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There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm

line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental

planning and design, we quantify how the precision with which cosmological parameters can be measured

depends on a broad range of assumptions, focusing on the 21 cm signal from 6< z < 20. We cover

assumptions related to modeling of the ionization power spectrum, to the experimental specifications like

array layout and detector noise, to uncertainties in the reionization history, and to the level of

contamination from astrophysical foregrounds. We derive simple analytic estimates for how various

assumptions affect an experiment’s sensitivity, and we find that the modeling of reionization is the most

important, followed by the array layout. We present an accurate yet robust method for measuring

cosmological parameters that exploits the fact that the ionization power spectra are rather smooth

functions that can be accurately fit by 7 phenomenological parameters. We find that for future experi-

ments, marginalizing over these nuisance parameters may provide constraints almost as tight on the

cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square

kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and

neutrino masses by up to 2 orders of magnitude, to ��k � 0:0002 and �m� � 0:007 eV, and give a 4�

detection of the spectral index running predicted by the simplest inflation models.

DOI: 10.1103/PhysRevD.78.023529 PACS numbers: 98.80.Es, 98.58.Ge

I. INTRODUCTION

Three-dimensional mapping of our Universe using the
redshifted 21 cm hydrogen line has recently emerged as a
promising cosmological probe, with arguably greater long-
term potential than the cosmic microwave background
(CMB). The information garnered about cosmological pa-
rameters grows with the volume mapped, so the ultimate
goal for the cosmology community is to map our entire
horizon volume, the region from which light has had time
to reach us during the 14� 109 years since our big bang.
Figure 1 illustrates that, whereas the CMB mainly probes a
thin shell from z� 1000, and current large-scale structure
probes (like galaxy clustering, gravitational lensing, type
Ia supernovae, and the Lyman � forest) only map small
volume fractions nearby, neutral hydrogen tomography is
able to map most of our horizon volume.

Several recent studies have forecast the precision with
which such 21 cm tomography can constrain cosmological
parameters, both by mapping diffuse hydrogen before and
during the reionization epoch [1–3] and by mapping neu-
tral hydrogen in galactic halos after reionization [4]. These
studies find that constraints based on the cosmic micro-

wave background measurements can be significantly im-
proved. However, all of these papers make various
assumptions, and it is important to quantify to what extent
their forecasts depend on these assumptions. This issue is
timely because 21 cm experiments (like LOFAR [5],
21CMA [6], MWA [7], and SKA [8]) are still largely in
their planning, design, or construction phases. These ex-
periments will be described in detail in Sec. II G. In order
to maximize their scientific ‘‘bang for the buck,’’ it is
therefore important to quantify how various design trade-
offs affect their sensitivity to cosmological parameters.
The reason that neutral hydrogen allows mapping in

three rather than two dimensions is that the redshift of
the 21 cm line provides the radial coordinate along the
line-of-sight (l.o.s.). This signal can be observed from the
so-called dark ages [9,10] before any stars had formed,
through the epoch of reionization (EoR), and even to the
current epoch (where most of the neutral hydrogen is
confined within galaxies). We focus in this study on the
21 cm signal from 6< z < 20—the end of the dark ages
through the EoR. This is the redshift range at which the
synchrotron foregrounds are smallest, and consequently it
is the range most assessable for all planned 21 cm arrays.
There are three position-dependent quantities that im-

print signatures on the 21 cm signal: the hydrogen density,
the neutral fraction, and the spin temperature. For cosmo-
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FIG. 1 (color online). The
21 cm tomography can poten-
tially map most of our observ-
able Universe (light blue/light
gray), whereas the CMB probes
mainly a thin shell at z� 103

and current large-scale structure
surveys (here exemplified by the
Sloan Digital Sky Survey and its
luminous red galaxies) map only
small volumes near the center.
This paper focuses on the conve-
nient 7 & z & 9 region (dark
blue/dark gray).

TABLE I. Factors that affect the cosmological parameter measurement accuracy.

Assumptions Pessimistic Middle Optimistic

Power modeling Ionization power

spectrum modeling

Marginalize over arbitrary

P�0 and P�2

Marginalize over constants

that parametrize

P xxðkÞ and P x�ðkÞ

No ionization power

spectrum, P ��ðkÞ / P�TðkÞ.

Nonlinear cutoff scale kmax 1 Mpc�1 2 Mpc�1 4 Mpc�1

Non-Gaussianity of

ionization signals

Doubles sample variance Negligible

Cosmological Reionization history Gradual reionization over a wide range of redshifts Abrupt reionization at z & 7

Redshift range 7.3–8.2 6.8–8.2 6.8–10

Parameter space Vanilla model plus

optional parameters

Vanilla model parameters

Experimental Data MWA, LOFAR, 21CMA Intermediate case SKA, FFTT

Array configurationa � ¼ 0:15 � ¼ 0:8, n ¼ 2 Giant core

Collecting areab 0:5� design values Design values 2� design values

Observation timec 1000 hours 4000 hours 16 000 hours

System temperature 2� Tsys in [17] Tsys given in [17] 0:5� Tsys in [17]

Astrophysical Residual foregrounds

cutoff scale kmin
d

4�=yB 2�=yB �=yB

aFor the FFTT, we consider only the case where all dipoles are in a giant core.
bSee designed or assumed values of Ae in Table IV.
cAssumes observation of two places in the sky.
dIt is hard to predict the level of the residual foregrounds after the removal procedure. To quantify contributions from other factors, we
take the approximation that there is no residual foregrounds at k > kmin. Here in the table, yB is the comoving (l.o.s.) distance width of
a single z bin.
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logical parameter measurements, only the first quantity is
of interest, and the last two are nuisances. (For some
astronomical questions, the situation is reversed.) The
21 cm spin-flip transition of neutral hydrogen can be
observed in the form of either an absorption line or an
emission line against the CMB blackbody spectrum, de-
pending on whether the spin temperature is lower or higher
than the CMB temperature.

During the epoch of reionization, the spin temperature is
likely coupled to the gas temperature through Ly� photons
via the Wouthuysen-Field effect [11,12], and the gas in the
intergalactic medium (IGM) has been heated by x-ray
photons to hundreds of Kelvin from the first stars [13]. If
this is true, the 21 cm signal will only depend on the
hydrogen density and the neutral fraction. However, astro-
physical uncertainties prevent a precise prediction for ex-
actly when the gas is heated to well above the CMB
temperature and is coupled to the spin temperature. In
this paper, we follow [1,2] and focus entirely on the regime
when the spin temperature is much larger than the CMB
temperature [14–16], such that the observed signal depends
only on fluctuations in density and/or the neutral fraction.
Specifically, we focus on the time interval from when this
approximation becomes valid (around the beginning of the
reionization [14–16]) until most hydrogen has become
ionized, illustrated by the darkest region in Fig. 1.
Despite this simplification, the methods that we apply to
model the ionization fluctuations almost certainly can be
applied to model spin temperature fluctuations with mini-
mal additional free parameters.

In Table I, we list all the assumptions that affect the
accuracy of cosmological parameter measurements, in-
cluding ones about power modeling, cosmology, experi-
mental design, and astrophysical foregrounds. For each
case, we provide three categories of assumptions: pessi-
mistic (PESS), middle-of-the-road (MID), and optimistic
(OPT). Since we wish to span the entire range of uncer-
tainties, we have made both the PESS and OPT models
rather extreme. The MID model is intended to be fairly
realistic, but somewhat on the conservative (pessimistic)
side.
Before describing these assumptions in detail in the next

section, it is important to note that, taken together, they
make a huge difference. Table II illustrates this by showing
the cosmological parameter constraints resulting from us-
ing all the OPT assumptions, all the MID assumptions, or
all the PESS assumptions, respectively. For example, com-
bining CMB data from Planck and 21 cm data from the
Fast Fourier Transform Telescope (FFTT), the 1� uncer-
tainty differs by a factor of 125 for�k and by a factor of 61
for m� depending on assumptions. It is therefore important
to sort out which of the assumptions contribute the most to
these big discrepancies, and which assumptions do not
matter much. This is a key goal of our paper.
The rest of this paper is organized as follows. In Sec. II,

we explain in detail the assumptions in the same order as in
Table I, and also present a new method for modeling the
ionization power spectra. In Sec. III, we quantify how the
cosmological parameter measurement accuracy depends
on each assumption, and we derive simple analytic approx-

TABLE II. The dependence of cosmological constraints on the full range of assumptions. We assume the fiducial values given in
Sec. II F, and employ the Fisher matrix formalism to forecast the 1� accuracy of 21 cm tomography measurements. Unless otherwise
noted, errors are computed by marginalizing over all other parameters in the first ten columns (which we refer to as the vanilla
parameters). In ‘‘All OPT/MID/PESS,’’ we use the assumptions of the right, middle, and left columns of Table I, respectively. We
assume that the total observing time is split between two sky regions, each for an amount in Table I, using a giant/quasigiant/small core
array configuration where 100%/80%/15% of the antennae in the inner core are compactly laid at the array center, while the rest, 0%/
20%/85%, of antennae fall off in density as �� r�2 outside the compact core.

Vanilla alone

��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs �	 ��xHð7:0Þa ��xHð7:5Þ ��xHð8:0Þ ��xHð9:2Þ ��k �m� (eV) ��

Planck 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . . . . . . . . . . 0.025 0.23 0.0026

þLOFAR All OPT 0.0044 0.0052 0.0051 0.0018 0.0087 0.0042 0.0063 0.0063 0.0063 0.0063 0.0022 0.023 0.000 73

All MID 0.0070 0.0081 0.0059 0.0032 0.0088 0.0043 0.18 0.26 0.23 . . . 0.018 0.22 0.0026

All PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . 51 49 . . . 0.025 0.23 0.0026

þMWA All OPT 0.0063 0.0074 0.0055 0.0024 0.0087 0.0043 0.0062 0.0062 0.0062 0.0062 0.0056 0.017 0.000 54

All MID 0.0061 0.0070 0.0056 0.0030 0.0087 0.0043 0.32 0.22 0.29 . . . 0.021 0.19 0.0026

All PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . 29 30 . . . 0.025 0.23 0.0026

þSKA All OPT 0.000 52 0.0018 0.0040 0.000 39 0.0087 0.0042 0.0059 0.0059 0.0059 0.0059 0.0011 0.010 0.000 27

All MID 0.0036 0.0040 0.0044 0.0025 0.0087 0.0043 0.0094 0.014 0.011 . . . 0.0039 0.056 0.0022

All PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . 1.1 1.0 . . . 0.025 0.23 0.0026

þFFTT
b

All OPT 0.000 10 0.0010 0.0029 0.000 088 0.0086 0.0042 0.0051 0.0051 0.0051 0.0051 0.000 20 0.0018 0.000 054

All MID 0.000 38 0.000 34 0.000 59 0.000 33 0.0086 0.0042 0.0013 0.0022 0.0031 . . . 0.000 23 0.0066 0.000 17

All PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . 0.0043 0.0047 . . . 0.025 0.11 0.0024

a �xHðzÞ refers to the mean neutral fraction at redshift z.
bFFTT stands for Fast Fourier Transform Telescope, a future square kilometer array optimized for 21 cm tomography as described in
[18]. Dipoles in FFTT are all in a giant core, and this configuration does not vary.
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imations of these relations. In Sec. IV, we conclude with a
discussion of the relative importance of these assumptions,
and implications for experimental design.

II. FORECASTING METHODS & ASSUMPTIONS

A. Fundamentals of 21 cm cosmology

1. Power spectrum of 21 cm radiation

We review the basics of the 21 cm radiation temperature
and power spectrum only briefly here, and refer the inter-
ested reader to [19] for a more comprehensive discussion
of the relevant physics. The difference between the ob-
served 21 cm brightness temperature at the redshifted
frequency � and the CMB temperature TCMB is [20]

TbðxÞ ¼ 3c3hA10nHðxÞ½TSðxÞ � TCMB�
32�kB�

2
0TSðxÞð1þ zÞ2ðdvk=drÞ

; (1)

where TS is the spin temperature, nH is the number density
of the neutral hydrogen gas, and A10 � 2:85� 10�15 s�1

is the spontaneous decay rate of 21 cm transition. The
factor dvk=dr is the gradient of the physical velocity along
the line of sight (r is the comoving distance), which is
HðzÞ=ð1þ zÞ on average (i.e. for no peculiar velocity).
Here HðzÞ is the Hubble parameter at redshift z. The
spatially averaged brightness temperature at redshift z is
(in units of mK)

�T b � 23:88�xH

� �TS � TCMB

�TS

��
�bh

2

0:02

��
0:15

�mh
2

1þ z

10

�
1=2

;

(2)

where �xH is the mean neutral fraction and �TS is the aver-
aged spin temperature. If TS � TCMB in the EoR, the
21 cm emission should therefore be observed at the level
of milli-Kelvins.

To calculate the fluctuations, we rewrite Eq. (1) in terms
of � (the hydrogen mass density fluctuation), �x (the
fluctuation in the ionized fraction), and the gradient of
the peculiar velocity @vr=@r along the line of sight, using
the fact that dvk=dr ¼ HðzÞ=ð1þ zÞ þ @vr=@r:

TbðxÞ ¼ ~Tb½1� �xið1þ �xÞ�ð1þ �Þ
�
1� 1

Ha

@vr

@r

�

�
�
TS � TCMB

TS

�
: (3)

Here �xi � 1� �xH is the mean ionized fraction, and we
have defined ~Tb � �Tb= �xH � ½ �TS=ð �TS � TCMBÞ�. We write
�v � ðHaÞ�1@vr=@r. In Fourier space, it is straightfor-
ward to show that, as long as � � 1 so that linear pertur-

bation theory is valid, �vðkÞ ¼ ��2�, where� ¼ k̂ 	 n̂ is
the cosine of the angle between the Fourier vector k and
the line of sight. In this paper, we restrict our attention to
the linear regime. We will also, throughout this paper,
assume TS � TCMB during the EoR, making the last factor
in Eq. (3) unity for the reasons detailed in Sec. I.

In Fourier space, the power spectrum P�TðkÞ of the
21 cm fluctuations is defined by h�T


bðkÞ�Tbðk0Þi �
ð2�Þ3�3ðk� k0ÞP�TðkÞ, where �Tb is the deviation
from the mean brightness temperature. It is straightforward
to show from Eq. (3) that, to leading order,

P�TðkÞ ¼ ~T2
bf½ �x2HP�� � 2�xHPx� þ Pxx�

þ 2�2½ �x2HP�� � �xHPx�� þ�4 �x2HP��g: (4)

Here Pxx ¼ �x2i P�x�x
and Px� ¼ �xiP�x� are the ionization

power spectrum and the density-ionization power spec-
trum, respectively. For convenience, we define P ��ðkÞ �
~T2
b �x

2
HP��ðkÞ, P x�ðkÞ � ~T2

b �xHPx�ðkÞ, and P xxðkÞ �
~T2
bPxxðkÞ, so the total 21 cm power spectrum can be written

as three terms with different angular dependence:

P�TðkÞ ¼ P�0ðkÞ þ P�2ðkÞ�2 þ P�4ðkÞ�4; (5)

where

P�0 ¼ P �� � 2P x� þ P xx; (6)

P�2 ¼ 2ðP �� � P x�Þ; (7)

P�4 ¼ P ��: (8)

Since P�4 involves only the matter power spectrum that

depends only on cosmology, Barkana and Loeb [21,22]
argued that, in principle, one can separate cosmology from
astrophysical ‘‘contaminants’’ such as P xx and P x� whose
physics is hitherto far from known. We will quantify the
accuracy of this conservative approach (which corresponds
to our PESS scenario for ionization power spectrum mod-
eling below) in Sec. III.

2. From u to k

The power spectrum P�TðkÞ and the comoving vector k
(the Fourier dual of the comoving position vector r) are not
directly measured by 21 cm experiments. An experiment
cannot directly determine which position vector r a signal
is coming from, but instead which vector � �

xêx þ 
yêy þ �fêz it is coming from, where ð
x; 
yÞ
give the angular location on the sky plane and �f is the
frequency difference from the central redshift of a z bin.
For simplicity, we assume that the sky volume observed is
small enough that we can linearize the relation between �
and r. Specifically, we assume that the sky patch observed
is much less than a radian across, so that we can approxi-
mate the sky as flat,1 and that separations in frequency near

1The FFTT is designed for all-sky mapping (i.e. the field of
view is of order 2�). However, since the angular scales from
which we get essentially all our cosmological information are
much smaller than a radian (with most information being on
arcminute scales), the flat-sky approximation is accurate as long
as the data are analyzed separately in many small patches and the
constraints are subsequently combined.
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the mean redshift z
 are approximately proportional to
separations in comoving distance. In these approximations,
if there are no peculiar velocities,

�? ¼ r?
dAðz
Þ ; (9)

�f ¼ �rk
yðz
Þ : (10)

Here ‘‘?’’ denotes the vector component perpendicular to
the line of sight, i.e., in the ðx; yÞ plane, and dA is the
comoving angular diameter distance given by [23]

dAðzÞ ¼ c

H0

j�kj�1=2S

�
j�kj1=2

Z z

0

dz0

Eðz0Þ
�
; (11)

where

EðzÞ � HðzÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ�kð1þ zÞ2 þ��

q
; (12)

is the relative cosmic expansion rate and the function SðxÞ
equals sinðxÞ if �k < 0, x if �k ¼ 0, and sinhx if �k > 0.
The conversion factor between comoving distance inter-
vals and frequency intervals is

yðzÞ ¼ �21ð1þ zÞ2
H0EðzÞ ; (13)

where �21 � 21 cm is the rest-frame wavelength of the
21 cm line.

We write the Fourier dual of � as u � uxêx þ uyêy þ
ukêz (uk has units of time). The relation between u and k is

therefore

u? ¼ dAk?; (14)

uk ¼ ykk: (15)

In u space, the power spectrum P�TðuÞ of 21 cm signals is

defined by h�~T

bðuÞ�~Tbðu0Þi ¼ ð2�Þ3�ð3Þðu� u0ÞP�TðuÞ,

and is therefore related to P�TðkÞ by

P�TðuÞ ¼ 1

d2Ay
P�TðkÞ: (16)

Note that cosmological parameters affect P�TðuÞ in two
ways: they both change P�TðkÞ and alter the geometric
projection from k space to u space. If dA and y changed
while P�TðkÞ remained fixed, the observable power spec-
trum P�TðuÞ would be dilated in both the u? and uk
directions and rescaled in amplitude, while retaining its
shape. Since both dA and y depend on the three parameters
ð�k;��; hÞ, and the Hubble parameter is in turn given by
the parameters in Table II via the identity h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mh

2=ð1��� ��kÞ
p

, we see that these geometric ef-
fects provide information only about our parameters
ð�k;��;�mh

2Þ. Baryon acoustic oscillations in the power
spectrum provide a powerful ‘‘standard ruler,’’ and the

equations above show that if one generalizes to the dark
energy to make �� an arbitrary function of z, then the
cosmic expansion historyHðzÞ can be measured separately
at each redshift bin, as explored in [4,24,25]. The 21 cm
tomography information on our other cosmological pa-
rameters (ns, As, �bh

2, m�, �, etc.) thus comes only
from their direct effect on P�TðkÞ. Also note that
ð�k;��Þ affect P�TðkÞ only by modulating the rate of
linear perturbation growth, so they alter only the amplitude
and not the shape of P�TðkÞ.
If we were to use Eq. (16) to infer P�TðkÞ from the

measured power spectrum P�TðuÞ while assuming incor-
rect cosmological parameter values, then this geometric
scaling would cause the inferred P�TðkÞ to be distorted by
the so-called Alcock-Paczyński (AP) effect [26,27] and not
take the simple form of Eqs. (5)–(8). To avoid this com-
plication, we therefore perform our Fisher matrix analysis
directly in terms of P�TðuÞ, since this quantity is directly
measurable without any cosmological assumptions.
The above transformations between u space and r space

are valid when there are no peculiar velocities. The radial
peculiar velocities vr that are present in the real world
induce the familiar redshift space distortions that were
discussed in Sec. II A 1, causing �2 and �4 power spec-
trum anisotropies that were described there.

B. Assumptions about Pxx and Px�

During the EoR, ionized bubbles (HII regions) in the
IGM grow and eventually merge with one another.
Consequently, P xxðkÞ and P x�ðkÞ contribute significantly
to the total 21 cm power spectrum. The study of the forms
of these two ionization power spectra has made rapid
progress recently, particularly through the semianalytical
calculations [14,16,28,29] and radiative transfer simula-
tions [30,31]. However, these models depend on theoreti-
cally presumed parameters whose values cannot currently
be calculated from first principles. From the experimental
point of view, it is therefore important to develop data
analysis methods that depend only on the most generic
features of the ionization power spectra. In this paper, we
consider three methods—our OPT, MID, and PESS mod-
els—that model P xx and P x� as follows:

ðOPTÞ
�
P xxðkÞ ¼ 0;
P x�ðkÞ ¼ 0;

(17)

ðMIDÞ
�P xxðkÞ¼b2xx½1þ�xxðkRxxÞþðkRxxÞ2��ð�xx=2ÞP ðfidÞ

�� ;

P x�ðkÞ¼b2x�exp½��x�ðkRx�Þ�ðkRx�Þ2�P ðfidÞ
�� ;

(18)

ðPESSÞ
�P xxðkÞ ¼ arbitrary;

P x�ðkÞ ¼ arbitrary:
(19)
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In the next three subsections, we explain these models in
turn.

1. OPT model

It is likely that before reionization started (while �xH ¼ 1
and P xx ¼ P x� ¼ 0), hydrogen gas had already been suf-
ficiently heated such that TS � TCMB. In this regime,
Eq. (17) holds. This OPT scenario is clearly the simplest
model, since the total 21 cm power spectrum is simply
proportional to P ��: P�TðkÞ ¼ P ��ðkÞð1þ�2Þ2. To fore-
cast the 1� error, we use the Fisher matrix formalism [32].
Repeating the derivation in [33], the Fisher matrix for
cosmological parameters �a (a ¼ 1; . . . ; Np) is

F ab ¼ 1

2

Z �
@ lnPtot

�TðuÞ
@�a

��
@ lnPtot

�TðuÞ
@�b

�
V�

d3u

ð2�Þ3 ; (20)

where the integral is taken over the observed part of u
space, and Ptot

�TðuÞ denotes the combined power spectrum

from cosmological signal and all forms of noise. Here
V� ¼ �� B is the volume of the � space where � is
the solid angle within the field of view and B is the
frequency size of a z bin. The Fisher matrix determines

the parameter errors as ��a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF�1Þaa

p
.

For computational convenience, we subdivide u space
into pixels so small that the power spectrum is roughly
constant in each one, obtaining

F ab �
X
pixels

1

½�P�TðuÞ�2
�
@P�TðuÞ
@�a

��
@P�TðuÞ
@�b

�
; (21)

where the power spectrum measurement error in a pixel at
u is

�P�TðuÞ ¼
Ptot
�TðuÞ
N1=2

c

¼ P�TðuÞ þ PNðu?Þ
N1=2

c

: (22)

Here PNðu?Þ is the noise power spectrum and will be
discussed in detail in Sec. II G 3; note that it is independent
of uk and depends only on u? through the baseline distri-

bution of the antenna array.

Nc ¼ 2�k2 sin
�k�
� Vol=ð2�Þ3 (23)

is the number of independent cells in an annulus summing

over the azimuthal angle. We have the factor
ffiffiffiffiffiffiffiffiffiffiffi
1=Nc

p
in

�P�T instead of the normal
ffiffiffiffiffiffiffiffiffiffiffi
2=Nc

p
because we only sum

over half the sphere.

2. MID model

After reionization starts, both ionization power spectra
P xx and P x� make significant contributions to the total
21 cm power spectrum. We explore two different analysis
methods—our MID and PESS models—for separating the
cosmological signal from these astrophysical contaminants
(i.e. P xx and P x�).
Our MID model assumes that both ionization power

spectra P xxðkÞ and P x�ðkÞ are smooth functions of k which
can be parametrized by a small number of nuisance pa-
rameters 1; . . . ; nion related to reionization physics.

Combining these ionization parameters with our cosmo-
logical ones �a into a larger parameter set p� (� ¼
1; . . . ; Np þ nion), we can jointly constrain them by mea-

suring P�TðuÞ.
In the Appendix we will describe a �2 goodness-of-fit

test for quantifying whether this parametrization is valid.
The Fisher matrix for measuring p� is simply

F� ¼ X
pixels

1

½�P�TðuÞ�2
@P�TðuÞ
@p�

@P�TðuÞ
@p

: (24)

This Fisher matrix F� is not block diagonal; i.e., there are

correlations between the cosmological and ionization pa-
rameters, reflecting the fact that both affect P xxðkÞ and
P x�ðkÞ. The inversion of the Fisher matrix therefore leads
to the degradation of the constraints of cosmological pa-
rameters. However, the total 21 cm power spectrum is
usually smaller in magnitude in the MID model than in
the OPT model [see Eq. (4)], giving less sample variance.
This means that as long as noise in a 21 cm experiment
dominates over sample variance, the MID model will give
weaker constraints than the OPT model, because of the
degeneracies. For future experiments with very low noise,
however, it is possible to have the opposite situation, if the
reduction in sample variance dominates over the increase
in degeneracy. This of course, does not mean that the MID
model is more optimistic than the OPT model, merely that
the OPT model is assuming an unrealistic power spectrum.
Having set up the general formalism, we now propose a

parametrization specified by Eq. (18), with fiducial values
of ionization parameters given in Table III. This parame-
trization was designed to match the results of the radiative
transfer simulations in model I of [30], and Fig. 2 shows
that the fit is rather good in the range k ¼ 0:1–2 Mpc�1 to

TABLE III. Fiducial values of ionization parameters adopted for Fig. 2. Rxx and Rx� are in
units of Mpc, while other parameters are unitless.

z �xH b2xx Rxx �xx �xx b2x� Rx� �x�

9.2 0.9 0.208 1.24 �1:63 0.38 0.45 0.56 �0:4
8.0 0.7 2.12 1.63 �0:1 1.35 1.47 0.62 0.46

7.5 0.5 9.9 1.3 1.6 2.3 3.1 0.58 2

7.0 0.3 77 3.0 4.5 2.05 8.2 0.143 28
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which the 21 cm experiments we consider are most
sensitive.

The radiative transfer simulations implemented in [30]
are post-processed on top of a 10243 N-body simulation in
a box of size 186 Mpc. Three models for the reionization
history are considered in [30]:

(1) In model I, all dark matter halos above mcool (cor-
responding to the minimum mass galaxy in which
the gas can cool by atomic transitions and form
stars, e.g. mcool � 108M� at z ¼ 8) contribute io-
nizing photons at a rate that is proportional to their
mass.

(2) In model II, the ionizing luminosity of the sources
scales as halo mass to the 5=3 power; i.e. more
massive halos dominate the production of ionizing
photons than in model I.

(3) In model III, which has the same source parametri-
zation as in model I except for doubled luminosity,
minihalos withm> 105M� absorb incident ionizing
photons out to their virial radius unless they are
photo-evaporated (but do not contribute ionizing
photons).

It appears to be a generic feature in the simulation results
that the ratios of functions at large k fall off like a power
law for P xxðkÞ=P ��ðkÞ, and exponentially for
P x�ðkÞ=P ��ðkÞ. At small k, P xxðkÞ=P ��ðkÞ can either
increase or decrease approximately linearly as k in-
creases, while P x�ðkÞ=P ��ðkÞ is asymptotically constant.
Our parametrization in Eq. (18) captures these features: at
large k, P xxðkÞ=P ��ðkÞ / k��xx and P x�ðkÞ=P ��ðkÞ /

expð�ðkRx�Þ2Þ; at small k, P xxðkÞ=P ��ðkÞ / ð1�
ð�xx�xxRxx=2ÞkÞ and P x�ðkÞ=P ��ðkÞ / ð1� �x�Rx�kÞ
(both �xx and �x� can be either positive or negative).
Figure 2 also shows that for PxxðkÞ and also for Px�ðkÞ at
large k, our parametrization further improves over the
parametrization PðkÞ=P�� ¼ b2e�ðkRÞ2 suggested by
Santos and Cooray [3], which works well for Px�ðkÞ at
small k.
To be conservative, we discard cosmological informa-

tion from P x�ðkÞ and P xxðkÞ in our Fisher matrix analysis

by using the fiducial power spectrumP ��ðkÞðfidÞ rather than
the actual one P ��ðkÞ in Eq. (18). This means that the
derivatives of P x�ðkÞ and P xxðkÞ with respect to the cos-
mological parameters vanish in Eq. (24). It is likely that we
can do better in the future: once the relation between the
ionization power spectra and the matter power spectrum
can be reliably calculated either analytically or numeri-
cally, the ionization power spectra can contribute to further
constraining cosmology.
In addition to the fit of model I shown in Fig. 2, we also

fit our model (with different fiducial values from those
listed in Table III) to the simulations using models II and
III in [30], and find that the parametrization is flexible
enough to provide good fits to all three simulations, sug-
gesting that the parametrization in Eq. (18) may be generi-
cally valid and independent of models. Note, however, that
at low redshifts ( �xi * 0:7), our parametrization of
P x�=P �� does not work well at large k, in that the simu-
lation falls off less rapidly than exponentially. This may be
because when HII regions dominate the IGM, the ionized

)(

)( )(

)( )( )(

)( )(

FIG. 2 (color online). Fits to the ionization power spectra at several redshifts. Solid (blue) lines are the results of the radiative transfer
simulation in model I of the McQuinn et al. paper [30]. Dashed (green) lines are fitting curves of our parametrization. Dot-dashed (red)
lines are best fits using the parametrization suggested by Santos and Cooray [3]. Top panels: P xx=P �� ¼ Pxx=ð �x2HP��Þ. Bottom
panels: P x�=P �� ¼ Px�=ð �xHP��Þ. From left to right: z ¼ 9:2, 8.0, 7.5, 7.0 ( �xi ¼ 0:10, 0.30, 0.50, 0.70, respectively).
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bubbles overlap in complicated patterns and correlate ex-
tremely nonlinearly at small scales. This partial incompati-
bility indicates that our parametrization [i.e. Eq. (18)] is
only accurate for small �xi, i.e. before nonlinear ionization
patterns come into play.

In the remainder of this paper, we will adopt the values
in Table III as fiducial values of the ionization parameters.

3. PESS model

By parametrizing the ionization power spectra with a
small number of constants, the MID model rests on our
understanding of the physics of reionization. From the
point of view of a maximally cautious experimentalist,
however, constraints on cosmological parameters should
not depend on how well one models reionization. In this
spirit, Barkana and Loeb [21,22] proposed what we adopt
as our ‘‘PESS’’ model for separating the physics P ��ðkÞ
from the ‘‘gastrophysics’’ P xxðkÞ and P x�ðkÞ. Instead of
assuming a specific parametrization, the PESS model
makes no a priori assumptions about the ionization power
spectra. In each k bin that contains more than three pixels
in u space, one can, in principle, separate P�4ðkÞ ¼ P ��ðkÞ
from the other two moments. The PESS model essentially
only constrains cosmology from the P�4 term and therefore

loses all information in P�0 and P�2 . We now set up the

Fisher matrix formalism for the PESS model that takes
advantage of the anisotropy in P�TðkÞ arising from the
velocity field effect. Numerical evaluations will be per-
formed in Sec. III A.

The observable in 21 cm tomography is the brightness
temperature TbðxÞ. In Fourier space, the covariance matrix
between two pixels ki and kj is Cij ¼ �ij½P�TðkiÞ þ
PNðk?Þ�, assuming that the measurements in two different
pixels are uncorrelated.2 The total 21 cm power spectrum is
P�TðkÞ ¼ P�0ðkÞ þ P�2ðkÞ�2 þ P�4ðkÞ�4. For conve-

nience, we use the shorthand notation PA, where P1 �
P�0 , P2 � P�2 , and P3 � P�4 , and define the aA ¼ 0, 2,

4 for A ¼ 1, 2, 3, respectively. Thus the power spectrum
can be rewritten as P�T ¼ P

3
A¼1 PA�

aA . Treating PAðkÞ at
each k bin as parameters, the derivatives of the covariance
matrix are simply @Cij=@PAðkÞ ¼ �ij�

aA , where jkij re-
sides in the shell of radius k with width �k. Since the
different k bins all decouple, the Fisher matrix for measur-
ing the moments PAðkÞ is simply a separate 3� 3 matrix
for each k bin:

FAA0 ðkÞ ¼ 1

2
tr

�
C�1 @C

@PAðkÞC
�1 @C

@PA0 ðkÞ
�

¼ X
upper half-shell

�aAþaA0

½�P�TðkÞ�2
; (25)

where �P�TðkÞ¼N�1=2
c ½P�TðkÞþPNðk?Þ�. Here PNðk?Þ

is related to PNðu?Þ by Eq. (16). Again the sum is over the
upper half of the spherical shell k < jkj< kþ �k. The 1�

error of P3 ¼ P�4 is �P3ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�1

33ðkÞ
q

. Once P �� ¼
P�4 is separated from other moments, P �� can be used to

constrain cosmological parameters �a with the Fisher ma-
trix as given in Eq. (21).
We have hitherto discussed the anisotropy in P�TðkÞ

that arises from the velocity field effect. However, the AP
effect may further contribute to the anisotropy in that it
creates a�6 dependence and modifies the�4 term [26,27].
The AP effect can be distinguished from the velocity field
effect since the P�6 term is unique to the AP effect. Thus,

one can constrain cosmological parameters from P�4 and

P�6 [2], involving the inversion of a 4� 4 matrix which

loses even more information and therefore further weakens
constraints. Therefore, the PESS Fisher matrix that we
have derived without taking the AP effect into account
can be viewed as an upper bound on how well the PESS
approach can do in terms of cosmological parameter con-
straints. However, this maximally conservative 4� 4 ma-
trix approach may be inappropriately pessimistic, since the
AP-induced clustering anisotropy is typically very small
within the observationally allowed cosmological parame-
ter range, whereas the velocity-induced anisotropies can be
of order unity.

C. Assumptions about linearity

To avoid fitting to modes where �k is nonlinear and
physical modeling is less reliable, we impose a sharp cutoff
at kmax and exclude all information for k > kmax. We take
kmax ¼ 2 Mpc�1 for our MID model, and investigate the
kmax dependence of cosmological parameter constraints in
Sec. III B.

D. Assumptions about non-Gaussianity

Non-Gaussianity of ionization signals generically be-
comes important at high �xi. Using cosmic reionization
simulations with a large volume and high resolution,
Lidz et al. [34] and Santos et al. [35] found non-negligible
(a factor of 1.5) differences in the full power spectrum at
high �xi ( �xi * 0:35Þ). To get a rough sense of the impact of
non-Gaussianity on cosmological parameter constraints,
we simply model it as increasing the sample variance by
a factor �. We thus write the total power spectrum as

�P�TðuÞ ¼ N�1=2
c ½�P�TðuÞ þ PNðu?Þ�; (26)

where � is the factor by which the sample variance is
increased. The parameter � should take the value � � 1
(Gaussian) at epochs with low �xi and 1< � & 2 (non-
Gaussian) at high �xi.

2We ignore here a � function centered at the origin since
21 cm experiments will not measure any k ¼ 0 modes.
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E. Assumptions about reionization history and redshift
range

As illustrated in Fig. 1, 21 cm tomography can probe a
wide range of redshifts . However, one clearly cannot
simply measure a single power spectrum for the entire
volume, as the clustering evolves with cosmic time: The
matter power spectrum changes gradually due to the linear
growth of perturbations [36]. More importantly, the ion-
ization power spectra vary dramatically with redshift
through the epoch of reionization. We incorporate these
complications by performing our analysis separately in a
series of redshift slices, each chosen to be narrow enough
that the matter and ionization power spectra can be ap-
proximated as constant in redshift within each slice. This
dictates that for a given assumed reionization history,
thinner redshift slices must be used around redshifts where
�xH varies dramatically.
In this paper, we will consider two rather opposite toy

models in Sec. III:
(i) OPT: A sharp reionization that begins and finishes at

one redshift (say z & 7).
(ii) MID/PESS: A gradual reionization that spans a

range of redshifts, assuming the ionization parameter
values that fit model I simulation of the McQuinn
et al. paper [30].

For the latter scenario, the ionization fraction �xH is not a
linear function of redshift. For example, in the simulation
of McQuinn et al. [30], �xH ¼ 0:9, 0.7, 0.5, and 0.3 corre-
spond to redshifts z ¼ 9:2, 8.0, 7.5, and 7.0, respectively.
For our different scenarios, we therefore adopt the redshift
ranges 6:8< z < 10 that are divided into four redshift
slices centered at the above redshifts (OPT), 6:8< z <
8:2 split into three bins centered at z ¼ 7:0, 7.5, and 8.0
(MID), and 7:3< z < 8:2 split into two slices centered at
z ¼ 7:5 and 8.0.

F. Assumptions about cosmological parameter space

Since the impact of the choice of cosmological parame-
ter space and related degeneracies has been extensively
studied in the literature, we will perform only a basic
analysis of this here. We work within the context of stan-
dard inflationary cosmology with adiabatic perturbations,
and parametrize cosmological models in terms of 12 pa-
rameters (see, e.g., Table II in [37] for explicit definitions)
whose fiducial values are assumed as follows: �k ¼ 0
(spatial curvature),�� ¼ 0:7 (dark energy density),�b ¼
0:046 (baryon density), h ¼ 0:7 (Hubble parameter H0 �
100h km s�1 Mpc�1), 	 ¼ 0:1 (reionization optical depth),
�� ¼ 0:0175 (massive neutrino density), ns ¼ 0:95 (sca-
lar spectral index), As ¼ 0:83 (scalar fluctuation ampli-
tude), r ¼ 0 (tensor-to-scalar ratio), � ¼ 0 (running of
spectral index), nt ¼ 0 (tensor spectral index), and w ¼
�1 (dark energy equation of state). We will frequently use
the term ‘‘vanilla’’ to refer to the minimal model space
parametrized by ð��;�mh

2;�bh
2; ns; As; 	Þ combined

with �xHðzÞ and ionization parameters at all observed z
bins, setting�k,��h

2, r,�, nt, andw fixed at their fiducial
values.

G. Assumptions about data

The MWA, LOFAR, SKA, and FFTT instruments are
still in their planning/design/development stages. In this
paper, we adopt the key design parameters from [17] for
MWA, [38] and www.skatelescope.org for SKA, www.lo-
far.org for LOFAR, and [18] for FFTT, unless explicitly
stated otherwise.

1. Interferometers

We assume that MWA will have 500 correlated 4 m�
4 m antenna tiles, each with 16 dipoles. Each individual
tile will have an effective collecting area of 14 m2 at z ¼ 8
and 18 m2 at z * 12. LOFAR will have 77 large (diameter
�100 mÞ stations, each with thousands of dipole antennae
such that it has the collecting area nearly 50 times larger
than each antenna tile of MWA. Each station can simulta-
neously image N regions in the sky. We set N ¼ 2 in this
paper but this number may be larger for the real array. The
design of SKA has not been finalized. We assume the
‘‘smaller antennae’’ version of SKA, in which SKA will
have 7000 small antennae, much like MWA, but each panel
will have a much larger collecting area. The FFTT is a
future square kilometer array optimized for 21 cm tomog-
raphy as described in [18]. Unlike the other interferometers
we consider, which add in phase the dipoles in each panel
or station, the FFTT correlates all of its dipoles, resulting in
more information. We evaluate the case where the FFTT
contains a million 1 m� 1 m dipole antennae in a con-
tiguous core subtending a square kilometer, providing a
field of view of 2� steradians.
For all interferometers, we assume that the collecting

area Ae / �2, like a simple dipole, except that Ae is satu-
rated at z� 12 in MWA since the wavelength � ¼ 21ð1þ
zÞ cm exceeds the physical radius of an MWA antenna
panel. The summary of the detailed specifications adopted
in this paper is listed in Table IV.

2. Configuration

The planned configurations of the above-mentioned in-
terferometers are quite varied. However, all involve some
combination of the following elements, which we will
explore in our calculations:
(1) A nucleus of radius R0 within which the area cover-

age fraction is close to 100%.
(2) A core extending from radius R0 out to Rin where

the coverage density drops like some power law r�n.
(3) An annulus extending from Rin to Rout where the

coverage density is low but rather uniform.
In its currently planned design, the MWAwill have a small
nucleus, while the core density falls off as r�2 until a sharp
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cutoff at Rin. For LOFAR we assume 32 stations in the
core, and another 32 stations in an outer annulus out to
radius Rout � 6 km. For SKAwe assume 20% in the core,
and 30% in the annulus out to radius Rout � 5 km. We
ignore the measurements from any dilute distribution of
antenna panels outside Rout. For LOFAR and SKA, we
assume a uniform distribution of antennae in the annulus,
but with an inner core profile like that of the MWA, i.e., a
nucleus of radius R0 ¼ 285=189 m (LOFAR/SKA) and an
r�2 falloff outside this compact core. We assume an azi-
muthally symmetric distribution of baselines in all arrays.

For an array with Nin antennae within Rin, we can define
a quantity

Rmax
0 �

ffiffiffiffiffiffiffiffiffi
Nin

�0�

s
; (27)

where �0 is the area density of the nucleus. Rmax
0 is the

maximal radius of the nucleus, corresponding to the case
where it contains all the Nin antennae and there is no core.

It is also convenient to parametrize the distribution of
these Nin antennae within Rin by two numbers: the fraction
� that are in the nucleus and the falloff index n of the core.
It is straightforward to show that R0 and Rin are related to�
and n by

R0 ¼ ffiffiffiffi
�

p
Rmax
0 ; (28)

Rin ¼ R0

�
2� nð1� �Þ

2�

�
1=ð2�nÞ

(29)

if n � 2. The analytic relation for n ¼ 2 is Rin ¼
R0 exp½ð1� �Þ=ð2�Þ�, which can be well approximated
in numerical calculation by taking n ¼ 2þ � in Eq. (29)
with �� 10�10.

In Sec. III E, we will scan almost all possible design
configurations and find the optimal one for constraining
cosmology. There are two independent ways to vary array
configurations, as illustrated by Fig. 3: by varying R0 with
Rin fixed, and by varying Rin with R0 fixed. Contributions
from antennae in the annulus are negligible compared to
the core, so varying Rout is not interesting.

In other parts of Sec. III, we will assume the intermedi-
ate configuration � ¼ 0:8 and n ¼ 2 (except for the FFTT
which is purely in a giant core) with the planned number of

antennae in the core and annulus. Note that this configu-
ration is optimized from the currently planned design.

3. Detector noise

The 21 cm radio interferometers measure visibility V.
The visibility for a pair of antennae is defined as [39]

V ðux; uy;�fÞ ¼
Z

dxdy�Tbðx; y;�fÞe�iðuxxþuyyÞ; (30)

where ðux; uyÞ are the number of wavelengths between the

antennae. The hydrogen 3Dmap is the Fourier transform in
the frequency direction ~IðuÞ � R

d�fVðux; uy;�fÞ�
expð�i�fukÞ where u ¼ uxêx þ uyêy þ ukêz. The detec-
tor noise covariance matrix for an interferometer is [2,40]

CNðui;ujÞ ¼
�
�2BTsys

Ae

�
2 �ij

Btui

; (31)

where B is the frequency bin size, Tsys is the system

temperature, and tu � ðAet0=�
2Þnðu?Þ is the observation

time for the visibility at ju?j ¼ dAjkj sin
. Here t0 is the
total observation time, and n is the number of baselines in
an observing cell.
The covariance matrix of the 21 cm signal ~IðuÞ is related

to the power spectrum P�TðkÞ by [2]

CSVðui;ujÞ � h~I
ðuiÞ~IðujÞi ¼ P�TðuiÞ�
2B

Ae

�ij: (32)

Therefore, the noise in the power spectrum is

PNðu?Þ ¼
�
�2Tsys

Ae

�
2 1

t0nðu?Þ : (33)

For all interferometers, the system temperature is domi-
nated by sky temperature Tsky � 60ð�=1 mÞ2:55 K due to

synchrotron radiation in reasonably clean parts of the sky.
Following [17], we set Tsys ¼ 440 K at z ¼ 8 and Tsys ¼
690 K at z ¼ 10.

H. Assumptions about residual foregrounds

There have been a number of papers discussing fore-
ground removal for 21 cm tomography (e.g. [41–44] and
references therein), and much work remains to be done on
this important subject, as the amplitudes of residual fore-
grounds depend strongly on cleaning techniques and as-

TABLE IV. Specifications for 21 cm interferometers.

Experiment Nant Minimum baseline (m) Field of view (deg2) Ae (m2) at z ¼ 6=8=12a

MWA 500 4 �162 9=14=18
SKA 7000 10 �8:62 30=50=104
LOFAR 77 100 2� �2:42 397=656=1369
FFTT 106 1 2� 1=1=1

aWe assume that the effective collecting area is proportional to �2 such that the sensitivity
(Ae=Tsys in m2K�1) meets the design specification.
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sumptions, and can potentially dominate the cosmological
signal. The work ofWang et al. [41] andMcQuinn et al. [2]
suggested that after fitting out a low-order polynomial from
the frequency dependence in each pixel, the residual fore-
grounds were negligible for k > 2�=yB, where yB is the
comoving width of a z bin. To obtain a crude indication of
the impact of residual foregrounds, we therefore adopt the
rough approximation that all data below some cutoff value
kmin are destroyed by foregrounds while the remainder
have negligible contamination. We choose kmin ¼
ð1=2=4Þ � �=yB for the OPT/MID/PESS scenarios, and
also explore wider ranges below.

III. RESULTS AND DISCUSSION

In this section, we numerically evaluate how the accu-
racy of cosmological parameter constraints depends on the
various assumptions listed above. Where possible, we
attempt to provide intuition for these dependences with
simple analytical approximations. In most cases, we ex-
plore the dependence on one assumption at a time by

evaluating the PESS, MID, and OPT scenarios for this
assumption while keeping all other assumptions fixed to
the baseline MID scenario.

A. Varying ionization power spectrum modeling and
reionization histories

1. Basic results

We start by testing assumptions in the ionization power
modeling of Pxx and Px�. In Table V we show the accuracy
with which the 21 cm power spectrum can place con-
straints on the cosmological parameters from three z bins
ranging from z ¼ 6:8–8:2. We fix the assumptions con-
cerning kmax, the foreground removal, and the array layout
and specifications, but vary the sophistication with which
we model the ionization power.
Our results agree with those of previous studies [1,2]; i.e.

21 cm data alone (except for the optimized FFTT) cannot
place constraints comparable with those from Planck CMB
data. However, if 21 cm data are combined with CMB data,
the parameter degeneracies can be broken, yielding strin-

1

0.1

1

0.1

( )

(
)

FIG. 3 (color online). Examples of array configuration changes. For MWA (upper panels), antennae are uniformly distributed inside
the nucleus radius R0, and the density � falls off like a power law for R0 < r < Rin, where Rin is the core radius. For SKA (lower
panels) and similarly for LOFAR, there is, in addition, a uniform yet dilute distribution of antennae in the annulus Rin < r < Rout,
where Rout is the outer annulus radius. When R0 is decreased (R0 ¼ 0:7=0:5=0:3� Rmax

0 ) with Rin ¼ 3:0� Rmax
0 fixed (left panels),

the density in the core falls off more slowly (blue/red/green curves). When Rin is decreased (Rin ¼ 4:0=3:0=2:0� Rmax
0 ) with R0 ¼

0:5� Rmax
0 fixed (right panels), the density in the core also falls off less steeply (dashed/solid/dotted curves).
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gent constraints on �k, m�, and �. For example, in the
OPT model, from LOFAR/MWA/SKA/FFTT combined
with Planck, the curvature density �k can be measured
5=3=15=78 times better, to a precision of ��k ¼
0:005=0:008=0:002=0:0003; the neutrino mass m� can be

constrained 4=9=14=74 times better to an accuracy of
�m� ¼ 0:06=0:03=0:02=0:003; and running of the scalar
spectral index � can be done 1=2=4=28 times better, to
�� ¼ 0:002=0:001=0:0006=0:0001. The more realistic
MID model yields weaker yet still impressive constraints:

TABLE V. How cosmological constraints depend on the ionization power spectrum modeling and reionization history. We assume
observations of 4000 hours on two places in the sky in the range of z ¼ 6:8–8:2 that is divided into three z bins centered at z ¼ 7:0,
7.5, and 8.0, respectively, kmax ¼ 2 Mpc�1, kmin ¼ 2�=yB, and a quasigiant core configuration (except for FFTT which is a giant
core). The 1� errors of ionization parameters in the MID model, marginalized over other vanilla parameters, are listed separately in
Table VI.

Vanilla alone

Model ��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs �	 ��xHð7:0Þa ��xHð7:5Þ ��xHð8:0Þ ��k �m� (eV) ��

LOFAR OPT 0.025 0.27 0.44 0.063 0.89 . . . . . . . . . . . . 0.14 0.87 0.027

MID 0.13 0.083 0.15 0.36 0.80 . . . . . . . . . . . . 0.35 12 0.17

MWA OPT 0.046 0.11 0.19 0.022 0.37 . . . . . . . . . . . . 0.056 0.38 0.013

MID 0.22 0.017 0.029 0.097 0.76 . . . . . . . . . . . . 0.13 9.6 0.074

SKA OPT 0.0038 0.044 0.083 0.0079 0.16 . . . . . . . . . . . . 0.023 0.12 0.0040

MID 0.014 0.0049 0.0081 0.012 0.037 . . . . . . . . . . . . 0.043 0.36 0.0060

FFTT OPT 0.000 15 0.0032 0.0083 0.000 40 0.015 . . . . . . . . . . . . 0.00098 0.011 0.000 34

MID 0.000 41 0.000 38 0.000 62 0.000 36 0.0013 . . . . . . . . . . . . 0.0037 0.0078 0.000 17

PESS 1.1 0.017 0.037 0.010 0.19 . . . . . . . . . . . . . . . 0.20 0.0058

Planck 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . . . . . . . 0.025 0.23 0.0026

þLOFAR OPT 0.0066 0.0077 0.0058 0.0031 0.0088 0.0043 0.0077 0.0084 0.0093 0.0051 0.060 0.0022

MID 0.0070 0.0081 0.0059 0.0032 0.0088 0.0043 0.18 0.26 0.23 0.018 0.22 0.0026

PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 0.54 0.31 0.24 0.025 0.23 0.0026

þMWA OPT 0.0067 0.0079 0.0057 0.0031 0.0088 0.0043 0.0065 0.0067 0.0069 0.0079 0.027 0.0014

MID 0.0061 0.0070 0.0056 0.0030 0.0087 0.0043 0.32 0.22 0.29 0.021 0.19 0.0026

PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 3.8 0.87 0.53 0.025 0.23 0.0026

þSKA OPT 0.0031 0.0038 0.0046 0.0013 0.0087 0.0042 0.0060 0.0060 0.0060 0.0017 0.017 0.000 64

MID 0.0036 0.0040 0.0044 0.0025 0.0087 0.0043 0.0094 0.014 0.011 0.0039 0.056 0.0022

PESS 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 0.061 0.024 0.012 0.025 0.21 0.0026

þFFTT OPT 0.000 15 0.0015 0.0036 0.000 21 0.0087 0.0042 0.0056 0.0056 0.0056 0.000 32 0.0031 0.000 094

MID 0.000 38 0.000 34 0.000 59 0.000 33 0.0086 0.0042 0.0013 0.0022 0.0031 0.000 23 0.0066 0.000 17

PESS 0.0055 0.0064 0.0051 0.0030 0.0087 0.0043 0.0024 0.0029 0.0040 0.025 0.020 0.0010

a �xHðzÞ denotes the mean neutral fraction at the central redshift z. �xHðzÞ’s and As are completely degenerate from the 21 cm
measurement alone. For this reason, the errors shown for lnAs from 21 cm data alone are really not marginalized over the �xHðzÞ’s.

TABLE VI. The 1� marginalized errors for the ionization parameters in the MID model. Assumptions are made the same as in
Table V. Rxx and Rx� are in units of Mpc, and other parameters are unitless.

z �b2xx �Rxx ��xx ��xx �b2x� �Rx� ��x�

7.0 Values 77 3.0 4.5 2.05 8.2 0.143 28

LOFAR 94 140 130 27 5.1 49 9600

MWA 20 43 43 8.3 2.6 16 3200

SKA 9.1 9.8 8.7 2.0 0.49 2.6 520

FFTT 0.59 0.47 0.39 0.098 0.027 0.088 17

7.5 Values 9.9 1.3 1.6 2.3 3.1 0.58 2

LOFAR 2.2 55 18 73 1.4 5.7 24

MWA 4.3 16 4.9 22 1.8 1.8 8.1

SKA 0.18 1.7 0.71 2.1 0.076 0.17 0.78

FFTT 0.0072 0.027 0.015 0.030 0.0023 0.0021 0.012

8.0 Values 2.12 1.63 �0:1 1.35 1.47 0.62 0.46

LOFAR 1.6 20 2.1 34 1.2 3.4 6.9

MWA 2.7 13 4.2 24 1.5 1.6 2.8

SKA 0.085 0.60 0.090 0.90 0.057 0.095 0.24

FFTT 0.0017 0.013 0.0026 0.017 0.0013 0.0014 0.0030
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From SKA/FFTT combined with Planck, �k can be mea-
sured 6=109 times better, to ��k ¼ 0:004=0:0002; m�

4=35 times better, to �m� ¼ 0:06=0:007; and � 1=15
times better, to �� ¼ 0:002=0:0002. The improved mea-
surements of �k and � enable further precision tests of
inflation, since generically �k is predicted to vanish down
to the 10�5 level, while the simplest inflation models (with
a single slow-rolling scalar field) predict �� ð1� nsÞ2 �
10�3. For example, the inflaton potential Vð�Þ / �2 pre-
dicts � � �0:0007, while Vð�Þ / �4 predicts � ¼ 0:008.
In addition, 21 cm data combined with CMB data from
Planck can make accurate measurements in the mean
neutral fraction �xHðzÞ at separate redshifts, outlining the
full path of reionization, e.g. at the ��xHðzÞ � 0:01=0:003
level from SKA/FFTT data combined with Planck data.

2. OPT and MID models

For most 21 cm experiments, the OPT model yields
stronger constraints than the MID model. The reason is
as follows. By assuming Pxx ¼ Px� ¼ 0, there are essen-
tially no neutral fraction fluctuations in the OPT model.
This means that this model is an ideal model in which the
21 cm power spectrum encodes cosmological information
per se, since P�TðkÞ / P ��ðkÞ at each pixel in the Fourier
space. In the more realistic MID model, however, the
nuisance ionization parameters have correlations with cos-
mological parameters. Mathematically, the inversion of a
correlated matrix multiplies each error by a degradation
factor.

An exception is the FFTT, where the situation is re-
versed. As mentioned in Sec. II B 2, the sample variance
P�T in the MID model is smaller than that in the OPT
model for two reasons: (i) the MIDmodel assumes nonzero
Pxx and Px�, and Px� has a negative contribution to the
total power spectrum [see Eqs. (6) and (7)]; (ii) the OPT
model assumes �xH ¼ 1, but �xH takes realistic values (less
than 1) in the MID model, decreasing the overall ampli-
tude. In a signal-dominated experiment, reduced sample
variance can be more important than the degradation from
correlations.

3. PESS model

Our results show that, even combined with CMB data
from Planck, the 21 cm data using the PESS model cannot
significantly improve constraints. There are two reasons
for this failure. First, the PESS model essentially uses only
P�4ðkÞ to constrain cosmology, by marginalizing over P�0

and P�2 . This loses a great deal of cosmological informa-

tion in the contaminated P�0 and P�2 , in contrast to the

situation in the OPT and MID models. Second, to effec-
tively separate P�4ðkÞ from the other two moments, the

available Fourier pixels should span a large range in �.
Figure 4 shows that in MWA and FFTT, the data set is a
thin cylinder instead of a sphere. The limitation in the �

 FFTT
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1

2
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-2 -1 0 1 2
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0

1

2  LOFAR

-2 -1 0 1 2

 SKA

( )

(
)

FIG. 4 (color online). Available ðk?; kkÞ pixels from MWA
(upper left), FFTT (upper right), LOFAR (lower left), and SKA
(lower right), evaluated at z ¼ 8. The blue/ gray regions can be
measured with good signal-to-noise ratios from the nucleus and
core of an array, while the cyan/light- gray regions are measured
only with the annulus and have so poor signal-to-noise ratios that
they hardly contribute to cosmological parameter constraints.

( )

FIG. 5 (color online). Relative 1� error for measuring P ��ðkÞ
with the PESS model by observing a 6 MHz band that is centered
at z ¼ 8 with MWA (red/solid line), LOFAR (blue/short-dashed
line), SKA (green/dotted line), and FFTT (cyan/long-dashed
line). The step size is � lnk � 0:10.
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range will give large degradation factors during the inver-
sion of the Fisher matrix. (In the limit that there is only one
� for each shell, the Fisher matrix is singular and the
degradation factor is infinite.) These two factors work
together with the noise level to shrink the useful k modes
into a rather narrow range: As shown in Fig. 5, �P �� <
P �� only for k ¼ 0:09–0:4 Mpc�1 in SKA, k ¼
0:07–1 Mpc�1 in FFTT and over zero modes in LOFAR
and MWA.

B. Varying kmax

We test how varying kmax affects constraints in this
section. The cutoff kmax depends on the scale at which
nonlinear physics, e.g. the nonlinear clustering of density
perturbations or the irregularities of ionized bubbles, enter
the power spectrum. It is illustrated in the right panel of
Fig. 6 that, generically, cosmological constraints asymp-
totically approach a value as kmax increases above
�2 Mpc�1 (this typical scale can be larger for cosmic
variance-limited experiments such as FFTT). Not much
cosmological information is garnered from these high-k
modes because detector noise becomes increasingly im-
portant with k. The upshot is that the accuracy only weakly
depends on kmax.

C. Varying the non-Gaussianity parameter �

Table II shows the effect of changing the non-
Gaussianity parameter � in Sec. II D from the � ¼ 1
(Gaussian) case to � ¼ 2 in the PESS scenario, along
with changing other assumptions. However, there is no
need to perform an extensive numerical investigation of
the impact of �, since it is readily estimated analytically.
Because 1� error �pi in cosmological parameters isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF�1Þii
p

, it follows directly from Eq. (26) that �p does
not appreciably depend on � for noise-dominated experi-
ments like MWA and LOFAR, whereas�p / �� with� &
1 for (nearly) signal-dominated experiments like SKA and
FFTT. Compared with the other effects that we discuss in
this section, this (no more than linear) dependence on the
non-Gaussianity parameter � is not among the most im-
portant factors.

D. Varying redshift ranges

We now test how accuracies depend on the redshift
ranges. In Tables VII (OPT model) and VIII (MID model),
we consider the optimistic/middle/pessimistic ranges, z ¼
6:8–10=6:8–8:2=7:3–8:2, which are divided by nz ¼ 4=3=2
z bins. The results show that, from 21 cm data alone, the
constraints from the extreme ranges differ significantly (a
factor of 5 for ��k). Therefore, the sensitivity of a 21 cm
telescope depends strongly on the frequency range over
which it can observe the signal.

E. Optimal configuration: Varying array layout

In this section we first investigate how the array layout
affects the sensitivity to cosmological parameters. Next,
we investigate the optimal array configuration for fixed
number of antennae. Our parametrization of the array
configuration is discussed in Sec. II G 2.
We map the constraint in m� on the R0 � Rin plane in

Fig. 7 (OPT model) and Fig. 8 (MID model). R0 is the
radius of the compact core, and Rin the radius of the inner

core, both in units of Rmax
0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nin=�0�
p

. Note that if R0 ¼
Rmax
0 , then Rin ¼ Rmax

0 —this is the case of a ‘‘giant core,’’

in which all antennae are compactly laid down with a
physical covering fraction close to unity, and is represented
by the x axis in the R0 � Rin plane (the value of R0 is
meaningless if Rin ¼ Rmax

0 ). In Table IX, we list the opti-

mal configuration that is indicated by Figs. 7 and 8. The
compactness of an array is represented by Rin=R

max
0 , since

Rmax
0 is the minimum of Rin. In comparison, R0=R

max
0 does

not indicate the compactness, since a slow falloff configu-
ration with a small R0 is effectively very close to a giant
core. Rather, R0 is a transition point from a flat, compact
core to the falloff region. Note that we have three configu-
ration parameters, R0, Rin, and Rout. We find that the
annulus for SKA and LOFAR makes almost no difference
to the cosmological constraints, and therefore we focus on

( )

FIG. 6 (color online). How cosmological constraints �ns
depend on kmin (left panel) and kmax (right panel) in the MID
model with the 21 cm experiments MWA (red/solid line),
LOFAR (blue/short-dashed line), SKA (green/dotted line), and
FFTT (cyan/long-dashed line). We plot �ns in this example
because it has the strongest dependence on kmin and kmax of all
cosmological parameters. The quantity 2�=yB varies in redshift
z bins, so as the horizontal axis of the left panel, we use the
overall scale �min � kmin � ðyB=2�Þ which is equal for all z
bins.
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TABLE VIII. How cosmological constraints depend on the redshift range in the MID model. Assumptions are the same as in Table V
but for different redshift ranges, and we assume only the MID model.

Vanilla alone

z range ��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs �	 ��xHð7:0Þ ��xHð7:5Þ ��xHð8:0Þ ��xHð9:2Þ ��k �m� (eV) ��

LOFAR 6.8–10 0.090 0.055 0.093 0.18 0.43 . . . . . . . . . . . . . . . 0.22 5.7 0.080

6.8–8.2 0.13 0.083 0.15 0.36 0.80 . . . . . . . . . . . . . . . 0.35 12 0.17

7.3–8.2 0.21 0.099 0.15 0.42 0.81 . . . . . . . . . . . . . . . 0.62 15 0.18

MWA 6.8–10 0.15 0.012 0.020 0.031 0.46 . . . . . . . . . . . . . . . 0.092 4.4 0.025

6.8–8.2 0.22 0.017 0.029 0.097 0.76 . . . . . . . . . . . . . . . 0.13 9.6 0.074

7.3–8.2 0.40 0.018 0.030 0.099 1.0 . . . . . . . . . . . . . . . 0.32 18 0.083

SKA 6.8–10 0.010 0.0031 0.0056 0.0073 0.023 . . . . . . . . . . . . . . . 0.031 0.23 0.0032

6.8–8.2 0.014 0.0049 0.0081 0.012 0.037 . . . . . . . . . . . . . . . 0.043 0.36 0.0060

7.3–8.2 0.018 0.0050 0.0081 0.013 0.039 . . . . . . . . . . . . . . . 0.072 0.41 0.0063

FFTT 6.8–10 0.000 29 0.000 21 0.000 43 0.000 25 0.000 97 . . . . . . . . . . . . . . . 0.0020 0.0055 0.000 11

6.8–8.2 0.000 41 0.000 38 0.000 62 0.000 36 0.0013 . . . . . . . . . . . . . . . 0.0037 0.0078 0.000 17

7.3–8.2 0.000 50 0.000 39 0.000 62 0.000 37 0.0013 . . . . . . . . . . . . . . . 0.0058 0.0083 0.000 18

Planck 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . . . . . . . . . . 0.025 0.23 0.0026

þLOFAR 6.8–10 0.0069 0.0080 0.0058 0.0032 0.0088 0.0043 0.18 0.26 0.15 0.23 0.017 0.22 0.0026

6.8–8.2 0.0070 0.0081 0.0059 0.0032 0.0088 0.0043 0.18 0.26 0.23 . . . 0.018 0.22 0.0026

7.3–8.2 0.0070 0.0081 0.0059 0.0032 0.0088 0.0043 . . . 0.27 0.23 . . . 0.023 0.22 0.0026

þMWA 6.8–10 0.0056 0.0065 0.0054 0.0029 0.0087 0.0043 0.32 0.22 0.091 0.36 0.020 0.11 0.0025

6.8–8.2 0.0061 0.0070 0.0056 0.0030 0.0087 0.0043 0.32 0.22 0.29 . . . 0.021 0.19 0.0026

7.3–8.2 0.0061 0.0071 0.0056 0.0030 0.0087 0.0043 . . . 0.25 0.29 . . . 0.024 0.19 0.0026

þSKA 6.8–10 0.0025 0.0027 0.0038 0.0023 0.0087 0.0042 0.0094 0.014 0.0075 0.024 0.0032 0.033 0.0020

6.8–8.2 0.0036 0.0040 0.0044 0.0025 0.0087 0.0043 0.0094 0.014 0.011 . . . 0.0039 0.056 0.0022

7.3–8.2 0.0036 0.0041 0.0044 0.0025 0.0087 0.0043 . . . 0.015 0.011 . . . 0.0053 0.056 0.0023

þFFTT 6.8–10 0.000 33 0.000 21 0.000 43 0.000 24 0.0086 0.0042 0.0013 0.0022 0.0030 0.0040 0.000 20 0.0052 0.000 11

6.8–8.2 0.000 38 0.000 34 0.000 59 0.000 33 0.0086 0.0042 0.0013 0.0022 0.0031 . . . 0.000 23 0.0066 0.000 17

7.3–8.2 0.000 41 0.000 35 0.000 59 0.000 33 0.0086 0.0042 . . . 0.0022 0.0031 . . . 0.000 24 0.0070 0.000 17

TABLE VII. How cosmological constraints depend on the redshift range in the OPT model. Assumptions are the same as in Table V
but for different redshift ranges, and we assume only the OPT model.

Vanilla alone

z range ��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs �	 ��xHð7:0Þ ��xHð7:5Þ ��xHð8:0Þ ��xHð9:2Þ ��k �m� (eV) ��

LOFAR 6.8–10 0.021 0.20 0.34 0.049 0.67 . . . . . . . . . . . . . . . 0.086 0.75 0.023

6.8–8.2 0.025 0.27 0.44 0.063 0.89 . . . . . . . . . . . . . . . 0.14 0.87 0.027

7.3–8.2 0.036 0.38 0.61 0.090 1.2 . . . . . . . . . . . . . . . 0.24 1.3 0.038

MWA 6.8–10 0.037 0.072 0.14 0.016 0.25 . . . . . . . . . . . . . . . 0.031 0.31 0.011

6.8–8.2 0.046 0.11 0.19 0.022 0.37 . . . . . . . . . . . . . . . 0.056 0.38 0.013

7.3–8.2 0.070 0.15 0.27 0.032 0.51 . . . . . . . . . . . . . . . 0.097 0.53 0.018

SKA 6.8–10 0.0032 0.031 0.061 0.0058 0.12 . . . . . . . . . . . . . . . 0.012 0.096 0.0032

6.8–8.2 0.0038 0.044 0.083 0.0079 0.16 . . . . . . . . . . . . . . . 0.023 0.12 0.0040

7.3–8.2 0.0053 0.059 0.11 0.011 0.21 . . . . . . . . . . . . . . . 0.042 0.17 0.0054

FFTT 6.8–10 0.000 12 0.0023 0.0058 0.000 30 0.011 . . . . . . . . . . . . . . . 0.000 45 0.0073 0.000 23

6.8–8.2 0.000 15 0.0032 0.0083 0.000 40 0.015 . . . . . . . . . . . . . . . 0.000 98 0.011 0.000 34

7.3–8.2 0.000 21 0.0042 0.011 0.000 52 0.019 . . . . . . . . . . . . . . . 0.0021 0.014 0.000 43

Planck 0.0070 0.0081 0.0059 0.0033 0.0088 0.0043 . . . . . . . . . . . . 0.025 0.23 0.0026

þLOFAR 6.8–10 0.0065 0.0076 0.0057 0.0031 0.0088 0.0043 0.0077 0.0084 0.0082 0.0090 0.0046 0.051 0.0021

6.8–8.2 0.0066 0.0077 0.0058 0.0031 0.0088 0.0043 0.0077 0.0084 0.0093 . . . 0.0051 0.060 0.0022

7.3–8.2 0.0068 0.0079 0.0058 0.0032 0.0088 0.0043 . . . 0.0085 0.0093 . . . 0.0072 0.081 0.0024

þMWA 6.8–10 0.0065 0.0076 0.0056 0.0031 0.0088 0.0043 0.0065 0.0067 0.0066 0.0067 0.0066 0.023 0.0013

6.8–8.2 0.0067 0.0079 0.0057 0.0031 0.0088 0.0043 0.0065 0.0067 0.0069 . . . 0.0079 0.027 0.0014

7.3–8.2 0.0068 0.0080 0.0058 0.0032 0.0088 0.0043 . . . 0.0067 0.0069 . . . 0.011 0.036 0.0017

þSKA 6.8–10 0.0027 0.0035 0.0045 0.0012 0.0087 0.0042 0.0060 0.0060 0.0060 0.0060 0.0016 0.015 0.000 61

6.8–8.2 0.0031 0.0038 0.0046 0.0013 0.0087 0.0042 0.0060 0.0060 0.0060 . . . 0.0017 0.017 0.000 64

7.3–8.2 0.0039 0.0047 0.0049 0.0017 0.0087 0.0042 . . . 0.0060 0.0060 . . . 0.0020 0.019 0.000 75

þFFTT 6.8–10 0.000 13 0.0014 0.0033 0.000 19 0.0087 0.0042 0.0054 0.0054 0.0054 0.0054 0.000 26 0.0025 0.000 078

6.8–8.2 0.000 15 0.0015 0.0036 0.000 21 0.0087 0.0042 0.0056 0.0056 0.0056 . . . 0.000 32 0.0031 0.000 094

7.3–8.2 0.000 20 0.0016 0.0038 0.000 23 0.0087 0.0042 . . . 0.0057 0.0057 . . . 0.000 40 0.0038 0.000 11
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how to optimize only the remaining two parameters, R0

and Rin.
Table IX shows that the optimal layout for the OPT

model is close to a giant core, with the inner core much
smaller than previously proposed. For the MID model,
LOFAR and SKA still favor the quasigiant-core layout,
but MWA favors a large core whose radius is about the size
that was previously proposed. The accuracies inm� vary in
the OPT model by a factor of 3 for LOFAR and 1.4–1.5 for
MWA and SKA, and in the MID model by a factor of 3 for

LOFAR, 1.3 for MWA, and 2.2 for SKA. This means that
an optimal configuration can improve the constraints by a
factor up to 3 in noise-dominated experiments, and up to 2
in signal-dominated experiments.
The plots have three interesting features. First, the con-

figuration of a quasigiant core is generically favored. The
reason for this is that the noise on the temperature in an
observing cell with u? is inversely proportional to the
square root of the number of baselines that probe this u?.
A compact array increases the number of baselines that

TABLE IX. Optimal configuration for various 21 cm interferometer arrays. Assumptions are the same as in Table V but for a
different array layout. Rprop

in is the previously proposed inner core radius. � is the ratio of the number of antennae in the nucleus to the

total number inside the core. n is the falloff index by which � / r�n outside the nucleus.

Experiment Rmax
0 (m) R0ð�Rmax

0 Þ Rinð�Rmax
0 Þ R

prop
in (m)a � n Comments

OPT LOFAR 319 0.84 1.28 1000 0.71 6.0 Almost a giant core

MWA 50 0.64 2.41 750 0.41 3.0 Close to a giant core

SKA 211 0.30 1.56 1000 0.09 0.83 Almost a giant core

MID LOFAR 319 0.84 1.28 1000 0.71 6.0 Almost a giant core

MWA 50 0.45 10 750 0.20 2.3 Both a large nucleus and a widespread core

SKA 211 0.68 1.57 1000 0.46 2.9 Almost a giant core

aNote that in LOFAR and SKA there is an annulus with the outer radius 6 km and 5 km, respectively. So for these Rin is not the size of
the total array.
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FIG. 8 (color online). Same as Fig. 7 but for the MID model. Figures are for LOFAR (left panel), MWA (middle panel), and SKA
(right panel).
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probe small u?, reducing the overall noise level on these
modes. Second, a couple of the upcoming 21 cm experi-
ments favor the configuration that is close but not identical
to a giant core. The reason for this is because arrays
become sample variance limited once they have a certain
number of baselines that probe a given u?. A simple
estimate on the signal-to-noise ratio for a compact MWA
shows that on average P ��= �PN � 5 at k� 0:1 Mpc�1 and
P ��= �PN � 1=40 at k� 0:7 Mpc�1. Although moving
more antennae to the center can increase the signal-to-
noise ratio, the error cannot be reduced as much if modes
are already dominated by the signal. Third, in the MID
model, MWA favors a less compact core. This fact is due to
the mixing between cosmological and ionization parame-
ters. Remember that the off-diagonal elements in the Fisher
matrix are proportional to the magnitude of ionization
power spectra—the smaller the magnitude, the smaller
the degradation factor and the more accurate the cosmo-
logical parameter measurement. Figure 2 illustrates that
the ionization power spectrum generically falls off at large
k such that a relatively large core, which is more sensitive
to these large k, may actually improve parameter con-
straints. This factor appears to be important for MWA
because, as Fig. 4 shows, a compactified MWA only occu-
pies a rather narrow band in k space. This means that MWA
has to expand significantly in order to use much larger k
modes.

It came to our attention that Lidz et al. [45] performed an
analysis of the optimal configuration for MWA. They con-
cluded that the optimal layout for MWA is a giant core.
This conclusion is slightly different than ours; we find that
a compact but not exactly giant core is optimal for MWA.

Thework in [45] defines the optimal configuration to be the
configuration that maximizes the total signal-to-noise ra-
tio, while our definition is based on parameter constraints.
In addition, the conclusion in [45] is based on the com-
parison of a giant core array configuration to one without a
giant core, while we investigate a range of plausible con-
figurations. It should be pointed out that both approaches
should be tested with detailed simulations.

F. Varying the collecting area

The survey volume and the noise per pixel are both
affected by changing the collecting area Ae because the
solid angle a survey observes is � � �2=Ae and PN /
1=A2

e [Eq. (33)]. For noise-dominated experiments,

�P�T=P�T / PN=
ffiffiffiffiffiffi
Nc

p / A�2
e =

ffiffiffiffiffiffiffiffiffi
A�1
e

p ¼ A�3=2
e , and for

signal-dominated experiments, �P�T=P�T / 1=
ffiffiffiffiffiffi
Nc

p /
A1=2
e . If we parametrize the scaling of the error on a

cosmological parameter as �p / ðAeÞ, we have �1:5<
< 0:5. A caveat is FFTT which has fixed � ¼ 2�, so
�P�T=P�T / A0

e (signal dominated) or �P�T=P�T / 1=A2
e

(noise dominated). Since FFTT is nearly signal dominated,
 & 0.
We show how the collecting area affects the accuracy in

Tables X (OPT model) and XI (MID model). In the OPT
model, it appears that � �0:4 for LOFAR, jj & 0:2 for
MWA, jj & 0:3 for SKA, and ��0:1 for FFTT. In the
MID model, it appears that ��1:3 for LOFAR, �
�0:5 for MWA, ��0:6 for SKA, and ��0:3 for
FFTT. These exponents are compatible with the above
arguments. The upshot is that varying Ae does not signifi-
cantly affect parameter constraints.

TABLE X. How cosmological constraints depend on the collecting areas in the OPT model.
Assumptions are the same as in Table V but for different collecting areas Ae, and we assume
only the OPT model. The exponent  tells the rule of thumb of the Ae dependence of
marginalized errors �p, assuming �p / ðAeÞ.

Ae=A
fid
e

a ��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs

LOFAR 2.0 0.020 0.24 0.40 0.048 0.80

1 0.025 0.27 0.44 0.063 0.89

0.5 0.039 0.40 0.62 0.10 1.3

 �0:48 �0:37 �0:32 �0:53 �0:35
MWA 2.0 0.057 0.11 0.22 0.021 0.41

1 0.046 0.11 0.19 0.022 0.37

0.5 0.042 0.11 0.19 0.027 0.37

 0.22 0 0.11 �0:18 0.07

SKA 2.0 0.0027 0.048 0.099 0.0077 0.19

1 0.0038 0.044 0.083 0.0079 0.16

0.5 0.0043 0.043 0.076 0.0089 0.15

 �0:34 0.08 0.19 �0:10 0.17

FFTT 2.0 0.000 14 0.0031 0.0082 0.000 37 0.015

1 0.000 15 0.0032 0.0084 0.000 40 0.015

0.5 0.000 17 0.0035 0.0086 0.000 46 0.016

 �0:14 �0:09 �0:03 �0:16 �0:05

a Afid
e refers to the fiducial values assumed in Table IV and are not the same for different arrays.
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G. Varying observation time and system temperature

The detector noise is affected by changing the observa-
tion time and system temperature. From Eq. (33), the
noise PN / T2

sys=t0. Therefore, for noise-dominated ex-

periments, �P�T=P�T / PN=
ffiffiffiffiffiffi
Nc

p / T2
sys=t0, and for

signal-dominated experiments, �P�T=P�T / 1=
ffiffiffiffiffiffi
Nc

p /
ðT2

sys=t0Þ0. Assuming that the errors in the cosmological

parameter �p / ðT2
sys=t0Þ�, we have 0< �< 1.

Since T2
sys and t

�1
0 share the same exponent, we evaluate

� by varying only t0 in Tables XII (OPT model) and XIII

(MID model). It appears that on average ��0:5 for
LOFAR, ��0:3 for MWA, �� 0:3 for SKA, and � < 0:1
for FFTT in the OPT model, and �� 0:8 for LOFAR, ��
0:5 for MWA, �� 0:4 for SKA, and � & 0:1 for FFTT in
the MID model. These exponents are compatible with the
expected 0< �< 1 from the above argument. The upshot
is that the order unity changes in Tsys and t0 play a marginal

role in the accuracy for future signal-dominated
experiments.

TABLE XII. How cosmological constraints depend on the observation time in the OPT model.
Assumptions are the same as in Table V but for different observation time t0, and we assume
only the OPT model. The exponent � tells the rule of thumb of the t0 dependence of
marginalized errors �p, assuming �p / ðt0Þ��. t0 is in units of 4000 hours.

t0 ��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs

LOFAR 4.0 0.014 0.17 0.28 0.034 0.56

1 0.025 0.27 0.44 0.063 0.89

0.25 0.055 0.56 0.88 0.14 1.8

� 0.49 0.43 0.41 0.51 0.42

MWA 4.0 0.040 0.081 0.16 0.015 0.29

1 0.046 0.11 0.19 0.022 0.37

0.25 0.059 0.15 0.27 0.038 0.52

� 0.14 0.22 0.19 0.34 0.21

SKA 4.0 0.0019 0.034 0.070 0.0054 0.13

1 0.0038 0.044 0.083 0.0079 0.16

0.25 0.0060 0.061 0.11 0.013 0.21

� 0.41 0.21 0.16 0.32 0.17

FFTT 4.0 0.000 14 0.0031 0.0082 0.000 37 0.015

1 0.000 15 0.0032 0.0084 0.000 40 0.015

0.25 0.000 17 0.0035 0.0086 0.000 46 0.016

� 0.07 0.04 0.02 0.08 0.02

TABLE XI. How cosmological constraints depend on the collecting areas in the MID model.
Assumptions are the same as in Table V but for different collecting areas Ae, and we assume
only the MID model. The exponent  tells the rule of thumb of the Ae dependence of
marginalized errors �p, assuming �p / ðAeÞ.

Ae=A
fid
e ��� � lnð�mh

2Þ � lnð�bh
2Þ �ns � lnAs

LOFAR 2.0 0.086 0.044 0.072 0.15 0.35

1 0.13 0.083 0.15 0.36 0.80

0.5 0.26 0.17 0.35 0.92 2.0

 �0:80 �0:98 �1:1 �1:3 �1:3
MWA 2.0 0.21 0.015 0.025 0.073 0.61

1 0.22 0.017 0.029 0.097 0.76

0.5 0.26 0.026 0.045 0.16 1.3

 �0:15 �0:40 �0:42 �0:57 �0:55
SKA 2.0 0.013 0.0049 0.0079 0.0092 0.032

1 0.014 0.0049 0.0081 0.012 0.037

0.5 0.016 0.0063 0.011 0.022 0.053

 �0:15 �0:18 �0:24 �0:63 �0:36
FFTT 2.0 0.000 36 0.000 37 0.000 61 0.000 32 0.0012

1 0.000 41 0.000 38 0.000 62 0.000 36 0.0013

0.5 0.000 52 0.000 41 0.000 66 0.000 46 0.0016

 �0:27 �0:07 �0:06 �0:26 �0:21
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H. Varying the foreground cutoff scale kmin

Finally, we test how accuracy is affected by varying
kminabove which foregrounds can be cleaned from the
signal. One expects that the constraints tend to approach
asymptotic values at small enough kmin. However, the most
effectively constrained modes are at small k (k�
0:1 Mpc�1) for noise-dominated experiments, while the
contributions from larger k modes are more important for
cosmic variance-limited experiments. This means that kmin

affects the noise-dominated experiments the most. The left
panel of Fig. 6 illustrates this by plotting cosmological
constraints as a function of the relative minimum cutoff
�min � kmin � yðzÞBðzÞ=2�, which is a constant scale fac-
tor for all z bins by definition. The slopes at �min ¼ 1 are
rather large for MWA (varying from �min ¼ 0:5 to 2, the
error in ns varies from 0.032 to 0.39, about 10 times larger).
For a signal-dominated experiment like SKA, the con-
straints can be off by a factor of 3, or for FFTT by a factor
of 1.6. This suggests that, in general, kmin is among the top
factors to affect cosmological constraints.

IV. CONCLUSION & OUTLOOK

A. Which assumptions matter most?

In Sec. III, we have quantified how cosmological pa-
rameter measurement accuracy depends on assumptions
about ionization power modeling, reionization history, red-
shift range, experimental specifications such as the array
configuration, and astrophysical foregrounds. We now re-
turn to the overarching question from Sec. I that motivated

our study: Which of these assumptions make the most and
least difference?
To quantify this, we consider two of the parameters for

which 21 cm tomography has the most potential for im-
proving on Planck CMB constraints based on our esti-
mates: �k and m�. Figure 9 shows ��k based on data
from Planck plus SKA, as well as �m� from Planck plus
FFTT. Varying the ionization power modeling from PESS
to OPT models improves the constraints on these two
parameters by a factor of 6–15. From 21 cm data alone
in the OPT model, the optimal array configuration can
affect accuracies up to a factor 3 (Fig. 7), redshift ranges
affect it by up to a factor of 5 (Table VII), and residual
foregrounds affect it by up to a factor of 10 (Fig. 6, left
panel). In summary, the assumptions can be crudely or-
dered by importance as ionization power modeling�
foregrounds� redshift ranges�array layout>Ae�Tsys�
t0�kmax�non-Gaussianity.
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ν

FIG. 9. Cartoon showing how cosmological parameter mea-
surement accuracy depends on various assumptions. The cases
labeled merely ‘‘PESS’’ or ‘‘OPT’’ have the PESS/OPT ioniza-
tion power spectrum modeling with MID assumptions for every-
thing else.

TABLE XIII. How cosmological constraints depend on observation time in the MID model.
Assumptions are the same as in Table V but for a different observation time t0, and we assume
only the MID model. The exponent � tells the rule of thumb of the t0 dependence of
marginalized errors �p, assuming �p / ðt0Þ��. t0 is in units of 4000 hours.

t0 ��� � lnð�mh
2Þ � lnð�bh

2Þ �ns � lnAs

LOFAR 4.0 0.061 0.031 0.051 0.11 0.25

1 0.13 0.083 0.15 0.36 0.80

0.25 0.36 0.24 0.50 1.3 2.9

� 0.64 0.74 0.82 0.89 0.88

MWA 4.0 0.15 0.010 0.017 0.052 0.43

1 0.22 0.017 0.029 0.097 0.76

0.25 0.36 0.037 0.064 0.23 1.8

� 0.32 0.47 0.48 0.54 0.52

SKA 4.0 0.0089 0.0035 0.0056 0.0065 0.022

1 0.014 0.0049 0.0081 0.012 0.037

0.25 0.023 0.0090 0.015 0.031 0.075

� 0.34 0.34 0.36 0.56 0.44

FFTT 4.0 0.000 36 0.000 37 0.000 61 0.000 32 0.0012

1 0.000 41 0.000 38 0.000 62 0.000 36 0.0013

0.25 0.000 52 0.000 41 0.000 66 0.000 46 0.0016

� 0.13 0.04 0.03 0.13 0.10
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B. Outlook

We have investigated how the measurement of cosmo-
logical parameters from 21 cm tomography depends on
various assumptions. We have found that the assumptions
about how well the reionization process can be modeled
are the most important, followed by the assumptions per-
taining to array layout, IGM evolution, and foreground
removal.

Our results motivate further theoretical and experimen-
tal work. On the theoretical side, it will be valuable to
develop improved EoR data analysis techniques. The OPT
approach is restricted to when neutral fraction fluctuations
are not important, which is not an accurate approximation
during the EoR. On the other hand, although the PESS
approach is, in principle, insensitive to our poor under-
standing of reionization by marginalizing over it, in prac-
tice this approach destroys too large a fraction of the
cosmological information to be useful. Hopefully more
detailed EoR simulations will enable our MID approach
to be further improved into a phenomenological parame-
trization of our ignorance that is robust enough to be
reliable, yet minimizes the loss of cosmological
information.3

On the experimental side, there are numerous compli-
cations that are beyond the scope of this paper, but that are
important enough to deserve detailed investigation in fu-
ture work. To what extent can radio-frequency interference
be mitigated, and to what extent does it degrade cosmo-
logical parameter accuracy? This is particularly important
for instruments in densely populated parts of the world,
such as LOFAR. To what extent is the subtraction of the
foreground point sources hampered by the complicated off-
center frequency scaling of the synthesized beam? To what
extent does the dramatic variation of the synchrotron
brightness temperature across the sky affect our results
and optimal array design? Performing a realistic end-to-
end simulation of possible experiments (from sky signal to
volts and back) should be able to settle all of these issues.

These are difficult questions, but worthwhile because the
potential for probing fundamental physics with 21 cm
tomography is impressive: A future square kilometer array
optimized for 21 cm tomography could improve the sensi-
tivity of the Planck CMB satellite to spatial curvature and
neutrino masses by up to 2 orders of magnitude, to ��k �
0:0002 and �m� � 0:007 eV, and detect at 4� the running
of the spectral index predicted by the simplest inflation
models.
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APPENDIX: �2 GOODNESS OF FIT IN THE MID
MODEL

In this appendix, we elucidate some issues in separating
cosmological information from astrophysics in the MID
model, and give the �2 goodness-of-fit test.
The parametrization of ionization power spectra is based

on the assumption that these power spectra are smooth
functions of k, and therefore can be parametrized with as
many parameters as necessary to fit the data at some
accuracy. However, the separation of cosmology from
astrophysics implicitly depends on another assumption
that the shapes of ionization power spectra are distinguish-
able from that of the matter power spectrum, since one can
only measure the total 21 cm power spectrum. Albeit
sometimes the shape may be similar at small k (see the
plateaus in the ratios of power spectra in Fig. 2), the slope
and amplitude of ionization power spectra at the falloff
region can, in principle, distinguish nuisance functions
from the matter power spectrum, determine the overall
amplitude, and in return use the data at small k to further
constrain the nuisance parameters that correspond to the
amplitudes.
An avalanche of data from upcoming 21 cm experiments

can make it possible to justify the MID model with some
parametrization of ionization power spectra. There are
standard statistical methods for testing whether the pa-
rametrization is successful. We now give a compact de-
scription of the �2 goodness-of-fit test, and refer interested
readers to [50] for a useful review on the statistics. Note
that we did not implement the �2 test in this paper since
this would need observational data. The description of the
�2 test below is intended to complement the discussions of
the MID model in the main part of this paper. We want to
test the hypothesis H0 that the parametrization with fitting
parameter values is an accurate account of the ionization
power spectra. The parameter vector to be fitted is � �
ð�iði ¼ 1; . . . ; NpÞ; �ð� ¼ 1; . . . ; nionÞÞ, where Np and

nion are the number of cosmological and ionization pa-
rameters, respectively. The observed data vector is y �
ðy1; . . . ; yNÞ where yi � P�TðkiÞ at each pixel ki labeled
by i ¼ 1; . . . ; N, where N is the total number of pixels.
Assuming the Gaussian statistic in the measurements, the
corresponding vector F for the expected value isFðki;�Þ¼
ðP ���2P x�þP xxÞþ2ðP ���P x�Þ�2þP ���

4, and the
variance is �2

i �ð�P�TðkiÞÞ2¼ 1
Nc
½P�TðkiÞþPNðki?Þ�2.

3It is also possible to constrain cosmological parameters using
lensing of 21 cm fluctuations [46–49].
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We can now compute �2:

�2ð�Þ ¼ ðy � Fð�ÞÞTC�1ðy � Fð�ÞÞ; (A1)

where C is the covariance matrix. If each measurement yi
is independent, then C becomes diagonal with Cii ¼ �2

i .
Then Eq. (A1) is simplified to be

�2ð�Þ ¼ XN
i¼1

½yi � Fðki; �Þ�2
�2

i

: (A2)

We can define the p value as the probability, under the

assumption of the hypothesis H0, of obtaining data at least
as incompatible with H0 as the data actually observed. So

p ¼
Z 1

�2ð�Þ
fðz; ndÞdz; (A3)

where fðz; ndÞ is the �2 probability density function with
nd degrees of freedom nd ¼ N � ðNp þ nionÞ. Values of

the �2 probability density function can be obtained from
the CERNLIB routine PROB [51]. To set the criterion, a fit
is good if p � 0:95, i.e. the real data fit the parametrization
better than the 95% confidence level.
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