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Many systems of current interest in relativistic astrophysics require a knowledge of radiative transfer in

a magnetized gas flowing in a strongly curved, dynamical spacetime. Such systems include coalescing

compact binaries containing neutron stars or white dwarfs, disks around merging black holes, core-

collapse supernovae, collapsars, and gamma-ray burst sources. To model these phenomena, all of which

involve general relativity, radiation (photon and/or neutrino), and magnetohydrodynamics (MHD), we

have developed a general relativistic code capable of evolving MHD fluids and radiation in dynamical

spacetimes. Our code solves the coupled Einstein-Maxwell-MHD-radiation system of equations both in

axisymmetry and in full 3þ 1 dimensions. We evolve the metric by integrating the BSSN (Baumgarte-

Shapiro-Shibata-Nakamura) equations, and use a conservative, high-resolution shock-capturing scheme to

evolve both the MHD and radiation moment equations. In this paper, we implement our scheme for

optically thick gases and gray-body opacities. Our code gives accurate results in a suite of tests involving

radiating shocks and nonlinear waves propagating in Minkowski spacetime. In addition, to test our code’s

ability to evolve the relativistic radiation-MHD equations in strong-field dynamical spacetimes, we study

‘‘thermal Oppenheimer-Snyder collapse’’ to a black hole and find good agreement between analytic and

numerical solutions.
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I. INTRODUCTION

Many relativistic systems of current astrophysical
interest are characterized by the dynamical coupling of
strong-field gravitation, high magnetic fields, and intense
radiation (where the latter may be photons or neutrinos).
Quasars, active galactic nuclei (AGNs), galactic ‘‘micro-
quasars,’’ core-collapse supernovae, collapsars, gamma-
ray burst sources (GRBs), merging neutron star–neutron
star binaries (NSNSs), merging black hole-neutron star
binaries (BHNSs), and merging neutron star-white dwarf
binaries (NSWDs) are all examples of such systems.
Developing robust computational methods that can treat
simultaneously the different dynamical phenomena that
govern these systems is necessary in order to simulate their
physical behavior reliably and identify their observational
signatures.

Many of the systems listed above involve compact ob-
jects, such as black holes and neutron stars. Hence general
relativity is required to describe their dynamical evolution
accurately. Both observations and theory strongly suggest
that magnetic fields play an important role in many of
these systems. For example, magnetic fields are crucial in
launching jets from black holes in AGNs and GRBs (see,
e.g., [1,2]), driving accretion onto black holes in disks (see,
e.g., [3,4]), and inducing ‘‘delayed’’ collapse in hyper-
massive neutron stars that may form following NSNS
mergers [5–8]. Radiation, apart from its role as an obser-

vational tracer and diagnostic probe, also can play an im-
portant dynamical role in many relativistic systems. For
example, the role of neutrino transport may be essential to
understanding core-collapse supernovae (see, e.g. [9–11]).
As a second example, consider that the interior pressure
of supermassive stars and massive Population III stars
is dominated by thermal radiation pressure. These objects
may collapse in the early universe to form the seeds of the
supermassive black holes that reside in the centers of many,
and perhaps most, galaxies [12,13]. Radiation thus plays a
crucial role in determining the onset and dynamics of the
collapse of these stars and the masses and spins of the black
holes that are formed [14–16]. As a final example, accre-
tion onto compact objects leading to outgoing radiation
near and above the Eddington value is controlled by the
competition between inward gravitational forces and out-
ward radiation-pressure forces. All of these systems need
to be handled in a computational scheme designed to
probe these physical phenomena self-consistently, simul-
taneously accounting for radiation, magnetic fields, and
relativistic gravitation.
We have developed previously a robust numerical

scheme in 3þ 1 dimensions that simultaneously evolves
the Einstein equations of general relativity for the gravita-
tional field (metric), the equations of relativistic magneto-
hydrodynamics (MHD) for the matter, and Maxwell’s
equations for a magnetic field [17]. Our approach is based
on the BSSN (Baumgarte-Shapiro-Shibata-Nakamura)
formalism to treat the gravitational field [18,19], a high-
resolution, shock-capturing (HRSC) scheme to handle the
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fluid and a constrained-transport scheme to treat magnetic
induction [20]. Our resulting general relativistic magneto-
hydrodynamics (GRMHD) code has been subjected to a
rigorous suite of numerical tests to check and calibrate its
validity [17]. We have applied our code to explore a num-
ber of dynamical scenarios, including the collapse of mag-
netized, differentially rotating, hypermassive neutron stars
to black holes [7,8], the collapse of rotating stellar cores to
neutron stars [21], the collapse of rotating, supermassive
stars and massive Pop III stars to black holes [22], and the
merger of binary black holes [23] and binary black hole–
neutron stars [24]. The purpose of this paper is to present a
generalization of our current GRMHD scheme that ac-
counts for the presence of radiation (photon or neutrino).

Our approach for handling the radiation follows in the
long tradition of formalisms designed to treat radiation
transport in the framework of general relativity. However,
we have developed a new version specifically designed to
fit neatly onto our existing 3þ 1 GRMHD scheme. The
general relativistic radiative transfer equation has been
derived in full detail by Lindquist in 1966 [25]. His treat-
ment has been followed by numerous adaptations and
implementations in various approximations. For example,
Thorne has derived a set of radiation moment equations to
arbitrary order by the technique of projected symmetric
trace-free (PSTF) tensors [26]. So far, most GR radiation-
hydrodynamics calculations (e.g. [27–34]), including those
based on the PSTF scheme (e.g. [35–40]), have been
implemented in spherical symmetry only. Once spherical
symmetry is broken, most radiation schemes become quite
difficult to implement, given the large number of phase
space degrees of freedom that need to be tracked for the
radiation field.

In this paper, we formulate the radiation transport equa-
tions in the framework of our 3þ 1 GRMHD scheme,
which operates without any restrictions regarding the spa-
tial symmetry of the system. However, our implementation
focuses on the optically thick limit for the radiation field,
which simplifies the analysis by allowing us to assume that
the radiation field in the comoving frame of the fluid is
nearly isotropic. Our emphasis is geared to treating sys-
tems in which the radiation has a strong dynamical in-
fluence on the matter flow and, in some cases, on the
spacetime geometry itself. We are less concerned in this
initial treatment with the radiation that escapes from the
matter surface, or with the radiation spectrum measured by
a distant observer. It is in the interiors of collapsing stars,
neutron stars in merging compact binaries, and dense ac-
cretion disks orbiting black holes where the dynamical
influence of the radiation field is likely to play its most
significant role. In these interior regions the optically thick
assumption should be quite reliable in many cases. In the
implementation presented here we also adopt a gray-body
opacity law, which, though simple, suffices to illustrate our
method. However, the formalism makes no assumptions

regarding the spatial symmetry of the matter source, radia-
tion field, or spacetime.
We present two sets of tests to check our new radiation

GRMHD code. The first set of tests involves radiation
shocks and nonlinear waves propagating in a fixed
Minkowski spacetime. The second set of tests is the ‘‘ther-
mal Oppenheimer-Snyder collapse’’ problem originally
proposed and solved by Shapiro [29,30], wherein radiation
propagates in a spherical spacetime that, though simple, is
highly dynamical and characterized by a strong gravita-
tional field (i.e. one in which a black hole forms). In both
sets of tests, we compare our numerical results with ana-
lytic solutions and perform convergence tests.
The structure of the paper is as follows: In Sec. II, we

formulate the system of coupled Einstein-Maxwell-MHD-
radiation equations in 3þ 1 form, with the Maxwell,
MHD, and radiation equations written in conservative
form. In Sec. III, we describe techniques for evolving
this system of equations. In Sec. IV, we present the new
code tests and their results. Finally, we summarize our
results in Sec. V.

II. FORMALISM

Throughout this paper, Latin indices denote spatial
components (1–3) and Greek indices denote spacetime
components (0–3). We adopt geometrized units, so that
G ¼ c ¼ 1.

A. Evolution of gravitational fields

We write the spacetime metric in the standard 3þ 1
form:

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

where �, �i, and �ij are the lapse, shift, and spatial metric,

respectively. The extrinsic curvature Kij is defined by

ð@t �L�Þ�ij ¼ �2�Kij; (2)

where L� is the Lie derivative with respect to �i. The

evolution of �ij and Kij is governed by the Einstein equa-

tion G�� ¼ 8�T��, where G�� is the Einstein tensor and

T�� is the stress-energy tensor.

We evolve �ij and Kij using the BSSN formulation

[18,19]. The fundamental variables for BSSN evolution are

� � 1
12 ln½detð�ijÞ�; (3)

~� ij � e�4��ij; (4)

K � �ijKij; (5)

~A ij � e�4�ðKij � 1
3�ijKÞ; (6)

~� i � �~�ij
;j: (7)
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The Einstein equation G�� ¼ 8�T�� gives rise to the evo-

lution equations and constraint equations for these fields,
which are summarized in [19]. In this paper, we use the
same field evolution equations as Eqs. (11)–(15) of [41]:

ð@t �L�Þ~�ij ¼ �2� ~Aij; (8)

ð@t �L�Þ� ¼ �1
6�K; (9)

ð@t �L�ÞK ¼ ��ijDjDi�þ 1
3�K

2 þ � ~Aij
~Aij

þ 4��ð�þ SÞ; (10)

ð@t �L�Þ ~Aij ¼ e�4�ð�DiDj�þ �ðRij � 8�SijÞÞTF
þ �ðK ~Aij � 2 ~Ail

~Al
jÞ; (11)

and

@t~�
i ¼ @jð2� ~Aij þL� ~�

ijÞ
¼ ~�jk�i

;jk þ 1
3
~�ij�k

;kj � ~�j�i
;j þ 2

3
~�i�j

;j þ �j~�i
;j

� 2 ~Aij@j�� 2�ð23~�ijK;j � 6 ~Aij�;j � ~�i
jk
~Ajk

þ 8�~�ijSjÞ; (12)

where D denotes covariant derivative operator associated
with �ij, and TF denotes the trace-free part of a tensor.

The constraint equations, expressed in terms of the BSSN
variables, are

0 ¼ H

¼ ~�ij ~Di
~Dje

� � e�

8
~Rþ e5�

8
~Aij

~Aij � e5�

12
K2

þ 2�e5��; (13)

0 ¼ Mi ¼ ~Djðe6� ~AjiÞ � 2
3e

6� ~DiK � 8�e6�Si; (14)

where ~D denotes covariant derivative operator associated
with ~�ij. The matter-energy source terms are given by

� ¼ n�n�T
��; Si ¼ ��i�n�T

��;

Sij ¼ �i��j�T
��; S ¼ �ijSij:

(15)

Here n� ¼ ð��1;���1�iÞ is the timelike unit vector nor-
mal to the t ¼ constant time slices. In this paper T��

contains three components:

T�� ¼ T��
ðhydroÞ þ T��

ðemÞ þ R��; (16)

where T��
ðhydroÞ, T

��
ðemÞ and R�� are the stress-energy tensor

for the hydrodynamic matter field, (large-scale) electro-
dynamic field and the radiation field, respectively. Hence
all components here contribute to the BSSN source terms
in Eq. (15).

In order to evolve the 3þ 1 Einstein equations forward
in time, one must choose lapse � and shift �i functions,
which specify how the spacetime is foliated. The lapse and

shift must be chosen in such a way that the total system of
evolution equations is stable. In the past few years, we have
experimented with several gauge conditions. We find that,
in general, the most useful gauge choices are the hyper-
bolic driver conditions [42,43], and the puncture gauge
conditions (see e.g. [44,45]). In this paper, we use the
hyperbolic driver conditions as in [43] when evolving a
dynamical spacetime:

@t� ¼ �A;

@tA ¼ �a1ð�@tK þ a2Aþ a3e
�4��KÞ; (17)

@2t �
i ¼ b1�@t~�

i � b2@t�
i; (18)

where a1, a2, a3, b1, and b2 are freely specifiable constants.

B. Evolution of radiation fields

1. Radiation fields

The equations governing the dynamics of the radiation
can be expressed as

R��
;� ¼ �G�; (19)

where R�� is the radiation stress-energy tensor, and G� is
the radiation four-force density which describes the inter-
action of the matter with the radiation [30,46]. The radia-
tion stress-energy tensor R�� is defined as

R�� ¼
Z

d�d�I�N
�N� (20)

where � is the frequency, I� ¼ Iðx�;Ni; �Þ is the spe-
cific intensity of radiation at x� moving in the direction
N� � p�=h�, p� is the photon 4-momentum, h is the
Planck constant, and d� is the differential solid angle.
Here �, I�, and d� are all measured in the local Lorentz
frame of a fiducial observer with 4-velocity u�ðfidÞ, i.e.

h� ¼ �p�u
�
ðfidÞ. The integral is evaluated over all fre-

quency and solid angles.
We now choose our fiducial observer to be comov-

ing with the fluid. In the comoving frame of the fluid
the radiation stress-energy tensor R�� takes the form
(cf. Eq. (91.7) in [46])

R�̂ �̂ ¼
E Fx̂ Fŷ Fẑ

Fx̂ P x̂ x̂ P x̂ ŷ P x̂ ẑ

Fŷ P ŷ x̂ P ŷ ŷ P ŷ ẑ

Fẑ P ẑ x̂ P ẑ ŷ P ẑ ẑ

2
6664

3
7775 (21)

where

E ¼
Z

d�d�I� (22)

is the comoving radiation energy density (see Eq. (64.4)
and (64.5) in [46]),

F{̂ ¼
Z

d�d�I�N
{̂ (23)
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is the comoving radiation flux (see Eq. (65.2) and (65.4) of
[46]), and

P {̂ |̂ ¼
Z

d�d�I�N
{̂N|̂ (24)

is the comoving radiation stress tensor (see Eq. (66.2) and
(66.15) in [46]).

We are interested in the optically thick regime, in which
the radiation is very nearly isotropic in the comoving frame
of the fluid. In the limit of strict isotropy, independent of
the propagation direction N{̂, the intensity is I� ¼ Iðx�;�Þ.
Using this fact and the expression of N� in the comoving
frame

N�̂ ¼ ð1; N{̂Þ ¼ ð1; sin	 cos’; sin	 sin’; cos	Þ; (25)

one can show that F{̂ ¼ 0 and P {̂ |̂ ¼ 1
3


{̂ |̂E � 
{̂ |̂P ,
where P is the radiation pressure, 	 is the polar angle
measured from the ẑ axis, and ’ is the azimuthal angle (i.e.
tan’ ¼ Nŷ=Nx̂). Henceforth, we include the effect of a
small anisotropy by allowing a small nonzero radiation flux
F{̂, but we retain the closure relation P ¼ E=3. That is, we
adopt an Eddington factor equal to 1=3.

The radiation stress-energy tensor R�� can be written in
covariant form as

R�� ¼ Eu�u� þ F�u� þ u�F� þ Ph��; (26)

where u� is the fluid 4-velocity. This expression reduces to
the same form as Eq. (21) in the comoving frame. Here we
have introduced the projection tensor, h��, defined as

h�� ¼ g�� þ u�u�; (27)

and the radiation flux four-vector defined as

F� ¼ h��

Z
d�d�I�N

�: (28)

Note that with this definition, the flux satisfies

F�u� ¼ 0: (29)

Following [30], the radiation four-force density is given by

G� ¼
Z

d�d�ð��I� � ��ÞN�; (30)

where �� ¼ �a
� þ �s

� is the total opacity (the superscript a
and s denote the absorption and scattering opacities, re-
spectively) and �� ¼ �a

� þ �s
� is the total emissivity. By

assuming isotropic and coherent scattering, and that the
thermal emissivity �a

� and absorption coefficient �a
� are

related by Kirchhoff’s law �a
� ¼ �a

�B�, we can write, in
the fluid comoving frame,

G0̂ ¼
Z

d�d�ð�a
�I� � �a

�Þ ¼
Z

d�d��a
�ðI� � B�Þ;

G{̂ ¼
Z

d�d�ð�a
� þ �s

�ÞI�N{̂; (31)

where B� is the intensity in thermal equilibrium (e.g. the
Planck function for photons, the analogous Fermi-Dirac
function for neutrinos, etc.). We further assume a gray-
body form for all opacities, �� ¼ �0, where  is a
frequency independent opacity, and �0 is the rest-mass-
energy density. Then we may write [30]

G0̂ ¼ �0
aðE� 4�BÞ; G{̂ ¼ �0ða þ sÞF{̂: (32)

It is straightforward to express G� in covariant form as

G� ¼ �0
aðE� 4�BÞu� þ �0ða þ sÞF�: (33)

Note that the frequency integrated equilibrium intensity
BðTÞ can be written as

4�B ¼ aRT
4; (34)

where T is the temperature of the fluid, and aR is a con-
stant depending on the type of radiation: for thermal
photons it equals the usual radiation constant a; for each
flavor of nondegenerate thermal neutrino or antineutrino
(chemical potentials ¼ 0) it is ð7=16Þa; lumping the con-
tributions of all neutrinos and antineutrinos together, it is
ð7N �=8Þa, where N � is the number of neutrino flavors
which contribute to thermal radiation.
We emphasize here that our method allows for situations

in which the gas may be out of thermal equilibrium with
the radiation ðE � 4�BÞ. Our formalism is equivalent
to keeping the first two radiative moment equations, and
using an Eddington factor to close the set. Our choice of
P ¼ 1=3E serves as the necessary closure relation for
these equations. We demonstrate in Appendix A 1 that
our formalism, while more general, reduces to the relativ-
istic diffusion approximation in a simplifying limit. In this
limit, the diffusion approximation transforms the radiation
moment evolution equations from a hyperbolic to a para-
bolic (i.e. diffusion) form, which does not have the same
causal structure as the original system of equations. More-
over, the parabolic form is not suitable for implementing
the conservative HRSC scheme used to integrate the com-
bined MHD-radiation equations (see Sec. III). In any case,
we do not adopt the diffusion approximation here, but treat
the original set without simplification.

2. Radiation evolution

We can decompose the radiation evolution equations
given by (19) in a manner analogous to the way we de-
compose the MHD evolution equations (e.g., see Sec. IIC
in [17] and Sec. II D below). The resulting equations are
therefore cast in conservative form, as are the MHD evo-
lution equations. Taking the scalar product of Eq. (19) with
n� on both sides gives the energy equation

@t ��þ @ið�2 ffiffiffiffi
�

p
R0iÞ ¼ �s� ð�2 ffiffiffiffi

�
p ÞG0; (35)
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where the radiation energy density variable �� is defined as

�� ¼ ð�2 ffiffiffiffi
�

p ÞR00

¼ ffiffiffiffi
�

p ð�u0Þ2 4
3
Eþ 2

ffiffiffiffi
�

p
�2u0F0 � ffiffiffiffi

�
p 1

3
E; (36)

and the source term �s is

�s ¼ ��
ffiffiffiffi
�

p
R��r�n�

¼ �
ffiffiffiffi
�

p ½ðR00�i�j þ 2R0i�j þ RijÞKij � ðR00�i

þ R0iÞ@i��: (37)

Here � ¼ e12� denotes the determinant of the spatial met-
ric �ij. The spatial components of Eq. (19) give the mo-

mentum equation,

@t �Si þ @jð� ffiffiffiffi
�

p
Rj

iÞ ¼ �
ffiffiffiffi
�

p �
1

2
R��g��;i �Gi

�
; (38)

where the radiation momentum density variable is de-
fined as

�S i ¼ �
ffiffiffiffi
�

p
R0

i ¼ �
ffiffiffiffi
�

p �
4

3
Eu0ui þ F0ui þ Fiu

0

�
: (39)

C. Evolution of large-scale electromagnetic fields

In the ideal MHD limit, in which the fluid is a per-
fect conductor, Ohm’s law yields the MHD condition
F��u� ¼ 0. This condition is equivalent to the statement
that the electric field in the fluid’s rest frame vanishes. The
evolution equation for the electromagnetic field can be
obtained in conservative form by taking the dual of
Maxwell’s equation F½��;�� ¼ 0. One finds

r�
�F�� ¼ 1

�
ffiffiffiffi
�

p @�ð� ffiffiffiffi
�

p �F��Þ ¼ 0; (40)

where F�� is the Faraday tensor, and �F�� ¼ �����F��=2
is its dual. Using the fact that the magnetic field as mea-
sured by a normal observer n� is given by Bi ¼ n�

�F�i,
the time component of Eq. (40) gives the no-monopole

constraint @j ~B
j ¼ 0, where ~Bj ¼ ffiffiffiffi

�
p

Bj. The spatial com-

ponents of Eq. (40) give the magnetic induction equation,
which can be written as

@t ~B
i þ @jðvj ~Bi � vi ~BjÞ ¼ 0; (41)

where vi � ui=u0.

D. Evolution of the MHD field

In the MHD limit, T��
ðemÞ can be expressed as

T��
ðemÞ ¼ b2u�u� þ 1

2
b2g�� � b�b�; (42)

where b� ¼ B�
ðuÞ=

ffiffiffiffiffiffiffi
4�

p
and where

B�
ðuÞ ¼ u�

�F�� ¼ � h��B
�

n�u
� (43)

is the magnetic field measured by an observer comoving
with the fluid. The stress-energy tensor associated with the
perfect fluid can be expressed as

T��
ðhydroÞ ¼ �0hu

�u� þ Pg��; (44)

where �0 is the (baryon) rest-mass density, P is matter
pressure, h ¼ 1þ �þ P=�0 is the specific enthalpy, and �
is the specific internal energy density of the matter. For
brevity, we denote

T��
ðmhdÞ ¼ T��

ðhydroÞ þ T��
ðemÞ: (45)

Thus, we see that the conservation of the total stress-energy
tensor can be written as

T��
;� ¼ ½T��

ðmhdÞ þ R���;� ¼ 0: (46)

This can be combined with (19) to give

T��
ðmhdÞ;� ¼ G�: (47)

Additionally, we have the continuity equation expressing
baryon number conservation,

ð�0u
�Þ;� ¼ 0: (48)

Rewriting Eqs. (47) and (48) in conservative form gives
(cf. Sec. IIC in [17])

@t�� þ @jð��vjÞ ¼ 0; (49)

@t ~Si þ @jð� ffiffiffiffi
�

p
Tj
ðmhdÞiÞ ¼ 1

2�
ffiffiffiffi
�

p
T��
ðmhdÞg��;i þ �

ffiffiffiffi
�

p
Gi;

(50)

@t~�þ @ið�2 ffiffiffiffi
�

p
T0i
ðmhdÞ � ��viÞ ¼ sþ �2 ffiffiffiffi

�
p

G0; (51)

where the MHD evolution variables are

�� ¼ �
ffiffiffiffi
�

p
�0u

0; (52)

~S i ¼ ffiffiffiffi
�

p
n�T

�
ðmhdÞi ¼ �

ffiffiffiffi
�

p
T0
ðmhdÞi

¼ ð��hþ �u0
ffiffiffiffi
�

p
b2Þui � �

ffiffiffiffi
�

p
b0bi; (53)

~� ¼ ffiffiffiffi
�

p
n�n�T

��
ðmhdÞ � �� ¼ �2 ffiffiffiffi

�
p

T00
ðmhdÞ � ��; (54)

and the source term s is

s ¼ ��
ffiffiffiffi
�

p
T
��
ðmhdÞr�n�

¼ �
ffiffiffiffi
�

p ½ðT00
ðmhdÞ�

i�j þ 2T0i
ðmhdÞ�

j þ Tij
ðmhdÞÞKij

� ðT00
ðmhdÞ�

i þ T0i
ðmhdÞÞ@i��: (55)

Note that these evolution variables are very similar to those
in [17]. The only difference is that there are new radiative
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source terms Gi and G0 in the momentum and energy
Eqs. (50) and (51), respectively.

To complete the system of equations, it remains only to
specify the equation of state (EOS) of the fluid. In this
paper, we adopt a �-law EOS,

P ¼ ð�� 1Þ�0�; (56)

where � is the adiabatic gas constant. We choose a �-law
EOS because it simplifies some of the calculations, it is
applicable to many cases of interest, and it is a standard
choice for demonstrating new computational techniques in
the numerical relativity literature. Also, the analytic solu-
tions we are going to use as code tests also use this EOS.
Nevertheless, all evolution equations derived in this section
apply for any equation of state, and generalization to a
more realistic EOS is straightforward. In fact, our code is
currently capable of handling the general class of EOSs of
the form P ¼ Pð�0; �Þ.

The fluid temperature T is required in the radiation force
density term G� [Eq. (34)]. In this paper, we compute it by
using the ideal gas law P ¼ nkBT ¼ �0kBT=m, where n is
the baryon number density, m ¼ �0=n is the mean mass of
the baryons in the fluid, and kB is Boltzmann’s constant.
Hereafter we set kB ¼ 1.

We point out that the fluid flow is nonadiabatic in
general. In particular, there is energy exchange between
the matter and radiation fields. Also, shocks may be present
in some applications.

E. Summary of equations

To reiterate, the system of coupled Einstein-radiation-
Maxwell-MHD equations we consider are the BSSN
Eqs. (8)–(12), the radiation transport Eqs. (35) and (38),
the magnetic induction Eq. (41), and the MHD Eqs. (49)–
(51). In Appendix A, we demonstrate that our equations
reduce to the more familiar Newtonian form in the weak-
field, slow-velocity limit. The evolution variables are �,
~�ij, K, ~Aij,

~�i, ��, �Si, ~B
i, ��, ~Si, and ~�. These variables are

not completely independent: the BSSN variables�, ~�ij, K,
~Aij, and

~�i have to satisfy the Hamiltonian constraint (13)

and the momentum constraint (14); the magnetic field
variables ~Bi have to satisfy the no-monopole constraint
@i ~B

i ¼ 0.
The total stress-energy tensor T�� is given by

T�� ¼ T
��
ðhydroÞ þ T

��
ðemÞ þ R��

¼ ð�0hþ b2 þ 4
3EÞu�u� þ ðPþ 1

2b
2 þ 1

3EÞg��

þ F�u� þ F�u� � b�b�: (57)

The BSSN matter-energy source terms [Eq. (15)] can be
expressed as

� ¼ ð�u0Þ2ð�0hþ b2 þ 4
3EÞ � ðPþ 1

2b
2 þ 1

3EÞ
þ 2�2u0F0 � ð�b0Þ2; (58)

Si ¼ �u0ð�0hþ b2 þ 4
3EÞui þ �F0ui þ �u0Fi � �b0bi;

(59)

Sij ¼ ð�0hþ b2 þ 4
3EÞuiuj þ ðPþ 1

2b
2 þ 1

3EÞ�ij þ Fiuj

þ Fjui � bibj: (60)

III. IMPLEMENTATION

We use a cell-centered Cartesian grid in our three-
dimensional simulations. Sometimes, symmetries can be
invoked to reduce the integration domain. For octant
symmetric systems, we evolve only the upper octant; for
equatorially symmetric systems, we evolve only the upper
half-plane. For axisymmetric systems, we evolve only the
x-z plane (a 2þ 1-dimensional problem). In axisymmetric
evolutions, we adopt the cartoon method [47] for evolving
the BSSN equations and use a cylindrical grid for evolving
the induction, MHD, and radiation equations [48].
Our code uses the Cactus parallelization framework

[49], with the time-stepping algorithm based on the MoL,
or method of lines, thorn. In the metric evolution (BSSN
sector), spatial derivatives can be calculated using second-
order or fourth-order finite differencing schemes. The
Cactus MoL thorn allows us to switch to a higher-
order time-stepping scheme easily. Higher-order schemes
are very useful for evolving spacetimes containing black
holes using the moving puncture techniques (see, e.g.,
[44,45]). However, we do not treat puncture black holes
here and we are currently using a HRSC schemewhich is at
most second-order accurate to evolve the Maxwell, radia-
tion, and MHD equations. Hence we use a second-order
finite differencing scheme in the BSSN sector and (second-
order) iterated Crank-Nicholson time-stepping in our
calculations.
Our technique for metric evolution is described in our

earlier papers [23,41,50], so we focus here on our MHD,
induction, and radiation algorithms. The goal of this part
of the numerical evolution is to determine the fundamen-
tal ‘‘primitive’’ variables P � ð�0; P; v

i; Bi; E; FiÞ at future
times, given initial values of P. The evolution equations
(35), (38), (41), and (49)–(51) are written in conserva-
tive form:

@tUþr � F ¼ S; (61)

where the evolution variables UðPÞ � ð��; ~�; ~Si; ~Bi; ��; �SiÞ,
the fluxes FðPÞ, and the sources SðPÞ are not explicit
functions of derivatives of the primitive variables, although
they are explicit functions of the metric and its derivatives.
As mentioned above, we evolve Eq. (61) using the iterated
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Crank-Nicholson scheme. This scheme is second-order in
time and will be stable if �t <minð�xiÞ=cmax, where in
our case cmax is the speed of light. For each Crank-
Nicholson substep, we first update the gravitational field
variables (the BSSN variables). We then update the elec-
tromagnetic fields Bi by integrating the induction equation.

Next, the MHD variables (�?, ~�, and ~Si) are updated. Then
we update the radiation variables ( �� and �Si). Finally, we use
these updated values to recover the primitive variables on
the new timestep. In some of the tests presented in this
paper, we have found that choosing a relatively small
Courant factor �t=�x ¼ 0:1 improves the stability of our
simulations. We believe this is due to the stiff nature of
our system of equations (two timescales: dynamical vs dif-
fusion), and in future work, we may explore implicit in-
tegration methods as an alternate means of improving
stability. Below, we briefly summarize some of the impor-
tant techniques we utilize during the evolution.

A. Reconstruction step

We implement an approximate Riemann solver to han-
dle the advection in Eq. (61). For simplicity, we consider
the one-dimensional case here. The generalization to mul-
tidimension is straightforward. The first step in calculating
this flux is to compute PL ¼ Piþ1=2�� and PR ¼ Piþ1=2þ�,

i.e. the primitive variables to the left and right of the grid
cell interface. As in [17], we use the Monotonized central
(MC) scheme [51] to compute the primitive variables at the
cell interface. This scheme is second-order accurate at
most points when the data are smooth but becomes first-
order accurate across a discontinuity (e.g. shock). (See [17]
for other reconstruction methods in our MHD code.)

B. Riemann solver step

Next, we take the reconstructed data as initial data for a
piecewise constant Riemann problem, with P ¼ PL on the
left of the interface, and P ¼ PR on the right of the inter-
face. The net flux at the cell interface is given by the
solution to this Riemann problem.

We use the HLL (Harten, Lax, and van Leer) approxi-
mate Riemann solver [52]. Our implementation has been
described in [17]. To summarize, HLL fluxes are given by

fiþ1=2 ¼ cminfR þ cmaxfL � cmincmaxðuR � uLÞ
cmax þ cmin

: (62)

Here

cmax � maxð0; cþR; cþLÞ cmin � �minð0; c�R; c�LÞ
(63)

where cþ is the maximum right-going wave speed and c�
is the maximum left-going wave speed. We obtain c� by
solving the dispersion relation for waves with wave vectors
of the form

k� ¼ ð�!; k1; 0; 0Þ: (64)

The wave speed is simply the phase speed !=k1. We
find the dispersion relation in the comoving frame of
the fluid (denoted by subscript cm), and hence !cm=kcm,
as described in Appendix B. To obtain !=k1 in the grid
frame, we use the dispersion relation (B4) and sub-
stitute the !cm ¼ �k�u

�, and k2cm ¼ K�K
�, where

K� ¼ ðg�� þ u�u�Þk�. Wave speeds in the y direction

and z direction are found analogously.

C. Recovery of primitive variables

Having computed U at the new timestep, we must use
these values to recover P, the primitive variables on the
new time level. We can recover the hydrodynamics primi-
tive variables �0, P, v

i from the MHD evolution variables
��, ~�, ~Si numerically, as described in Sec. III C in [17].
Once the fluid velocity vi is found, the radiation primitive
variables E and Fi can be computed from the radiation
evolution variables �� and �Si analytically using Eqs. (36)
and (39). We solve the following set of two coupled linear
equations to recover E and F0:

�� ¼ ffiffiffiffi
�

p ½ð43ð�u0Þ2 � 1
3ÞEþ 2�2u0F0�; (65)

� �u0 ��þ ðu0�i þ uiÞ �Si ¼ ��
ffiffiffiffi
�

p ðEu0 þ F0Þ: (66)

The first one is just Eq. (36), while the second one is
obtained by using u�F

� ¼ 0 to eliminate Fi in Eq. (39).

After solving for E and F0, we compute Fi by

Fi ¼ �ij �Sj

�
ffiffiffiffi
�

p
u0

� 4

3
Eu0ðvi þ �iÞ � 2F0�i � F0vi; (67)

which is derived by raising the index of Fi in Eq. (39).

D. Constrained transport

The Maxwell equation demands that the magnetic
fields ~Bi satisfy the no-monopole constraint @i ~B

i ¼ 0.
Unphysical behavior may arise if this constraint is vio-
lated. Thus, ‘‘constrained-transport schemes’’ have been
designed to evolve the induction equation while main-
taining @i ~B

i ¼ 0 to round-off precision [53]. We use the
flux-interpolated constrained-transport (flux-CT) scheme
introduced by Tóth [20] and used by Gammie et al. [54].
This scheme involves replacing the induction equation flux
computed at each point with linear combinations of the
fluxes computed at that point and neighboring points. The
combination assures both that second-order accuracy is
maintained, and a particular finite-difference representa-
tion of @i ~B

i ¼ 0 is enforced to machine precision.
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E. Low-density regions and boundary conditions

1. Low-density regions

If vacuum exists anywhere in our computational do-
main, the MHD approximation will not apply in this
region, and we will have to solve the vacuum Maxwell
equations there (see e.g. [55]). In addition, the optically
thick assumption on the radiation field in Sec. II B also
breaks down in sufficiently low-density regions. In many
astrophysical scenarios, however, a sufficiently dense, ion-
ized plasma will exist outside the stars or disks, whereby
MHD will remain valid in its force-free limit. A similar
situation may arise for the radiation field, where the am-
bient gas in our computational domain may be sufficiently
dense to maintain an optical depth above unity. However,
in some applications we may need to take into account the
transition from optically thick to optically thin limits in the
low-density regions, depending on the magnitude of the
opacity. A precise treatment of this problem requires solv-
ing the full Boltzmann radiative transfer equation (see e.g.
[30,56–58]; see also [59,60] for approximation schemes.)
In this paper, however, we avoid this issue. For the code
tests that do not have low-density regions (Sec. IVA), no
special treatment is required. We do, however, present a
test involving Oppenheimer-Snyder collapse (Sec. IVB)
where there is a vacuum outside the star. As in many
hydrodynamics simulations in astrophysics, we impose a
low-density ‘‘atmosphere’’ outside the star to facilitate
the integration of hydrodynamics equations. It turns out
that our atmosphere scheme suffices to mimic the correct
(‘‘zero temperature’’) radiation boundary conditions that
we wish to impose at the surface of the star (see Sec. IVB).

In the low-density regions near the surface of the star, we
sometimes encounter problems when recovering the primi-
tive variables; in particular, the equations U ¼ UðPÞ occa-
sionally have no physical solution. Usually, unphysical U
are those values corresponding to negative pressure. As in
[17], we apply a fix at these points, first suggested by Font
et al. [61]. In the system of Eqs. (52)–(54) to be solved,
we replace Eq. (54) with the adiabatic relation P ¼ ��

0 ,

where  is set equal to its initial value. This substitution
guarantees a positive pressure. Typically, these low-density
regions have little influence on the dynamical evolution of
the system, which is the principal target of our current
investigations.

2. Boundary conditions

For the code test in Sec. IVA, we evolve one-
dimensional, radiation-hydrodynamics equations in a
fixed, Minkowski spacetime. We impose the ‘‘copy’’
boundary condition on all the evolution variables, i.e.
variables at the boundaries are copied from the closest
grid point.

For the Oppenheimer-Snyder code test in Sec. IVB,
we evolve the system of coupled Einstein-radiation-
hydrodynamics equations. In this case, we employ Som-

merfeld outgoing wave boundary conditions for all BSSN
and gauge variables:

fðr; tÞ ¼ r��r

r
fðr��r; t��TÞ; (68)

where �T is the timestep and �r ¼ �e�2��T. For the
radiation-hydrodynamics, we impose the outflow boundary
condition on the primitive variables �, P, vi, E, and Fi (i.e.,
the variables are copied along the grid directions with the
condition that the velocities be positive or zero in the outer
grid zones). We note that the radiation in this test is initially
confined inside the star, but escapes from the stellar surface
during the evolution. In the end of the simulation, the total
emitted radiation remains small and the dynamics of the
system is insensitive to the boundary condition employed.

IV. CODE TESTS

Our GRMHD code has previously been thoroughly
tested by maintaining stable rotating stars in station-
ary equilibrium, by reproducing Oppenheimer-Snyder col-
lapse to a black hole, and by reproducing analytic solutions
involving MHD shocks, nonlinear MHD wave propaga-
tion, magnetized Bondi accretion, and MHD waves in-
duced by linear gravitational waves [17]. It has also been
compared with the GRMHD code of Shibata and Sekiguchi
[62] by performing simulations of the evolution of magne-
tized hypermassive neutron stars [7,8], and of magneto-
rotational collapse of stellar cores [21]. We obtain good
agreement between these two independent codes. Our code
has also been used to study the evolution of black hole–
black hole and black hole–neutron star binaries [24] and
the evolution of relativistic hydrodynamic matter in the
presence of puncture black holes [63]. Here we restrict our
attention to testing the new radiation-hydrodynamics sec-
tor, setting large-scale magnetic fields to zero. Future work
will include the study of systems in which both radiation
and large-scale magnetic fields are present. We also choose
the gray body absorption opacity a to be a constant and
set the scattering opacity s to zero.

A. Minkowski radiation-hydrodynamics tests

We present here a series of tests of nonlinear radiation-
hydrodynamic waves in Minkowski spacetime with planar
symmetry. These tests are summarized in Table I. For our
initial data, we generate semianalytic, stationary configu-
rations using the method outlined in Appendix C. To test
the ability of our code to handle shocks and waves moving
across the grid, we boost the stationary solutions derived in
Appendix C for tests 2–4. In each case, our computational
domain is x 2 ð�20; 20Þ. We choose the opacities in each
case to ensure that the grid boundaries at x ¼ �20 reside in
the asymptotic region where all hydrodynamic and radia-
tion quantities approach their asymptotic values, and that
the total optical depth across the grid is �� 10 (see
Appendix C).
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We evolve the system with a timestep�t ¼ �x for test 1
and test 2, and �t ¼ 0:1�x for test 3 and test 4. We use
resolutions ranging from �x ¼ 0:0125 to �x ¼ 0:1 in
order to perform convergence tests. To demonstrate
convergence, we consider a grid function g with error

g ¼ g� gexact. We calculate the L1 norm of 
g (the
‘‘average’’ of 
g) by summing over every grid point i:

L1ð
gÞ � �x
XN
i¼1

jgi � gexactðxiÞj; (69)

where N / 1=�x is the number of grid points. We find
that for our continuous configurations (tests 3 and 4), we
achieve second-order convergence. Because our shock-
capturing scheme becomes first order when discontinuities
are present, we achieve the expected first-order conver-
gence for our discontinuous configurations (tests 1 and 2).

The initial configurations listed in Table I are chosen to
test our code in a variety of regimes, including gas-pressure
dominated, radiation-pressure dominated, Newtonian, rel-
ativistic, continuous, and discontinuous matter and radia-
tion profiles. In each test, the equation of state of the gas is
given by a �-law EOS. We choose � ¼ 5=3 for each test
except our highly-relativistic case, in which we choose
� ¼ 2. This latter choice is adopted because the sound
speed (cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P=�0h

p
) for a �-law EOS is limited by

cs <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
. Highly relativistic sound speeds (cs ! 1)

can only be achieved for � � 2. Below, we provide a brief
description of each test.

(i) Nonrelativistic strong shock.—For this test, we set
up a strong, gas-pressure dominated, Newtonian
(uxmax ¼ 0:015 	 1) shock propagating into a cold
gas. We have chosen to simulate this scenario be-

FIG. 1. Profiles of �0, P, v
x, E, and Fx at t ¼ 5000 for test

1. In this test, the shock front remains stationary. Solid dots
denote data from numerical simulations with resolution �x ¼
0:0125. Solid lines denote the exact solutions (Appendix C).

TABLE I. Initial states for one-dimensional tests.

Test � a Left statec Right statec tfinal tsc
b

1 5=3 0.4 �0 ¼ 1:0 �0 ¼ 2:4 5000 2000

ð� ¼ 0:0Þa P ¼ 3:0
 10�5 P ¼ 1:61
 10�4

ux ¼ 0:015 ux ¼ 6:25
 10�3

E ¼ 1:0
 10�8 E ¼ 2:51
 10�7

2 5=3 0.2 �0 ¼ 1:0 �0 ¼ 3:11 100 80

ð� ¼ 0:1Þa P ¼ 4:0
 10�3 P ¼ 0:04512
ux ¼ 0:25 ux ¼ 0:0804
E ¼ 2:0
 10�5 E ¼ 3:46
 10�3

3 2 0.3 �0 ¼ 1:0 �0 ¼ 8:0 20 20

(� ¼ 0:8)a P ¼ 60:0 P ¼ 2:34
 103

ux ¼ 10:0 ux ¼ 1:25
E ¼ 2:0 E ¼ 1:14
 103

4 5=3 0.08 �0 ¼ 1:0 �0 ¼ 3:65 100 90

ð� ¼ 0:1Þa P ¼ 6:0
 10�3 P ¼ 3:59
 10�2

ux ¼ 0:69 ux ¼ 0:189
E ¼ 0:18 E ¼ 1:30

a � is the speed at which the wave travels. Traveling wave solutions are obtained by boosting the
stationary solutions in Appendix C to speed �.
b tsc is the approximate time it takes for a wave traveling at the sound speed to propagate from
the center of the grid to the right boundary.
cValues refer to asymptotic regions. We solve ODEs to determine the exact solution in the
transition region (see Appendix C).
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cause it can be compared to the analytic solution
for a subcritical radiating shock first derived by
Zel’dovich and Raizer [64] and summarized in [46].
We find very good agreement with this analytic
result (see Fig. 1). We note that the radiative shock
junction conditions (see Appendix C) require that
R0x and R00 be continuous at the shock front, even
thoughE andFx are, in general, discontinuous at the
shock. In the Newtonian limit, however, the con-
tinuity of R0x and R00 is equivalent to the continuity
of E and Fx.

(ii) Mildly-relativistic strong shock.—In this test, we
set up a mildly relativistic (uxmax ¼ 0:25), gas-
pressure dominated shock. In this case, we see
that E and Fx no longer appear continuous. We
boost this shock so that the shock speed is
� ¼ 0:1. We find that the discontinuity is able to
retain its shape very well as the shock travels and
matches very well with the analytic solution (see
Fig. 2).

(iii) Highly-relativistic wave.—In this test, we simu-
late a highly-relativistic (uxmax ¼ 10), gas-pressure
dominated configuration in which all quantities are
continuous, but asymptote to different values on
either side of the computational domain. We boost
this configuration so that it travels across the grid
with velocity � ¼ 0:8. The numerical results agree
very well with a semianalytic solution (see Fig. 3).
Figure 4 shows the L1 norms of the errors in Fx, E,

FIG. 2. Profiles of �0, P, v
x, E, and Fx at t ¼ 100 for test 2.

In this test, the shock front moves with velocity � ¼ 0:1. Solid
dots denote data from numerical simulations with resolution
�x ¼ 0:0125. Solid lines denote the exact solutions
(Appendix C).

FIG. 3. Profiles of �0, P, vx, E, and Fx at t ¼ 20 for test 3.
In this test, the shock front moves with velocity � ¼ 0:8. Solid
dots denote data from numerical simulations with resolution
�x ¼ 0:0125. Solid lines denote the exact solutions
(Appendix A).

FIG. 4. L1 norms of the errors in �0, P, vx, E, and Fx for
test 3 at t ¼ 20. This log-log plot shows that the L1 norms of the
errors in all quantities are proportional to ð�xÞ2, and are thus
second-order convergent.
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vx, P, and �0 at t ¼ tfinal ¼ 20. We find that all
errors converge to zero at second-order in �x.

(iv) Radiation-pressure dominated, mildly relativistic
wave.—In this test, we study the performance of
our code in the radiation-pressure dominated
(P 	 P ), mildly relativistic (uxmax ¼ 0:69) regime.
We boost this configuration so that it travels across
the grid with velocity � ¼ 0:1. The numerical
results again agree with the semianalytic solution
(see Fig. 5).

B. Dynamical spacetime test: Thermal
Oppenheimer-Snyder collapse

The collapse from rest of a homogeneous dust ball
(P ¼ 0) in general relativity can be described by the ana-
lytic Oppenheimer-Snyder solution [65]. The collapse
results in the formation of a Schwarzschild black hole.
The evolution of thermal radiation within the dust ball
has been considered by Shapiro in [29,30]. In both papers,
the radiation is assumed to be a small perturbation, so that
the dynamics are unaffected by the presence of radiation,
and the matter and metric profiles can still be described
by the Oppenheimer-Snyder solution. The first paper em-
ploys the relativistic thermal diffusion approximation for
the radiation, and derives analytic solutions for both the
Newtonian and general relativistic cases. In the second
paper this approximation is removed and replaced by solv-

ing the exact radiative transfer (Boltzmann) equation for
the intensity, coupled to the radiation moment equations
for the radiation flux and energy density. It is found that the
results obtained by solving the Boltzmann transport equa-
tion agree very well with the analytic solutions assuming
diffusion approximations, provided the optical depth of the
star is sufficiently large ( � 1). Here we perform a nu-
merical simulation of ‘‘thermal Oppenheimer-Snyder col-
lapse’’ using our radiation GRMHD code, and compare our
results to the analytic solution in the diffusion approxima-
tion limit given in [29,30]. For convenience, we summarize
the analytic solution in Appendix D.
For our initial data, the areal radius of the star is set

to be Ri ¼ 3M, where M is the Arnowitt-Deser-Misner
mass of the star. We choose the initial profiles for all
hydrodynamic and radiation quantities to be homoge-
neous throughout the star, in compliance with the ana-
lytic solution in Appendix D. The analytic solution
assumes that (1) the matter and radiation pressure is small
enough to be dynamically unimportant (i.e. P=�0 	 M=R
and P=�0 ¼ E=3�0 	 M=R), (2) radiation pressure
dominates over gas pressure (P � P), (3) gas and ra-
diation are in local thermal equilibrium (LTE), i.e.
E ¼ 4�B ¼ aRT

4, and (4) the star is optically thick.
To satisfy these conditions, we choose the following
initial data: �0 ¼ M=ð43�R3

i Þ, P ¼ 10�4�0, E ¼ 10�3�0,

vi ¼ 0, Fi ¼ 0. LTE is achieved in the initial data
by fixing the constant aRm

4 ¼ m4E=T4 ¼ Eð�0=PÞ4 ¼
1013M=ð43�R3

i Þ. We note that in our formalism the system

is allowed to deviate from the LTE during the evolution.
However, we find that the system remains close to the LTE
during the entire evolution and the numerical data agree
well with the analytic solution (see below). We choose a

so that �a ¼ a�R ¼ 50 initially. This guarantees that the
star is optically thick initially. As the collapse proceeds, the
optical depth increases as � / 1=R2, so the star remains
optically thick.
We construct the initial data for the spatial metric by

transforming the analytic Oppenheimer-Snyder metric
from Friedmann to isotropic coordinates, following the
procedure described in [66]. We use the analytic solution
only at t ¼ 0. The metric at later times is evolved, together
with hydrodynamics and radiation. The lapse and shift are
determined by the hyperbolic driver conditions [Eqs. (17)
and (18)]. These are gauge conditions that have been
widely used in stellar collapse calculations using the
BSSN scheme. We choose a1 ¼ 0:75, b1 ¼ 0:15,
a2 ¼ b2 ¼ 2M�1, a3 ¼ 1. A smaller b1 prevents ‘‘blowing
out’’ of the coordinate system, a well-known effect [41,67]
which can spoil grid resolution in the center of the collaps-
ing object. We perform our numerical simulation in axi-
symmetry, with 2002, 4002, 8002, and 16002 grid points.
We choose �t ¼ 0:1�x in these simulations. The outer
boundary is placed at 4M in isotropic coordinates
(Rout ¼ 5:06M in areal radius). Note that we do not impose

FIG. 5. Profiles of �0, P, v
x, E, and Fx at t ¼ 100 for test 4.

In this test, the shock front moves with velocity � ¼ 0:1. Solid
dots denote data from numerical simulations with resolution
�x ¼ 0:0125. Solid lines denote the exact solutions
(Appendix C).
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any special boundary condition at the stellar surface, in
contrast to the zero temperature boundary condition
(E ¼ 0) used in the derivation of the analytic solution
[29]. The low-density region outside the star mimics this
surface boundary condition, as the atmosphere is made to
be much colder than the interior of the star, and hence the
thermal emission and buildup of radiation energy density
in the atmosphere is negligible.

The analytic solution given in Appendix D is expressed
in Friedmann coordinates (i.e. Gaussian normal coordi-
nates comoving with the fluid), which is equivalent to
using the gauge conditions � ¼ 1 and �i ¼ 0 (geodesic
slicing and zero shift), which are different from the gauge
conditions we adopt in our numerical simulations. In order
to compare our numerical result to the analytic solution, we
perform a mapping between these two different gauges.
This is achieved first by following a set of Lagrangian fluid
elements inside the star, and calculating the proper time
and position of these elements by integrating the equations

d�

dt
¼ 1

u0
;

dxi

dt
¼ vi: (70)

Next, we use the metric and the positions of the fluid
elements to compute their areal radii rs. Finally, knowing
the proper times � and areal radii rs of the fluid elements, we use Eqs. (D2) and (D3) and rs ¼ að�Þ sin� to compute

their Friedmann coordinates (�; �). The mapping between
these two gauges is thus established. The pair ð�j; �jÞ for
each element j uniquely specifies the fluid and radiation
parameters.
Figures 6 and 7 show the profiles of �0, P, E, and F at

different times during the collapse. Note that while the
density remains spatially constant during the collapse in
comoving Friedmann coordinates, this is not true in our
gauge. We see that the numerical results agree very well
with the analytical solution, even after the apparent horizon
appears at t ¼ 6:78M and all of the stellar material is
inside the horizon.
We next perform a convergence test for the radiation

quantities. We find that our numerical data converge to a
solution slightly different from the analytic solution. This
can be explained by the fact that the analytic solution is
strictly valid only in the perturbative limits that P=�0 ! 0
and P=P ! 0. While we set up our initial data to approxi-
mate these limits, the slight deviation from the analytic
solution is still detectable with our resolutions. In the ab-
sence of radiation (E ¼ 0, Fi ¼ 0), we have checked that
the deviation in �0 between numerical and analytic values
is reduced by a factor of 10 if we reduce the ratio P=�0 by a
factor of 10. In the presence of radiation, however, decreas-
ing the ratios P=P and P=�0 arbitrarily small makes the
numerical simulations quite challenging, as accurate evo-
lution for the radiation quantities E and Fi requires accu-
rate evolution of the temperature T / P=�0, which in turn
requires accurate determination of the pressure P. How-

FIG. 6. Profiles of the hydrodynamic quantities �0 and P in
Schwarzschild (areal) radius at times t=M ¼ 0, 6, 8, and 9.5 for
thermal Oppenheimer-Snyder collapse. Solid lines represent
numerical data with 16002 grid points, and dashed lines show
analytic solutions. The solid square on the x-axis denotes the
radius of the apparent horizon, which forms after the stellar
surface passes through an areal radius of 2M.

FIG. 7. Same as Fig. 6 but for the radiation quantities E and F
inside the star. Note that F ¼ 0 everywhere at t ¼ 0.
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ever, accurate computation of P in the limit P=�0 ! 0 is
difficult. Since the evolution variables are dominated by
the rest-mass density �0, in order to recover the tiny P
accurately from them, the numerical evolution has to be
very accurate. This requires very high resolution. Thus, we
perform a convergence test in which we compare numeri-
cal solutions with small but finite P=P and P=�0 for
different resolutions, rather than comparing with the ana-
lytic solution.

Figure 8 shows the result of the convergence test for E
and F, with the differences scaled for second-order con-
vergence. We follow a Lagrangian fluid element halfway
between the center and the surface of the star (in terms of
areal radius), determine the radiation parameters at the
position of the element versus time, and subtract the nu-
merical results from different resolutions. Since we use a
HRSC scheme that is second-order accurate except at po-
sitions where discontinuities appear, e.g. at the surface of
the star where the density falls abruptly, we expect that the
order of convergence depends on how much the physical
quantity is affected by the discontinuity at the stellar
surface. In principle, the first-order error will propagate
everywhere inside the star, but its effect may be small (de-
pending on the physical quantity under consideration) and
may only be detectable at very high resolution. Figure 8
shows that E converges at second order, whereas F con-

verges at less than second order but better than first order.
This shows that F is more susceptible to propagation
of the first-order behavior at the surface of the star, which
can be anticipated by looking at the shape of the pro-
files in Fig. 7: E drops abruptly before reaching the sur-
face, while F increases monotonically up to the surface.
We see that convergence of F deviates further from sec-
ond order as the resolution is increased. This is con-
sistent with the presence of a first-order term with
small coefficient due to the discontinuity at the stellar
surface: Fð�; tÞ ¼ FexactðtÞ þ c1ðtÞ�þ c2ðtÞ�2 þOð�3Þ.
Here Fð�; tÞ is the value of F at time t evolved with a
grid size �, FexactðtÞ is the exact solution, and c1ðtÞ and
c2ðtÞ are resolution-independent functions. The first-order
term c1ðtÞ� results from the discontinuity. We expect that
c1ðtÞ 	 c2ðtÞ since we look at a point far away from the
discontinuity. With a lower resolution, and hence a larger
grid size �, the first-order term is not as significant relative
to the second-order term because of the small coeffi-
cient. Once we decrease � by increasing the resolution,
the second-order term diminishes as �2, while the first-
order term shrinks as � only, making the first-order term
more conspicuous. Similar behavior for E is not evident
since E drops to a very low value at the surface.

V. CONCLUSIONS

We have developed a code which can evolve the coupled
Einstein-Maxwell-MHD-radiation equations in 3þ 1 di-
mensions. In the implementation presented here this code
is able to model the behavior of magnetized, perfectly con-
ducting, radiating fluids in dynamical spacetimes in which
the characteristic length scales of the system are longer
than the mean free path of the radiation and the opacity has
a gray-body form. Our formalism allows us to evolve the
radiation fields using a HRSC scheme which is analogous
to the method we use for the hydrodynamic fields. In this
paper, we have tested the shock-capturing capabilities of
our code by simulating both continuous and discontinuous
one-dimensional radiating hydrodynamic waves. We have
been successful in evolving highly relativistic, radiation-
pressure dominated, gas-pressure dominated, and Newto-
nian waves. We have treated both stationary waves and
boosted waves that propagate across our computational
grid in Minkowski spacetime. We have also confirmed our
ability to accurately capture the behavior of radiation in a
strong-field dynamical spacetime by simulating a ther-
mal Oppenheimer-Snyder collapse. Our numerical results
agree well with the analytic solutions. We perform con-
vergence tests on our test problems and find the expected
order of convergence in all cases.
We plan to use our radiation GRMHD code to study

many interesting systems, and revisit some of the problems
we have considered before, such as core-collapse super-
novae, accretion onto a black hole, merging NSNSs and
BHNSs, etc. By taking into account the effect of radiation,

FIG. 8. Convergence test for the radiation quantities E and F,
computed at the Lagrangian point halfway between the center
and the surface of the star (in terms of areal radius). Resolutions
with 2002, 4002, 8002, and 16002 grids are used here. The
differences between lower and the highest solution (16002) are
rescaled to demonstrate second-order convergence.
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we hope to gain more insights and provide some answers to
questions that are relevant to observations. For example,
we can calculate the radiation luminosity, and study the
radiation feedback to the dynamics of the systems.
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APPENDIX A: LIMITS

1. Diffusion approximation

Using the form of R�� given by Eq. (26) in the radiation
moment equation R��

;� ¼ �G� gives

ðEu�u� þ F�u� þ F�u� þ Ph��Þ;� ¼ �G�; (A1)

where P ¼ E=3. In our formalism, we have already as-
sumed near isotropy, which implies that F�=E 	 1. We
can make the further approximation that the radiation flux
F� can be neglected in the left-hand side of Eq. (A1) to get

ðEu�u� þ Ph��Þ;� ¼ �G�: (A2)

Operating on both sides of the above equation with the
projection tensor h��, using Eq. (33) for G� and the fact
that F�u� ¼ 0, we get

� �0F
� ¼ h��ðEu�u� þ Ph��Þ;�
¼ h��½43Eðu�u�Þ;� þ 1

3E
;��

¼ 4
3h

�
�ðEa� þ 1

4E
;�Þ; (A3)

where  � a þ s is the total opacity, a� � u�;�u
� is the

4-acceleration, and where we have used the fact that
h��u

� ¼ 0 and P ¼ E=3. Thus, we arrive at the expres-
sion for the radiation flux in the diffusion approximation,

F ¼ � 4

3

1

ða þ sÞ�0

h �
�
1

4
rEþ aE

�
: (A4)

This is the relativistic diffusion equation relating the ra-
diation flux F� to the local radiation energy density E. If
we further assume LTE, then E ¼ aRT

4, in which case,

F ¼ ��thh � ðrT þ aTÞ; (A5)

where

�th ¼ 4

3

aRT
3

ða þ sÞ�0

: (A6)

This familiar result is in agreement with Eq. (3.2) of [29],
and with Eq. (2.5.28) of [68]. For a further discussion of the

simplification in Eq. (A1) leading to the diffusion approxi-
mation, see [30].

2. Newtonian limit

It is instructive to consider the weak-field, slow-velocity
(Newtonian) limit of the GR radiation-hydrodynamic
equations and show that our equations reduce to the famil-
iar expressions of Newtonian radiation hydrodynamics.
For simplicity, we set all large-scale electromagnetic fields
to zero [i.e. T

��
ðemÞ ¼ 0 ¼ Bi].

a. Continuity equation

From Eq. (48), we have

ð�0u
�Þ;� ¼ 0: (A7)

In the Newtonian limit, the covariant derivative reduces
to a partial derivative (in Cartesian coordinates), and the
4-vector u� reduces to u� � ð1; viÞ. Hence the continuity
equation reduces to the familiar expression:

@t�0 þ @jð�0v
jÞ ¼ 0: (A8)

b. Euler equation

From Eq. (46), we have

@tð� ffiffiffiffi
�

p
T0

iÞ þ @jð� ffiffiffiffi
�

p
Tj

iÞ ¼ 1
2�

ffiffiffiffi
�

p
T��g��;i: (A9)

In the Newtonian limit, the metric can be approximated by

ds2 ¼ �ð1þ 2�Þdt2 þ ð1� 2�Þðdx2 þ dy2 þ dz2Þ;
(A10)

where � 	 1 is the Newtonian gravitational potential.
Keeping only the lowest order terms, we obtain

@tT
0
i þ @jT

j
i ¼ �T00�;i: (A11)

Using Eq. (57) and assuming �0 � P, �0 � E, and
�0v

i � Fi, we obtain

@tð�0viÞ þ @j½�0v
jvi þ ðPþ P Þ
j

i� ¼ ��0@i�:

(A12)

Combining Eq. (A12) with the continuity equation (A8)
yields

@tvi þ vj@jvi ¼ � 1

�0

@iðPþ P Þ � @i�; (A13)

which is the familiar Newtonian Euler equation, allowing
for gas plus radiation pressure, ðPþ P Þ.

c. Energy equation

The energy equation in the Newtonian limit is derived by
contracting u� with the equation r�T

�� ¼ 0. Using
Eq. (46) and the continuity equation r�ð�0u

�Þ ¼ 0, we

find, after some algebra, that
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u�r�ð�0�þ EÞ þ ð�0�þ Eþ Pþ P Þr�u
� þr�F

�

þ F�a�; (A14)

where a� ¼ u�r�u
� is the 4-acceleration. We note that

u�a� ¼ 0 and F�u� ¼ 0, which implies that

F�a� ¼ Fiaið1þOðv2ÞÞ: (A15)

Furthermore, we have Fi 	 E (small anisotropy condi-
tion) and ai � vj@jvi, hence

F�a� ¼
�
Fi

E
vj

�
E@jvi 	 E@iv

i; (A16)

so we may neglect F�a� in the Newtonian limit. Also,

@tF
o � @tðviF

iÞ � @tðEv2Þ 	 @tE so we may neglect this
term as well.

Hence in the Newtonian limit, we obtain

@tð�0�þ EÞ þ vi@ið�0�þ EÞ þ ð�0�þ Eþ Pþ P Þ@ivi

þ @iF
i ¼ 0: (A17)

This can be identified as the Newtonian energy equation
for the coupled fluid.

Equations (A14) and (A17) can be expressed in more
familiar forms by introducing the total (Lagrangian) time
derivative comoving with the fluid:

d

d�
� u�r� � @

@t
þ vi @

@xi
: (A18)

The continuity equation r�ð�0u
�Þ ¼ 0 gives

d�0=d� ¼ ��0r�u
�. Hence,

r�u
� ¼ � 1

�0

d�0

d�
: (A19)

Combining Eqs. (A14), (A18), and (A19) yields

d

d�
ð�0�þ EÞ � 1

�0

ð�0�þ Eþ Pþ P Þ d�0

d�
þr�F

�

þ F�a� ¼ 0: (A20)

Dividing both sides of Eq. (A20) by �0 and writing
Etot ¼ �0�þ E and Ptot ¼ Pþ P , we get

d

d�

�
Etot

�0

�
¼ �Ptot

d

d�

�
1

�0

�
� 1

�0

r�F
� � 1

�0

F�a�:

(A21)

In the Newtonian limit, d=d� ! d=dt, and we may ne-
glect F�a� and @tF

0 as explained above, and Eq. (A21)

reduces to

d

dt

�
Etot

�0

�
¼ �Ptot

d

dt

�
1

�0

�
� 1

�0

r � F; (A22)

which is the familiar first-law of thermodynamics in the
case where entropy is generated by radiation.

d. Radiation equations

From Eqs. (35) and (38), we get

@t �Si þ @jð� ffiffiffiffi
�

p
Rj

iÞ ¼ �
ffiffiffiffi
�

p ð12R��g��;i �GiÞ; (A23)

@t ��þ @ið�2 ffiffiffiffi
�

p
Ri0Þ ¼ �s� �2 ffiffiffiffi

�
p

G0: (A24)

In the Newtonian limit,

�S i � Fi; (A25)

�� � E; (A26)

Rj
i � P
j

i; (A27)

Ri0 � Fi: (A28)

Inserting these into (A23) and (A24), and dropping higher-
order terms, we obtain

@tFi þ @iP ¼ �Gi; (A29)

@tEþ @jF
j ¼ �G0; (A30)

which agree with Eqs. (94.2) and (94.3) in [46].

APPENDIX B: ESTIMATION OF
CHARACTERISTIC SPEEDS

In order to compute HLL fluxes, we must compute the
maximum left-going wave speed c� and maximum right-
going wave speed cþ on both sides of the interface. We
estimate the wave speed by computing the dispersion
relation due to a small perturbation on a magnetized, ra-
diating plasma of uniform �0, P, B

i, E, and Fi. In the
comoving frame, ui ¼ 0. We further choose our coordinate
system so that the spacetime is locally Minkowski (i.e.
g�� ¼ ���). To compute the dispersion relation, we con-

sider a perturbation of the form

�0 ¼ ��0 þ 
�0e
iðkcm�x�!cmtÞ; P¼ �Pþ 
Peiðkcm�x�!cmtÞ;

ui ¼ 
uieiðkcm�x�!cmtÞ; Bi ¼ �Bi þ 
Bieiðkcm�x�!cmtÞ;

E¼ �Eþ 
Eeiðkcm�x�!cmtÞ; Fi ¼ �Fi þ 
Fieiðkcm�x�!cmtÞ;
(B1)

where bar denotes the unperturbed quantity, and the
subscript ‘‘cm’’ refers to comoving frame values. Sub-
stituting these 12 expressions into our 12 radiation-MHD
equations (35), (38), and (49)–(51) and keeping terms
linear in the perturbation, we obtain a matrix equation of
the form MX ¼ 0. Here M is a 12
 12 matrix, and
X ¼ 
�0 
P 
ui 
Bi 
E 
Fi

� �
t, where super-

script t denotes the transpose. For simplicity, we drop the
radiative source terms G� in deriving the dispersion rela-
tion (the curvature source terms vanish in Minkowski
spacetime). The dispersion relation is obtained by setting
detðMÞ ¼ 0, which leads, after some algebra, to the fol-
lowing equation:
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!4
cmð!2

cm � k2cm=3Þ½!2
cm � ðkcm � vAÞ2�Qð!cm; kcmÞ ¼ 0;

(B2)

where

Qð!cm; kcmÞ ¼ !4
cm � ½k2cmc2m þ c2sðkcm � vAÞ2�!2

cm

þ k2cmc
2
sðkcm � vAÞ2: (B3)

Here cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P=�0h

p
is the sound speed, vA ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2=ð�0hþ b2Þp
is the Alfvén speed, and cm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
A þ c2sð1� v2

AÞ
q

. The solution !cm ¼ 0 corresponds

to pure, stationary density perturbations, !2
cm ¼ k2cm=3 is

related to the propagation speed of the radiation flux for
the nearly isotropic radiative diffusion, !2

cm ¼ ðkcm � vAÞ2
corresponds to the Alfvén waves, and Qð!cm;kcmÞ ¼ 0
corresponds to magnetosonic waves. As in [54], we re-
place the dispersion relation Qð!cm; kcmÞ ¼ 0 by
!2

cm � c2mk
2
cm ¼ 0 as it is more convenient when calculat-

ing the characteristic speed in the grid frame. As pointed
out in [54], this modified dispersion relation overestimates
the maximum wave speed by a factor of 2 in the comov-
ing frame.

Since the HLL scheme only requires the information on
the maximum and minimum characteristic speeds, we use
the following dispersion relation to estimate the character-
istic speeds:

!cm

kcm
¼

�� ffiffiffiffiffiffiffiffi
1=3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
A þ c2s ð1� v2

AÞ
q

:
(B4)

Our method for finding !=k1 in the grid frame is de-
scribed in Sec. III B.

APPENDIX C: ANALYTIC SOLUTIONS FOR
RADIATION TESTS IN MINKOWSKI SPACETIME

1. One-dimensional waves in Minkowski spacetime

We begin by assuming a �-law EOS and write
� ¼ 1þ 1=n, where n is the polytropic index. Hence the
EOS (56) becomes �0� ¼ nP.

We consider a stationary, infinite fluid in Minkowski
spacetime with planar symmetry, hence we drop all time
derivatives, all y and z components, and all y and z deriva-
tives. It follows from r�ð�0u

�Þ ¼ 0, r�T
�� ¼ 0, and

r�R
�� ¼ 0 that

ð�0u
xÞ;x ¼ 0; (C1)

T0x
;x ¼ 0; (C2)

Txx
;x ¼ 0; (C3)

R0x
;x ¼ �G0; (C4)

Rxx
;x ¼ �Gx: (C5)

It is convenient to define

P ¼

�o

P
ux

E
Fx

0
BBBBB@

1
CCCCCA; U ¼

�ou
x

T0x

Txx

R0x

Rxx

0
BBBBB@

1
CCCCCA; and S ¼

0
0
0

�G0

�Gx

0
BBBBB@

1
CCCCCA:

The system of ODEs in (C1)–(C5) becomes

@xUðPÞ ¼ SðPÞ:
The first three equations [(C1)–(C3)] are readily inte-

grated, giving three ‘‘conserved quantities’’ U1, U2, and
U3. In the presence of a shock, across which P is discon-
tinuous, these ‘‘conserved quantities’’ give the Rankine-
Hugoniot conditions, relating P’s on both sides of the
shock. The remaining two ODEs [(C4) and (C5)] can be
integrated numerically using, for example, a fourth-order
Runge-Kutta integrator. During the integration, we need
to compute P from U, which we outline as follows. For
simplicity, we consider the case without a large-scale

electromagnetic field [T��
ðemÞ ¼ 0 ¼ Bi]. Using Eq. (57)

for T��, Eq. (26) for R��, and combining Eqs. (C1)–
(C5), we obtain

�ou
x ¼ U1; (C6)

½�0 þ ðnþ 1ÞP�uxu0 ¼ U2 �U4 � Ua; (C7)

½�0 þ ðnþ 1ÞP�ðuxÞ2 þ P ¼ U3 �U5 � Ub; (C8)

4
3Eu

xu0 þ uxF0 þ u0Fx ¼ U4; (C9)

4
3EðuxÞ2 þ 1

3Eþ 2uxFx ¼ U5: (C10)

Eliminating �0 and P from Eqs. (C6)–(C8), we get an
expression for ux:

U1u
0 þ ðnþ 1ÞUbu

0ux �Ua½ðu0Þ2 þ nðuxÞ2� ¼ 0;

(C11)

where u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðuxÞ2p

. Hence ux can be determined by
solving the above algebraic equation. Having obtained ux,
the quantities �0 and P are computed from

�0 ¼ U1

ux
; (C12)

P ¼ Ub �Ua

ux

u0
: (C13)

The values of E and Fx are obtained by solving the linear
Eqs. (C9) and (C10). The result is

E ¼ �E

�
; (C14)
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Fx ¼ �F

�
; (C15)

where

� ¼ 2

3
u0 � 1

u0
; (C16)

�E ¼ 2uxU4 � u0
��

ux

u0

�
2 þ 1

�
U5; (C17)

�F ¼ 4
3u

0uxU5 � ½43ðuxÞ2 þ 1
3�U4: (C18)

We note that Eq. (C11) will, in general, have more than
one real root. Indeed, this must be the case in order for
shocks to exist. In the absence of a shock, the appropriate
root is chosen by continuity.

Our one-dimensional tests can be divided into two
groups: fully continuous configurations and discontinuous
configurations (i.e. shocks are present). In either case, we
begin by specifying boundary conditions on the asymptotic
left side (x ¼ �1). In practice, we set up our computa-
tional domain with x 2 ½�L; L�. We specify �0, P, and u

x

at x ¼ �L, denoting them as �0L, PL and uxL. We also
impose that the radiation be in LTE with the gas at x ¼ �L
[EL ¼ aRT

4
L ¼ aRm

4ðPL=�0LÞ4] and set Fx
L ¼ fL, where

fL is a parameter chosen so that Fx
L=EL 	 1. Thus, we

have specified five boundary conditions for our five ODE’s.
The values of U1, U2, and U3, which are independent of x,
are determined. If all quantities in the configuration are
continuous throughout the computational domain, these
boundary conditions at x ¼ �L are sufficient for us to
integrate Eqs. (C9) and (C10) from x ¼ �L to x ¼ L.

If, however, we wish to determine a configuration that
contains a discontinuity, which we set at x ¼ 0, we use a
shooting method, described as follows. In addition to the
boundary conditions set at x ¼ �L, we also demand that
the radiation be in LTE with the gas, and that Fx ¼ fR at
x ¼ L. The parameter fR is chosen so that Fx=E 	 1 at
x ¼ L. The constants U1, U2, and U3 are fixed, giving the
values of P at x ¼ �L. Denote the values of �0, P, u

x, and
E at x ¼ L by �0R, PR, and uxR, and ER, respectively. The
LTE condition at x ¼ L gives ER ¼ aRm

4ðPR=�0RÞ4.
From the definition of U1, U2, and U3, it is straightforward
to show that

PR

�0R

¼
�
U2 �U1u

0
R þ 4½U2ðuxRÞ2 �U3u

0
Ru

x
R�

� fRu
0
R

�
1� 3

�
uxR
u0R

�
2
�	
=½ðn� 3ÞU1u

0
R�; (C19)

U1u
0
R

�
1þ ðnþ 1Þ PR

�0R

�
þ 4

3
aRm

4

�
PR

�0R

�
4
u0Ru

x
R

þ fR

�
1þ

�
uxR
u0R

�
2
�
�U2 ¼ 0; (C20)

where u0R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðuxRÞ2

q
. Substituting Eq. (C19) into

Eq. (C20) gives an algebraic equation for uxR, which can
be solved numerically. Obviously, uxR ¼ uxL is a solution,
but we look for another solution in order to obtain a
configuration containing a shock. Having determined uxR,
the other quantities are computed as follows:

�0R ¼ U1=u
x
R; (C21)

PR ¼ PR

�0R

�0R; (C22)

ER ¼ aRm
4

�
PR

�0R

�
4
; (C23)

where PR=�0R in the above equations are computed from
Eq. (C19). To generate the one-dimensional shock configu-
ration, we first specify �L, PL, u

x
L, and consider fL and fR

as free parameters. The other quantities at x ¼ �L are
fixed by the LTE condition at x ¼ �L and Eqs. (C19)–
(C23). We then integrate Eqs. (C4) and (C5) from both
x ¼ �L to x ¼ 0. Since U1, U2, and U3 are constants, the
Rankine-Hugoniot junction conditions are automatically
satisfied at the shock front (x ¼ 0). Hence, we only have
to impose the junction conditions for the radiation varia-
bles, which are the continuity of R0x and Rxx. In the New-
tonian limit, these conditions reduce to the continuity of E
and Fx at the shock front, but this is not the case in general.
In any case, we need two junction conditions at the shock
front, so a well-posed shooting problem requires varying
two boundary condition parameters until the solution sat-
isfies the two junction conditions at the shock front. We use
fL and fR as such two parameters.
For a pure hydrodynamic (or MHD) shock, the profiles

of P are constants on each side of the shock front. This is
not the case for a radiating hydrodynamic shock, where P
vary with x and approach constants only in the asymptotic
regions (x ! �1). This variation results from the radia-
tive source terms G0 and Gx, given by Eq. (33), which
vanishes when the radiation and fluid are in strict LTE and
the radiation flux vanishes (i.e. in the asymptotic regions).
The length scale over which the parameters vary between
the two asymptotic regions is a few optical depths. We need
to choose  to ensure that x ¼ �L are in the asymptotic
regions. In practice, one can estimate the optical depth
� ¼ R

L
�L �0dx� ð�0L þ �0RÞL and choose  so that

� � 1. For our tests, we choose �� 10. Choosing a larger
 does not change the profile (plotted against the rescaled
coordinate x) significantly.

2. Special analytic case

In the Newtonian limit, the solutions of (C6)–(C10) can
be written in analytic form under special conditions, as
stated in [46,64]. Here we briefly summarize this solution.
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In the Newtonian limit, Eqs. (C6)–(C10) become

�0v ¼ U1; (C24)

ð12�0v
2 þ �0�þ Pþ Eþ P Þvþ Fx ¼ U2; (C25)

�0v
2 þ Pþ P ¼ U3; (C26)

while by dropping time derivatives in Eqs. (A29) and
(A30), we get

dFx

d�
¼ 4�B� E; (C27)

Fx ¼ � 1

3

dEðrÞ
d�

; (C28)

where v ¼ vx and � is the optical depth, given by
d� ¼ �0dx. As in [46,64], we consider a strong shock
propagating into cold gas, so that the pressure and internal
energy of the unshocked gas (x < 0) can be neglected. We
also assume that the gas is optically thick so that we may
use the diffusion approximation, and that it is sufficient to
account for the radiation flux, while neglecting radiation
energy density and radiation pressure. Under these as-
sumptions, the above equations can be rewritten as

�0v ¼ �0LvL; (C29)

�0v
2 þ P ¼ �0Lv

2
L; (C30)

�0vð�0�þ v2=2Þ þ Fx ¼ �0Lv
2
L=2: (C31)

Combining Eqs. (C28) and (C27) gives

d2Fx

d�2
¼ 3Fx þ 4aRT

3 dT

d�
: (C32)

Solving these coupled equations using methods outlined in
[46,64] one arrives at

preshock medium (x < 0):

Fx ¼ � 1

2
ffiffiffi
3

p aRT
4
Re

� ffiffi
3

p j�j; (C33)

E ¼ 1
2aRT

4
Re

� ffiffi
3

p j�j; (C34)

postshock medium (x > 0):

Fx ¼ � 1

2
ffiffiffi
3

p aRT
4
Re

� ffiffi
3

p j�j; (C35)

E ¼ aRT
4
Rð1� 1=2e�

ffiffi
3

p j�jÞ: (C36)

Here TR is the asymptotic temperature in the postshock
region and � is measured from the shock front [i.e.
�ðxÞ ¼ R

x
0 �ðx0Þdx0].

APPENDIX D: THERMAL
OPPENHEIMER-SNYDER SOLUTION

Here we summarize the analytic solutions derived in
[29] for a strong-field (black hole) dynamical scenario,
used to compare with our numerical results in Sec. IVB.
The standard Oppenheimer-Snyder (OS) collapse so-

lution for a homogeneous dust ball was first derived
in [65]. In [29], the collapsing sphere is subjected to
radiation and gas-pressure perturbations which are as-
sumed to be sufficiently small that the spacetime met-
ric and density evolution are well approximated by the
OS solution. For this to be true, we require P=�0 	 M=R
and P=�0 ¼ E=3�0 	 M=R for a star with mass M and
radius R. We are interested in the evolution of the radiation
quantities E and Fi inside the star.
Inside the star, the OS metric is given by the closed

Friedmann line element

ds2 ¼ �d�2 þ a2ð�Þðd�2 þ sin2�d�2Þ; (D1)

where � is the proper time of a fluid element and � is a
Lagrangian radial coordinate. The scale factor að�Þ is given
in parametric form according to

a ¼ 1
2amð1þ cos�Þ; (D2)

� ¼ 1
2amð�þ sin�Þ: (D3)

Here � is the conformal time and am is a constant which is
related to the initial areal radius Ri of the star. (The sub-
script i denotes initial values.) The radius is given by

R ¼ 1
2Rið1þ cos�Þ: (D4)

The exterior Schwarzschild line element is

ds2 ¼ �
�
1� 2M

rs

�
dt2 þ

�
1� 2M

rs

��1
dr2s þ r2sd�

2;

(D5)

where rs is the Schwarzschild (areal) radius. Matching the
two metrics at rs ¼ R gives

am ¼
ffiffiffiffiffiffiffiffi
R3
i

2M

s
: (D6)

Denote �0 as the Lagrangian radial coordinate � at the
stellar surface. It follows from Eqs. (D1), (D2), (D4), and
(D5) that

sin�0 ¼ R

a
¼

ffiffiffiffiffiffiffiffi
2M

Ri

s
: (D7)

In Friedmann comoving coordinates the density �0 is al-
ways homogeneous and given by

�0

�0i
¼ Q�3; (D8)
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where

Q ¼ a

am
¼ 1

2
ð1þ cos�Þ: (D9)

An analytic solution for the E and F is derived in [29,30]
by assuming (1) diffusion approximation, (2) that the
radiation and fluid are in LTE (E ¼ aRT

4), and (3)
that radiation pressure is much greater than gas pressure
(P � P). We summarize the solution below.

Define the radiation energy density and flux ‘‘corrected’’
for adiabatic contraction as Ec ¼ Q4E and Fc ¼ Q4F,
respectively. Define a time parameter ~� as

~� ¼ 1

4ð�a þ �sÞ

ffiffiffiffiffiffiffiffi
Ri

8M

s �
sin�0

�0

�
2
�
�þ 4

3
sin�þ 1

6
sin2�

�
;

(D10)

where �a and �s are the initial absorption and scattering
optical depths, respectively, related to the absorption and
scattering opacities a and s by �a ¼ a�0iRi and
�s ¼ s�0iRi. (Note that the analytic solution assumes
a and s to be constant throughout the collapse.) Define
also a normalized Lagrangian radius z ¼ �=�0, such that
0  z  1 within the star. Then the interior corrected
energy density is given by

Ecð~�;zÞ¼ 2Ei

�
sin�0

sinð�0zÞ
�
e�

2
0~�
X1
n¼1

�
ð�1Þnþ1e�n2�2~� sinðn�zÞ


 n�

n2�2��2
0

�
; (D11)

where Ei is the initial value of E, assumed to be constant
throughout the star. Note that in the derivation of Eq. (D11)
the ‘‘zero temperature’’ boundary condition (E ¼ 0 at the
stellar surface) has been used.
The diffusion approximation gives the expression for the

corrected radiation flux Fc in terms of the gradient of Ec:

Fcð~�; zÞ ¼ �Q2

3

�
sin�0

�0

��
1

�a þ �s

�
@Ec

@z
(D12)

¼ 2

3

EiQ
2

�a þ �s
1

�0

�
sin�0

sinð�0zÞ
�
2
e�

2
0
~�


 X1
n¼1

�
ð�1Þnþ1e�n2�2~�½�0 sinðn�zÞ cosð�0zÞ

� n� sinð�0zÞ cosðn�zÞ� n�

n2�2 � �2
0

	
: (D13)

Finally, an analytic expression for the ideal gas pres-
sure P ¼ �0T=m is obtained from the LTE condition
E ¼ aRT

4 ¼ aRm
4ð P�0

Þ4. Hence

P ¼ �0

�
E

aRm
4

�
1=4

; (D14)

where �0 and E are given by the analytic solutions above.
A comparison between the analytic solution for thermal

OS collapse and the exact solution of the Boltzmann
equation of radiative transfer for the same problem is given
in [30].
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