy E, angular
momentum L and cosmological constant � which gives
the polynomial P5 in (13). The zeros of P5 have to be
determined numerically using, e.g., a Newton method. The
zeros of P5 already characterize the type of orbit as de-
scribed in Sec. V.
The Riemannian surface corresponding to

ffiffiffiffiffiffi
P5

p
is given

by a two-torus, see Fig. 3. The fundamental paths a1, a2
and b1, b2 are always the same on this two-torus but change
in the complex plane depending on the configuration of
branch cuts, which have to be chosen according to the
zeros of P5. There are eight principally different arrange-
ment of zeros of P5 which are shown in Fig. 12. In each
case we choose the branch cuts in such a way that we have
a maximum number of pure real branch cuts. The branch
cuts and the resulting canonically fundamental paths are
also shown in Fig. 12 together with the appropriate sign of
the square root on one sheet (with reversed sign on the
other sheet).
Next we have to calculate the period matrices ð2!; 2!0Þ

and ð2
; 2
0Þ given in (24) and, from that, the normalized
period matrix � defined in (27). The periods corresponding
to paths ai, i ¼ 1, 2, can be obtained by integration from
e2i�1 to e2i; the integration back from e2i to e2i�1 yields
just the same value due to the different sign of the square
root. The periods corresponding to paths bj, j ¼ 1, 2, can

be calculated by integrating from e2j to e2jþ1. For paths

which encircle one or two complex zeros, the most conve-
nient way to calculate the integral is to take a path running
straight from the complex zero to the real axis and then to
proceed along the real axis. Of course, fundamental paths
can be distorted but only in such a way that they do not
cross other branch cuts or paths as the one showed in
Fig. 12.
The branch points ei are always singularities of the

integrand and, thus, may cause numerical problems.
These problems can be handled by a partial integration
of the type

Z p

ei

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
5
j¼1ðx� ejÞ

q ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� ei

p ffiffiffiffiffiffiffiffiffiffi
QðxÞp ��������p

ei

�
Z p

ei

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� ei

pffiffiffiffiffiffiffiffiffiffi
QðxÞp

3
Q0ðxÞdx;

(A1)

where QðxÞ ¼ Q
j�iðx� ejÞ and p is some point on the

EVA HACKMANN AND CLAUS LÄMMERZAHL PHYSICAL REVIEW D 78, 024035 (2008)

024035-16



integration path. As a consequence, the resulting integrand
is no longer singular. In the case that all five roots of P5 are
real, the computation is straightforward since P5 is always
real along the integration paths. If some roots are complex,
the integration is more involved and one has to take into
account that the real part of P5 is symmetric with respect to
the real axis while the imaginary part is antisymmetric.
One also has to carefully choose the appropriate branch of
the square root.

After having calculated all the periods we choose initial
values u0 and ’0 and determine ’0

0 ¼ ’0 þ
R1
u0
dz2. Note

that the integral is just a sum of the half-periods ð!;!0Þ
already calculated above provided u0, as usual, is taken to
be one of the zeros of P5. For every ’ we have to find now
the dummy parameter ’1 such that ð2!Þ�1 ~’� is an ele-
ment of the theta divisor

� ~K1
¼
�
z

��������#
�

1=2
1=2

� �
;

0
1=2

� ��
ðz; �Þ ¼ 0

�
:

FIG. 12 (color online). Branch cuts (fat lines) and fundamental paths in the complex plane for all arrangements of zeros e1; . . . ; e5 of
a polynomial of degree 5 and e6 ¼ 1. The branch cuts are drawn from e2i�1 to e2i. The completion of the b-paths on the other sheet
is indicated by dashed lines.
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This dummy parameter has no physical meaning and de-
pends, beside ’, on the initial values u0, ’0 and the
normalized period matrix �. The value of ’1 can be com-
puted with a Newton method for the function g 
 h: C !
C,

’�
h ð2!Þ�1 ’1

’� ’0
0

� �
�
g
#

�
1=2
1=2

� �
;

0
1=2

� ��
ðz; �Þ:

For ’ ¼ ’0 and u0 being a branch point, the dummy
parameter ’1 is explicitly known. From ’� ’0

0 ¼Ru01 dz2 and
#

�
1=2
1=2

� �
;

0
1=2

� ��
ðz; �Þ ¼ 0

for z ¼ �nþm, n, m 2 Z, we obtain in this case ’1 ¼Ru01 dz1.
After these calculations we are finally able to compute

rð’Þ ¼ rS
uð’Þ ¼ �rS �2ð ~’�Þ

�1ð ~’�Þ : (A2)

The solution rð’Þ can be computed pointwise for any value
of ’ with, in principle, arbitrary accuracy.

APPENDIX B: CALCULATION OF POST-
SCHWARZSCHILD PERIOD

Toward an integration of the second term of (71) we first
obtain

I
ai

x2þ�
x2P3ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
P3ðxÞ

p dx¼
I
A

ð4zþ 1
3Þ2þ�

ð4zþ 1
3Þ2 �42PWðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42PWðzÞ

p 4dz

¼ 1

42

�I
A

dz

PWðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p
þ�

I
A

dz

ð4zþ 1
3Þ2PWðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p �
:

(B1)

In the following we will represent the functions

F1ðzÞ ¼ 1

PWðzÞ ; F2ðzÞ ¼ 1

ð4zþ 1
3Þ2PWðzÞ

: (B2)

as linear combinations of the Weierstrass elliptic function
} as well as the Weierstrass � function. The reason is that
these functions can be integrated easily since � 0 ¼ �} and
ðlog�Þ0 ¼ � , where � is the Weierstrass’ �-function:Z

	
}ðu� u0Þdu ¼ �ð	ð0Þ � u0Þ � �ð	ð1Þ � u0Þ (B3)

Z
	
�ðu� u0Þdu ¼ log�ð	ð1Þ � u0Þ � log�ð	ð0Þ � u0Þ;

(B4)

where 	ð0Þ ¼ u1 and 	ð1Þ ¼ u1 þ!1 as above (the
branches of log will be discussed later). For the �- and
�-functions we have a quasiperiodicity

�ðuþ!jÞ ¼ �ðuÞ þ 
j (B5)

�ðuþ!jÞ ¼ e
jðuþ!j=2Þþ�i�ðuÞ; (B6)

where 
j are periods of second kind given by


1 ¼ �
I
A

zdzffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p ¼ �2
Z �2

�3

}ðuÞdu


2 ¼ �
I
B

zdzffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p ¼ �2
Z �1

�2

}ðuÞdu:
(B7)

Thus, (B3) and (B4) can be rewritten asZ
	
}ðu� u0Þdu ¼ �
1 (B8)

Z
	
�ðu� u0Þdu ¼ 
1

�
u1 � u0 þ 1

2
!1

�
þ �iþ 2�ik

(B9)

with k 2 Z.

1. Integration of F2=
ffiffiffiffiffiffiffi
PW

p

First we substitute z ¼ }ðuÞ

F1ðzÞ ¼ 1

PWðzÞ ¼
1

PWð}ðuÞÞ ¼
1

}0ðuÞ2 ¼: f1ðuÞ: (B10)

The function f1 only possesses poles of second order in �1,
�2, and �3. In a neighborhood of �j, the function f1 can be

expanded as

f1ðuÞ ¼
aj2

ðu� �jÞ2
þ aj1
u� �j

þ holomorphic part: (B11)

Since }0ð�j þ zÞ2 ¼ }0ð�j � zÞ2 for all j and z, f1 is

symmetric with respect to all �j and, therefore, depends

only on even powers of (u� �j) so that aj1 ¼ 0. The

constant aj2 can be evaluated with a comparison of coef-

ficients. For this, we note that }0ð�jÞ ¼ 0 ¼ }000ð�jÞ and,
thus,

}0ðuÞ ¼ }00ð�jÞðu� �jÞ þ
X1
i¼3

ciðu� �jÞi (B12)

in a neighborhood of �j and for some constants ci. If we

square both sides of the equation, we see that }02 contains
only even powers of (u� �j) larger than 1. It follows

1 ¼ f1ðuÞ}0ðuÞ2
¼ aj2}

00ð�jÞ2 þ higher powers of ðu� �jÞ: (B13)

From that it follows aj2 ¼ 1
}00ð�jÞ2 for all j. The function

}ðu� �jÞ has only one pole of second order in �j with

zero residue. Therefore, the difference
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f1ðuÞ �
X3
j¼1

aj2}ðu� �jÞ (B14)

is a holomorphic elliptic function and, thus, is constant.
This yields

f1ðuÞ ¼
X3
j¼1

aj2}ðu� �jÞ þ c1: (B15)

The constant c1 can be determined by f1ð0Þ ¼ 0 using the
relation }ð��jÞ ¼ }ð�jÞ ¼ zj:

c1 ¼ �X3
j¼1

aj2zj: (B16)

In summary, we obtain

I
A

dz

PWðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðzÞ

p ¼
Z
	
f1ðuÞdu ¼

Z
	

X3
j¼1

aj2ð}ðu� �jÞ � zjÞdu ¼ X3
j¼1

1

}00ð�jÞ2
�Z

	
}ðu� �jÞdu� zj!1

�

¼ X3
j¼1

1

}00ð�jÞ2
ð�
1 � zj!1Þ: (B17)

2. Integration of F1=
ffiffiffiffiffiffiffi
PW

p

Again, we first substitute z ¼ }ðuÞ and obtain

F2ðzÞ ¼ 1

ð4zþ 1
3Þ2PWðzÞ

¼ 1

ð4}ðuÞ þ 1
3Þ2PWð}ðuÞÞ

¼ 1

ðð4}ðuÞ þ 1
3Þ}0ðuÞÞ2 ¼: f2ðuÞ: (B18)

The function f2 possesses poles of second order in �1, �2,
�3 and in all u0 2 R such that }ðu0Þ ¼ � 1

12 . Since we

assumed that the considered orbit is bound, all zeros of P3

have to be positive and, thus, z1 > z2 > z3 >� 1
12 . This

means that 0< Imðu0Þ< Imð�3Þ. The function } is even
and, hence, also ~u0 :¼ !2 � u0 2 R is a pole of second
order (see Fig. 9).

Since } is symmetric with respect to �j, the function f2
can be expanded in the same way as above as

f2ðuÞ ¼
aj2

ðu� �jÞ2
þ holomorphic part (B19)

in a neighborhood of �j. An expansion of ð4}ðuÞ þ 1
3Þ}0ðuÞ

near �j yields�
4}ðuÞ þ 1

3

�
}0ðuÞ ¼ �j1ðu� �jÞ þ �j2ðu� �jÞ2

þ higher order terms (B20)

because of }0ð�jÞ ¼ 0. The coefficients are given by

�j1 ¼
��
4}ðuÞ þ 1

3

�
}0ðuÞ

�0
u¼�j

¼
�
4zj þ 1

3

�
}00ð�jÞ

(B21)

�j2 ¼
��

4}ðuÞ þ 1

3

�
}0ðuÞ

�00
u¼�j

¼ 0: (B22)

A comparison of coefficients

1 ¼ f2ðuÞ
��
4}ðuÞ þ 1

3

�
}0ðuÞ

�
2

¼ aj2�
2
j1 þ higher powers of ðu� �jÞ (B23)

yields

f2ðuÞ ¼ 1

ðu� �jÞ2
��

4zj þ 1

3

�
}00ð�jÞ

��2

þ holomorphic part: (B24)

in a neighborhood of �j.

The same procedure will be carried through for u0 and
~u0. We have

f2ðuÞ ¼ b2
ðu� u0Þ2

þ b1
u� u0

þ holomorphic part (B25)

and�
4}ðuÞ þ 1

3

�
}0ðuÞ ¼ �1ðu� u0Þ þ �2ðu� u0Þ2

þ higher order terms (B26)

near u0. The coefficients of (B26) read

�1 ¼ 4}0ðu0Þ2 (B27)

�2 ¼ 6}0ðu0Þ}00ðu0Þ: (B28)

Again, a comparison of coefficients

GEODESIC EQUATION IN SCHWARZSCHILD–(ANTI-)DE . . . PHYSICAL REVIEW D 78, 024035 (2008)

024035-19



1 ¼ f2ðuÞ
��

4}ðuÞ þ 1

3

�
}0ðuÞ

�
2

¼ b2�
2
1 þ ð2b2�1�2 þ b1�

2
1Þðu� u0Þ

þ higher order terms (B29)

yields

b2 ¼ ��2
1 ¼ 1

16}0ðu0Þ4
(B30)

b1 ¼ �2�1�2b2�
�2
1 ¼ �2�2�

�3
1 ¼ � 3

16

}00ðu0Þ
}0ðu0Þ5

:

(B31)

In a neighborhood of ~u0, the function f2 is given by

f2ðuÞ ¼
~b2

ðu� ~u0Þ2
þ

~b1
u� ~u0

þ holomorphic part: (B32)

As }0 is an odd and }00 an even function we get for the
coefficients of the expansion of ð4}ðuÞ þ 1

3Þ}0ðuÞ near ~u0
with ~u0 ¼ !2 � u0 the relations

~� 1 ¼ �1; ~�2 ¼ ��2 (B33)

and, therefore,

~b 1 ¼ �b1; ~b2 ¼ b2: (B34)

Summarized, the function

X3
j¼1

aj2}ðu� �jÞ þ b2ð}ðu� u0Þ þ }ðu� ~u0ÞÞ

þ b1ð�ðu� u0Þ � �ðu� ~u0ÞÞ ¼: g2ðuÞ (B35)

has the same poles with the same coefficients as f2.
Therefore, f2 � g2 is a holomorphic elliptic function
and, thus, is equal to a constant c2. This constant can be
determined by the condition 0 ¼ f2ð0Þ ¼ g2ð0Þ þ c2
which yields

c2 ¼ �X3
j¼1

aj2zj þ 1

6
b2 � b1ð�ð~u0Þ � �ðu0ÞÞ: (B36)

As a consequence,

f2ðuÞ ¼
X3
j¼1

aj2ð}ðu� �jÞ � zjÞ

þ b2

�
}ðu� u0Þ þ }ðu� ~u0Þ þ 1

6

�
þ b1ð�ðu� u0Þ � �ðu� ~u0Þ þ �ðu0Þ � �ð~u0ÞÞ:

(B37)

Now we can carry through the integration of the second
term on the right-hand side of (B1):

I
A
F2ðzÞ dzffiffiffiffiffiffiffiffiffiffiffiffiffi

PWðzÞ
p ¼

Z
	
f2ðuÞdu

¼ X3
j¼1

aj2

�Z
	
}ðu� �jÞdu� zj!1

�
þ b2

Z
	
}ðu� u0Þ þ }ðu� ~u0Þduþ 1

6
!1

þ b1
Z
	
�ðu� u0Þ � �ðu� ~u0Þduþ b1!1ð�ðu0Þ � �ð~u0ÞÞ

¼ �X3
j¼1

aj2ð
1 þ zj!1Þ þ b2

�
1

6
!1 � 2
1

�
þ b1ð
1ð~u0 � u0Þ þ 2�iðk1 � k2ÞÞ þ b1!1ð�ðu0Þ � �ð~u0ÞÞ

¼ �X3
j¼1

aj2ð
1 þ zj!1Þ þ b2

�
1

6
!1 � 2
1

�
þ b1ð
1ð!2 � 2u0Þ þ 2�iðk1 � k2ÞÞ þ b1!1ð2�ðu0Þ � 
2Þ:

(B38)

The difference (k1 � k2) can be calculated as follows.
First note that via x ¼ 4}ðuÞ þ 1

3 , u0 corresponds to 0 and
u1 to x3. Since 0< x3 for bound orbits under consideration
we have Imðu0Þ< Imðu1Þ< Imð~u0Þ. Let now l be deter-
mined by

Z u2þ!1

u2

�ðu� ~u0Þdu ¼ 
1

�
u2 � ~u0 þ!1

2

�
þ �iþ 2�il;

(B39)

where u2 2 i � R is such that Imðu2Þ> Imð~u0Þ> Imðu1Þ>
Imðu0Þ. From
(i) l does not depend on ~u0 as long as Imð~u0Þ< Imðu2Þ

holds and, thus,Z u2þ!1

u2

�ðu� u0Þdu ¼ 
1

�
u2 � u0 þ!1

2

�
þ �iþ 2�il (B40)

and
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(ii) (B40) holds also for u2 replaced by u1 by Cauchy’s
integral formula for the rectangle with corners u1,
u1 þ!1, u2 þ!1 and u2.

it follows that l ¼ k1.

We show now that k2 ¼ lþ 1 and, thus, k2 ¼ k1 þ 1.
Consider the counterclockwise oriented rectangle with
corners u1, u1 þ!1, u2 þ!1 and u2. Let c be the bound-
ary of this rectangle but with a two symmetric small bumps
such that c encircles the pole ~u0 of �ðu� ~u0Þ with residue
1, but not ~u0 þ!1. Then the residue theorem gives

2�i ¼
I
c
�ðu� ~u0Þdu ¼

Z u1þ!1

u1

�ðu� ~u0Þduþ
Z u2þ!1

u1þ!1

�ðu� ~u0Þduþ
Z u2

u2þ!1

�ðu� ~u0Þduþ
Z u1

u2

�ðu� ~u0Þdu

¼
Z u1þ!1

u1

�ðu� ~u0Þdu�
Z u2þ!1

u2

�ðu� ~u0Þduþ 
1ðu2 � u1Þ

¼ 
1

�
u1 � ~u0 þ 1

2
!1

�
þ �iþ 2�ik2 �

�

1

�
u2 � ~u0 þ 1

2
!1

�
þ �iþ 2�il

�
þ 
1ðu2 � u1Þ ¼ 2�iðk2 � lÞ:

(B41)

With the Legendre relation 
1!2 � 
2!1 ¼ 2�i we finally obtain

I
A
F2ðzÞ dzffiffiffiffiffiffiffiffiffiffiffiffiffi

PWðzÞ
p ¼ �X3

j¼1

�

1 þ zj!1

ð4zj þ 1
3Þ2}00ð�jÞ2

�
þ

1
6!1 � 2
1

16}0ðu0Þ4
� 6

16

}00ðu0Þ
}0ðu0Þ5

ð�
1u0 þ!1�ðu0ÞÞ: (B42)

Note that though the values }0ðu0Þ5, u0 and �ðu0Þ appearing in the last part of the right-hand side are all purely imaginary,
the whole term is real.
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