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Recently, a topological field theory of membrane matter coupled to BF theory in arbitrary spacetime

dimensions was proposed [J. C. Baez and A. Perez, Adv. Theor. Math. Phys. 11, 3 (2007).]. In this paper,

we discuss various aspects of the four-dimensional theory. First, we study classical solutions leading to an

interpretation of the theory in terms of strings propagating on a flat spacetime. We also show that the

general classical solutions of the theory are in one-to-one correspondence with solutions of Einstein’s

equations in the presence of distributional matter (cosmic strings). Second, we quantize the theory and

present, in particular, a prescription to regularize the physical inner product of the canonical theory. We

show how the resulting transition amplitudes are dual to evaluations of Feynman diagrams coupled to

three-dimensional quantum gravity. Finally, we remove the regulator by proving the topological invari-

ance of the transition amplitudes.
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I. INTRODUCTION

Based on the seminal results [1] of 2þ 1 gravity
coupled to point sources, recent developments [2,3] in
the nonperturbative approach to three-dimensional quan-
tum general relativity have led to a clear understanding of
quantum field theory on a three-dimensional quantum
geometrical background spacetime. The idea is to first
couple free point particles to the gravitational field before
going through the second quantization process. In this
approach, particles become local conical defects of space-
time curvature and their momenta are recast as holonomies
of the gravitational connection around their worldlines. It
follows that momenta become group valued leading to an
effective notion of noncommutative spacetime coordi-
nates. The Feynman diagrams of such theories are related
via a duality transformation to spinfoam models.

Although conceptually very deep, these results remain
three dimensional. The next step is to probe all possible
extensions of these ideas to higher dimensions. Two ideas
have recently been put forward. The first [4] is to consider
that fundamental matter is indeed pointlike and study the
coupling of worldlines to gravity by using the Cartan
geometric framework [5] of the McDowell-Mansouri for-
mulation of gravity as a de Sitter gauge theory [6]. The
second is to generalize the description of matter as topo-
logical defects of spacetime curvature to higher dimen-

sions. This naturally leads to matter excitations supported
by codimension two membranes [7,8]. Before studying the
coupling of such sources to quantum gravity, one can
consider, as a first step, the BF theory framework as an
immediate generalization of the topological character of
three-dimensional gravity to higher dimensions.
This paper is dedicated to the second approach, namely,

the coupling of stringlike sources to BF theory in four
dimensions. The starting point is the action written in [7]
generating a theory of flat connections except at the loca-
tion of two-dimensional surfaces, where the curvature
picks up a singularity, or in other words, where the gauge
degrees of freedom become dynamical. The goal of the
paper is two-fold. First, acquire a physical intuition of the
algebraic fields involved in the theory which generalize the
position and momentum Poincaré coordinates of the par-
ticle in threedimensions. Second, provide a complete back-
ground independent quantization of the theory in four
dimensions, following the work done in [7].
The organization of the paper is as follows. In Sec. II, we

study some classical solutions guided by the three-
dimensional example. We show that some specific solu-
tions lead to the interpretation of rigid strings propagating
on a flat spacetime. More generally, we prove that the
solutions of the theory are in one-to-one correspondence
with distributional solutions of general relativity. In
Sec. III, we propose a prescription for computing the
physical inner product of the theory. This leads us to an
interesting duality between the obtained transition ampli-
tudes and Feynman diagrams coupled to three-dimensional
gravity. We finally prove in Sec. IV that the transition
amplitudes only depend on the topology of the canonical
manifold and of the spin network graphs.
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affilié à la FRUNAM (FR 2291).

PHYSICAL REVIEW D 78, 024013 (2008)

1550-7998=2008=78(2)=024013(21) 024013-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.024013


II. CLASSICAL THEORY

A. Action principle and classical symmetries

Let G be a Lie group with Lie algebra g equipped with
an AdðGÞ-invariant, nondegenerate bilinear form noted
‘‘tr’’ (e.g., the Killing form if G is semisimple). Consider
the principal bundle P with G as structure group and as
base manifold a dþ 1 dimensional, compact, connected,
oriented differential manifoldM. We will assume that P is
trivial, although it is not essential, and choose once and for
all a global trivializing section. We will be interested in the
following first order action principle, describing the inter-
action between closed membrane-like sources and BF
theory [7]:

S½A; B;q; p� ¼ SBF½A; B� �
Z
W

trðBþ dAqÞpÞ: (1)

The action of free BF theory in dþ 1 dimensions is given
by

SBF½A; B� ¼ 1

�

Z
M
trðB ^ F½A�Þ: (2)

Here, B is a g-valued ðd� 1Þ-form on M, F is the curva-
ture of a g-valued one-form A, which is the pullback toM
by the global trivializing section of a connection on P , and
� 2 R is a coupling constant.

In the coupling term, W is the ðd� 1Þ-brane world
sheet defined by the embedding �: E � Rd�1 ! M, dA
is the covariant derivative with respect to the connection A,
q is a g-valued ðd� 2Þ-form on W , and p is a g-valued
function on W . The physical meaning of the matter var-
iables p and q will be discussed in the following section.
Essentially, p is the momentum density of the brane and q
is the first integral of the ðd� 1Þ-volume element; the
integral of a line and surface element in three and four
dimensions (d ¼ 2, 3), respectively.

The equations of motion governing the dynamics of the
theory are those of a topological field theory:

F½A� ¼ �p�W ; (3)

dAB ¼ �½p; q��W ; (4)

��ðBþ dAqÞ ¼ 0; (5)

dApjW ¼ 0: (6)

Here, �W is a distributional two-form, also called current,
which has support on the world sheetW . It is defined such
that for all ðd� 1Þ-forms �,

R
W � ¼ R

Mð� ^ �W Þ. The
symbol �� denotes the pullback of forms on W by the
embedding map �.

We can readily see that the above action describes a
theory of local conical defects along branelike ðd�
1Þ-submanifolds of M through the first equation. The sec-
ond states that the obstruction of the vanishing of the

torsion is measured by the commutator of p and q. The
third equation is crucial. It relates the background field B to
the dynamics of the brane. For instance, this equation
describes the motion of a particle’s position in 3D gravity
[9]. The last states that the momentum density is cova-
riantly conserved along the world sheet. It is in fact a
simple consequence of Eq. (3) together with the Bianchi
identity dAF ¼ 0. We will see how this is a sign of the
reducibility of the constraints generated by the theory.
The total action is invariant under the following (pull-

back to M of) vertical automorphisms of P :

8 g 2 C1ðM;GÞ; B� B ¼ gBg�1;

A� A ¼ gAg�1 þ gdg�1; p� gpg�1;

q� gqg�1;

(7)

and the ‘‘topological,’’ or reducible transformations,

8 � 2�d�2ðM; gÞ; B� Bþ dA�; A� A;

p� p; q� q� �; (8)

where �pðM; gÞ is the space of g-valued p-forms on M.

B. Physical interpretation: The flat solution

In this section, we discuss some particular solutions of
the theory leading to an interpretation of matter propagat-
ing on flat backgrounds. We discuss the d ¼ 2 and d ¼ 3
cases where the gauge degrees of freedom of BF theory
become dynamical along one-dimensional worldlines and
two-dimensional world sheets, respectively.

1. The point particle in 2þ 1 dimensions

We now restrict our attention to the d ¼ 2 case with
structure group the isometry group G ¼ SOð�Þ of the
diagonal form � of a three-dimensional metric onM; � ¼
ð�2;þ;þÞ with � ¼ f1; ig in, respectively, Riemannian
[G ¼ SOð3Þ]and Lorentzian [G ¼ SOð1; 2Þ] signatures.
We denote by ð�;V�Þ the vector (adjoint) representation

of soð�Þ ¼ RfJaga¼0;1;2, i.e., V� ¼ R3 and V� ¼ R1;2 in

Riemannian and Lorentzian signatures, respectively. The
bilinear form ‘‘tr’’ is defined such that trðJaJbÞ ¼ 1

2�ab. In

this case, the free BF action (2) describes the dynamics of
three-dimensional general relativity, where the B field
plays the role of the triad e. The matter excitations are 0-
branes, that is, particles, and the world sheetW reduces to
a one-dimensional worldline that we will denote by �. The
degrees of freedom of the particle are encoded in the
algebraic variables q and p which are both soð�Þ-valued
functions with support on the worldline �.
First, we consider the open subsetU ofM constructed as

follows. Consider the three-ball B3 centered on a point x0
of the worldline � and call x and y the two punctures @B3 \
�. Pick two nonintersecting paths �1 and �2 on @B

3 both
connecting x to y. The open region bounded by the portion
of @B3 contained between the two paths and the two
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arbitrary nonintersecting disks contained in B3 and
bounded by the loops ��1 and ��2 defines the open subset
U � M.

Next, we define the coordinate function X: M ! V�
mapping spacetime into the ‘‘internal space’’ soð�Þ iso-
morphic, as a vector space, to its vector representation
space V�. The coordinates are chosen to be centered

around a point x in M traversed by the worldline; XðxÞ ¼
0. Associated with the coordinate function X, there is a
natural solution to the equations of motion (3)–(6) in U,

e¼ dX¼ �; A¼ 0; q¼�Xj�; p¼ constant;

(9)

where � is the unit of EndðTpM; V�Þ, �ðvÞ ¼ v for all v in

TpM and all p in U. The field configuration e ¼ � (to-

gether with the A ¼ 0 solution) provides a natural notion of
flat Riemannian or Minkowskian spacetime geometry via
its relation to the spacetime metric g ¼ 2 trðe � eÞ. This
flat background is defined in terms of a special gauge
[notice that one can make e equal to zero by transformation
of the form (8)]. From now on, we will call such gauge a
flat gauge. The solution for q is obtained through the
equation (5) relating the background geometry to the ge-
ometry of the worldline. Here, we can readily see that q
represents the particle’s position X, the first integral of the
line element defined by the background geometry e. Below
we show that Eq. (4) forces the worldline to be a straight
line. Finally, p ¼ constant trivially satisfies the conserva-
tion equation (6). In fact, the curvature equation of motion
(3) constrains p to remain in a fixed adjoint orbit so we can
introduce a constantm 2 R�þ such that p ¼ mv with v 2
soð�Þ such that trv2 ¼ �2. Consequently, p satisfies the
mass shell constraints p2 :¼ trðp2Þ ¼ �2m2 and acquires
the interpretation of the particle’s momentum.

We can now relate the position q and momentum p,
independent in the first order formulation, by virtue of (4).
Indeed, the chosen flat geometry solution e ¼ �, A ¼ 0
leads to an everywhere vanishing torsion dAe. Hence, the
commutator ½p; q� ¼ X � p, where � denotes the usual
cross product on V�, vanishes on the worldline. This

vanishing of the relativistic angular momentum [which is
conserved by virtue of Eq. (3)] implies, together with the
flatness of the background fields, that the worldline � of the
particle defines a straight line passing through the origin
and tangent to its momentum p. Equivalently, we can think
of the momentum p as the Hodge dual to a bivector �p, in
which case the worldline is normal to the plane defined by
�p.

Note that translating � off the origin, which requires the
introduction of spacetime torsion, can be achieved by the
gauge transformation q! qþ C with C ¼ constant,
which leaves all the other fields invariant. In this way we
conclude that the previous solution of our theory can be
(locally) interpreted as the particle following a geodesic of
flat spacetime.

More formally, we can also recover the action of a test
particle in flat spacetime by simply ‘‘switching off’’ the
interaction of the particle with gravity. This can be
achieved by evaluating the action (1) on the flat solution
and neglecting the interactions between geometry and
matter, namely, the equations of motion linking the back-
ground fields to the matter degrees of freedom (e.g., e �
dX). This formal manipulation leads to the following
Hamilton function:

S½p; X;N� ¼
Z
�
trðp _XÞ þ Nðp2 �m2Þ; (10)

which is the standard first order action for a relativistic
spinless particle.

2. The string in 3þ 1 dimensions

We now focus on the four-dimensional (d ¼ 3) exten-
sion of the above considerations. Here again we consider
the isometry group G ¼ SOð�Þ of a given four-
dimensional metric structure � ¼ ð�2;þ;þ;þÞ, in which
case the value � ¼ 1 leads to the Riemannian group G ¼
SOð4Þ, while � ¼ i encodes a Lorentzian signature G ¼
SOð1; 3Þ. As in three dimensions, we denote by ð�;V�Þ,
with V� ¼ RfeIgI, I ¼ 0; . . . ; 3, the vector representation

of soð�Þ ¼ RfJabga;b¼0;...;3. Finally, we choose the bilinear

form ‘‘tr’’ such that, for all a, b in soð�Þ, it is associated
with the trace trðabÞ ¼ 1

2aIJb
IJ in the vector representa-

tion. We are using the notation �IJ ¼ �ab�ðJabÞIJ :¼
�abJIJab for the matrix elements of the image of an element

� 2 soð�Þ in EndðV�Þ under the vector representation.

The dynamics of the theory are governed by the action
(1) where the matter excitations are stringlike and the
world sheet W is now a two-dimensional submanifold
of the four-dimensional spacetime manifoldM. The string
degrees of freedom are described by an soð�Þ-valued one-
form q and an soð�Þ-valued function p living on the world
sheet W .
As before, we construct an open subset U � M by

cutting out a section of the four-ball B4, and define the
coordinate function X: M ! V�, centered around a point x

in M \W . Consider the following field configurations,
which define a flat solution to the equations of motion (3)–
(6) in U:

B ¼ �ðe ^ eÞ; with e ¼ dX ¼ �; A ¼ 0;

q ¼ � � XdXjW ; p ¼ constant;
(11)

where the star ( � ) is the Hodge operator �: �pðV�Þ !
�4�pðV�Þ acting on the internal space; ð��ÞIJ ¼
1
2 	IJ

KL�KL, with the totally antisymmetric tensor 	 nor-

malized such that 	0123 ¼ þ1.
The solution B ¼ �ð� ^ �Þ (A ¼ 0) leads to a natural

notion of flat Riemannian or Minkowski background ge-
ometry through the standard construction of a metric out of
B when B is a simple bivector; B ¼ �ðe ^ eÞ with e ¼ �.
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We can readily see that the q one-form is the first integral
of the area element defined by the background field B. As
in 3D, the equations of motion constrain p to remain in a
fixed adjoint orbit so that we can introduce a constant 
 2
R�þ such that p ¼ 
v and v 2 soð�Þ is normalized
trv2 ¼ �2. However, in this case 
 does not completely
fix the conjugacy class of p. The latter is completely fixed
by the invariant trv � v ¼ s. We call 
 the string tension, or
mass per unit length, and p the momentum density that
satisfies a generalized mass shell constraint. At the moment
we do not have a clear geometric interpretation for s.

This momentum density p is related to the q field by
analysis of Eq. (4). The solution (B ¼ �� ^ �, A ¼ 0) has
zero torsion dAB. Accordingly, the commutator ½p; q� ¼
½�XdX; p� vanishes on the world sheet. This leads to the
constraint XIpIJ ¼ 0. Putting everything together, we see
that the flat solution in the open subset U leads to the
picture of a locally flat world sheet (a locally straight, rigid
string) in flat spacetime, dual,1 as a two-surface, to the
momentum density bivector p (if s ¼ 0, i.e., if p is sim-
ple). If s � 0 then there are only trivial solutions XI ¼ 0
and the geometric interpretation is less clear. If we consider
more general solutions admitting torsion, the plane can be
translated off the origin. Indeed, Eq. (5) determines the
field q in terms of the geometry of the B field up to the
addition of an exact one-form � ¼ d�, which encodes the
translational information. For instance, the translation
X � X þ C of the plane yields q� q� �CdX and con-
sequently corresponds to a function � defined by d� ¼
� � CdX. This potential is in turn determined by the
torsion T ¼ dAB of the B field via Eq. (4). More general
solutions can be found for arbitrary �’s, as discussed
below.

Following the same path as in the case of the particle, we
can ‘‘turn off’’ the interaction between the topological BF
background and the string by evaluating the action on the
flat solution (this implies, here again, that we ignore the
equations of motion of the coupled theory, i.e., the relation
between the matter and geometrical degrees of freedom).
We obtain the following Hamilton function:

S½p; X;N� ¼
Z
W

trð�pdX ^ dXÞ þ Nðp2 � 
2Þ; (12)

up to a constant. This is the Polyakov action on a nontrivial
background with metric G� ¼ 0 and antisymmetric field

b ¼ v 2 soð�Þ.
Now, the previous action leads to trivial equations of

motion that are satisfied by arbitrary X (because p ¼
constant and so the Lagrangian is a total differential).
This is to be expected; from the string theory viewpoint,
this would be a charged string moving on a constant

potential, so the field strength is zero. This seems in sharp
contrast to the particle case where the effective action leads
to straight line solutions. Here any string motion is al-
lowed; however, from the point of view of the full theory,
all these possibilities are pure gauge. The reason for this is
that in 2þ 1 dimensions the flat-gauge condition e ¼ �
fixes the freedom (8) up to a global translation, and hence
gauge considerations are not necessary in interpreting the
effective action. In the string case, B ¼ �ð� ^ �Þ partially
fixes the gauge; the remaining freedom being encoded in
� ¼ d� for any �.

C. Geometrical interpretation: Cosmic strings and
topological defects

The above discussion shows that particular solutions of
the theory in a particular open subset lead to the standard
propagation of matter degrees of freedom on a flat (or
degenerate) background spacetime. In fact, we can go
further in the physical interpretation by considering other
solutions, defined everywhere, which are in one-to-one
correspondence with solutions of four-dimensional general
relativity in the presence of distributional matter. These
solutions are called cosmic strings.

1. Cosmic strings

It is well known that the metric associated with a mas-
sive and spinning particle coupled to three-dimensional
gravity is that of a locally flat spinning cone. The lift of
this solution to 3þ 1 dimensions corresponds to a space-
time around an infinitely thin and long straight string (see,
for instance, [10] and references therein). Let us endow our
spacetime manifoldM with a Riemannian structure ðM;gÞ
and let x 2 M label a point traversed by the string. We can
choose as a basis of the tangent space TxM the coordinate
basis f@t; @r; @’; @zg associated with local cylindrical coor-

dinates such that the string is lying along the z axis and
goes through the origin. The embedding of the string is
given by �ðt; zÞ ¼ ðt; 0; 0; zÞ. Let 
 and s, respectively,
denote the mass and intrinsic (spacetime) spin per unit
length of the string. Note that 
 is the string tension.
Solving Einstein’s field equations for such a stationary
string carrying the above mass and spin distribution pro-
duces a two-parameter ð
; sÞ family of solutions described
by the following line element written in the specified
cylindrical coordinates:

ds2 ¼ g�dx
� � dx

¼ �2ðdtþ �d’Þ2 þ dr2 þ ð1� �Þ2r2d’2 þ dz2;

(13)

where � ¼ 4Gs and � ¼ ð1� 4G
Þ, G is the Newton
constant. In fact this family of metrics is the general
solution to Einstein’s equations describing a spacetime
outside any matter distribution in a bounded region of the
plane ðr; ’Þ and having a cylindrical symmetry. Exploiting

1Note that this is exactly the same result as the one obtained
for the point particle, if we think of the 3D momentum as Hodge
dual to a bivector.
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the absence of structure along the z axis, by simply sup-
pressing the z direction, reduces the theory to that of a
point particle coupled to gravity in 2þ 1 dimensions,
where the location of the particle is given by the point
where the string punctures the z ¼ 0 plane. We will come
across such a duality again in the quantization process of
the next sections. The dual coframe for the above metric is
written

e0 ¼ dtþ �d’; e1 ¼ cos’dr� �r sin’d’;

e2 ¼ sin’drþ �r cos’d’; e3 ¼ dz;
(14)

such that ds2 ¼ eI � eJ�IJ. If we assume that the connec-
tion A associated with the above metric is Riemannian, it is
straightforward to calculate its components by exploiting
Cartan’s first structure equation (dAe ¼ 0). The result
reads

A ¼ AIJ��IJdx
� ¼ 4G
�12d’; (15)

where f�IJgI;J is a basis of �2ðV�Þ ’ soð�Þ.
Using the distributional identity dd’ ¼ 2��2ðrÞdxdy

(x ¼ r cos’, y ¼ r sin’, and dxdy is a wedge product),
one can immediately compute the torsion T ¼ T0e0 and
curvature F ¼ F12�12 of the cosmic string induced metric:

T0 ¼ 8�Gs�2ðrÞdxdy; F12 ¼ 8�G
�2ðrÞdxdy:
(16)

These equations state that the torsion and curvature asso-
ciated with the cosmic string solution are zero everywhere
except when the radial coordinate r vanishes, i.e., at the
location of the string world sheet lying in the z� t plane. If
we now focus on the spinless cosmic string case s ¼ 0, we
can establish a one-to-one correspondence between the
above solutions of general relativity and the following
solutions of BF theory coupled to string sources:

B01 ¼ sin’drdzþ �r cos’d’dz;

B02 ¼ �ðcos’dzdr� �r sin’dzd’Þ;
B03 ¼ �rdrd’; B12 ¼ ��2dzdt;

B13 ¼ ��2ðsin’dtdrþ �r cos’dtd’Þ;
B23 ¼ �2ðcos’dtdr� �r sin’dtd’Þ;

A12 ¼ 4G
d’; q12 ¼ �2ðzdt� tdzÞ; p12 ¼ 
;

(17)

where only the nonvanishing components have been writ-
ten and the coupling constant � in (1) has been set to 8�G.

In this way, solutions of our theory are in one-to-one
correspondence to solutions of Einstein’s equations. The
converse is obviously not true as our model does not allow
for physical local excitations such as gravitational waves.
However, augmenting the action (1) with a Plebanski term
constraining the B field to be simple would lead to the full
Einstein equations in the presence of distributional matter,

	IJKLe
J ^ FKL ¼ 8�G
	IJKLe

JJKL12 �W ; (18)

where JKL12 ¼ �½K
1 �

L�
2 , starting from the theory considered

in this paper.

2. Many-strings solution

One can also construct a many string solution by ‘‘super-
imposing’’ solutions of the previous kind at different loca-
tions. Here we explicitly show this for two strings. We do
this as the example will illustrate the geometric meaning of
torsion in our model. Assume that we have two world
sheets W 1 and W 2, respectively, traversing the points
p1 and p2. We will work with two open patches Ui � M,
i ¼ 1, 2, such that p1 and p2 both belong to the overlap
U1 \U2. The cylindrical coordinates ðti; ri; ’i; ziÞ associ-
ated with the charts (Ui � M, X

�
i : Ui ! R4) are chosen

such that the strings lie along the z axis, are separated by a
distance x0 in the x direction, and are such that riðpiÞ ¼ 0.
The coordinate transform occurring in the overlapU1 \U2

is immediate; it yields ti ¼ t, x2 ¼ x1 þ x0, yi ¼ y, and
zi ¼ z, for i ¼ 1, 2. The two embeddings are given con-
sequently by �1ðt; zÞ ¼ ðt; 0; 0; zÞ and �2ðt; zÞ ¼
ðt; x0; 0; zÞ. Our notations are such that a field � expressed
in the coordinate system associated with the open subsetUi

is noted �Ui .

Our strategy to construct the two-string solution is the
following. We need to realize the fact that, regarded from a
particular coordinate frame, one of the two strings is
translated off the origin. We will choose to observe the
translation of W 2 from the coordinate frame 1. Now, the
study of the flat solution discussed in the previous section
has showed that translations of the world sheet are related
to the torsion T of the B field. In particular, we know how
to recognize a translation of the form X ! Xþ C, with
C ¼ x0e1. It corresponds to a torsion of the form T ¼
�½p; d��, with d� ¼ � � CdX. Hence, the two-string so-
lution is based on the tetrad field, which leads to the desired
value of the B field torsion taking into account the separa-
tion of the two world sheets. For simplicity, here we
assume that the two strings are parallel, hence that they
have same momentum density

pU1
¼ pU2

¼ 
�12; (19)

and accordingly create the same curvature singularity in
both coordinate frames 1 and 2. The associated connection
yields

AUi
¼ 4G
d’i�12; 8 i ¼ 1; 2: (20)

The dual coframe eUi ¼ eIUi
� eIUi

is defined by the fol-

lowing components:
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e0Ui
¼ dt;

e1Ui
¼ cos’idri � �ri sin’id’i;

e2Ui
¼ sin’idri þ

�
�ri cos’i þ �i2

�

4�

x0

�
d’i

e3Ui
¼ dz:

(21)

By integrating the B ¼ �e ^ e solution with e given by
(21), we can now calculate the q field, up to the addition of
an exact form � ¼ d�,

qUi
¼ �2ðzdt� tdzÞ�12 þ d�IJi �IJ: (22)

The potential � is derived from the equation of motion (4)
relating the commutator of p and q to the B field torsion
three-form T ¼ dAB ¼ �dAe ^ eþ �e ^ dAe:
TUi

¼ �i2
1
2�
x0�ðrÞðdx2dy2dz�01 þ �2dtdx2dy2�13Þ:

(23)

This torsion indeed corresponds to a two-string solution
since it yields the desired value � � CdX for the form d�,

d�i ¼ �i2
1
2x0ðdz�02 þ �2dt�23Þ: (24)

One can add more than one string in a similar fashion,
leading to multiple cosmic string solutions. It is interesting
to notice that torsion of the multiple string solution is
related to the distance x0 separating the world sheets. Of
course this is a distance defined in the flat gaugewhere B ¼
�� ^ �. This concludes our discussion on the physical
aspects of the action (1) of stringlike sources coupled to
BF theory. We now turn toward the quantization of the
theory.

III. QUANTUM THEORY

For the entire quantization process to bewell defined, we
will restrict our attention to the case where the symmetry
group G is compact. For instance, we can think of G as
being SO(4). We will also concentrate on the four-
dimensional theory and set the coupling constant � to
one. Also, to rely on the canonical analysis performed in
[7], we will work with a slightly different theory where the
momentum p is replaced by the string field � 2
C1ðW ; GÞ. This new field enters the action only through
the conjugation 
Ad�ðvÞ of a fixed unit element v in g, and
the theory is consequently defined by the action (1) with p
set to 
�v��1. The field � transforms as �! g� under
gauge transformations of the type (7), and the theory
acquires a new invariance under the subgroup H � G
generated by v. The link between the two theories is
established by the fact that, as remarked before, the equa-
tion of motion F ¼ p�W implies that p remains in the
same conjugacy class along the world sheet. Here, we
choose to label the class by 
v and to consider � as
dynamical field instead of p.

A. Canonical setting

As a preliminary step, we assume that the spacetime
manifoldM is diffeomorphic to the canonical split R��,
where R represents time and � is the canonical spatial
hypersurface. The intersection of � with the string world
sheetW forms a one-dimensional manifold S that we will
assume to be closed.2 We choose local coordinates ðt; xaÞ
for which � is given as the hypersurface ft ¼ 0g. By
definition, xa, a ¼ 1, 2, 3, are local coordinates on �.
We also choose local coordinates ðt; sÞ on the 2-
dimensional world sheet W , where s 2 ½0; 2�� is a coor-
dinate along the one-dimensional string S. We will note
xS ¼ �j�, the embedding of the string S in �. We pick a
basis fXigi¼1;...;dimðgÞ of the real Lie algebra g, raise and

lower indices with the inner product ‘‘tr,’’ and define
structure constants by ½Xi; Xj� ¼ fij

kXk. Next, we choose

a polarization on the phase space such that the degrees of
freedom are encoded in the configuration variable ðA; �Þ 2
A�� defined by the couples formed by (the pullback to
� of) connections and string momenta.
The canonical analysis of the coupled action (1) shows

that the Legendre transform from configuration space to
phase space is singular: the system is constrained.
Essentially,3 the constraints are first class and are given
by the following set of equations:

Gi :¼ DaE
a
i þ fij

kqja�ak�S � 0; (25)

Ha
i
:¼ 	abcFibc � �ai �S � 0: (26)

Here, Eai ¼ 	abcBibc is the momentum canonically conju-
gate to Aai ; �

a
i ¼ @sx

a
Spi is conjugate to q and satisfies

Da�
a
i ¼ 0, where pi ¼ trðXipÞ denote the components of

the Lie algebra element p in the chosen basis of g. The
symbols D and F denote, respectively, the covariant de-
rivative and curvature of the spatial connection A.
The first constraint (25), the Gauss law, generates kine-

matical gauge transformations while the second (26), the
curvature constraint, contains the dynamical data of the
theory. To quantize the theory, one can follow Dirac’s
program of quantization of constrained systems, which
consists in first quantizing the system before imposing
the constraints at the quantum level. The idea is to con-
struct an algebra A of basic observables, that is, simple
phase space functions which admit unambiguous quantum
analogues, which is then represented unitarily, as an in-
volutive and unital ?-algebra of abstract operators, on an
unphysical or auxiliary Hilbert space H . Since the clas-
sical constraints are simple functionals of the basic observ-
ables, they can be unambiguously quantized, that is,
promoted to self-adjoint operators on H . The kernel of

2In fact if � is compact the equation of motion (3) implies that
the string must be closed (or have zero tension).

3See the original work [7] for a detailed canonical analysis.
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these constraint operators are spanned by the physical
states of the theory.

The structure of the constraint algebra enables us to
solve the constraints in different steps. One can first solve
the Gauss law to obtain a quantum kinematical setting.
Then, impose the curvature constraint on the kinematical
states to fully solve the dynamical sector of the theory. In
[7], the kinematical subset of the constraints is solved and a
kinematical Hilbert space H kin solution to the quantum
Gauss law is defined. We first review the kinematical
setting of [7] before exploring the dynamical sector of
the theory.

B. Quantum kinematics: The Gauss law

The Hilbert space H kin of solutions to the Gauss con-
straint is spanned by so-called string spin network states.
String spin network states are the gauge invariant elements
of the auxiliary Hilbert space H of cylindrical functions
which is constructed as follows.

1. Auxiliary Hilbert space H

First, we define the canonical BF states. Let � � �
denote an open graph, that is, a collection of one-
dimensional oriented submanifolds4 of � called edges
e�, meeting if at all only on their endpoints called vertices
v�. The vertices forming the boundary of a given edge e�
are called the source sðe�Þ and target tðe�Þ vertices depend-
ing on the orientation of the edge. We will call n 	 n� the
cardinality of the set of edges fe�g of �. Let �: G�n ! C
denote a continuous complex valued function on G�n and
Aðe�Þ 	 ge� ¼ P expðRe� AÞ denote the holonomy of the

connection A along the edge e� 2 �. The cylindrical func-
tion associated with the graph � and the function � is a
complex valued map ��;�: A ! C defined by

��;�½A� ¼ �ðAðe1�Þ; . . . ; Aðen�ÞÞ; (27)

for all A in A. The space of such functions is an Abelian
?-algebra denoted CylBF;�, where the ? structure is simply

given by complex conjugation on C. The algebra of all
cylindrical functions will be called CylBF ¼ [�CylBF;�.

Next, we define string states. Since the configuration
variable is a zero-form, we expect to consider wave func-
tions associated with points x 2 �. Accordingly, we define
the ?-algebra CylS of cylindrical functions on the space �
of � fields as follows. An element �X;f of CylS is a

continuous map �X;f: � ! C, where X ¼ fx1; . . . ; xng is
a finite set of points in S and f: G�n ! C is a complex
valued function on the Cartesian product Gn, defined by

�X;f½�� ¼ fð�ðx1Þ; . . . ; �ðxnÞÞ: (28)

Both algebras CylBF and CylS, regarded as vector spaces,
can be given a pre-Hilbert space structure. Fixing a graph
� � �with n edges and a set ofm pointsX � �, we define
the scalar products, respectively, on CylBF;� and CylS;p as

h�0
�;�;��; i ¼

Z
G�n

�� (29)

and

h�0
X;f;�X;gi ¼

Z
G�m

�fg; (30)

where the integration over the group is realized through the
Haar measure onG. These scalar products can be extended
to the whole of CylBF (resp. CylS), i.e., to cylindrical
functions defined on different graphs (resp. set of points),
by redefining a larger graph (resp. set of points) containing
the two different ones. The resulting measure, precisely
constructed via projective techniques, is the Ashtekar-
Lewandowski (AL) measure. The string Hilbert space
was in fact introduced by Thiemann as a model for the
coupling of Higgs fields to loop quantum gravity [11] via
point holonomies. Completing these two pre-Hilbert
spaces in the respective norms induced by the AL mea-
sures, one obtains the BF and string auxiliary Hilbert
spaces, respectively, denoted H BF and H S. Tensoring
the two Hilbert spaces yields the auxiliary Hilbert space
H ¼ H BF �H S of the coupled system.
Using the harmonic analysis on G, one can define an

orthonormal basis inH BF andH S, the elements of which
are, respectively, denoted (open) spin networks and
n-points spin states. Using the isomorphism of Hilbert
spaces L2ðG�nÞ ’ N

e�
L2ðGe�Þ, any cylindrical function

��;� in H BF decomposes according to the Peter-Weyl

theorem into the basis of matrix elements of the unitary,
irreducible representations of G:

��;�½A� ¼
X

�1;...;�n

��1;...;�n�1½Aðe1�Þ� � . . . � �n½Aðen�Þ�;

(31)

where �: G! AutðV�Þ denotes the unitary, irreducible

representation of G acting on the vector space V� and

the mode ��1;...;�n
:¼ �n

i¼1��i is an element of ðV�i �
V�i

�Þ�ni¼1 . The functions appearing in the above sum are

called open spin network states.
Equivalently, the string cylindrical functions decompose

as

�X;f½�� ¼
X

�1;...;�m

f�1;...;�m�1½�ðx1Þ� � . . . � �m½�ðxmÞ�;

(32)

and a given element in the sum is called an n-point spin
state.

4More precisely, one usually endows the canonical hypersur-
face � with a real, analytic structure and restricts the edges to be
piecewise analytic or semianalytic manifolds, as a means to
control the intersection points.
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2. String spin network states

One can now compute a unitary action of the gauge
group C1ð�; GÞ on H by using the transformation prop-
erties of the holonomies and of the string fields �! g�
under the gauge group and derive the subset of G-invariant
states, that is, the states solution to the Gauss constraint. A
vectorial basis of the vector space of gauge invariant states
can be constructed, in analogy with 3D quantum gravity
coupled to point particles [12], by tensoring the open spin
network basis with the n-point spin states elements. Such a
tensorial element requires the following consistency con-
ditions to be G invariant.

The graph � of the open spin network has a set of
vertices V � including the points fx1; . . . ; xng forming the
set X. The vertices of � are colored with a chosen element
�v of an orthonormal basis of the vector space of intertwin-
ing operators

Hom G½
O

e�jtðe�Þ¼v�
V�e�

;
O

e�jsðe�Þ¼v�
V�e�

�; (33)

if the vertex v� is not on the string. If a vertex v� is on the
string, it coincides with some point xk 2 X. In this case, we
chose an element �v� in an orthonormal basis of

Hom G½
O

e�jtðe�Þ¼v�
V�e�

; ð O
e�jsðe�Þ¼v�

V�e�
Þ � V�k�; (34)

where V�k is the representation space associated to the

point xk.
By finally implementing the invariance under the sub-

group H � G generated by v of the n-point spin states by
choosing the modes to be H invariant, one obtains a
vectorial basis in the kinematical Hilbert space H kin

where the inner product is that of (BF and string) cylindri-
cal functions. The elements of this basis are called string
spin networks states and are of the form (see Fig. 1)

��;X½A; �� :¼ ð�� ��XÞ½A; ��
¼ ½O

e�2�

�e�½Aðe�Þ�
O
x2X

�x½�ðxÞ��:
O
v�2�

�v� ;

(35)

where the dot ‘‘.’’ denotes tensor index contraction.
This concludes the quantum kinematical framework of

strings coupled to BF theory performed in [7]. We now
solve the curvature constraint and compute the full physi-
cal Hilbert space H phys.

C. Quantum dynamics: The curvature constraint

In this section, we explore the dynamics of the theory by
constructing the physical Hilbert space H phys solution to

the last constraint of the system, that is, the curvature or
Hamiltonian constraint (26). Note that the physical states
that we construct below are also solutions to the constraints
of four-dimensional quantum gravity coupled to distribu-
tional matter, as in the classical case.
We first underline a crucial property of the curvature

constraint of (dþ 1)-dimensional BF theory with d > 2,
namely, its reducible character which has to be taken into
account during the quantization process. We then proceed
(as in [12]) à la Rovelli and Reisenberger [13,14] by
building and regularizing a generalized projection operator
mapping the kinematical states into the kernel of the
curvature constraint operator. This procedure automati-
cally provides the vector space of solutions with a physical
inner product and a Hilbert space structure, and leads to an
interesting duality with the coupling of Feynman loops to
3D gravity [15,16] from the covariant perspective.

1. The reducibility of the curvature constraint

A naive imposition of the curvature constraint on the
kinematical states leads to severe divergences. This is due
to the fact that there is a redundancy in the implementation
of the constraint; the components of the curvature con-
straint of ðdþ 1Þ-dimensional BF theory are not linearly
independent; they are said to be reducible, if d > 2. The
same is true for the theory coupled to sources under study
here. As an illustration of this fact, let us simply count the
degrees of freedom of source free (
 ¼ 0) BF theory in dþ
1 dimensions.
The configuration variable of the theory Aia is a g-valued

connection one-form, thus containing d� dimðgÞ indepen-
dent components for each space point of �. In turn, the
number of constraints is given by the dimðgÞ components
of the Gauss law (25) plus the d� dimðgÞ components of
the Hamiltonian constraint (26) for each space point x 2
�. Hence, we haveNC ¼ ðdþ 1Þ � dimðgÞ constraints per
space point. This leads to a negative number of degrees of
freedom. What is happening? The point is that the NC
constraints are not independent: the Bianchi identity

(Dð2ÞF ¼ dð2ÞFþ ½A; F� ¼ 0, where the superscript ðpÞ in-

e

x

FIG. 1. A typical string spin network (the string is represented
by the bold line).
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dicates the degree of the form acted upon) implies the
reducibility equation

DaH
a
i ¼ 0: (36)

In the case where sources are present, the reducibility
equation remains valid because the curvature constraint
F ¼ p�S together with the Bianchi identity automatically
implements the momentum density conservation Dp ¼ 0.
We will come back to this reducibility of the matter sector
of the theory. The system is said to be (d� 2)th stage
reducible in the first class curvature constraints. This des-

ignation is due to the fact that the operator dð2Þ is itself

reducible since dð3Þdð2Þ 	 0. In turn, dð3Þ is reducible and so
on. The chain stops after precisely d� 2 steps since the

action of the dðdÞ de Rham differential operator on d-forms
is trivial. Accordingly, the NR ¼ dimðgÞ reducibility equa-
tions (36) imply a linear relation between the components
of the curvature constraint. The number NI of independent
constraints is thus given byNC � NR ¼ d� dimðgÞ. Using
NI to count the number of degrees of freedom leads to the
correct answer, namely, zero degrees of freedom for topo-
logical BF theory.

The standard procedure to quantize systems with such
reducible constraints consists in selecting a subset Hjirr of
constraints that are linearly independent and impose solely
this subset of constraints on the auxiliary states of H .

Keeping this issue in mind, we now proceed to the
definition and regularization of the generalized projector
on the physical states and construct the Hilbert space
H phys of solutions to all of the constraints of the theory.

2. Physical projector : Formal definition—the particle/
string duality

We start by introducing the rigging map

�phys: Cyl ! Cyl�; � � �ðĤjirrÞ�; (37)

where Cyl� is the (algebraic) dual vector space of Cyl ¼
CylBF � CylS. The range of the rigging map �phys formally

lies in the kernel of the Hamiltonian constraint of the
coupled model. The power of the rigging map technology
is that it automatically provides the vector space
�physðCylÞ ¼ Cyl�phys � Cyl� of solutions to the

Hamiltonian constraint with a pre-Hilbert space structure
encoded in the physical inner product

h�physð�1Þ; �physð�2Þi ¼ ½�physð�2Þ�ð�1Þ
:¼ h�1; �ðĤjirrÞ�2i; (38)

for any two string spin network states �1, �2 2 H kin.
The scalar product used in the last equality is the kinemati-
cal inner product (29) and (30). The physical Hilbert space
H phys is then obtained by the associated Cauchy comple-

tion of the quotient of H kin by the Gel’fand ideal defined
by the set of zero norm states.

Accordingly, the construction of the physical inner prod-
uct can explicitly be achieved if we can rigorously make

sense of the formal expression �ðĤjirrÞ. This task is greatly
simplified by virtue of the following duality. Indeed, we
can reexpress the above formal quantity as follows:

�ðĤjirrÞ ¼
Y
x2�

�ðĤjirrðxÞÞ

¼
Z
N

D�½N� exp
�
i
Z
�
trðN ^ ĤÞ

�
: (39)

Here, N 3 N is the space of regular g-valued one-forms
on �, andD�½N� denotes a formal functional measure on
N imposing constraints on the test one-form N to remove
the redundant delta functions onH. Simply plugging in the
explicit expression of the exponent in (39) leads to

H½N� ¼
Z
�
trðN ^HÞ ¼

Z
�
trðN ^ FÞ þ

Z
S
trðNpÞ

¼ S3dBFþpart½N;A�; (40)

which, in the case where G ¼ SOð�Þ, where � is a three-
dimensional metric, is the action of 3D gravity coupled to a
(spinless) point particle [9,16]: the role of the triad is
played by N, the mass and the worldline of the particle
are, respectively, given by the string tension 
 (hidden in
the string variable p ¼ 
Ad�ðvÞ) and S. Finally, the role of
the Cartan subalgebra generator J0 is played by v (also
hidden in p). This relation is reminiscent to the link
between cosmic strings in 4D and point particles in
three-dimensional gravity discussed in the first sections.
More generally, we have in fact the following duality:

Pð�Þdþ1
BFþðd�2Þ�branes ¼ Zd

BFþðd�3Þ�branes; (41)

where � denotes the ((dþ 1)-dimensional) no-spin-
network vacuum state, Z is the path integral of BF theory
in d spacetime dimensions, and we have introduced the
linear form5 P on Cyl � A defined by

8 � 2 Cyl;

Pð�Þ ¼ h�physð�Þ; �physð�Þiphys ¼ h�; �ðĤjirrÞ�i:
(42)

5More precisely, the linear form P, once normalized by the
evaluation Pð1Þ, is a state

P=Pð1Þ: Cyl � A ! C;

whose associated Gel’fand-Naimark-Siegel construction leads
equivalently to the physical Hilbert spaceH phys. The associated
Gel’fand ideal I is immense by virtue of the topological nature
of the theory under consideration. Indeed, one can show that any
element of Cyl based on a contractible graph is equivalent to a
complex number. The associated physical representation
�phys: Cyl ! EndðH physÞ is defined such that for all cylindrical
functions a� 2 Cyl defined on a contractible graph �,
�physða�½A�Þ� ¼ a�½0��, for all � in H phys.
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Furthermore, when d ¼ 3, the formal functional measure
D�½N� introduced above to take into account the reduc-
ible character of the four-dimensional theory corresponds
to the Fadeev-Popov determinant gauge-fixing the transla-
tional topological symmetry of the 3D theory; the reduc-
ibility of the 4D theory is mapped via this duality onto the
gauge redundancies of the three-dimensional theory.

Now because of the above duality (41), regularizing the
formal expression (39) is, roughly speaking, equivalent to
regularizing the path integral for 3D gravity coupled to
point particles, up to the insertion of spin network observ-
ables. The physical inner product in our theory will there-
fore be related to amplitudes computed in [15–18]
although they would have here a quite different physical
interpretation. Following [12,18], we will regularize the
Hamiltonian constraint at the classical level by defining a
latticelike discretization of � and by constructing holono-
mies around the elementary plaquettes of the discretization
as a first order approximation of the curvature.

However, there are two major obstacles to the direct and
naive implementation of such a program. The first is the
reducible character of the curvature constraint, and the
second is the presence of spin network edges ending on
the string. We will use the above duality to treat the first
issue while the second will be dealt with by introducing an
appropriate regularization scheme.

3. Physical projector: Regularization

Throughout this section, we will concentrate on the
definition of the linear form (42) evaluated on the most
general string spin network state � 2 H kin, since it con-
tains all the necessary information to compute transition
amplitudes between any two arbitrary elements of the
kinematical Hilbert space. We will consider string spin
network basis elements � of H kin defined on the (open)
graph �. The set of end points of the graph living on the
string S will be denoted X.

We follow the natural generalization of the regulariza-
tion defined in [18] for 2þ 1 gravity coupled to point
particles. In order to deal with the curvature singularity
at the string location, we thicken the smooth curve S to a
torus topology; smooth, nonintersecting tube T� of con-

stant radius �> 0 centered on the string S. The radius � is
defined in terms of the local arbitrary coordinate system. If
the string is disconnected, we blow up each string compo-
nent in a similar fashion.

Next, we remove the tube T� from the spatial manifold

�. We are left with a three-manifold with torus boundary
� n T� denoted by ��. For instance, if � has the topology

of S3, we know by Heegard’s splitting that the resulting
manifold has the topology of a solid torus whose boundary
surface is the Heegard surface defined by the string tube. In
this way we construct a new three-manifold with boundary
where each boundary component is in one-to-one corre-
spondence with a string component and has the topology of

a torus. Finally, the open graph � is embedded in the bulk
manifold and its end points lie on the boundary torus.
The next step is to choose a simplicial decomposition6 of

�� or more generally any cellular decomposition, i.e., a

homeomorphism �: �� ! � from our spatial bulk mani-

fold �� to a cellular complex �. The discretized manifold

� 	 �	 depends on a parameter 	 2 Rþ controlling the
characteristic (coordinate) ‘‘length scale’’ of the cellular
complex. We will see that, by virtue of the three-
dimensional equivalence between smooth, topological,
and piecewise-linear (PL) categories, together with the
background independent nature of our theory, no physical
quantities will depend on this extra parameter. We will
denote by �k the k-cells of �. To make contact with the
literature, we will in fact work with the dual cellular
decomposition ��. The dual cellular complex �� is ob-
tained from � by placing a vertex v in the center of each
three-cell �3, linking adjacent vertices with edges e topo-
logically dual to the two-cells �2 of �, and defining the
dual faces f, punctured by the one-cells �1, as closed
sequences of dual edges e. The intersection between ��
and the boundary tube T� induces a closed, oriented (tri-

valent if� is simplicial) graph which is the one-skeleton of
the cellular complex @�� ¼ ð �v; �e; �fÞ dual to the cellular
decomposition @� of the 2D boundary T� induced by the

bulk complex �. We will denote by F the set of faces f of
the cellular pair ð��; @��Þ and require that each dual face
of F admits an orientation (induced by the orientation of
��) and a distinguished vertex.

Finally, among all possible cellular decompositions, we
select a subsector of two-complexes which are adapted to
the graph �. Namely, we consider dual cellular complexes
ð��; @��Þ whose one-skeletons admit the graph � as a
subcomplex. In particular, the open edges of � end on
the vertices �v of the boundary two-complex @��.
The meaning of the curvature constraint F ¼ p�S is that

the physical states have support on the space of connec-
tions which are flat everywhere except at the location of the
string where they are singular. In other words, the holon-
omy g� ¼ Að�Þ of an infinitesimal loop � circling an

empty, simply connected region yields the identity, while
the holonomy g� circling the string around a point x 2 S is

equal to exppðxÞ, the image of the fixed group element u ¼
e
v under the inner automorphism Ad�: G! G; u�
�ðxÞu��1ðxÞ, with the string field � evaluated at the point
x. The integration over the string field � appearing in the
computation of the physical inner product then forces the
holonomy of the connection around the string to lie in the
same conjugacy class ClðuÞ as the group element u.
To impose the F ¼ 0 part of the curvature constraint, we

will require that the holonomy

6Note that in dimension d 
 3, each topological d-manifold
admits a piecewise-linear-structure (this is the so-called ‘‘trian-
gulation conjecture’’).
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A: F ! G; @f � gf ¼
Y
e�@f

AðeÞ; (43)

around all the oriented boundaries of the faces f of F be
equal to one.7 Each such flat connection defines a monod-
romy representation of the fundamental group �1ð��Þ in
G. Concretely, the holonomies are computed by taking the
edges in the boundary @f of the face f in cyclic order,
following the chosen orientation, starting from the distin-
guished vertex. Reversing the orientation maps the associ-
ated group element to its inverse.

It is here crucial to take into account the reducible
character of the curvature constraint to avoid divergences
due to redundancies in the implementation of the con-
straints (i.e., divergences coming from the incorrect prod-
uct of redundant delta functions). As discussed above, the
reducibility equation induced by the Bianchi identity im-
plies that the components of the curvature are not indepen-
dent. In the discretized framework, we know [19] that for
all sets of faces f forming a closed surface S with the
topology of a two-sphere,Y

f2S

gf ¼ 1; (44)

modulo orientation and some possible conjugations de-
pending on the base points of the holonomies.
Accordingly, there is, for each three-cell of the dual cel-
lular complex ��, one group element gf, among the finite

number of group variables attached to the faces bounding
the bubble, which is completely determined by the others.
It follows that imposing gf ¼ 1 on all faces of the cellular

complex �� is redundant and would create divergences in
the computation of the physical inner product. The proper
way [16,20] to address the reducibility issue, or overdeter-
mination of the holonomy variables, is to pick a maximal
tree T of the cellular decomposition � and impose F ¼ 0
only on the faces of �� that are not dual to any one simplex
contained in T. A tree T of a cellular decomposition � is a
subcomplex of the one-skeleton of� which never closes to
form a loop. A tree T of � is said to be maximal if it is
connected and goes through all vertices of �. The fact that
T is a maximal tree implies that one is only removing
redundant flatness constraints taking consistently into ac-
count the reducibility of the flatness constraints.

Finally, we need to impose the F ¼ p part of the curva-
ture constraint. The idea is to require that the holonomy g�
around any loop � in @�� based at a point x, belonging to
the homology class of loops of the boundary torus T�
normal to the string S (these loops are the ones wrapping
around the cycle of the torus circling the string, i.e., the
noncontractible loops in ��), be equal to the image of the

group element u under the adjoint automorphism
�ðxÞu�ðxÞ�1, i.e., belong to ClðuÞ. Intuitively, this could
be achieved by picking a finite set f�igi of such homolo-
gous paths all along the tube T� and imposing g�i ¼
Ad�iðuÞ, with the field �i evaluated at the base point of

the holonomy g�i . However, here again, care must be taken

in addressing the reducibility issue induced by the equation
DaH

a
i ¼ 0. In the presence of matter, the reducibility

implies that the curvature constraint F ¼ p�S together
with the Bianchi identity DF ¼ 0 induce the momentum
density conservation Dp ¼ 0. In our setting, this is re-
flected in the fact that the holonomies g�1

and g�2
asso-

ciated with two distinct homologous loops �1 and �2

circling the string satisfy the property Clðg�1
Þ ¼ Clðg�2

Þ
on shell. This is due to the Bianchi identity in the interior of
the cylindrically shaped section of the torus T� bounded by

�1 and �2, and the flatness constraint F ¼ 0 imposing the
holonomies around all the dual faces on the boundary of
the cylindrical section to be trivial [see, e.g., (44)].
Accordingly, imposing g�1

2 ClðuÞ naturally implies that

g�2
belongs to the conjugacy class labeled by u. In other

words, choosing one arbitrary closed path circling the
string, say �1 based at a point x1, and imposing F ¼ p
only along that path naturally propagates via the Bianchi
identity and the flatness constraint and forces the holon-
omy g�2

around any other homologous loop �2 based at a

point x2 to be of the form g�2
¼ huh�1 2 ClðuÞ, for some

h 2 G. This shows that imposing F ¼ p more than once,
e.g., also around �2, would lead to divergences which can
be traced back to the reducibility of the constraints.
However, for the prescription to be complete,8 it is not

sufficient to have g�2
in ClðuÞ; we need to recover the fact

that the holonomy along the loop �2 is the conjugation of
the group element u under the dynamical field � evaluated
at the base point x2 of the holonomy, namely, �2 ¼ �ðx2Þ.
This suggests an identification of the group element h
conjugating u with the value of the string field �2, which
leads to a relation between the holonomy g� along a path�

7Note that the blow up of the string, reflected here in the
presence of a flatness constraint on the boundary torus, gives us
the opportunity to impose that the connection is flat also on the
string.

8To understand these last points, consider two loops �1 and �2

belonging to the same homology class circling the string at two
neighboring points, say x1 and x2. These two loops define a
section of the torus T� homeomorphic to a cylinder. Suppose that
the dual cellular complex �� is such that the cylinder is dis-
cretized by a single face with two opposite edges glued along an
dual edge � in @�� connecting x1 and x2. The flatness constraint
on the boundary of the cylinder implies the following presenta-
tion of the cylinder’s fundamental polygon:

g�1
g�g

�1
�2
g�1
� ¼ 1;

which relates the holonomies g�1
and g�2

by virtue of the
Bianchi identity in the interior of the tube. Hence, imposing F ¼
p only along one of the two loops, say �1, naturally leads to the
constraint g�2

2 ClðuÞ. Finally, plugging the relation g� ¼
�1�

�1
2 in the value of the holonomy g�2

leads to the required
constraint g�2

¼ �2u�
�1
2 .
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connecting the points x1 and x2 and the value of the string
field � at x1 and x2:

g� ¼ �sð�Þ�tð�Þ
�1;

stating that � is covariantly constant along the string. We
have seen that the Bianchi identity together with the full
curvature constraint induces the momentum density con-
servation. Our treatment of the reducibility issue consists
in truncating the curvature constraint, i.e., in imposing F ¼
p only once, and using the Bianchi identity supplemented
with the momentum conservation Dp ¼ 0 to recover the
truncated components of the curvature constraint without
any loss of information.

Accordingly, the full prescription is defined via a choice
of a closed, oriented path � and a finite set C of open,
oriented paths � in @��. The closed path � circles the
string (it is noncontractible in the three-manifold��). This

loop is based at a point x 2 X lying on a dual vertex �v 2
@�� supporting a spin network end point. The open paths
� 2 C are defined as follows. Let �� 2 @�� be an oriented
loop based at x, nonhomologous to� (along the cycle of T�
contractible in��) and connecting all the spin network end

points xk 2 X. Define the open path � by erasing the
segment of �� supported by the edge �e, which is such that
x ¼ tð �eÞ. The paths � of C are 1D submanifolds of � each
connecting x to a vertex �v traversed by �. If the graph � is
closed, one reiterates the same prescription simply drop-
ping the requirements on the spin network end points xk 2
X, in particular, the base point x is chosen arbitrarily. We
then impose g� ¼ expp with p evaluated at the point x,
and g� ¼ �sð�Þ�tð�Þ

�1, where x ¼ sð�Þ, on each open path
� of C.

To summarize, we choose a regulator Rð�;	Þ ¼
ðT�; ð�	; @�	Þ; T; �; CÞ consisting of a thickening T� of

the string, a cellular decomposition ð�	; @�	Þ of the mani-
fold ð��; T�Þ adapted to the graph �, a maximal tree T of

�, a closed path � in @��, and a collection C of open paths
� in @��. The associated regularized physical scalar prod-
uct is then given by

P½�� :¼ lim
�;	!0

P½Rð�;	Þ;��; (45)

with

P½Rð�;	Þ;�� ¼ h�;
�Y
fT

�ðgfÞ
Y
�

�ðg� exppÞ

� Y
�2C

�ðg��tð�Þ��1
sð�ÞÞ

�
�i; (46)

where the product over � is to take into account the
possible multiple connected components of the string.

It is important to point out that, in addition to the
expression of the generalized projection above, we can
use the regularization to give an explicit expression of
the regularized constraint corresponding to H½N� in
Eq. (40). With the notation introduced so far the regulated

quantum curvature constraint becomes

Ĥ �;	½N� ¼
X
f2��

Tr½NðxfÞgf� þ
X
�

Tr½NðxpÞg� expp�;

(47)

where xf is an arbitrary point in the interior of the face f

and xp an arbitrary point on the string dual to the loop �

(the sum over � is over all the string components). It is
easy to check that the regulated quantum curvature con-
straints satisfy the off-shell anomaly freeness condition.
For instance,

U½g�Ĥ�;	½N�Uy½g� ¼ Ĥ�;	½gNg�1�; (48)

where U½g� is the unitary generator of G-gauge transfor-
mations. Therefore the regulator does not break the alge-
braic structure of the classical constraints. The
quantization is consistent. The quantum constraint operator
is defined as the limit where � and 	 are taken to zero.
Instead of doing this in detail we shall simply concentrate
on the regulator independence of the physical inner prod-
uct in the following section.
The inner product is computed using the AL measure,

that is, by Haar integration along all edges of the graph
ð��; @��Þ 3 � and along all end points xk 2 X � @�� of
the graph �.
We can now promote the classical delta function on the

lattice phase space to a multiplication operator onH kin by
using its expansion in irreducible unitary representations:

8 g 2 G; �ðgÞ ¼ X
�

dimð�Þ��ðgÞ; (49)

where �� 	 tr�: G! C is the character of the represen-

tation �. Each �� is then promoted to a self-adjoint Wilson

loop operator �̂� on H kin creating loops in the � repre-

sentation around each plaquette defined by our regulariza-
tion, which is charged for the face bounded by the loop �.
To summarize, we have, for each face f of the regulariza-
tion, a sum over the unitary, irreducible representations �f
of G, a weight given by the dimension dimð�fÞ of the

representation �f summed over a loop around the oriented

boundary of the face in the representation �f. See, for

instance, [12,21,22] for details. This concludes our regu-
larization of the transition amplitudes of stringlike sources
coupled to four-dimensional BF theory.
Now, the physical inner product that we have con-

structed above depends manifestly on the regulating struc-
ture Rð�;	Þ. To complete the procedure, we have to

calculate the limit in which the regulating parameters �
and 	 go to zero.
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IV. REGULATOR INDEPENDENCE

Throughout this section we will suppose that the cellular
complex ð�; @�Þ is simplicial, i.e., a triangulation of
ð��; T�Þ. We will also make the simplifying assumption

that G ¼ SUð2Þ, the unitary irreducible representations of

which will be noted ð�j ;VjÞ, with the spin j in N=2. The
generalization to arbitrary cellular decompositions and
arbitrary compact Lie groups can be achieved by using
the same techniques that we develop below. If � is now a
regular triangulation, it cannot be adpated to any graph �.
It can only be so for graphs with three-or-four-valent
vertices. Now, we can always decompose a n-valent inter-
twiner, with n > 3, into a three-valent intertwiner by using
repeatedly the complete reducibility of the tensor product
of two representations.9 We will therefore decompose all
n-valent interwiners �v with n > 3 into three-valent
vertices.

We now show how to remove the regulator Rð�;	Þ from
the regularized scalar product (45). Instead of computing
the �, 	! 0 limit, we demonstrate that the transition
amplitudes are in fact independent of the regulator. To
prove such a statement, we show that the expression (45)
does not depend on any component of the regulator. The
transition amplitudes are proven to be invariant under any
finite combination of elementary moves called regulator
movesR: Rð�;	Þ � R0

ð�;	0Þ, where each regulator move is

a combination of elementary moves acting on the compo-
nents of the regulator:

(i) Bulk and boundary (adapted) Pachner moves
ð�; @�Þ � ð�0; @�0Þ,

(ii) Elementary maximal tree moves T � T0,
(iii) Elementary curve moves �� �0.
We will see how the invariance under the above moves

also implies an invariance under dilatation/contraction of
the string thickening radius �.

To conclude on the topological invariance of the ampli-
tudes from the above elementary moves, we will further-
more prove that the transition amplitudes are invariant
under elementary moves acting on the string spin network
graph G: � � �0 which map ambient isotopic PL-graphs
into ambient isotopic PL-graphs.

We now detail the regulator and graph topological
moves.

A. Elementary regulator moves

The regulator moves are finite combinations of the
following elementary moves acting on the simplicial com-
plex ð�; @�Þ, the maximal tree T, and the paths � and � 2
C.

1. Adapted Pachner moves

The first invariance property that we will need is that
under moves acting on the simplicial pair ð�; @�Þ, leaving
the one-complex � invariant and mapping a �-adapted
triangulation into a PL-homeomorphic �-adapted simpli-
cial structure. We call these moves adapted Pachner
moves. There are two types of moves to be considered:
the bistellar moves [23], acting on the bulk triangulation �
and leaving the boundary simplicial structure unchanged,
and the elementary shellings [24], deforming the boundary
triangulation @� with induced action in the bulk.
Bistellar moves.—There are four bistellar moves in three

dimensions: the (1, 4), the (2, 3), and their inverses. In the
first, one creates four tetrahedra out of one by placing a
point p in the interior of the original tetrahedron whose
vertices are labeled pi, i ¼ 1; . . . ; 4, and by adding the four
edges ðp; piÞ, the six triangles ðp; pi; pjÞi�j, and the four

tetrahedra ðp; pi; pj; pkÞi�j�k. The (2, 3) move consists of

the splitting of two tetrahedra into three: one replaces two
tetrahedra ðu; p1; p2; p3Þ and ðd; p1; p2; p3Þ (u and d, re-
spectively, refer to ‘‘up’’ and ‘‘down’’) glued along the
ðp1; p2; p3Þ triangle with the three tetrahedra
ðu; d; pi; pjÞi�j. The dual moves, that is, the associated

moves in the dual triangulation, follow immediately. See
Fig. 2.
Elementary shellings.—Since the manifold ð��; T�Þ has

nonempty boundary, extra topological transformations
have to be taken into account to prove discretization inde-
pendence. These operations, called elementary shellings,
involve the cancellation of one 3-simplex at a time in a
given triangulation ð�; @�Þ. In order to be deleted, the
tetrahedron must have some of its two-dimensional faces
lying in the boundary @�. The idea is to remove three-
simplices admitting boundary components such that the
boundary triangulation admits, as new triangles after the
move, the faces along which the given tetrahedron was
glued to the bulk simplices. Moreover, for each elementary
shelling there exists an inverse move which corresponds to
the attachment of a new three-simplex to a suitable com-
ponent in @�. These moves correspond to bistellar moves
on the boundary @� and there are accordingly three dis-
tinct moves for a three-manifold with boundary, the (3, 1),
its inverse, and the (2, 2) shellings, where the numbers
ðp; qÞ here correspond to the number of two-simplices of a
given tetrahedron lying on the boundary triangulation. In

)2,3()1,4(

FIG. 2. The (4, 1) and (3, 2) bistellar moves.

9One can show that the amplitudes obtained using the three-
valent decomposition (where the virtual edges are assumed to be
real) are identical to the ones obtained using a suitable non-
simplicial cellular decomposition adapted to spin networks with
arbitrary valence vertices.
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the first, one considers a tetrahedron admitting three faces
lying in @� and erases it such that the remaining boundary
component is the unique triangle that did not belong to the
boundary before the move. The inverse move follows
immediately. The (2, 2) shelling consists of removing a
three-simplex intersecting the boundary along two of its
triangles such that, after the move, @� contains the two
remaining faces of the given tetrahedron. These shellings
and the associated boundary bistellars are depicted in
Fig. 3.

The subset of bistellar moves and shellings which map
�-adapted triangulations into �-adapted triangulations will
be called adapted Pachner moves, and, considering a local
simplicial structure T k ¼ [kn¼1�

n
3 , k ¼ 1; . . . ; 4, an

adapted ðp; qÞ Pachner move T p � T q will be noted

P ðp;qÞ, or more generally P . Any two PL-homeomorphic,

�-adapted triangulations ð�; @�Þ of the PL pair ð��; T�Þ
are related by a finite sequence of such moves.

Here it is important to take into account the PL embed-
ding of the string spin network graph � in the (dual)
triangulation ð�; @�Þ. We will call �k ¼ � \T �

k the re-
strictions of the graph � to the local simplex configurations
T k appearing in the moves. If the graph �k is not the null
graph, we will consider that it is open and does not contain
any loop. If this was not the case, the set of adapted moves
would reduce to the identity move, under which the tran-
sition amplitudes are obviously invariant. Hence, �k, if at
all, can only be either an edge, or more generally a collec-
tion of edges, either a (three-valent) vertex. The associated
string spin network functional��k will be represented by a

group function�k, which is the constant map�k ¼ 1 if �k
is the null graph. We will make sure to check that, under a
ðp; qÞ Pachner move, �k transforms as �p � �q.

2. Maximal tree moves

It is also necessary to define topological moves for the
trees [20,25]. Any two homologous trees T1 and T2 are
related by a finite sequence of the following elementary
tree moves T : T1 � T2.

Definition 1 (Tree move).—Considering a vertex �0

belonging to a tree T, choose a pair of edges �1, �
0
1 in �

touching the vertex �0 such that �1 is in T, �
0
1 is not in T

and such that�0
1 combined to the other edges of T does not

form a loop. The move T consists in erasing the edge �1

from T and replacing it by �0
1.

There is another operation on trees that we need to
define. When acting on the simplicial complex ð�; @�Þ
with a bistellar move or a shelling, one can possibly map
ð�; @�Þ into a simplicial complex ð�0; @�0Þwith a different
number of vertices. Hence, a maximal tree T of � is not
necessarily a maximal tree of�0; the Pachner moves have a
residual action on the trees. This leads us to define the
notion of maximal tree extension (or reduction) accompa-
nying Pachner moves modifying the number of vertices of
the associated simplicial complex.
Definition 2 (Tree extension or reduction).— An ex-

tended (or reduced) tree T, associated with a Pachner
move P : � � �0 modifying locally the number of verti-
ces of a simplicial complex �, is a maximal tree of �0
obtained from a maximal tree T of � by adding (or
removing) the appropriate number of edges to T as a means
to transform T into a maximal tree TP of �0.
Obviously, there is an ambiguity in the operation of tree

extension or reduction. But, because of the fact that the
regularized physical inner product will turn out to be
independent of a choice of maximal tree, there will be no
trace of this ambiguity in the computations of the transition
amplitudes.

3. Curve moves

Finally, we define the PL analogue of the Reidemeister
moves, which were in fact a crucial ingredient in the proof
of Reidemeister’s theorem. Any two ambient isotopic PL
embeddings �1 and �2 of a curve � in the dual complex
ð��; @��Þ are related by a finite sequence of the following
elementary topological moves C: �1 � �2.
Definition 3 (Curve move).— Consider a PL path � lying

along the p boundary edges e1; e2; . . . ; ep of a two-cell f of

the dual pair ð��; @��Þ, where f has no other edges nor
vertices traversed by the curve �. Erase the path � along
the edges e1; e2; . . . ; ep and add a new curve along the com-

plementary @f n fe1; e2; . . . ; epg of the erased segment in f.

)2,2()1,3(

FIG. 3. The (3, 1) and (2, 2) shellings, their dual moves, and
the associated boundary bistellars.
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We have now defined all of the elementary regulator
moves. To summarize, an elementary regulator move
R: Rð�;	Þ � R0

ð�;	0Þ is a finite combination of all the

above moves: R½Rð�;	Þ� ¼ ðT�;P ½ð�; @�Þ�;T ½TP �;
C½��; C½C�Þ. Proving the invariance of the regularized
physical inner product (45) under all of these elementary
regulator moves is equivalent to showing the independence
of the regulating structure Rð�;	Þ. Note however that we

have not included contractions or dilatations of the string
tube T� radius� in the regulator moves. This is because the

invariance under shellings implies the invariance under
increasing or decreasing of �. Indeed, the bistellars and
shellings are the simplicial analogues of the action of the
homeomorphisms Homeo½ð��; T�Þ�. In particular, the to-

pological group Homeo½ð��; T�Þ� contains transforma-

tions deforming continuously the boundary T�, like for

instance maps decreasing or increasing the (noncontracti-
ble) radius �> 0 of the boundary torus T�. Hence, show-

ing the invariance under elementary shellings is sufficient
to prove the independence of the string thickening radius,
and the moves defined above are sufficient to conclude on
the regulator independence of the definition of the regular-
ized physical inner product.

To push the result further and conclude on the topologi-
cal invariance of the transition amplitudes, we need extra
ingredients that we define in the following section.

B. String spin network graph moves

We now introduce the following elementary moves,
respectively, acting on the edges and vertices of the open
graph �. All ambient isotopic PL embeddings of the one-
complex � are related by a finite sequence of the following
elementary moves denoted by G.

Definition 4 (Edge move).—An edge move is a curve
move applied to an edge e� of the graph �.

Note that these moves apply also to the open edges of the
graph �. However, there exist other moves which displace
the end points.

Definition 5 (End point move).—Considering an open
string spin network edge e� ending on the point xk 2 X
supported by a dual vertex �v of @f, which is such that its
neighboring vertex �v0 not touched by e� belongs to @f, an
end point move consists of adding a section to e� connect-
ing �v to �v0.

We also need similar moves for the vertices.

Definition 6 (Vertex translation).—Let v� denote a
three-valent spin network vertex sitting on the vertex v
of the dual complex ð��; @��Þ. Choose one edge e� among
the three edges emerging from v� and call v0 the dual
vertex adjacent to v which is traversed by e�. Call e, e

0 �
ð��; @��Þ the dual edges locally supporting e�, i.e., such
that @e ¼ fv; v0g and v0 ¼ e� \ ðe \ e0Þ.
The move consists of translating the vertex v� along e

from v to v0. This is achieved by choosing one dual face
sharing the dual edge e and not containing the dual edge e0,
and acting upon it with the edge move.

Note that the use of rectangular faces in the above
picture is only for the clarity of the picture; the move is
defined for faces of arbitrary shape.
It is important to remark that the above moves respect

the topological structure of the embedding because no
discontinuous transformations are allowed and because
the number and nature of the crossings are preserved since
the faces used to define the moves are required to have
empty intersections with the string or graph apart from the
specified ones.
The combination of the adapted Pachner moves and the

spin network moves are the simplicial analogues of the
action of the homeomorphisms Homeo½ð��; T�Þ� on the

triple ðð��; T�Þ;�Þ.

C. Invariance theorem

We can now prove the following theorem.
Theorem 1 (Invariance theorem).—Let �� denote a

string spin network element of a given basis of H kin

defined with respect to the one-complex �. Choose a
regulator Rð�;	Þ ¼ ðT�; ð�	; @�	Þ; T; �; CÞ consisting of a

thickening T� of the string, a cellular decomposition

ð�	; @�	Þ of the manifold ð��; T�Þ adapted to the graph

�, a maximal tree T of �, a closed path � in @��, and a
collection C of open paths � in @��. Let R: Rð�;	Þ �
R0

ð�;	0Þ (resp. G: � � �0) denote an elementary regulator

move (resp. a string spin network move). The evaluated
linear form (46) is invariant under the action of R and G:

P½Rð�;	Þ;��� ¼ P½R½Rð�;	Þ�;��� ¼ P½Rð�;	Þ;�Gð�Þ�:
(50)

Proof. We proceed by separately showing the invariance
under each elementary regulator move, before proving the
invariance under graph moves.
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(1) Invariance under maximal tree moves.
Here, we simply apply to the proof of invariance
under maximal tree moves written in [25]. First, we
need to endow the tree T of the left-hand side of the
move with a partial order. To this aim, we pick a
distinguished vertex r of T, chosen to be the other
vertex of the edge �0

1. The rooted tree ðT; rÞ thus
acquires a partial order � : a vertex �0

0 of ðT; rÞ is
under a vertex �0, �

0
0 � �0, if it lies on the unique

path connecting r to �0. We can now define the tree
T�0

to be the subgraph of T connecting all the

vertices above �0: �0 is the root of T�0
. The second

ingredient that we need is the notion of Bianchi
identity (44) applied to trees. Indeed, if T is a tree
of the (regular) simplicial complex �, its tubular
neighborhood has the topology of a 3-ball and its
boundary has the topology of a 2-sphere. This sur-
face S can be built as the union of the faces f dual to
the edges �1 in � touching the vertices of T without
belonging to T. Hence, applying the Bianchi iden-
tity to the tree T�0

yields

gf0
0
¼

� Y
f2S1

gf

�
gf0

� Y
f2S2

gf

�
: (51)

Here, f0 and f
0
0 are the faces dual to the segments�0

and �0
0 (note that �0 does not belong to T�0

). The

sets S1, S2 are the set of faces dual to the segments
�1 touching the vertices of T�0

without belonging to

T�0
, and which are not f0 nor f00. The presence of

two different sets S1 and S2 is simply to take into
account the arbitrary positioning of the group ele-
ment gf0 among the product over all faces. As usual,

the group elements are defined up to orientation and
conjugation. Next, we apply a delta function to both
sides of the above equation and multiply the result
as follows:

Y
f=2T

f�f0;f
0
0

�ðgfÞ�ðgf0
0
Þ¼ Y

f=2T
f�f0;f

0
0

�ðgfÞ

��
�� Y

f2S1

gf

�
gf0

� Y
f2S2

gf

��
;

Y
f=2T

�ðgfÞ¼
Y
f=2T0

�ðgfÞ: (52)

In the second step, we have simply used the delta
functions with which the expression has been multi-
plied to set the group elements associated with the
sets S1 and S2 to the identity (the faces of S1 and S2

are dual to segments not belonging to T). One can
then check that the various steps of the proof remain
valid if the boundaries of the dual faces carry string
spin networks. This shows the invariance of the

regularized inner product (46) under maximal tree
move.

(2) Invariance under adapted Pachner moves.
To prove the invariance under Pachner moves, we
introduce a simplifying lemma [26,27].
Lemma 1 (Gauge-fixing identity).—To each vertex
of the dual triangulation �� are associated four
group elements fgaga¼1;...;4, six unitary irreducible

representations fjabga<b¼1;...4 of G, and a string spin
network function �1ðfgaga¼1;...;4Þ. If �1 is the con-

stant map �1 ¼ 1, or depends on its group argu-
ments only through monomial combinations
fgagbga�b of degree two, then the following identity
holds:

Y4
b>a¼1

Z
G
dga �

jabðgagbÞ�1ðfgdgdÞ

¼ Y4
b>a¼1

Z
G
dga�ðgcÞ�jabðgagbÞ�1ðfgdgdÞ (53)

for c ¼ 1, 2, 3, or 4.
Proof of Lemma 1.—The above equality is trivially
proven by using the invariance of the Haar measure
and performing the change of variables �cb ¼ gcgb,
for c < b (resp. �bc ¼ gbgc, for c > b) in the left-
hand side. This translation is always possible since
the group function � is either the constant map or
depends on the group elements only through mono-
mials of degree two.
Let us comment here on the validity of the hypothe-
sis made on the spin network function�1 associated
with the graph �1 ¼ � \T 1, with T 1 ¼ �3 in the
above lemma. In fact �1 depends necessarily on
combinations of the form gagb locally if the graph
�1 is not the null graph. Indeed, �1 can either be a
collection of edges, in which case this requirement
simply states that the edges are open, or a vertex,
where one can always use the invariance of the
associated intertwining operator to satisfy the de-
sired assumption. Hence, this requirement is always
locally satisfied.
We can now show the invariance under bistellar
moves and shellings.

(a) Bistellar moves:
(i) The (4, 1) move.—Consider the four simplices con-

figuration T 4 in ð�; @�Þ (Fig. 2). Since the ampli-
tudes do not depend on the maximal tree T of �, we
are free to choose it. The simplest choice consists in
considering a maximal tree T whose intersection T4
with the simplex configuration T 4 reduces to the
four external vertices and to a single one-simplex
touching the central vertex. We work in the dual
picture and label the four external dual edges from
one to four. The face dual to the internal tree segment
is chosen to be the face 142. We note ga and hab, a,
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b ¼ 1; . . . ; 4, the group elements10 associated with
the external and internal dual edges, respectively,
while the representations assigned to the dual faces
are denoted by jab. The general PL string spin net-
work state restricted to the configuration T �

4 is de-
noted by �4ðfgaga; fhabga<bÞ. Obviously, �4 is not a
function of all of its ten arguments, otherwise it
would contain a loop, but can generally depend on
any one of these ten group elements, as suggested by
the notation. The regularized physical inner product
(46) restricted to these four simplices yields

Z
G10
dg1dg2dg3dg4dh12dh13dh14dh23dh24dh34

� �
j12ðg1h12g2Þ�j13ðg1h13g3Þ�j14ðg1h14g4Þ

� �
j23ðg2h23g3Þ�j24ðg2h24g4Þ�j34ðg3h34g4Þ

� �ðh12h23h31Þ�ðh13h34h41Þ�ðh23h34h24Þ
��4ðfgaga; fhabga<bÞ; (54)

where we have omitted the sum over representations
weighted by the associated dimensions. We start by
implementing Lemma 1 at vertices 2, 3, and 4 to
eliminate the three variables h1b, b � 1. We obtain

Z
G7
dg1dg2dg3dg4dh23dh24dh34�

j12ðg1g2Þ�j13ðg1g3Þ

��
j14ðg1g4Þ�j23ðg2h23g3Þ�j24ðg2h24g4Þ�j34ðg3h34g4Þ

��ðh23Þ�ðh34Þ�ðh23h34h24Þ
��ðfgaga;fh23;h34;h24gÞ

¼
Z
G4
dg1dg2dg3dg4�

j12ðg1g2Þ�j13ðg1g3Þ�j14ðg1g4Þ

��
j23ðg2g3Þ�j24ðg2g4Þ�j34ðg3g4Þ�1ðfgagaÞ; (55)

where we have integrated over the delta functions to
eliminate the interior variables in the second step.
The right-hand side of the above equality corre-
sponds to the one-simplex configuration of the (4,
1) move with the associated maximal tree reduction
(the obvious removal of the internal tree segment; T1
is given by the four vertices of the resulting tetrahe-
dron). In other words, we have just proved the in-
variance under the transformation P ð4;1Þ: ðT 4;T4Þ�
ðT 1;T

0
1Þ, with Tk ¼ T \T k and T

0 ¼ TP ð4;1Þ .

(ii) The (3, 2) move.—Here, we consider the three-
simplices configuration T 3 (see Fig. 2) and choose
a tree T intersecting T 3 only on its five vertices.
Concentrating on the dual graph, we label the three
vertices from one to three and, respectively, note g�a ,

hab, and j��ab , a, b ¼ 1; . . . ; 3, �, � ¼ 1, 2, the

external and internal group elements, and the repre-

sentation labels. The associated string spin network
state is called �3. The transition amplitude, re-
stricted to these three-simplices, yields (omitting
the sum over representations and associated dimen-
sions)

Z
G9
dg11dg

2
1dg

1
2dg

2
2dg

1
3dg

2
3dh12dh13dh23�

j11
12ðg11h12g12Þ

� �
j1113ðg11h13g13Þ�

j1123ðg12h23g13Þ�
j2212ðg21h12g22Þ

� �
j22
13ðg12h13g23Þ�

j22
23ðg22h23g23Þ�

j12
11ðg11g21Þ�

j12
22ðg12g22Þ

� �
j12
33ðg13g23Þ�ðh12h23h13Þ�3ðfgaga; fhabga<bÞ:

(56)

Using the gauge-fixing identity at vertices 2 and 3 to
eliminate the variables h1a, a � 1, and solving for
the delta function leads to

Z
G6
dg11dg

2
1dg

1
2dg

2
2dg

1
3dg

2
3�
j11
12ðg11g12Þ�

j11
13ðg11g13Þ�

j11
23ðg12g13Þ

� �
j22
12ðg21g22Þ�

j2213ðg22g23Þ�
j2223ðg22g23Þ�

j12
11ðg11g21Þ�

j12
22ðg12g22Þ

� �
j12
33ðg13g23Þ�ðfgagaÞ

¼
Z
G7
dg11dg

2
1dg

1
2dg

2
2dg

1
3dg

2
3dh�

j11
12ðg11g12Þ

� �
j11
13ðg11g13Þ�

j11
23ðg12g13Þ�

j22
12ðg21g22Þ�

j22
13ðg22g23Þ�

j22
23ðg22g23Þ

� �
j12
11ðg11hg21Þ�

j12
22ðg12hg22Þ�

j12
33ðg13hg23Þ�2ðfgaga; hÞ;

(57)

where we have used the inverse gauge-fixing identity
in the last step. This expression corresponds to the
two-simplices configuration T 2 of the (3, 2) move.

(b) Shellings:
(i) The (3, 1) move.—Remarkably, writing the ampli-

tudes associated with the left- and right-hand sides of
the (3, 1) shelling leads to the same expression as the
(4, 1) bistellar, even if the geometrical interpretation
is obviously different. This is due to the fact that we
are imposing the flatness constraint F ¼ 0 also on
the faces of the boundary11 simplicial complex @�
and integrating also on the boundary edges. The only
difference is in the presence of possible open string
spin network edges reflected in the group function
� ¼ �ðfgaga; f�agaÞ, without any incidence in any
steps of the proof given for the (4, 1) bistellar.
Accordingly, the proof of invariance under the (3,
1) shelling is the one sketched above.

10The notations takes into account the appropriate orientations.

11In this sense, the boundary amplitudes are very different from
a 2þ 1 quantum gravity model defined on an open manifold.
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(ii) The (2, 2) move.—The same remark applies here;
the amplitudes are exactly identical to the ones of
the (3, 2) bistellar.

Accordingly, we have proven the invariance under Pachner
moves.

(3) Invariance under curve moves.
We here show that the regularized physical inner
product is invariant under curve moves. The proof
uses the flatness constraint F ¼ 0. Consider a par-
ticular dual face f of ð��; @��Þ containing n bound-
ary edges positively oriented from vertex 1 to vertex
n. Suppose that there are p < n dual edges
e1; . . . ; ep supporting a curve positively oriented

w.r.t the face f, to which is associated a spin j
representation. We want to prove that the associated
amplitude is equal to the amplitude corresponding to
the curve lying along the n� p edges of @f n
fe1; . . . ; epg after the edge move. We start from the

initial configuration

Z
Gn

Yn
a¼1

dga�
j ðg1 . . .gpÞ�ðg1 . . .gpgpþ1 .. .gnÞ

��ðg1G1Þ�ðg1H1Þ . . .�ðgnGnÞ�ðgnHnÞ; (58)
where the capital letter Ga, Ha, a ¼ 1; . . . ; n, rep-
resent the sequences of group elements associated
with the two other faces sharing the edge a. We then
simply integrate over the group element g1 to obtain

Z
Gn�1

Yn
a¼2

dga�
j ðg�1

n . . . g�1
pþ1Þ�ðg�1

n . . .g�1
2 G1Þ

� �ðg�1
n . . .g�1

2 H1Þ . . .�ðgnGnÞ�ðgnHnÞ

¼
Z
Gn

Yn
a¼1

dga�
j ðg�1

n . . . g�1
pþ1Þ

� �ðg1 . . . gpgpþ1 . . . gnÞ�ðg1G1Þ
� �ðg1H1Þ . . .�ðgnGnÞ�ðgnHnÞ: (59)

Note the reversal of orientations intrinsic to the
move. This closes the proof of invariance under
curve move.
We finish the proof of Theorem 1 by showing the
second part, namely, the invariance of the transition
amplitudes under string spin network graph moves.

(4) Invariance under edge moves.
The proof is the one given for the curve move.

(5) Invariance under endpoint moves.
Here, we use the momentum conservation Dp ¼ 0.
Considering a particular dual face f containing n
boundary edges, with p < n dual edges e1; . . . ; ep
supporting an open string spin network edge (posi-
tively oriented w.r.t f) ending on the boundary of the
edge p, with which is associated a spin j represen-
tation. We call �k the string field evaluated at the
target of the kth edge. We choose the holonomy

starting point x to be on the end point of the p
edge (we prove below that nothing depends on this
choice) and, since nothing depends on the paths �
by virtue of the invariance under curve moves, we
choose a path � of C along the edge pþ 1. The
relevant amplitude is given by

Z
Gnþ2

Yn
a¼1

dgad�pd�pþ1�
j ðg1 . . . gp�pÞ

� �ðgpþ1�pþ1�
�1
p Þ; (60)

where the notations are the same as above. One can
immediately rewrite the above quantity as

Z
Gnþ2

Yn
a¼1

dgad�pd�pþ1�
j ðg1 . . . gpgpþ1�pþ1Þ

� �ðgpþ1�pþ1�
�1
p Þ; (61)

which concludes the proof of end point move
invariance.

(6) Invariance under vertex translations.
Here, we consider three dual face fi, i ¼ 1, 2, 3, of
ð��; @��Þ each containing ni boundary edges posi-
tively oriented from vertex 1 to vertex ni. The three
faces meet on the common edge ewhich is such that
1 ¼ tðeÞ, i.e., e ¼ eini , for all i. Suppose that there

are p1 < n1 dual edges e11; . . . ; e
1
p1

(resp. p2 < n2
dual edges e21; . . . ; e

2
p2
) of the face f1 (resp. f2)

supporting a string spin network edge e1� (resp. e2�)
colored by a spin j1 (resp. j2) representation and
oriented negatively w.r.t the orientation of f1 (resp.
f2). Suppose also that the face f3 contains n3 � p3

dual edges e3p3þ1; . . . ; e along which lies a positively

oriented (w.r.t. to the orientation of the face) string
spin network edge e3� colored by a spin j3 represen-
tation. Consider that the three edges meet on the
vertex v� supported by the vertex 1 of ð��; @��Þ.
Denoting by g the group element associated with the
common edge e, one can write the spin network
function associated with the three-valent vertex v�
lying on 1 and use the invariance property of the
associated intertwining operator � to ‘‘slide’’ the
vertex along the edge e:

�
j1 ððg1p1

Þ�1ðg1p1�1Þ�1 . . . ðg11Þ�1

�Þ�j2 ððg2p2
Þ�1ðg2p2�1Þ�1 . . . ðg21Þ�1Þ

� �
j3 ðg3p3þ1 . . . g

3
n3�1gÞ�j1j2j3

¼ �
j1 ððg1p1

Þ�1 . . . ðg11Þ�1g�1Þ
� �

j2 ððg2p2
Þ�1 . . . ðg21Þ�1g�1Þ

� �
j3 ðg3p3þ1 . . . g

3
n3�1Þ�j1j2j3 : (62)
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It is then possible to use the flatness constraint F ¼
0 on either of the faces f1 or f2 to implement an
edge move on e1� or e2� thus completing the vertex

move.
By virtue of all the above derivations, we have now
fully proven Theorem 1.
To be perfectly complete, we need to verify that the
amplitudes are also independent under orientation
and holonomy base point change. This leads to the
following proposition.

Proposition 1.—The regularized physical inner product
(46) is independent of the choice of orientations of the dual
edges and faces of ð��; @��Þ, and does not depend on the
choice of holonomy base points.

Proof of Proposition 1.—One can immediately see that
the amplitudes do not depend on the orientations of the
dual faces and dual edges of ð��@��Þ, nor on the holonomy
starting points on the boundaries of the dual faces [25].
Indeed, a dual face and dual edge orientation change
correspond, respectively, to a change ge � g�1

e and gf �
g�1
f which are, respectively, compensated by the invariance

of the Haar measure, dge ¼ dg�1
e , and of the delta func-

tion: �ðgfÞ ¼ �ðg�1
f Þ. A change in the holonomy base

point associated with a dual face f will have as a conse-
quence the conjugation of the group element gf by some

element h inG. Since the delta function is central, �ðgfÞ ¼
�ðhgfh�1Þ, the regularized physical inner product (46) will
remain unchanged under a such transformation.

Concerning the base point x used to define the holono-
mies along the loop � and the paths � 2 C in (46), the
situation is similar. Let x be denoted by x1 and suppose that
we change the point x1 to another point x2 in X neighboring
x1. Since we have shown the invariance under bistellars and
shellings, we are free to choose the simplest discretiza-
tion12 of the manifold ð��; T�Þ. We choose it such that the

cylindrical section of T� between x1 and x2 is discretized

by a single dual face with two opposite sides glued along a
dual edge e linking x1 to x2. By virtue of the curve move
invariance, we are also free to choose the path � to be
along e. The amplitude based on x2 as a starting point for
the paths � and �, restricted to this section of T�, yields

Z
G5

Y2
a¼1

dgad�adg��ðg2�2u�
�1
2 Þ�ðg��1�

�1
2 Þ

� �ðg2g�g�1
1 g�1

� Þfðfgaga; f�aga; g�Þ; (63)

where ga is the holonomy around the disk bounding the
tube section at the point xa and the function f describes the
string spin network function together with the other delta
functions containing the group elements ga and g�. It is

immediate to rewrite the above expression as

Z
G5

Y2
a¼1

dgad�adg��ðg1�1u�
�1
1 Þ�ðg�1

� �2�
�1
1 Þ

� �ðg�1
1 g�1

� g2g�Þfðfgaga; f�aga; g�Þ; (64)

which is the amplitude based on x1 as a starting point for
the paths � and �.
There are two major consequences due to the above

theorem and proposition. First, there is no continuum limit
to be taken in (45). Since the transition amplitudes are
invariant under elementary regulator moves, the regular-
ized physical inner product (46) is independent of the
regulator and the expression (46) is consequently exact;
there is no need to take the limits13 	, �! 0. In particular,
we have shown that the amplitudes are invariant under any
finite sequence of bistellar moves and shellings which
implies, by Pachner’s theorem, that the physical inner
product is well defined and invariant on the equivalence
classes of PL manifolds14 ð�; @�Þ up to PL homeomor-
phisms. Accordingly, the transition amplitudes are invari-
ant under triangulation change and thus under refinement.
This leads to the second substantial consequence of
Theorem 1. The crucial point is that the equivalence classes
of PL manifolds up to PL homeomorphism are in one-to-
one correspondence with those of topological manifolds up
to homeomorphism. See, for instance, [28] for details.
Hence, showing the invariance of the regularized physical
inner product under triangulation change is equivalent to
showing homeomorphism invariance: the discretized ex-
pression (46) is in fact a topological invariant of the
manifold ð��; T�Þ. In particular, the amplitudes are invari-

ant on the equivalence classes of boundary torii T� up to

homeomorphisms. It follows that they do not depend on the
embedding of the string S.
Combining these results with the second part of

Theorem 1 stating that the regularized physical inner prod-
uct is invariant under string spin network graph moves, we
obtain the following corollary.
Corollary 1.—The physical inner product (46) is a topo-

logical invariant of the triple ðð��; T�Þ;�Þ:

P½Rð�;	Þ;��� ¼ P½½ð��; T�Þ�;�½���; (65)

where ½ð��; T�Þ� and ½�� denote the equivalence classes of
topological open manifolds and one-complexes up to ho-
meomorphisms and ambient isotopy, respectively.

12Anticipating the next paragraph, we are using the fact that the
invariance under Pachner moves implies the topological invari-
ance of the amplitudes. Accordingly, we can use a cellular
decomposition which is not necessarily a triangulation.

13More precisely, we have shown that (46) is invariant when
going from Rð�;	Þ to Rð�0;	0Þ for all ð�0; 	0Þ � ð�; 	Þ which
implies regulator independence.
14More precisely, a triangulation � is not a PL manifold. It is a
combinatorial manifold which is PL isomorphic to a PL
manifold.
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This corollary concludes our study of the topological
invariance of the theory of extended matter coupled to BF
theory studied in this paper.

V. CONCLUSION

In the first part of this paper we have studied the geo-
metrical interpretation of the solutions of the BF theory
with stringlike conical defects. We showed the link be-
tween solutions of our theory and solutions of general
relativity of the cosmic string type. We provided a com-
plete geometrical interpretation of the classical string so-
lutions and explained (by analyzing the multiple strings
solution) how the presence of strings at different locations
induces torsion. In turn torsion can in principle be used to
define localization in the theory.

We have achieved the full background independent
quantization of the theory introduced in [7]. We showed
that the implementation of the dynamical constraints at the
quantum level requires the introduction of regulators.
These regulators are defined by (suitable but otherwise
arbitrary) space discretization. Physical amplitudes are
independent of the ambiguities associated with the way
this regulator is introduced and are hence well defined.
There are other regularization ambiguities arising in the
quantization process that have not been explicitly treated
here. For an account of these as well as for a proof that
these have no effect on physical amplitudes see [29].

The results of this work can be applied to the more
general type of models introduced in [30], where it is
shown that a variety of physically interesting 2-
dimensional field theories can be coupled to the string
world sheet in a consistent manner. An interesting example
is the one where in addition to the degrees of freedom
described here, the world sheet carries Yang-Mills
excitations.

There is an intriguing connection between this type of
topological theory and certain field theories in the 2þ 1
gravity plus particles case. One would expect a similar
connection to exist in this case. However, due to the higher
dimensional character of the excitations in this model this
relationship allows for the inclusion of more general struc-
tures: only spin and mass are allowed in 2þ 1 dimensions.
The study of the case involving Yang-Mills world sheet
degrees of freedom is of special interest. This work pro-
vides the basis for the computation of amplitudes in the
topological theory. A clear understanding of the properties
of string transition amplitudes should shed light on the
eventual relation with field theories with infinitely many
degrees of freedom.

APPENDIX: EXAMPLE

In this appendix, we explicitly compute the physical
inner product using the prescription defined in this paper
on a simple example. We calculate the pure string ampli-

tude (the associated spin network is based on the null graph
and the corresponding state is the vacuum�) for a cylinder
shaped world sheet embedded in a manifoldM of the form
M ¼ S3 � R, where S3 is the three-sphere. Canonically,
this corresponds to the transition amplitude computed by
considering a string S � S1 embedded in S3. No string spin
networks are present in this particular case.
Following our prescription, we are led to consider the

open manifold �� ¼ S3 n T�, where T� is the tube ob-

tained by blowing up the string S. By Heegard’s splitting,
we know that the manifold �� has the topology of a solid

torus whose boundary surface is the Heegard surface de-
fined by the string tube T�.

Now, we choose the simplest dual cellular decomposi-
tion of the solid torus that we can think of. We consider a
single square shaped face and glue together two of its
opposite sides. We obtain a cylinder. Then, we glue the
top and the bottom of the cylinder together obtaining a
torus which is filled by the face defined by the top (or the
bottom) of the former cylinder, that is, a solid torus.

α

h

g

The decomposition is made out of two dual faces, one
external and one internal, and two dual edges with a chosen
orientation. Next, we should choose a tree T of the cellular
decomposition of which the one defined above is the dual
to take care of the reducibility. However, to show explicitly
how the redundancies and thus the divergences arise, we
will skip this stage and come back to this point later.
Following our prescription, we now choose a noncontract-
able loop � in �� to impose the F ¼ p part of the curva-

ture constraint. Finally, because of the fact that the cellular
decomposition considered here is minimalistic, we do not
need to impose that the string field � is covariantly con-
served and the regulatorRð�;	Þ is complete. Putting every-

thing together, and using the notations defined by the above
figure, we now apply formula (46) to the case at hand:

P½Rð�;	Þ;��¼ h�;�ðghg�1h�1Þ�ðgÞ�ðhexppÞ�i: (A1)

Explicitly, this quantity is given by

P½Rð�;	Þ;��¼
Z
G
d�

Z
G2
dhdg�ðghg�1h�1Þ�ðgÞ�ðhexppÞ

¼
Z
G
d�

Z
G
dh�ð1Þ�ðhexppÞ¼1�ð1Þ; (A2)

where we have used the normalization of the Haar measure
in the last step. We can see explicitly the appearance of the
redundant factor �ð1Þ due to the reducibility of the curva-
ture constraint. It can be simply removed by choosing a
tree T of the cellular decomposition of which the one
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defined above is the dual and removing the associated delta
function. Here, we can see that removing the flatness
constraint �ðghg�1h�1Þ on the boundary face cures the
pathology and gives the same result as the evaluation of a
Feynman loop coupled to 3D gravity from the covariant
perspective, in accordance with the duality discovered in
the early pages of this paper.
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