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Singularities in the thermodynamics of Kerr-Newman black holes are commonly associated with phase

transitions. However, such interpretations are complicated by a lack of stability and, more significantly, by

a lack of conclusive insight from microscopic models. Here, I focus on the later problem. I use the

thermodynamic Riemannian curvature scalar R as a try to get microscopic information from the known

thermodynamics. The hope is that this could facilitate matching black hole thermodynamics to known

models of statistical mechanics. For the Kerr-Newman black hole, the sign of R is mostly positive, in

contrast to that for ordinary thermodynamic models, where R is mostly negative. Cases with negative R

include most of the simple critical point models. An exception is the Fermi gas, which has positive R. I

demonstrate several exact correspondences between the two-dimensional Fermi gas and the extremal

Kerr-Newman black hole. Away from the extremal case, R diverges toþ1 along curves of diverging heat

capacities CJ;� and C�;Q, but not along the Davies curve of diverging CJ;Q. Finding statistical mechanical

models with like behavior might yield additional insight into the microscopic properties of black holes. I

also discuss a possible physical interpretation of jRj.
DOI: 10.1103/PhysRevD.78.024016 PACS numbers: 04.70.Dy, 04.60.�m, 05.40.�a

I. INTRODUCTION

AKerr-Newman black hole is characterized solely by its
mass M, angular momentum J, and charge Q [1]. Such
simplicity allows a thermodynamic representation with
laws analogous to the standard laws of thermodynamics
[2–5]. Previously, I discussed this structure in the context
of thermodynamic fluctuation theory [6]. This leads natu-
rally to thermodynamic Riemannian geometry; see [7] for
a review.

The resulting thermodynamic Riemannian curvature
scalar R has been explored by a number of authors for
black hole thermodynamics [8–25]. The main contribution
of the present paper is an attempt at a physical interpreta-
tion of R, and its systematic evaluation for the Kerr-
Newman black hole. The analogy with ordinary thermo-
dynamics is emphasized, as is the significance of the sign
of R.

The thermodynamic fluctuation formalism requires
stability, namely, fluctuations about a maximum in the total
entropy. This issue poses difficulty for black holes. In [6]
stability was obtained by restricting the number of inde-
pendent fluctuating variables. In addition, an infinite ex-
tensive environment was employed to have the fluctuations
depend only on the known thermodynamics of the black
hole.

For an ordinary thermodynamic system, jRj was inter-
preted [26] as proportional to the correlation volume �d,
where d is the system’s spatial dimensionality and � is its
correlation length. Direct calculations in a number of
statistical mechanical models have verified this [7]; see
[11] for a more recent review. A thermodynamic quantity,

R, then reveals information normally thought to reside in
the microscopic regime, �. Thus, R has been of interest in
black hole physics, which has good thermodynamic struc-
tures, but little conclusive microscopic information.
I interpret jRj for black holes as the average number of

correlated Planck areas on the event horizon. Although I
give no direct microscopic model evidence, this interpre-
tation would seem to be well motivated by the analogy with
ordinary thermodynamics.1 Zero R indicates then ‘‘pixels’’
or ‘‘bits’’2 on the event horizon fluctuating independently
of each other. Diverging jRj, which I take as signalling a
phase transition, indicates highly correlated pixels.
R diverges for extremal Kerr-Newman black holes,

where the temperature T ! 0. I demonstrate here, and
previously [29], several exact limiting results matching
extremal Kerr-Newman black hole thermodynamics to
the two-dimensional (2D) Fermi gas (d ¼ 2). Two dimen-
sions are consistent with the membrane paradigm of black
holes [30].
I also find instances of diverging R where the heat

capacities CJ;� and C�;Q diverge and change sign, signal-

ling a change of stability. Although divergences in these
heat capacities were identified by Tranah and Landsberg
[31] in 1980, they have been little discussed in the litera-
ture. In contrast, I find no diverging R along the Davies
curve [4] where the more familiar heat capacity CJ;Q

diverges.

*ruppeiner@ncf.edu

1Such an interpretation is consistent with the assumption ‘‘that
all the statistical degrees of freedom of a black hole live on the
black hole event horizon’’ [27].

2See [28] for a semipopular discussion picturing the quantiza-
tion of area on the event horizon in terms of Planck areas.
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This paper is organized as follows. First, I review the
thermodynamic fluctuation picture in [6]. Second, I discuss
thermodynamic Riemannian geometry and curvature, in-
cluding an attempt at a physical interpretation for R. Third,
I calculate R for the Kerr-Newman black hole. Fourth, I
compare the results with those in ordinary
thermodynamics.

II. THERMODYNAMIC FLUCTUATION THEORY

A major element in my approach is that the black hole
resides in an infinite environment, characterized by mass
Me, angular momentum Je, and charge Qe. The thermody-
namics of the environment should be extensive; namely,
Me, Je, and Qe should each scale up in proportion to the
environment’s volume.With this structure, thermodynamic
fluctuations require only the known thermodynamics of the
black hole. The environment’s thermodynamic properties,
which might be difficult to determine (dark matter, etc.),
only sets the state about which fluctuations occur.

This structure is thermodynamically unstable if we al-
low an exchange of all three variables ðM; J;QÞ [6,31].
Stability requires either a finite environment or a restriction
on the number of independent fluctuating variables. In [6] I
took the later approach, and considered the stability of
seven cases in an infinite environment: fluctuating

ðM; J;QÞ, ðJ;QÞ, ðM;QÞ, ðM; JÞ, M, J, and Q.3

Physically, we imagine that one (or two) of M, J, or Q is
so slow fluctuating that we can consider it to be essentially
fixed.

I use geometrized units with M and Q in cm, and J and
entropy S in cm2 [1]. Useful are the Planck length

Lp �
ffiffiffiffiffiffiffi
@G

c3

s
¼ 1:616� 10�33 cm; (1)

and the Planck mass

Mp �
ffiffiffiffiffi
@c

G

s
¼ 2:177� 10�5 g; (2)

with @, c, and G the usual physical constants. In geome-
trized units G ¼ c ¼ 1 and Lp ¼ Mp.

The entropy of the Kerr-Newman black hole is [4,33]

SðM; J;QÞ ¼ 1
8ð2M2 �Q2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J2 �M2Q2

q
Þ: (3)

To convert S to real units, where it is Sbh, use

Sbh
kB

¼
�
8�

L2
p

�
S; (4)

with kB Boltzmann’s constant [6].
The total entropy of the universe is

Stot ¼ Sbh þ Se; (5)

where Se is the entropy of the black hole’s environment.
The fluctuation probability is given by Einstein’s formula
[34],

P / exp

�
Stot
kB

�
: (6)

Introduce the notation

ðX1; X2; X3Þ � ðM; J;QÞ (7)

and

F� � @Sbh
@X� ; (8)

with corresponding properties of the environment denoted
by the subscript e. The intensive Fe� values are indepen-
dent of the size of the environment.
Let us assume (incorrectly, as it turns out) that the black

hole and the environment are fully in equilibrium, with a
local maximum for Stot. Consider a small fluctuation �X�

away from this equilibrium. Expanding each of the entro-
pies in Eq. (5) to second order yields

�Stot ¼ F��X
� þ Fe��X

�
e þ 1

2

@F�

@X� �X
��X�

þ 1

2

@Fe�

@X�
e

�X�
e �X�

e ; (9)

where the coefficients are evaluated at the equilibrium
state, which is set by the environment. The conservation
laws demand

�X� ¼ ��X�
e ; (10)

and a necessary condition for maximum entropy is

F� ¼ Fe�: (11)

With a very large environment, the second quadratic
term in Eq. (9) is negligible compared with the first. To
see this, fix the values of �X�

e , which equal��X�. As the
environment is scaled up to infinite size at fixed Fe�, X

�
e

scales up in proportion without limit, and @Fe�=@X
�
e ! 0.

The ability to drop this second quadratic term is a signifi-
cant simplification offered by an infinite, extensive
environment.
Equation (9) now can be written as

�Stot
kB

¼ � 1

2
g���X

��X�; (12)

3Kaburaki et al. [32] considered the stability of the Kerr black
hole (Q ¼ 0) under a variety of conditions, including ones
similar to those here. These authors used the sophisticated
Poincaré turning point method which allows stability statements
for finite environments with thermodynamics not necessarily
known. With an infinite environment, however, the black hole
entropy Hessian determinants are sufficient for considerations of
stability [6]. Fluctuating conserved variables M, J, or Q are
commonly referred to as ‘‘canonical,’’ and fixed conserved
variables as ‘‘microcanonical.’’
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where the symmetric matrix4

g�� � �
�
8�

L2
p

�
@2S

@X�@X�
: (13)

The Gaussian approximation to the fluctuation probabil-
ity is

PdX1dX2dXn ¼
ffiffiffiffiffiffijgjp

ð2�Þn=2 exp

�
� 1

2
g���X

��X�

�

� dX1dX2dXn; (14)

where jgj is the determinant of g�� and n ¼ 3 is the

number of independent fluctuating variables. If we set
one or two �X�’s to zero, reducing the value of n,
Eqs. (12) and (14) are only trivially modified. Entropy
maximum requires that the matrix g�� of the remaining

variable(s) be positive definite. Complete discussion of this
is given in [6].

The first fluctuation moments are zero [34]:

h�X�i ¼ 0: (15)

The second fluctuation moments are

h�X��X�i ¼ g��; (16)

with g�� the components of the inverse g�� matrix.

Further notation is given in the Appendix, where I define
the basic thermodynamic variables T, �, and �, the sim-
plifying variables �, �, K, and L, the entropy Hessian
determinants p2, p

0
2, and p

00
2 , with numerators A, B, and C,

and the heat capacities CJ;Q, CJ;�, and C�;Q. Diverging

heat capacities are important below, and Fig. 1 shows
curves of infinities as well as the extremal limiting curve
where the temperature T ! 0.

III. THERMODYNAMIC RIEMANNIAN
GEOMETRY

In this section, I summarize the thermodynamic
Riemannian geometry.

A. Thermodynamic metric

The metric follows naturally from the observation that
the quadratic form in Eq. (12) transforms as a scalar under
any coordinate change because �Stot depends only on the
initial and final thermodynamic states. Hence,

ð�lÞ2 ¼ � 2�Stot
kB

¼ g���X
��X� (17)

is a Riemannian line element. It is unitless and positive
definite assuming stability. Its physical interpretation is
clear from Eq. (14): the less probable a fluctuation between
two states, the further apart they are.
In the definition of g�� in Eq. (13), S was converted to

Sbh=kB in real units, essential in Eq. (6). Such a unit
conversion is unnecessary if R is not needed beyond a
proportionality constant. However, a quantitative interpre-
tation of R in analogy with ordinary thermodynamics
requires a unitless line element of the form in the expo-
nential of Eq. (14).
To get the metric elements in Eq. (13), I used the special

properties of the conserved variables ðM; J;QÞ. Once we
have Eq. (13), g�� transforms as a second rank tensor

under a change of coordinates [7]. Generally, under such
a transformation the Hessian form in Eq. (13) will not
persist. However, since we know the function S ¼
SðM; J;QÞ, there is no need in this paper to change
coordinates.

B. Thermodynamic curvature

Calculate R as follows [35]: the Christoffel symbols are

��
�� ¼ 1

2g
��ðg��;� þ g��;� � g��;�Þ; (18)

where the comma notation indicates partial differentiation.
The Riemannian curvature tensor is

R�
��� ¼ ��

��;� � ��
��;� þ �

�
���

�
�� � �

�
���

�
��; (19)

and the Riemannian curvature scalar is

R ¼ g��R�
���: (20)

R is independent of the choice of coordinate system,
suggesting it is a fundamental measure of thermodynamic
properties. Since the line element is unitless, R will be
unitless.

FIG. 1. Some characteristic curves for the Kerr-Newman black
hole; see the Appendix. The curve along which CJ;Q diverges is

the Davies curve. R diverges at the extremal limit and along
curves corresponding to a change of stability, which have di-
verging CJ;� and C�;Q.

4In [6], the symbol ��� was used for this quantity. g��
denoted this quantity without the unit conversion factor for S.
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For two-dimensional thermodynamic geometries (n ¼
2), all components of the Riemannian curvature tensor may
be expressed in terms of the curvature scalar R [35]. Not so
in higher dimensions. However, it was argued [36] that R is
the essential quantity in thermodynamic geometry regard-
less of the number of independent thermodynamic
variables.

For an ordinary pure fluid, a common picture [26] is that
of an open subsystem with fixed volume V surrounded by
an infinite environment of the same fluid. The entropy
fluctuation is

�Stot
kB

¼ 1

2
V

1

kB

@2s

@x�@x�
�x��x�; (21)

where s is the entropy per volume (in units of kB per
volume), and x1 and x2 are the energy and particle number
per volume, respectively. The pure fluid line element was
written [26] with V omitted:

ð�lÞ2 ¼ � 1

kB

@2s

@x�@x�
�x��x�; (22)

and has units of inverse volume. The corresponding R has
units of volume.

Logically, however, the pure fluid line element could
have been written in the unitless form

ð�lÞ2 ¼ � 2�Stot
kB

¼ � 1

kB

@2S

@X�@X� �X
��X�; (23)

with neither the subsystem entropy S nor the conserved
energy and particle number fX1, X2g divided by the con-
stant V. The form of this line element matches that of the
black hole line element Eq. (17). It has unitless R.

For the pure fluid, it was noted [26] that R calculated
with the line element Eq. (22) is zero for the pure ideal gas,
suggesting that R is a measure of intermolecular interac-
tion strength. Indeed, calculations showed jRj to be pro-
portional to the correlation volume �d for a number of
statistical mechanical models [7,11].

Such calculations dovetailed nicely with R having units
of volume. However, the units of R are not naturally
determined.5 With the equally valid line element in
Eq. (23), the fixed V now appears in the denominator of
R, and R is unitless. If we imagine the fluid broken up into
three-dimensional (d ¼ 3) pieces each of volume V, jRj is
the average number of correlated ‘‘pixels.’’ The physical
interpretation of jRj is then essentially the same regardless
of whether or not we pull V out of the line element.

This leads to a possibly useful way to look at black
holes. Although there is no fixed subsystem volume to
set a scale, the Planck length Lp suggests a physical

constant for this role.6 Black hole thermodynamics takes
place on the 2D event horizon. It is natural to break it up
into square pixels each of area L2

p [28]. By analogy with

the pure fluid, I interpret jRj as the average number of
correlated pixels. Figure 2 illustrates this physical
interpretation.
I cannot presently support this idea with microscopic

calculations of a type which were so valuable in ordinary
thermodynamics. However, the correspondence in the ex-
tremal limit with the 2D Fermi model [29], discussed
below, indicates at least consistency with the black hole
membrane paradigm [30] which puts all black hole prop-
erties on the 2D event horizon.
Note, this interpretation is only of jRj. Janyszek and

Mrugała [38] argued that the sign of R is also important.
I amplify on this in Sec. VI.
Finally, in a coordinate system with metric elements of

Hessian form, R simplifies. The arguments in [36] allow
one to show that with metric elements in Eq. (13),

R ¼ 1
4g

��g�og�	ðg��;�go�;	 � g�o;	g��;�Þ: (24)

The second derivatives of the metric elements cancel in the
calculation.

FIG. 2. The event horizon broken up into Planck area pixels.
The dark pixels are portrayed as somehow correlated. I propose
that jRj measures the average number of correlated pixels.

5My previous arguments about the significance of volume
units for R (see, e.g., Sec. VI.B of [7]) may have been overstated.
Model calculations and the path integral approach to thermody-
namic fluctuation theory [37] are the best way to establish R /
�d. However, the pulling out of V in Eq. (22), and the resulting
units of volume for R, is certainly natural and leads to correct
results.

6Note, in ordinary thermodynamics there is no physical con-
stant with units of length.
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C. Background on black hole thermodynamic curva-
ture from the entropy metric

Åman et al. [16] presented a recent review of thermody-
namic curvature in the context of black holes, so my re-
marks in this section will be brief. Ferrara et al. [8] were
the first to apply thermodynamic curvature to black holes,
to calculate critical behavior in moduli spaces. Cai and Cho
[9] connected phase transitions in Bañados-Teitelboim-
Zanelli (BTZ) black holes to diverging R. They also iden-
tified a correspondence with R for the Takahashi gas,
suggesting that an appropriate black hole statistical model
might be a system of hard rods.

Åman, Bengtsson, and Pidokrajt [10] were the first to
evaluate R for various instances of the Kerr-Newman black
hole, especially the two-dimensional (n ¼ 2) Kerr and
Reissner-Nordström cases. They also considered a nonzero
cosmological constant. Arcioni and Lozano-Tellechea [12]
worked out five-dimensional black holes and black rings,
including an extensive review. They connected phase tran-
sitions to both diverging R and diverging second fluctua-
tion moments.

Åman et al. [14] examined R in the context of homoge-
neous functions, emphasizing, in particular, cases with
R ¼ 0. Åman and Pidokrajt [15] investigated Kerr and
Reissner-Nordström black holes in spacetime dimensions
higher than four. They found that patterns in four dimen-
sions continue to higher dimensions. Sarkar et al. [17]
evaluated R for a general class of BTZ black holes, includ-
ing quantum corrections to the entropy. Mirza and
Zamaninasab [18] worked out the curvature of the full
3D geometry for the Kerr-Newman black hole. They found
that R diverges at the extremal limit, but not along the
Davies curve. Åman et al. [20] reported results on dilaton
black holes.

D. Curvature from other than entropy metrics

One is certainly not constrained to do thermodynamic
Riemannian geometry with fluctuations and its entropy
metric. Another possibility is to express the internal energy
in terms of its natural variables, M ¼ MðS; J;QÞ, and
construct an energy metric from its Hessian. This was
done originally in ordinary thermodynamics by Weinhold
[39]. The energy metric is conformally equivalent to the
entropy metric [40], with the same angles between vectors,
but different R.

A motivation for exploring other metrics (including the
energy metric) is a concern by some authors about the
physical validity of cases with R ¼ 0 from the entropy
metric. If R is interpreted as a measure of interactions
among gravitating particles, one might logically expect
jRj to be uniformly large for black holes, where gravita-
tional forces are very big.

However, the interpretation of R in this paper takes a
different approach. The gravitating particles have presum-
ably collapsed to the central singularity, shrinking the

interactions between them to zero volume. The statistics
underlying the thermodynamics are envisioned to be on the
event horizon. A result R ¼ 0 seems now not so unreason-
able. Yet, I present little in the way of microscopic evi-
dence for this point of view, so concerns about the physical
validity of R ¼ 0 certainly cannot be dismissed.
For the Reissner-Nordström black hole Åman et al. [10]

found R ¼ 0 with the entropy metric. To avoid this zero
curvature, Shen et al. [13] constructed a new entropy
metric, replacing Q with � and M with M��Q. These
authors also argued that R should signal (by diverging) a
phase transition at the Davies curve. Their modified R
shows such a divergence. A detailed analogy with the
van der Waals phase transition was worked out with their
modified metric. The authors also connected to modern
themes in particle theory, such as holography and the AdS/
CFT correspondence. Mirza and Zamaninasab [18] evaded
zero curvature by evaluating R for the full 3D Riemannian
geometry. Here, R is always positive, as will be discussed
in Sec. VA. Quevedo and collaborators [19,21,23] sug-
gested that this issue requires Legendre invariant metrics to
deal with properly. They constructed a detailed framework
based on this idea. Medved [24] also gave a recent dis-
cussion of these issues.

IV. BACKGROUND ON PHASE TRANSITIONS

Exactly what constitutes a black hole phase transition is
somewhat unsettled in the literature. In ordinary thermo-
dynamics the modern belief is ‘‘a phase transition occurs
when there is a singularity in the free energy or one of its
derivatives’’ [41]. Phase transitions can bring about dra-
matic contrasts, like between a solid and a gas. Or changes
can be more subtle, like the onset of a gradual deformation
in crystal structure. Conjectured phase transitions in Kerr-
Newman black holes are typically of the more subtle
variety, second-order phase transitions associated perhaps
with a diverging heat capacity.
Phase transition theory in ordinary thermodynamics

typically includes equilibrium between system and envi-
ronment. Achieving this with black holes can be difficult.
A more serious problem is the lack of conclusive micro-
scopic models for black holes. This makes it hard to
identify objects as fundamental to phase transition theory
as order parameters and correlation functions.
There are then a number of viewpoints of what might be

involved in a black hole phase transition: (1) a change in
topology, (2) a divergence of a second fluctuation moment,
(3) a divergence of a heat capacity, (4) an onset of insta-
bility like that in an axisymmetric rotating self-gravitating
fluid, (5) a divergence of R, and (6) consistency with the
scaling laws of critical phenomena.7

7Another possibility is the first-order phase transition consist-
ing of a black hole condensing out of the background space [5].
However, this differs from the second-order phase transitions at
issue here.
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For the Kerr-Newman black hole, there is no topology
change except possibly at the extremal limit. Otherwise,
the topology is that of the sphere [42].

Second fluctuation moments are connected to quantities
such as heat capacities through thermodynamic fluctuation
theory [34], so viewpoints (2) and (3) are related, a point
not always clear in the black hole literature.

Davies [4] argued that the curve of diverging CJ;Q con-

stitutes a second-order phase transition. However, this has
been disputed by a number of authors. One issue is whether
or not the Davies curve marks an actual change of stability.
I found that it does so only for M fluctuations [6]. Davies
[4] also brought up the analogy with the change of sym-
metry of an axisymmetric rotating self-gravitating fluid
[43]. However, this was questioned [44] since the non-
rotating black hole also crosses the Davies curve as charge
is increased.

Arguments based on scaling theory usually involve at-
tempts to introduce an order parameter. Cai et al. [45] and
Kaburaki [46] argued that the extremal limit constitutes a
second-order phase transition and proposed the difference
between the inner and outer black hole radii as the order
parameter. Lousto [47,48] emphasized instead a phase
transition along the Davies curve. He used ���c as
the order parameter, where�c is the angular velocity along
the Davies curve. He also worked out critical exponents
and discussed them in the context of scaling theory. Lau
[49] also argued that the Davies curve corresponds to a
second-order phase transition.

V. KERR-NEWMAN THERMODYNAMIC
CURVATURE

In this section, I work out R for ðM; J;QÞ, ðJ;QÞ, ðM;QÞ,
and ðM; JÞ fluctuations.M, J, andQ fluctuations, with n ¼
1, have R trivially zero, and require no special
consideration.8

I go beyond Åman et al. [10], and report all situations. In
the Kerr-Newman family, these authors focused primarily
on Reissner-Nordström black holes, represented by the
geometry of ðM;QÞ fluctuations with J ¼ 0, and Kerr
black holes, represented by the geometry of ðM; JÞ fluctua-
tions with Q ¼ 0.

A. ðM;J;QÞ fluctuating
Here, all ðM; J;QÞ fluctuate. By Eq. (17),

ð�lÞ2 ¼ g11ð�MÞ2 þ 2g12�M�J þ 2g13�M�Q

þ g22ð�JÞ2 þ 2g23�J�Qþ g33ð�QÞ2; (25)

corresponding to a 3D Riemannian geometry (n ¼ 3). This
case falls entirely outside the domain of stable fluctuations
[6,31], and so I give it only a little attention.
Evaluation with Eq. (20) shows R to be always real and

positive, with a minimum of ðMp=2
ffiffiffiffi
�

p
MÞ2 at the origin

J ¼ Q ¼ 0. R is shown in Fig. 3.9 It has no anomalies
except at the extremal limit, where it diverges proportional
to T�1.
Mirza and Zamaninasab [18] also worked out this case.

With zero cosmological constant, they found that R di-
verges at the extremal limit, but nowhere else. In particular,
they found no divergence along the Davies curve. They
also found nonzero R for the Reissner-Nordström case,
J ¼ 0. Figure 3 corroborates these findings.

B. ðJ;QÞ fluctuating, M fixed

Here, ðJ;QÞ fluctuate at fixed M. By Eq. (17),

ð�lÞ2 ¼ g22ð�JÞ2 þ 2g23�J�Qþ g33ð�QÞ2; (26)

corresponding to a 2D Riemannian geometry (n ¼ 2).
Fluctuations in this case are stable for all states in the
physical regime [6].
By Eq. (20), and the definitions in the Appendix,

R ¼ ðK5 þ L2K3 � 2K3 � 2K2 þ 3L2K � 3K þ 2Þ
4�KB2

�
�
Mp

M

�
2
: (27)

R is shown in Fig. 4. As is argued in the Appendix, B is

J/M 2

-0.5
-1.0

0.0

0.5

1.0

Q/M
-0.5

0.0

0.5

1.0

-1.0

R(M/Mp )
2

0.0

0.2

0.4

 (M, J, Q)
fluctuating

FIG. 3 (color online). RðM=MpÞ2 as a function of J=M2 and
Q=M for ðM; J;QÞ fluctuations. R is real, positive, and regular
in the physical regime, and diverges as T�1 at the extremal limit.

8Trivial geometries (n ¼ 1) reflect noninteracting systems. For
example, open fluid systems characterized by one fluctuating
parameter, usually the internal energy or the temperature, gen-
erally do not have interactions, e.g., a gas of photons. With
interactions, an additional parameter, like the density, is gener-
ally required.

9As was pointed out [10,18], the full algebraic expression for
R is not particularly revealing. I will adhere to tradition and not
show it here.
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never zero in the physical regime. Hence, R only diverges
at the extremal limit where K ! 0.

Let us examine further the extremal limit.
Equations (27), (A6), and (A15) yield the extremal limiting
expressions

CJ;Q ¼ 1

16
M3L2T; (28)

and

R ¼ 2M2
p

�M3L2T
: (29)

The limiting product of curvature and heat capacity,

ðRÞ
�
8�

L2
p

CJ;Q

�
¼

�
2M2

p

�M3L2T

��
8�M3L2T

16L2
p

�
¼ 1 (30)

is a unitless, scale-free constant independent of where we
are on the extremal limiting curve. In Sec. VI B, I evaluate
the statistical mechanics of the 2D Fermi gas and demon-
strate several exact correspondences with these results at
low temperature.

We have from Eq. (16), and the definitions in the
Appendix, the dimensionless second fluctuation moments

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�JÞ2ip
@

¼ 1ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K4 � L2K þ 2K

B

s �
M

Mp

�
; (31)

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�QÞ2ip
e

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
137:04

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK3 þ L2K � KÞ

B

s
; (32)

where e is the electron charge and 137:04 ¼ @=e2 is the
fine structure constant. Both fluctuation moments are real

and nondiverging in the entire physical regime. They have

maxima of 1=
ffiffiffiffiffiffiffi
2�

p
and 3.302, respectively, at the origin

J ¼ Q ¼ 0, and decrease to zero as
ffiffiffiffi
T

p
at the extremal

limiting curve.

C. ðM;QÞ fluctuating, J fixed

Here, ðM;QÞ fluctuate at fixed J. By Eq. (17),

ð�lÞ2 ¼ g11ð�MÞ2 þ 2g13�M�Qþ g33ð�QÞ2; (33)

corresponding to a 2D Riemannian geometry (n ¼ 2).
There is a slice of stability [6] in the (

ffiffiffiffi
�

p
,

ffiffiffiffi
�

p
) plane

bounded by the extremal limiting curve and the curve C ¼
0, as shown in Fig. 5.
By Eq. (20), and the definitions in the Appendix,

R ¼ �ðL� 1ÞðLþ 1Þ
2�KC2

ð3KL6 � 4L6 þ 4K3L4 � 8K2L4

� 6KL4 þ 36L4 þ K5L2 � 4K4L2 þ 14K3L2

þ 40K2L2 � 36KL2 � 96L2 þ 8K5 þ 4K4

� 36K3 � 32K2 þ 48K þ 64Þ
�
Mp

M

�
2
: (34)

R is shown in Fig. 6. Despite only a limited slice of
stability, located in the ‘‘saddlebags’’ near J=M2 ¼ �1,
R is real everywhere in the physical regime.
Along the line J ¼ 0, we clearly have R ¼ 0, since L ¼

1. This was demonstrated by Åman et al. [10] who also
pointed out that there is no curvature anomaly at the Davies
point ðJ=M2; Q=MÞ ¼ ð0; 0:8660Þ. I add that no point
along the line J ¼ 0 lies in the stable slice, as is clear in
Fig. 5.
Figure 6 shows a steep drop to negative R near Q=M ¼

�1. The cut away view shows this as a waterfall shape.
Such abrupt behavior, the only case of negative curvature

J/M 2

R(M/Mp )
2

Q/M
-0.5

-0.5

-1.0

-1.0 0.0

0.0

0.5

0.5

1.0

1.0

0.0

0.2

0.4

    (J, Q)
fluctuating

FIG. 4 (color online). RðM=MpÞ2 as a function of J=M2 and
Q=M for ðJ;QÞ fluctuations. R is real, positive, and regular in
the physical regime, and diverges as T�1 at the extremal limit.

FIG. 5. Stable fluctuation regime for ðM;QÞ fluctuating at
fixed J is indicated by þ signs. The case with J ¼ 0
corresponds to the Reissner-Nordström black hole, which lies
entirely out of the stable regime.
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for the Kerr-Newman black hole, reminds one of the abrupt
change in sign for the Takahashi gas [50] and for the finite
1D Ising model [51], which will be discussed further in
Sec. VIA. None of these negative values fall into the stable
slice, however.

Closer to the extremal limit, R comes up again, diverg-
ing toþ1 at all points on the extremal limiting curve K ¼
0 except J ¼ 0. Equations (34) and (A6) yield the extremal
limiting expression

R ¼ 2M2
p

�M3L2T
: (35)

Despite the difference between ðM;QÞ and ðJ;QÞ fluctua-
tions, this limiting expression is the same as Eq. (29) for
ðJ;QÞ fluctuations, and the match to the 2D Fermi gas
applies equally well here.

R has an additional divergence, to þ1, at the other
boundary of stability, C ¼ 0. R diverges as C�2. CJ;�

diverges as C�1, by Eq. (A17).
We have from Eq. (16), and the definitions in the

Appendix, the dimensionless second fluctuation moments

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�MÞ2ip
me

¼ 1ffiffiffiffiffiffiffi
2�

p
�
Mp

me

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K4 � L2K þ 2K

C

s
; (36)

with me the electron mass, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�QÞ2ip
e

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
137:04

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4K4 þ 2L2K3 � 8K3 þ 2L4K

C

s
:

(37)

Both these quantities are real in the slice of stability. They

go to zero as
ffiffiffiffi
T

p
at the extremal limit K ¼ 0, and diverge

along the curve C ¼ 0. Hence, changing stability is
marked by both diverging R and diverging fluctuations.
Note, fluctuations inM expressed in units of the electron

mass are huge. However, in units of the Planck mass they
would be much smaller, on the order of the fluctuations in J
and Q.

D. ðM;JÞ fluctuating, Q fixed

Here, ðM; JÞ fluctuate at fixed Q. By Eq. (17),

ð�lÞ2 ¼ g11ð�MÞ2 þ 2g12�M�J þ g22ð�JÞ2; (38)

corresponding to a 2D Riemannian geometry (n ¼ 2).
Stability is confined to a slice bounded by the extremal
limiting curve and the A ¼ 0 curve, as shown in Fig. 7.
By Eq. (20), and the definitions in the Appendix,

R ¼ 1

2�KA2
ðK7 þ 3K6 þ 2L2K5 þ 6L2K4 � 5K4

þ L4K3 þ 9L2K3 � 9K3 þ 3L4K2 þ 4L2K2

� 8K2 þ 9L4K � 21L2K þ 12K þ 9L4

� 24L2 þ 16Þ
�
Mp

M

�
2
: (39)

It is shown in Fig. 8. Despite only a limited slice of
stability, R is real and positive everywhere in the physical
regime. Its minimum value is ðMp=2

ffiffiffiffi
�

p
MÞ2 at the origin.

Åman et al. [10] computed R for Q ¼ 0, and found it to
diverge at the extremal limit. They pointed out that there is
no curvature anomaly at the Davies point ðJ=M2; Q=MÞ ¼
ð0:6813; 0Þ. This is confirmed by the findings here. I add
that no point with Q ¼ 0 lies in the stable regime, as is
clear in Fig. 7.
R diverges at the extremal limit K ¼ 0. Equations (39)

and (A6) yield the extremal limiting expression

FIG. 7. Stable fluctuation regime for ðM; JÞ fluctuating at fixed
Q is indicated by þ signs. The case with Q ¼ 0 corresponds to
the Kerr black hole, which lies entirely out of the stable regime.

Q/M
-0.5

-1.0

0.0
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J/M 2
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0.0
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R(M/Mp )
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   (M, Q)
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FIG. 6 (color online). RðM=MpÞ2 as a function of J=M2 and
Q=M for ðM;QÞ fluctuations. R is real everywhere in the
physical regime. It is mostly positive, but there are two regimes
of negative values near Q=M ¼ �1. R diverges at both limits of
stability.
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R ¼ 2M2
p

�M3L2T
: (40)

Remarkably, this is the same as Eqs. (29) and (35) found
previously.

R has an additional divergence, to þ1, at the other
boundary of stability, A ¼ 0. R diverges as A�2. C�;Q

diverges as A�1, by Eq. (A18).
We have from Eq. (16), and the definitions in the

Appendix, the dimensionless second fluctuation moments

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�MÞ2ip
me

¼ 1ffiffiffiffiffiffiffi
2�

p
�
Mp

me

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3 þ L2K � K

A

s
; (41)

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�JÞ2ip
@

¼ 1ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2K4 þ L2K3 � 4K3 þ L4K

A

s �
M

Mp

�
:

(42)

Both these quantities are real in the slice of stability. They

go to zero as
ffiffiffiffi
T

p
at the extremal limit K ¼ 0, and diverge

along the curveA ¼ 0. Hence, changing stability is marked
by both diverging R and diverging fluctuations.

VI. DISCUSSION

In this section, I review evaluations of R in ordinary
thermodynamics, and compare with the Kerr-Newman
black hole.

A. Curvature in ordinary thermodynamic models

Table I reviews signs and divergences of thermodynamic
curvature in several ordinary thermodynamic models. Most
table entries are simple models whereRmay beworked out

in closed form. The tendency is negative Rwhere attractive
interactions dominate, and positive R where repulsive in-
teractions dominate.10 Janyszek and Mrugała [38] empha-
sized the importance of the sign of R, and identified the
quantum gases, 3D Bose and 3D Fermi, as essential ex-
amples with opposite signs.
The signs of R for the standard critical point models in

Table I are all negative, and have critical point divergences
R ! �1. This is quite unlike the Kerr-Newman black
hole, with its predominantly positive R and divergences
R ! þ1.
Table I shows a group of weakly interacting systems

with ‘‘small’’ jRj. Small means on the order of the volume
of an intermolecular spacing or less. I view such values of
R as physically equivalent to zero, since the meaning of
correlation volumes of this size is lost in the ‘‘noise’’ of
thermodynamics breaking down as individual atoms and
spins become visible. The 1D antiferromagnetic Ising
model [52,53] is perhaps misplaced here, since its disalign-
ing interactions might propagate a long way. However, for
antiferromagnets, the true ordering field is a staggered
field, and not the constant field used for the calculations
in Table I. A reassessment of this model in these terms
might be called for.
There are three cases in Table I having both positive and

negative curvatures. The 1D q-state Potts model [11,60]
has sign related to q. For q > 2, and nonzero field, there are
significant regions of negative R at low temperature. The
2D Potts model has the dimensionality of the Kerr-
Newman event horizon. Its R has not yet been evaluated,
but perhaps its study could yield an appropriate critical line
with positive R.
The Takahashi gas [50] has the typical negative R in the

gaslike phase where attractive interactions dominate, and
small jRj in the liquidlike phase where interactions are
short range. However, going from one phase to the other
by changing the density at constant temperature, there is a
pseudophase transition accompanied by a sharp positive
curvature spike. Cai and Cho [9] connected this spike to a
phase transition in the BTZ black hole.
An abrupt change in sign of R is also present in the finite

1D Ising ferromagnet of N spins [51]. This model has the
typical negative R for large N, but a sharp rise to large
positive values asN is decreased. Whether or not this result
has relevance here is unclear.
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R(M/Mp )
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1.0

    (M,J)
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FIG. 8 (color online). RðM=MpÞ2 as a function of J=M2 and
Q=M for ðM; JÞ fluctuations. R is real and positive everywhere
in the physical regime. R diverges at both limits of stability.

10One must guard against the impression that there is a con-
nection between thermodynamic stability in the sense here and
the sign of R. It is tempting, for example, to envision the n ¼ 2
thermodynamic Riemannian geometry of the type here as a 2D
surface embedded in a 3D flat Euclidean space from which it
inherits its metric. In such a construction, thermodynamic stabil-
ity requires R for the 2D embedded surface to be negative.
However, this picture is incorrect, as has been discussed in
Sec. IV.G of Ref. [7]. There is no connection between thermo-
dynamic stability and the sign of R.
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At the bottom of Table I there are the 3D Fermi gas [38]
and the 3D Fermi paramagnet [61]. Both models have
positive R, diverging as T ! 0. These results lead me
now to take a closer look at Fermi gases, particularly the
2D Fermi gas.

B. Curvature for the 2D Fermi gas

For the 3D Fermi gas at low T, R seems to diverge [38]

as T�3=2, and not as T�1 in Eq. (29) for the Kerr-Newman
black hole. This motivates me to work out the 2D Fermi
gas. By the reasoning leading to Eq. (8.1.3) of [62], the 2D
Fermi gas has thermodynamic potential




�
1

T
;��

T

�
¼ p

T
¼ kBg�

�2f2ð�Þ; (43)

with pressure p, � � expð�=kBTÞ, chemical potential �,
thermal wavelength � � h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p
, particle mass m,

weight factor g � ð2sþ 1Þ, particle spin s, and

flð�Þ � 1

�ðlÞ
Z 1

0

xl�1dx

��1ex þ 1
: (44)

I use obvious fluid units for all quantities, including S and
T. The integral in Eq. (44) converges for f2ð�Þ, and yields
f1ð�Þ ¼ lnð1þ �Þ. f0ð�Þ and f�1ð�Þ follow from f1ð�Þ
using the recurrence relation fl�1ð�Þ ¼ �f0lð�Þ [62].
Define the heat capacity at constant particle number N

and constant area A by

CN;A � T

�
@S

@T

�
N;A

¼ NkB

�
2
f2ð�Þ
f1ð�Þ �

f1ð�Þ
f0ð�Þ

�
: (45)

The second equality is by Problem 8.10.ii of [62]. The
methods of [62] now yield the limiting low T expression

CN;A

AkB
¼ 2�3gmkBT

3h2
: (46)

Evaluating R with Eq. (6.31) of [7] yields

R ¼ �g�1�2

��2f2ð�Þf0ð�Þ2 þ f1ð�Þ2f0ð�Þ þ f�1ð�Þf1ð�Þf2ð�Þ
½f1ð�Þ2 � 2f0ð�Þf2ð�Þ�2

�
: (47)

Numerical evaluation over the physical range�1<�<þ1 and 0< T <1 indicates R is always positive. The methods
of [62] yield the limiting low T expression:

R ¼ 3h2

2�3gmkBT
: (48)

The limiting T dependences of CN;A and R match the corresponding Kerr-Newman black hole quantities [Eqs. (28) and

(29)]. This connection to a 2D model is consistent with the membrane paradigm of black holes [30]. Furthermore, the
limiting product of curvature and heat capacity,

TABLE I. Thermodynamic curvature for ordinary thermodynamic systems. I give the number of independent thermodynamic
parameters n, spatial dimension d, sign of R, and comment on possible divergences. In some systems d is not set, and I denote this
with ‘‘ � � � .’’ All signs of R have here been put into the sign convention of Weinberg [35]. An indication ‘‘ jRj small’’ means jRj has a
value on the order of the volume of an intermolecular spacing or less.

System n d R sign Divergence

3D Bose gas [38] 2 3 � T ! 0
1D Ising ferromagnet [52,53] 2 1 � T ! 0
Critical region [7,26,54] 2 � � � � Critical point

Mean-field theory [53] 2 � � � � Critical point

van der Waals [7,54] 2 3 � Critical point

Ising on Bethe lattice [55] 2 � � � � Critical point

Ising on 2D random graph [11,56] 2 2 � Critical point

Spherical model [11,57] 2 � � � � Critical point

Self-gravitating gas [58] 2 3 � Unclear

1D Ising antiferromagnet [52,53] 2 1 � jRj small

Tonks gas [50] 2 1 � jRj small

Pure ideal gas [26] 2 3 0 jRj small

Ideal paramagnet [52,53] 2 � � � 0 jRj small

Multicomponent ideal gas [59] >2 3 þ jRj small

1D Potts model [11,60] 2 1 þ=� T ! 0
Takahashi gas [50] 2 1 þ=� T ! 0
Finite 1D Ising ferromagnet [51] 2 1 þ=� T ! 0
3D Fermi gas [38] 2 3 þ T ! 0
3D Fermi paramagnet [61] 3 3 þ T ! 0
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�
R

A

��
CN;A

kB

�
¼

�
3h2

2�3gmkBTA

��
2�3gmkBTA

3h2

�
¼ 1; (49)

is a unitless, scale-free constant independent of density.
The factor A below R undoes the traditional pulling out of
A in the ordinary thermodynamic line element. R=A here is
analogous to R for the Kerr-Newman black hole. The
constant products Eqs. (30) and (49) are equal, remarkable
for systems apparently so different.

However, note a key difference. The Kerr-Newman
black hole entropy Eq. (3) does not go to zero in the
extremal limit, as it does for the 2D Fermi gas with its
unique ground state. Resolution probably requires a more
sophisticated Fermi gas model. Note as well that I have
presented no detailed correspondence between the Kerr-
Newman black hole thermodynamics and a specific micro-
scopic Fermi model. Such a connection is necessary to
make the results given here something more than a possi-
bly useful direction to explore.

C. Curvature for black hole critical points at nonzero T

For the phase transitions found at the nonextremal
boundaries no appropriate models with evaluated R’s
present themselves. The signs of R of the simple critical
point models in Table I are all negative, in contrast to the
Kerr-Newman black hole results. Hence, I make no attempt
here to suggest an order parameter or to evaluate and
interpret possible critical exponents and scaling relations
between them.

VII. CONCLUSIONS

In conclusion, the following were done in this paper for
thermodynamic Riemannian geometry based on the en-
tropy metric.

First, I attempted a physical interpretation of R for black
holes. It was based on analogy with the interpretation in
ordinary thermodynamics. Perhaps, this interpretation less-
ens concern over the physical plausibility of the occasional
result R ¼ 0.

Second, I reviewed previous evaluations of R and phase
transitions in Kerr-Newman black holes.

Third, I gave a complete evaluation of R for the Kerr-
Newman black hole. In all cases, R was found to be
positive in stable fluctuation regimes and to diverge to
þ1 at the extremal limit. I also found R to diverge to
þ1 at nonzero temperatures along curves of changing
stability, where the heat capacities CJ;� and C�;Q diverge.

Fourth, I argued that the sign of R is important, and
tabulated signs in a number of ordinary thermodynamic
models. I found that most of the simple critical point
models have negative R. This might make them problem-
atic for understanding Kerr-Newman black hole phase
transitions. Different models might be required.

Fifth, I noted that the Fermi gas is one of the few known
cases in ordinary thermodynamics with large positive R. I

established several exact correspondences between the 2D
Fermi gas and the extremal Kerr-Newman black hole. This
suggests that microscopic models with fermions might be
useful as a framework for formulating a microscopic de-
scription of black holes.
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APPENDIX: NOTATION

Notation was defined in [6], and is summarized here. I
differ only with the metric elements g��, including here

the unit conversion factor for S in Eq. (4).
Define the temperature T, the angular velocity �, and

the electric potential � by [4,31]

1

T
�

�
@S

@M

�
J;Q

; (A1)

��

T
�

�
@S

@J

�
M;Q

; (A2)

and

��

T
�

�
@S

@Q

�
M;J

: (A3)

Two standard unitless variables are [4]

f�;�g � fJ2=M4; Q2=M2g: (A4)

Simplifying the notation are [31]

fK;Lg � f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �� �

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p g: (A5)

We may show that

1

T
¼ ðK2 þ 2K þ L2ÞM

4K
: (A6)

To be in the physical regime of real S and T requires

�þ �< 1: (A7)

The curve of equality, �þ � ¼ 1, has K ¼ T ¼ 0 and
constitutes the extremal limit, thought to be unattainable
by the third law of black hole thermodynamics [63].
Major components in the discussion of stability are the

entropy Hessian determinants:11

11In [6] the metric elements g�� did not include the conversion
factor for S, we must undo these to make the entropy Hessian
determinants the same as in [6].
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p2 �
�
L2
p

8�

�
2
�������� g11 g12
g21 g22

��������
¼ �2K3 � 3K2 � 2L2K þ 2K � 3L2 þ 4

16K4M2
; (A8)

p0
2 �

�
L2
p

8�

�
2
�������� g22 g23
g32 g33

��������¼
K3 þ L2K � K þ 1

16M2K4
; (A9)

and

p00
2 �

�
L2
p

8�

�
2
��������
g11 g13

g31 g33

��������
¼ 1

16K4
ð�K4 þ L2K3 � 4K3 � L2K2 � 2K2

þ L4K þ 2L2K � 4K � 2L4 þ 10L2 � 8Þ: (A10)

The numerators of p2, p
0
2, and p00

2 are, respectively,

A ¼ �2K3 � 3K2 � 2L2K þ 2K � 3L2 þ 4; (A11)

B ¼ K3 þ L2K � K þ 1; (A12)

and

C ¼ ð�K4 þ L2K3 � 4K3 � L2K2 � 2K2 þ L4K

þ 2L2K � 4K � 2L4 þ 10L2 � 8Þ: (A13)

Curves along which these numerators go to zero identify
changes of stability accompanied by divergences of heat
capacities. A ¼ 0 in the physical regime if and only if

� ¼ ð3� 4�Þ�2

4ð�� 1Þ2 : (A14)

This curve is shown in Fig. 7. B is never zero in the
physical regime, since K � 0 and L � 1. C ¼ 0 along a
single curve in the physical regime, shown in Fig. 5, with
its algebraic expression too complicated to show here.
Finally, the heat capacities [31]

CJ;Q � T

�
@S

@T

�
J;Q

¼ M2KðK2 þ L2 þ 2KÞ
4ðL2 � 2KÞ ; (A15)

CJ;� � T

�
@S

@T

�
J;�

; (A16)

which evaluates to

CJ;� ¼ M2KðK2 þ 2K þ L2Þ
4C

ð�L4 � K2L2 þ KL2

þ 4L2 þ K3 þ 4K2 þ 2K � 2Þ; (A17)

and12

C�;Q � T

�
@S

@T

�
�;Q

¼ M2Kð1þ KÞ2ðK2 þ L2 þ 2KÞ
4A

:

(A18)

CJ;Q diverges if L2 ¼ 2K. This may be written

�2 þ 6�þ 4� ¼ 3; (A19)

which gives the Davies curve, shown in Fig. 1.
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