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Properties of nð� 5Þ-dimensional static wormhole solutions are investigated in Einstein-Gauss-Bonnet

gravity with or without a cosmological constant �. We assume that the spacetime has symmetries

corresponding to the isometries of an ðn� 2Þ-dimensional maximally symmetric space with the sectional

curvature k ¼ �1, 0. It is also assumed that the metric is at least C2 and the ðn� 2Þ-dimensional

maximally symmetric subspace is compact. Depending on the existence or absence of the general rela-

tivistic limit � ! 0, solutions are classified into general relativistic (GR) and non-GR branches, re-

spectively, where � is the Gauss-Bonnet coupling constant. We show that a wormhole throat respecting

the dominant energy condition coincides with a branch surface in the GR branch, otherwise the null

energy condition is violated there. In the non-GR branch, it is shown that there is no wormhole solution for

k� � 0. For the matter field with zero tangential pressure, it is also shown in the non-GR branch with

k� < 0 and � � 0 that the dominant energy condition holds at the wormhole throat if the radius of the

throat satisfies some inequality. In the vacuum case, a fine-tuning of the coupling constants is shown to be

necessary and the radius of a wormhole throat is fixed. Explicit wormhole solutions respecting the energy

conditions in the whole spacetime are obtained in the vacuum and dust cases with k ¼ �1 and �> 0.
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I. INTRODUCTION

Awormhole is a hypothetical object in general relativity
connecting two (or more) asymptotic regions or infinities.
Albeit the concept of a wormhole is global and topological,
a wormhole is locally characterized by a ‘‘throat,’’ which is
a two-dimensional compact spatial surface of minimal area
on an achronal hypersurface. While the term wormhole
was coined by Wheeler in 1957 [1], the history of worm-
holes in general relativity began in 1935.

Maximally extended Schwarzschild spacetime is the
simplest example of wormhole spacetimes. By the coor-
dinate transformation of the radial coordinate in this space-
time, Einstein and Rosen demonstrated the first example
of ‘‘static wormholes’’ in 1935, which is now called the
Einstein-Rosen bridge [2]. However, its wormhole throat
corresponding to the bifurcation two-sphere of the event
horizon is actually a coordinate singularity and not covered
by those coordinates. In this sense, the Einstein-Rosen
bridge represents a static wormhole without a throat. It
is certainly possible to introduce a set of coordinates to
represent the Einstein-Rosen bridgewith a throat; however,
as is clear in the Penrose diagram, it is realized only
instantaneously, which was first pointed out by Fuller
and Wheeler [3]. Thus, although the maximally extended
Schwarzschild spacetime surely represents a dynamical
wormhole, the Einstein-Rosen bridge is not gratifying as
a static wormhole.

Although the Schwarzschild solution is a good example
of dynamical wormholes satisfying energy conditions, it is
not traversable, as is also clear in the Penrose diagram,
where traversability is defined globally such that a (non-
spacelike) observer can travel from one infinity to another.
This is attributed to the fact that there is no wormhole
throat on null hypersurfaces in that spacetime. Traversable
wormholes are quite intriguing because they admit the
(apparent) superluminal travel as a global effect of the
spacetime topology [4–6].
In 1988, Morris and Thorne presented a metric repre-

senting a static traversable wormhole [7]. This wormhole
connects two asymptotically flat spacetimes and is now a
well-known classic in general relativity. (Here it is noted
that static wormhole metrics were given even before
Morris and Thorne [8].) Although they did not specify
the matter field, it was later found to be compatible with
a tachyonic massless scalar field [9,10]. Subsequently,
Morris and Thorne discussed with Yurtsever the possibility
that traversable wormholes are available to make time
machines [11,12]. After these seminal works, wormholes
have been attracting relativists for a long time. (The readers
should refer to [4] for a standard textbook and [6] for an
excellent recent review.)
Unfortunately enough, it is well known in general rela-

tivity that exotic matter violating the null energy condition
is necessary for static traversable wormholes [4,13,14]. In
the asymptotically flat case, this is also a natural conse-
quence of the topological censorship [15], which severely
prohibits us from traveling to other worlds. It goes without
saying that constructing a wormhole with ordinary matter
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respecting energy conditions has been a big challenge in
gravitation physics. In order to slip through the net of the
strong results in general relativity, we shall consider other
extended theories of gravity. In scalar-tensor theories of
gravity, for example, a nonminimally coupled scalar field
could play the role of exotic matter [16]. Gravity sectors in
higher curvature theories of gravity could also play such a
role [17].

Gravitation physics in higher dimensions is a prevalent
subject of current research mainly motivated by string
theory, and higher-dimensional Lorentzian wormhole so-
lutions have also been investigated [18–22]. In arbitrary
dimensions, the most general action constructed from the
Riemann curvature tensor and its contractions giving rise
to the second-order quasilinear field equations is given by
the Lovelock polynomial [23]. It surely reduces to the
Einstein-Hilbert action with � in four dimensions. In-
deed, Einstein-Gauss-Bonnet gravity, whose Lagrangian
includes the second-order Lovelock term as the higher
curvature correction to general relativity, is achieved in
the low-energy limit of heterotic string theory [24].

Bhawal and Kar considered spherically symmetric static
spacetimes in Einstein-Gauss-Bonnet gravity and showed
that the weak energy condition must be violated at the
wormhole throat if the Gauss-Bonnet coupling constant �
is positive. In the case with negative �, on the other hand,
the weak energy condition holds there in the absence of
the tangential pressure of the matter field [20]. Here we
note that � is preferred to be positive from the string
viewpoint [24].

Recently, a vacuum static wormhole solution was ob-
tained in five dimensions in Chern-Simons gravity, which
is Einstein-Gauss-Bonnet gravity with a special combina-
tion between � and � [21]. In that solution, the spacetime
is a product manifold of a two-dimensional Lorentzian
manifold and a three-dimensional manifold with negative
and constant Ricci scalar. Although there is no general
relativistic limit in this theory, � can be positive indeed.
These results show that a wormhole can be constructed
with ordinary matter in Einstein-Gauss-Bonnet gravity.

The purpose of the present paper is to investigate
the nð� 5Þ-dimensional static Lorentzian wormholes in
Einstein-Gauss-Bonnet gravity with ordinary matter re-
specting energy conditions. For simplicity, the spacetime
is supposed to have symmetries corresponding to the isom-
etries of an ðn� 2Þ-dimensional maximally symmetric
space, which is also assumed to be compact to make physi-
cal quantities finite. Our main results contain a part of the
results obtained in [20,21] but are performed in a more
simplified manner adopting the double-null coordinates.

The rest of the present paper is constituted as follows. In
the following section, a concise overview of Einstein-
Gauss-Bonnet gravity, the definitions of some concepts
used in the present paper, and basic equations are given.
In Sec. III, our main results about the (non)existence and

the size of the wormhole throat, and the energy condition at
the wormhole throat are presented by local analyses. In
Sec. IV, we construct exact static wormhole solutions with
a dust fluid as explicit examples of wormhole solutions
satisfying the energy conditions everywhere. Concluding
remarks and discussions including future prospects are
summarized in Sec. V.
The conventions of the curvature tensors are

½r�;r��V� ¼ R�
���V

� and R�� :¼ R�
���. The Min-

kowski metric is taken to be mostly the plus sign, and
Roman indices run over all spacetime indices.

II. PRELIMINARIES

We begin by a brief description of Einstein-Gauss-
Bonnet gravity in the presence of a cosmological constant.
The action in nð� 5Þ-dimensional spacetime is given by

S ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p �
1

2�2
n

ðR� 2�þ �LGBÞ
�
þ Smatter;

(2.1)

where R and � are the n-dimensional Ricci scalar and the
cosmological constant, respectively. Smatter in Eq. (2.1) is
the action for matter fields and �n :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Gn

p
, where Gn

is the n-dimensional gravitational constant. The Gauss-
Bonnet term LGB comprises the combination of the Ricci
scalar, Ricci tensor R��, and Riemann tensor R�

��� as

LGB :¼ R2 � 4R��R
�� þ R����R

����: (2.2)

In four-dimensional spacetime, the Gauss-Bonnet term
does not contribute to the field equations since it becomes
a total derivative. � is the coupling constant of the Gauss-
Bonnet term. This type of action is derived in the low-
energy limit of heterotic string theory [24]. In that case, �
is regarded as the inverse string tension and positive
definite. However, we leave the sign of � unfixed in the
present paper.
The gravitational equation of the action (2.1) is

G�
� þ �H�

� þ���
� ¼ �2

nT
�
�; (2.3)

where

G�� :¼ R�� � 1
2g��R; (2.4)

H�� :¼ 2½RR�� � 2R��R
�
� � 2R�	R���	

þ R�
�	
R��	
� � 1

2g��LGB; (2.5)

and T�
� is the energy-momentum tensor for matter fields

obtained from Smatter. The field equation (2.3) contains up
to the second derivatives of the metric.
Suppose the n-dimensional spacetime ðMn; g��Þ is a

warped product of an ðn� 2Þ-dimensional constant curva-
ture space ðKn�2; 
ijÞ and a two-dimensional orbit space-

time ðM2; gabÞ under the isometry of ðKn�2; 
ijÞ. The line
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element may be written locally in the double-null coordi-
nates as

ds2 ¼ �2e�fðu;vÞdudvþ rðu; vÞ2
ijdz
idzj: (2.6)

Null vectors ð@=@uÞ and ð@=@vÞ are taken to be future
pointing. Here r is a scalar on ðM2; gabÞ with r ¼ 0 defin-
ing its boundary, and 
ij is the unit metric on ðKn�2; 
ijÞ
with its sectional curvature k ¼ �1, 0. We assume that
ðMn; g��Þ is strongly causal, ðKn�2; 
ijÞ is compact, and

the metric g�� is at least C2. It is worthwhile to mention

that the null coordinates still have the rescaling freedoms
of u ! UðuÞ and v ! VðvÞ, leaving the metric (2.6)
invariant.

Since the rank-two symmetric tensors on the maximally
symmetric space are proportional to the metric tensor, the
symmetry of the background spacetime determines the
structure of the energy-momentum tensor T�� as

T��dx
�dx� ¼ Tuuðu; vÞdu2 þ 2Tuvðu; vÞdudv

þ Tvvðu; vÞdv2 þ pðu; vÞr2
ijdz
idzj;

(2.7)

where pðyÞ is a scalar function on ðM2; gabÞ. Then, the
governing equation (2.3) gives

ðr;uu þ f;ur;uÞ
�
1þ 2~�

r2
ðkþ 2efr;ur;vÞ

�
¼ � �2

n

n� 2
rTuu;

(2.8)

ðr;vv þ f;vr;vÞ
�
1þ 2~�

r2
ðkþ 2efr;ur;vÞ

�
¼ � �2

n

n� 2
rTvv;

(2.9)

rr;uvþðn�3Þr;ur;vþn�3

2
ke�fþ ~�

2r2
½ðn�5Þk2e�f

þ4rr;uvðkþ2efr;ur;vÞþ4ðn�5Þr;ur;vðkþ efr;ur;vÞ�

�n�1

2
~�r2e�f ¼ �2

n

n�2
r2Tuv; (2.10)

r2f;uv þ 2ðn� 3Þr;ur;v þ kðn� 3Þe�f � ðn� 4Þrr;uv þ 2~�e�f

r2
½efðkþ 2efr;ur;vÞfr2f;uv � ðn� 8Þrr;uvg

þ 2r2e2fðf;ur;ur;vv þ f;vr;vr;uuÞ þ ðn� 5Þðkþ 2efr;ur;vÞ2 þ 2r2e2ffr;uur;vv þ f;uf;vr;ur;v � ðr;uvÞ2g�
¼ �2

nr
2ðTuv þ e�fpÞ; (2.11)

where ~� :¼ ðn� 3Þðn� 4Þ�, ~� :¼ 2�=½ðn� 1Þðn� 2Þ�,
and a comma denotes the partial differentiation.

The area expansions along two independent future-
directed radial null vectors ð@=@vÞ and ð@=@uÞ are respec-
tively defined as

�þ :¼ ðn� 2Þr�1r;v; (2.12)

�� :¼ ðn� 2Þr�1r;u: (2.13)

An invariant combination ef�þ�� characterizes the mar-
ginal surface, as will be mentioned later in the present
section. On the other hand, the function r has a geometrical
meaning as an areal radius; the area of symmetric subspace
is given by A :¼ Vk

n�2r
n�2, where Vk

n�2 is the area of the
unit ðn� 2Þ-dimensional space of constant curvature.

The generalized Misner-Sharp quasilocal mass in
Einstein-Gauss-Bonnet gravity in the presence of a cosmo-
logical constant [25,26] is defined by

m :¼ ðn� 2ÞVk
n�2

2�2
n

f�~�rn�1 þ rn�3½k� ðDrÞ2�

þ ~�rn�5½k� ðDrÞ2�2g; (2.14)

where Da is a metric compatible linear connection on
ðM2; gabÞ and ðDrÞ2 :¼ gabðDarÞðDbrÞ. In the double-
null coordinates, it is expressed as

m ¼ ðn� 2ÞVk
n�2

2�2
n

rn�3

�
�~�r2

þ
�
kþ 2

ðn� 2Þ2 r
2ef�þ��

�

þ ~�r�2

�
kþ 2

ðn� 2Þ2 r
2ef�þ��

�
2
�
: (2.15)

The properties of the above quantity such as the mono-
tonicity or positivity were fully investigated in [26] and
it was shown to be a natural counterpart of the Misner-
Sharp mass in four-dimensional spherically symmetric
spacetimes without a cosmological constant [27]. From
the equation above, we obtain

2

ðn�2Þ2 r
2ef�þ��

¼�k� r2

2~�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2

n ~�m

ðn�2ÞVk
n�2r

n�1
þ4~� ~�

s �
: (2.16)

There are two families of solutions corresponding to the
sign in front of the square root in Eq. (2.16). We call the
family having the minus (plus) sign the general relativistic
(GR) branch (non-GR branch) solution. Note that the GR-
branch solutions have the general relativistic limit as � !
0, but the non-GR-branch solutions do not. Throughout this
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paper, the upper sign is used for the GR branch, i.e., the
solution having the general relativistic limit. Here we
define a branch surface, where two branches of solutions
degenerate.

Definition 1: A branch surface is an ðn� 2Þ surface
where inside the square root in Eq. (2.16) vanishes.

Instead of specifying the matter fields, energy conditions
are imposed in our analysis. The null energy condition for
the matter field implies

Tuu � 0; Tvv � 0; (2.17)

while the dominant energy condition implies

Tuu � 0; Tvv � 0; Tuv � 0: (2.18)

The dominant energy condition assures that a causal ob-
server measures the non-negative energy density, and the
energy flux is a future-directed causal vector.

Here we recapitulate the local notions of spacetimes for
later investigations.

Definition 2: A trapped (untrapped) surface is an
ðn� 2Þ surface with �þ�� > ð<Þ0.

Definition 3: A marginal surface is an ðn� 2Þ surface
with �þ�� ¼ 0.

Without loss of generality, we set �þ to be zero on a
marginal surface. Marginal surfaces are classified into sev-
eral types depending on the sign of �� and �þ;u there [28].

Definition 4: A marginal surface is future if �� < 0,
past if �� > 0, bifurcating if �� ¼ 0, outer if �þ;u < 0,
inner if �þ;u > 0, and degenerate if �þ;u ¼ 0.

Now we give a definition of a wormhole throat by
Definition 5: A wormhole throat is an ðn� 2Þ surface

with r > 0 and

A;��
� ¼ 0; (2.19)

ðA;��
�Þ;��� > 0; (2.20)

where A :¼ Vk
n�2r

n�2 is the area of the ðn� 2Þ surface and
��ð@=@x�Þ ¼ �uð@=@uÞ þ �vð@=@vÞ is a spacelike vector,
i.e., �u�v < 0.

The above definition means that an ðn� 2Þ surface is
said to be a wormhole throat if it has a positive minimum
area on a spacelike hypersurface of constant time. Equa-
tions (2.19) and (2.20) are equivalent to

r;��
� ¼ 0; (2.21)

ðr;���Þ;��� > 0: (2.22)

By construction, our definition depends on time slicing.

III. PROPERTIES OF STATIC
WORMHOLE SPACETIMES

In this section, we present our main results on the prop-
erties of static wormhole spacetimes. Staticity is defined by
the existence of a hypersurface-orthogonal timelike Killing

vector �. The Frobenius’ integrability condition implies
that there exist scalar functions t and N such that � ¼
�Nr�t. Here we choose N ¼ e�f and t ¼ ðuþ vÞ= ffiffiffi

2
p

without loss of generality, and then we have �ð@=@x�Þ ¼
½ð@=@uÞ þ ð@=@vÞ�= ffiffiffi

2
p

. This choice is always achieved by
the rescaling freedom of the null coordinates. With this
choice made, the Killing equation reduces to

r;u þ r;v ¼ 0; (3.1)

f;u þ f;v ¼ 0: (3.2)

Because we have �
� ¼ N2r�tr�t ¼ �e�f in the

double-null coordinates (2.6), e�f is strictly positive, or
equivalently ef is positive and finite, in static spacetimes.
This fact will be used implicitly in later calculations.
In static spacetimes, there exists a natural time-slicing

t ¼ const corresponding to the constant Killing time. Re-
specting this symmetry, we naturally set the spacelike
vector �� in Definition 5 such that g��

��� ¼ 0, from
which we have �u ¼ ��v. In the foregoing discussion, we
will stick to this time slicing to define a wormhole throat.
Equation (3.1) implies that a marginal surface in the

static spacetime is a bifurcating marginal surface inde-
pendent of the field equations, i.e., the theories of gravity.
Here it should be emphasized that the marginal surface in
the maximally extended Schwarzschild-Tangherlini–type
spacetime is not a counterexample against the above state-
ment, because the hypersurface-orthogonal Killing vector
in that spacetime associated with the time translation at
spacelike infinity becomes null at the marginal surface in
that spacetime, so that the spacetime is not static there.
This is compatible to the fact that the ‘‘wormhole throat’’
in the Schwarzschild-Tangherlini spacetime in the iso-
tropic coordinates is a coordinate singularity. In other
words, that spacetime, which reduces to the Einstein-
Rosen bridge in four dimensions, represents a static worm-
hole without a throat.
Indeed, the analysis in the static spacetime is drastically

simplified thanks to the following lemma claiming that a
wormhole throat in the static spacetime, in any theories of
gravity, is necessarily a bifurcating marginal surface.
Lemma 1:Awormhole throat in the static spacetime is a

bifurcating marginal surface.
Proof.—Equation (2.21) with �u ¼ ��v implies

r;u � r;v ¼ 0 (3.3)

at the wormhole throat. From Eqs. (3.1) and (3.3), we
obtain �þ ¼ �� ¼ 0 there. j
In Einstein-Gauss-Bonnet gravity, the existence of a

marginal surface and its location are highly restricted
depending on the signs of the sectional curvature k and
the Gauss-Bonnet coupling �, as well as the branches. This
is in sharp contrast to the general relativistic case. The
following assertion is verified by direct calculations of
Eq. (2.16).
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Lemma 2: Let � be positive. Then, an ðn� 2Þ surface
is necessarily untrapped, and marginal surfaces are absent
in the non-GR-branch solutions for k ¼ 0 and 1. In the
GR-branch (non-GR-branch) solutions for k ¼ �1 with
r2 < ð>Þ2~�, an ðn� 2Þ surface is necessarily trapped
(untrapped), and marginal surfaces are absent. Let �
be negative. Then, an ðn� 2Þ surface is necessarily
trapped, and marginal surfaces are absent in the non-
GR-branch solutions for k ¼ 0 and �1. In the GR-branch
(non-GR-branch) solutions for k ¼ 1 with r2 < ð>Þ2j~�j,
an ðn� 2Þ surface is necessarily untrapped (trapped), and
marginal surfaces are absent.

The allowed region of a marginal surface by Lemma 2 is
summarized in Table I. Combining Lemmas 1 and 2, we
achieve the following nonexistence theorem for the worm-
hole throat in the static spacetime.

Proposition 1: There is no wormhole throat in the
non-GR-branch static solutions for k� � 0 and in the
GR-branch (non-GR-branch) static solutions for k� < 0
with r2 < ð>Þ2j~�j.

By the proposition above, the existence of a worm-
hole throat is then restricted to the following three possi-
bilities: (i) the GR-branch solutions with k� � 0, (ii) the
GR-branch solutions with k� < 0 and a sufficiently thick
wormhole throat, and (iii) the non-GR-branch solutions
with k� < 0 and a sufficiently thin wormhole throat. But
are all of these three cases equally realized in physi-
cally reasonable circumstances? The next three proposi-
tions concerning the energy condition at the wormhole
throat give a partial answer to this question.

Proposition 2: The null energy condition is violated at
the wormhole throat with r2th � �2k~� in the static space-

time in the GR branch, where rth is the areal radius of the
wormhole throat.

Proposition 3: In static spacetimes in the non-GR
branch, Tuu > 0 and Tvv > 0 are satisfied at the worm-
hole throat with r2th � �2k~�. In the case of � � 0,
Tuv � 0 is also satisfied there if ðn� 4Þðn� 5Þj�j � r2th <
2ðn� 3Þðn� 4Þj�j holds for k ¼ 1 and �< 0 or if r2th �ðn� 4Þðn� 5Þ� holds for k ¼ �1 and �> 0.

Proof.—Differentiating Eq. (3.1) with respect to u and
v, we, respectively, obtain

r;vu þ r;uu ¼ 0 (3.4)

and

r;uv þ r;vv ¼ 0; (3.5)

which give

r;uu ¼ r;vv ¼ �r;vu: (3.6)

Equations (2.22) and (3.6), together with Lemma 1, give

r;uuð�u � �vÞ2 > 0 (3.7)

at the wormhole throat. Because �u ¼ ��v is nonzero, we
have r;uu > 0 and consequently r;vv > 0 and r;uv < 0 there
by Eq. (3.6). On the other hand, Eqs. (2.8), (2.9), and (2.10),
together with Lemma 1, imply that

r;uu

�
1þ 2k~�

r2

�
¼ � �2

n

ðn� 2Þ rTuu; (3.8)

r;vv

�
1þ 2k~�

r2

�
¼ � �2

n

ðn� 2Þ rTvv; (3.9)

rr;uv

�
1þ 2k~�

r2

�
þ n� 3

2
ke�f

�
1þ ðn� 5Þk~�

ðn� 3Þr2
�

� n� 1

2
~�r2e�f ¼ �2

n

n� 2
r2Tuv (3.10)

hold at the wormhole throat.
Thus, by Eqs. (3.8) and (3.9) together with Proposition 1,

Tuu < ð>Þ0 and Tvv < ð>Þ0 are satisfied at the wormhole
throat in the GR (non-GR) branch with r2th � �2k~�, which
proves Proposition 2 and the first part of Proposition 3.
By Proposition 1, a wormhole throat exists in the static

non-GR-branch solutions only for k� < 0 with r2th ��2k~�. Then, the first term on the left-hand side of
Eq. (3.10) is non-negative at the wormhole throat in the
non-GR branch, while the last term is also non-negative
for � � 0. Therefore, Tuv � 0 holds at the wormhole
throat if k½r2th þ ðn� 4Þðn� 5Þk�� � 0 is satisfied. Be-

cause �ðn� 4Þðn� 5Þk� <�2k~� is satisfied for k� <
0, the above condition reduces to �ðn� 4Þðn� 5Þk� �
r2th � �2k~� for k ¼ 1 and �< 0, while it reduces to r2th ��ðn� 4Þðn� 5Þk� for k ¼ �1 and �> 0. This com-
pletes the proof of Proposition 3. j
In the two propositions above, we only considered the

wormhole throat with r2th � �2k~�. A wormhole throat

TABLE I. The allowed region of a marginal surface by Lemma 2 in Einstein-Gauss-Bonnet
gravity.

GR branch non-GR branch

�> 0 �< 0 �> 0 �< 0

k ¼ 1 Any r r2 � 2j~�j None r2 � 2j~�j
k ¼ 0 Any r Any r None None

k ¼ �1 r2 � 2~� Any r r2 � 2~� None
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with r2th ¼ �2k~� corresponds to a branch surface, so that

two branches cannot be distinguished locally from each
other. This case is rather special and should be treated
separately.

Proposition 4: Tuu ¼ Tvv ¼ 0 is satisfied at the static
wormhole throat with r2th ¼ �2k~�. Also, Tuv > ð<Þ0 and

Tuv ¼ 0 are satisfied there for �ð1þ 4~� ~�Þ< ð>Þ0 and

1þ 4~� ~� ¼ 0, respectively.
Proof.—Eqs. (3.8) and (3.9) give Tuu ¼ Tvv ¼ 0 at the

wormhole throat with r2th ¼ �2k~�, while Eq. (3.10) gives

n� 1

4
e�fð1þ 4~� ~�Þ ¼ � 2�2

n ~�

n� 2
Tuv (3.11)

there, where k � 0 was used because of rth > 0. Thus, we
have Tuv > ð<Þ0 and Tuv ¼ 0 at the wormhole throat for

�ð1þ 4~� ~�Þ< ð>Þ0 and 1þ 4~� ~� ¼ 0, respectively. j
The results obtained up to this point are summarized in

Table II. Propositions 2 and 4 imply that the wormhole
throat in a static solution respecting the energy conditions
in the GR branch is necessarily a branch surface and then

�ð1þ 4~� ~�Þ � 0 is required. Although a branch surface is
a curvature singularity if Tuu � 0 or Tvv � 0 holds there
[29], it could be regular if we have Tuu ¼ Tvv ¼ 0 there.
Of course, even if such a solution is successfully con-
structed, its general relativistic limit does not represent a
wormhole since we have rth ! 0 for � ! 0.

On the other hand, in the non-GR-branch solutions,
the inequalities (2.18) hold at the wormhole throat for
k� < 0 and � � 0 when the radius of the throat satis-
fies the inequality in Proposition 3. Here we emphasize
that the inequalities (2.18) are not a sufficient condition for
the dominant energy condition. Actually, the inequalities
(2.18) are identical to the dominant energy condition
only for a radial null vector. Even under the inequalities
(2.18), the null energy condition can be violated for a
nonradial null vector provided the function p in the
energy-momentum tensor (2.7) is negative and sufficiently
large. This is apprehensible by writing down the null
energy condition for a generic null vector k� as

T��k
�k� ¼ TuuðkuÞ2 þTvvðkuÞ2 þ 2Tuvk

ukv þpr2
ijk
ikj;

¼ TuuðkuÞ2 þTvvðkvÞ2 þ 2ðTuvþpe�fÞkukv;
� 0; (3.12)

where k�k� ¼ 0was used at the second equality. Thus, for

a matter field with p ¼ 0 such as vacuum or a dust fluid,
the conditions in Proposition 3 are surely sufficient for the
dominant energy condition to hold at the wormhole throat.
Recently, Dotti, Oliva, and Troncoso obtained a worm-

hole solution in the five-dimensional vacuum case with

1þ 4~� ~� ¼ 0, in which the three-dimensional submani-
fold has a negative and constant Ricci scalar [21]. Their
result includes the case with a three-dimensional nega-
tive constant curvature. This special tuning between the
coupling constants allows the theory to have a unique
maximally symmetric solution [30] and yields the Chern-
Simons gravity in five dimensions, which is the lowest
number of dimensions in which the Gauss-Bonnet term
becomes nontrivial [31]. At first glance, solutions are
strongly restricted by this special relation among all the
solutions with arbitrary coupling constants. However, this
turns out not to be the case for wormhole solutions. Indeed,
as a corollary of the next proposition, it is shown that this

relation, 1þ 4~� ~� ¼ 0, is a necessary condition for vac-
uum static wormhole solutions in Einstein-Gauss-Bonnet
gravity.
Proposition 5: If Tuu ¼ Tvv ¼ Tuv ¼ 0 is satisfied at

the wormhole throat, 1þ 4~� ~� ¼ 0 holds and the radius of
the wormhole throat is given by r2th ¼ �2k~�.
Proof.—Eqs. (3.8) and (3.9) with the fact that r;uu > 0

and r;vv > 0 give r2th ¼ �2k~� and hence k � 0. Then, the

evaluation of Eq. (3.10) at the wormhole throat gives 1þ
4~� ~� ¼ 0. j
Thus, in vacua, k ¼ �ðþÞ1 and �< ð>Þ0 are required

for positive (negative) �. Furthermore, it follows from
Eq. (2.15) that m ¼ 0 holds at the wormhole throat in the
vacuum case. Because m is constant in the vacuum case
[26], we obtainm � 0 in the whole spacetime, hence any r
is a branch surface.

The vacuum solutions with 1þ 4~� ~� ¼ 0 are com-
pletely classified into three classes, namely, the Nariai-
type solution, the generalized Boulware-Deser-Wheeler
solution, and the class I solution [26,32]. (Proposition 1
in [26] also holds for negative �.) We note that the class I
solution is not necessarily static. The Nariai-type solution
is not a wormhole spacetime, because the areal radius is
constant [33,34]. Since the hypersurface-orthogonal Kil-
ling vector becomes a zero vector at the bifurcating mar-

TABLE II. Properties of the wormhole throat in the static spacetime in Einstein-Gauss-Bonnet
gravity. NEC stands for the null energy condition. See Proposition 4 for the case where the
wormhole throat coincides with a branch surface.

GR branch non-GR branch

�> 0 �< 0 �> 0 �< 0

k ¼ 1 NEC violation NEC violation Absent See Proposition 3

k ¼ 0 NEC violation NEC violation Absent Absent

k ¼ �1 NEC violation NEC violation See Proposition 3 Absent
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ginal surface in the generalized Boulware-Deser-Wheeler
solution [35,36], it does not contain a wormhole throat as in
the Schwarzschild-Tangherlini case. The static metric of
the class I solution with k � 0 can be written as

ds2 ¼ 2j~�j½�e2�ð�Þdt2 þ d�2 þ cosh2ð ffiffiffiffiffiffiffi�k
p

�Þ
ijdz
idzj�;
(3.13)

where �ð�Þ is an arbitrary function of �.
The metric (3.13) with k ¼ 1 and �< 0 does not repre-

sent a wormhole independent of �ð�Þ because the condi-
tions (2.19) and (2.20) do not hold for r > 0. For a function
�ð�Þ leaving � ¼ 0 nonsingular, on the other hand, the
metric (3.13) with k ¼ �1 and �> 0 includes a wormhole
throat at � ¼ 0, of which areal radius is given by rth ¼ffiffiffiffiffiffi
2~�

p
, compatible to Proposition 5.

In this section, we have seen the static wormhole throat
may exist under the null energy condition in Einstein-
Gauss-Bonnet gravity. While a wormhole throat in the
GR branch must be a branch surface with a fixed radius,
its size is less restricted in the non-GR branch. The origin
of the antithetical and pathological behaviors in the non-
GR branch is presented as follows.

Using Eqs. (2.8), (2.9), (2.10), (2.11), and (2.16) together
with the expressions of the Ricci tensors, we obtain

� R��k
�k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2

n ~�m

ðn� 2ÞVk
n�2r

n�1
þ 4~� ~�

s
¼ �2

nT��k
�k�

(3.14)

for a radial null vector k�, where k�ð@=@x�Þ ¼ kuð@=@uÞ
or kvð@=@vÞ. (See Lemma 2 in [29] for more details.)
We note that a branch surface is a degenerate point in
Eq. (3.14). Equation (3.14) shows that the null convergence
condition R��k

�k� � 0 fails in the non-GR branch if the

null energy condition is strictly satisfied T��k
�k� > 0. It

signals that solutions in the non-GR branch behave badly
under the null energy condition, since properties of the
geometry are determined not by energy conditions but by
the convergence condition, as seen in the Raychaudhuri
equation. In the non-GR-branch solution, gravity effec-
tively acts repulsively for the positive energy particles.

In closing this section, we make a short comment on the
definition of a wormhole throat. We have hitherto pro-
ceeded by considering that the vector �� in Definition 5
is a spatial vector orthogonal to the timelike Killing vector.
An alternative way to define a wormhole throat is to set ��

as a radial null vector, i.e., a wormhole throat is defined on
a null hypersurface [13,37]. Then, from Eqs. (2.21) and
(2.22), the wormhole throat is given by r;v ¼ 0 and r;vv >
0 or r;u ¼ 0 and r;uu > 0. On the other hand, Eqs. (3.1) and
(3.6) respectively also give r;u ¼ r;v ¼ 0 and r;uu ¼ r;vv >
0 at the wormhole throat in this case. As a result, the
wormhole throat coincides with that defined on a spacelike
hypersurface with the constant Killing time, and all the
propositions in the present paper remain valid in this case.

IV. EXACT WORMHOLE SOLUTIONS
RESPECTING ENERGY CONDITIONS

Proposition 3 tells us that, in the non-GR branch, the
energy conditions are satisfied at the wormhole throat for
k� < 0 in the case without tangential pressure. However,
it does not ensure the energy condition respected in the
whole spacetime. Bhawal and Kar have reported that even
when the weak energy condition is respected at the worm-
hole throat for k ¼ 1 and �< 0, it is impossible to make
a C2 wormhole solution in which the energy condition is
satisfied everywhere [20]. However, their discussion is
based on the positivity of the quantityN � P in [20], which
is shown only at the wormhole throat and seems not to be
so valid in the whole spacetime. In this section, although
we do not give a counterexample to their claim, we show
that their result cannot be extended to the case with k ¼
�1 and �> 0 by constructing exact static wormhole so-
lutions with a dust fluid respecting the energy conditions
everywhere.
The energy-momentum tensor of a dust fluid is

T�� ¼ �u�u�; (4.1)

where u� and � are the n velocity of the fluid element and
energy density, respectively. (See [25] for the basic equa-
tions in the comoving coordinates.) It is shown that the
synchronous comoving coordinates are possible in the dust
case even without the staticity assumption, i.e., the lapse
function can be set to unity [25].
Now we focus on the static solution and adopt the proper

length as a radial coordinate without loss of generality.
Then we have

ds2 ¼ �dt2 þ d�2 þ rð�Þ2
ijdz
idzj; (4.2)

u�
@

@x�
¼ @

@t
: (4.3)

The ð�; �Þ component of the field equation (2.3) gives

0 ¼ ðn� 5Þ~�ðr0Þ4 � ½ðn� 3Þr2 þ 2ðn� 5Þk~��ðr0Þ2
þ k½ðn� 3Þr2 þ ðn� 5Þk~�� � ðn� 1Þ~�r4; (4.4)

where a prime denotes the derivative with respect to �.
For n ¼ 5, the above equation reduces to

0 ¼ 3ðr0Þ2 � 3kþ�r2: (4.5)

For k� � 0, r0 cannot be zero, so that there is no worm-
hole throat in this case. For k�> 0, the general solution is
given by

r ¼
ffiffiffiffiffiffiffi
3

j�j

s
cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kj�j

3

s
�

�
; (4.6)

where an integration constant was set to zero without loss
of generality by the coordinate transformation of �. The
solution with k ¼ 1 and �> 0 is discarded since it does
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not meet the requirement (2.22) of having a wormhole
throat. On the other hand, the solution with k ¼ �1 and
�< 0 represents a wormhole. The energy density of the
dust, given from the ðt; tÞ component of the field equation,
and the quasilocal mass of this solution in the latter case are
obtained by

� ¼ �ð3þ 4��Þ
3�2

5

; (4.7)

m ¼ 3ð3þ 4��ÞV�1
3

4��2
5

cosh4
� ffiffiffiffiffiffiffiffiffi

��

3

s
�

�
: (4.8)

However, it is shown that this solution has nonpositive
energy density and cannot be an example of the nonvac-
uum wormhole solutions respecting the energy conditions.
Calculating Eq. (2.16), we find that this solution belongs to
the GR branch for 3þ 4�� � 0. Then, by Lemmas 1 and
2, the areal radius of the wormhole throat for n ¼ 5, k ¼
�1 and �> 0 in the GR branch satisfies r2 � 4�. For the
above solution, this condition gives 3þ 4�� � 0, and
therefore the energy density is nonpositive. For 3þ
4�� ¼ 0, the solution reduces to the vacuum class I solu-
tion (3.13) with � � 0.
In the case of n � 6, on the other hand, Eq. (4.4) gives

r02 ¼ ðn� 3Þr2 þ 2ðn� 5Þk~�� r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 3Þ2 þ 4ðn� 1Þðn� 5Þ~� ~�

q
2ðn� 5Þ~� : (4.9)

Hereafter we set � ¼ 0 for simplicity. Then, the GR-
branch solution cannot be a wormhole solution, because
r0 is constant. Turning to the non-GR branch, we have

r02 ¼ ðn� 3Þr2 þ ðn� 5Þk~�
ðn� 5Þ~� : (4.10)

The wormhole solution arises only if k� < 0 by Propo-
sition 1. The general solution of Eq. (4.10) for k� < 0 is
given by

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðn� 4Þðn� 5Þk�p
cosh

� ffiffiffiffiffiffiffi�k
p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 4Þðn� 5Þj�jp �
;

(4.11)

which belongs to the non-GR branch. The energy density
and the quasilocal mass are obtained as

� ¼ ðn� 1Þðn� 2Þ
ðn� 4Þðn� 5Þ2�2

n�
; (4.12)

m ¼ �ðn� 2ÞkVk
n�2½�ðn� 4Þðn� 5Þ�k�ðn�3Þ=2

ðn� 5Þ�2
n

� coshn�1

� ffiffiffiffiffiffiffi�k
p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 4Þðn� 5Þj�jp �
: (4.13)

The solution for k ¼ 1 and �< 0 does not represent a
wormhole spacetime. On the other hand, the solution with
k ¼ �1 and �> 0 represents a wormhole respecting the
energy conditions everywhere. The radius of the wormhole

throat is rth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðn� 4Þðn� 5Þk�p

, which is consistent
with Lemmas 1 and 2 and coincides with the upper bound
in Proposition 3. This solution shows that the claim by
Bhawal and Kar is not extended to the case with k ¼ �1
and �> 0.

V. SUMMARYAND DISCUSSION

In this paper, we investigated properties of
nð� 5Þ-dimensional static wormhole spacetimes in
Einstein-Gauss-Bonnet gravity. We supposed that the met-
ric is at least C2 and the spacetime has symmetries corre-
sponding to the isometries of an ðn� 2Þ-dimensional
constant curvature space. A wormhole throat is defined
by an ðn� 2Þ surface with a positive minimum area on a
spacelike hypersurface orthogonal to the timelike Killing
vector. The system with k ¼ 1 was previously studied by
Bhawal and Kar in a different set of coordinates [20]. We
generalized their analysis to the case with general k and in
the presence of a cosmological constant in a more simpli-
fied manner adopting the double-null coordinates.
Solutions are classified into two types, namely, the GR

and non-GR branches, depending on the existence or ab-
sence of the general relativistic limit � ! 0. In the GR
branch, we showed that a static wormhole throat respecting
the energy conditions necessarily coincides with a branch
surface, otherwise the null energy condition is violated
there. In the non-GR branch, the absence of wormhole
solutions was shown for k� � 0. In the non-GR branch
with k� < 0 and � � 0, we showed that the dominant
energy condition holds at the wormhole throat if the matter
field has zero tangential pressure and the areal radius of the
throat satisfies some inequality. Especially in the vacuum

case, a special relation between the coupling constants 1þ
4~� ~� ¼ 0, which yields Chern-Simons gravity in five di-
mensions, is shown to be a necessary condition for static
wormhole spacetimes. Then, the areal radius of a worm-
hole throat is fixed by r2th ¼ �2k~�, which is consistent

with the result of Dotti, Oliva, and Troncoso [21].
The analyses above are performed purely locally at

the wormhole throat, and therefore it is not trivial whether
a wormhole solution is possible with matter respecting
the energy conditions everywhere. We showed that such
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a solution is possible in the case of n � 6, k ¼ �1, and
�> 0 by explicitly constructing exact solutions with a dust
fluid. Bhawal and Kar claimed that such a wormhole
solution is impossible in the case of k ¼ 1 and �< 0
[20]. Although their explanation is based on a nontrivial
assumption which seems to be valid only at the wormhole
throat, there is no counterexample against their result up to
now as far as the authors know.

It should be emphasized that the differentiability of the
metric is crucially related to existence of the wormhole
solution respecting the energy conditions. In the present
paper, the metric function is assumed to be at least C2. If
we weaken this assumption to C0, it has been shown in five
dimensions that a vacuum wormhole solution is possible
by gluing two Boulware-Deser-Wheeler solutions with a
thin shell respecting the energy condition [38–40]. In that
case, a special relation between � and � is not necessary
and the size of the wormhole throat can be arbitrary in
contrast to the C2 case (see Proposition 5). In the present
paper, we gave the first example of static and smooth
Lorentzian exact wormhole solutions respecting energy
conditions in the nonvacuum case in Einstein-Gauss-
Bonnet gravity.

In the present paper, unfortunately, we have not obtained
rigorous results in the non-GR branch with nonvanishing
tangential pressure. The main difficulty in this regard is
to control the behavior of the metric function f and its
derivatives at the wormhole throat. However, even in that
case, the null energy condition can hold for a radial null
vector, which signals the existence of wormhole solutions
with ordinary matter. Such an antithetical and pathological
behavior in the non-GR-branch solutions can be under-
stood by considering the relation between the focusing
condition in the Raychaudhuri equation and the null energy
condition [29]. For further progress in this direction,

wormhole solutions with a scalar field should be the fo-
cus of future research as the simplest and important matter
field with nonvanishing tangential pressure in the higher-
dimensional context.
Lastly, independent of the subject for investigation, an

ambitious problem worth trying to solve is to distinguish
two branches of solutions without using spacetime sym-
metry. Together with the results in [29], our results indicate
that the eccentric behaviors appear only in the non-GR-
branch solutions, while the properties of the GR-branch
solutions are quite similar to those in general relativity.
Then, it is natural to guess that this also holds even without
spacetime symmetry. If we can distinguish two branches in
generic spacetimes, it could allow us to extend the strong
results in general relativity to Einstein-Gauss-Bonnet grav-
ity in the GR branch.
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