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We develop an analytic theory for the redshift space bispectrum of dark matter, haloes, and galaxies.

This is done within the context of the halo model of structure formation, as this allows for the self-

consistent inclusion of linear and nonlinear redshift-space distortions and also for the nonlinearity of the

halo bias. The model is applicable over a wide range of scales: on the largest scales the predictions reduce

to those of the standard perturbation theory (PT); on smaller scales they are determined primarily by the

nonlinear virial velocities of galaxies within haloes, and this gives rise to the U-shaped anisotropy in the

reduced bispectrum—a finger print of the Finger-Of-God distortions. We then confront the predictions

with measurements of the redshift-space bispectrum of dark matter from an ensemble of numerical simu-

lations. On very large scales, k ¼ 0:05h Mpc�1, we find reasonably good agreement between our halo

model, PT and the data, to within the errors. On smaller scales, k ¼ 0:1h Mpc�1, the measured bispectra

differ from the PT at the level of �10%–20%, especially for colinear triangle configurations. The halo

model predictions improve over PT, but are accurate to no better than 10%. On smaller scales k ¼
0:5–1:0h Mpc�1, our model provides a significant improvement over PT, which breaks down. This

implies that studies which use the lowest order PT to extract galaxy bias information are not robust on

scales k * 0:1h Mpc�1. The analytic and simulation results also indicate that there is no observable scale

for which the configuration dependence of the reduced bispectrum is constant—hierarchical models for

the higher-order correlation functions in redshift space are unlikely to be useful. It is hoped that our model

will facilitate extraction of information from large-scale structure surveys of the Universe, because

different galaxy populations are naturally included into our description.

DOI: 10.1103/PhysRevD.78.023523 PACS numbers: 98.80.�k

I. INTRODUCTION

Statistical analyses of the large-scale structures observed
in galaxy surveys can provide a wealth of information
about the cosmological parameters, the underlying mass
distribution, and the initial conditions of the Universe [1–
5]. Some complex combination of the information is
commonly extracted through measurement of the 2-point
correlation function, or its Fourier space analogue the
power spectrum. Since the evolved density field of galaxies
is highly non-Gaussian, further complementary informa-
tion is contained within the higher-order clustering statis-
tics [6,7]. For example, analysis of the large-scale 3-point
correlation function, or its Fourier space dual the bispec-
trum, on large scales, can: test the nonlinearity of bias—the
way in which an observable tracer distribution samples the
unobservable distribution of physical interest [8–11]; con-
strain our hypothesis of Gaussianity in the initial condi-
tions [12–15]; break degeneracies between parameters,
hence allowing improved constraints on the amplitude of
the matter power spectrum. In addition, higher-order sta-
tistics have been highlighted as an important piece of

solving the puzzle as to whether the observed accelerated
expansion of the Universe is due to dark energy physics or
a modification to gravity [16–19]. On smaller scales these
statistics can be most usefully used as a discriminator for
the shapes of haloes [20]—and thus have the potential to
constrain the small-scale dark matter physics.
The current state of the art galaxy redshift surveys

[21–24] have provided large samples of the Universe,
and investigators have already carried out some of the tests
noted above: 3-point correlation functions have been esti-
mated by [25–30] and bispectra by [31–34].
The recovery of precise cosmological information

from these measurements is not straightforward, owing
to the influence of nonlinear mass evolution, biasing, and
redshift-space distortions. Current theoretical modeling of
the large-scale bispectrum rests on results from perturba-
tion theory and nonlinear biasing in real (as opposed to
redshift) space. In the large-scale limit, this gives rise to a
simple model [8–10]:

Qgðk1; k2; �12Þ ¼ 1

b
g
1

½Qmðk1; k2; �12Þ þ cg2�; (1)

where the functions Qi are the reduced bispectra of gal-
axies and matter, Qi

123 � Bi123=½Pi1Pi2 þ Pi2P
i
3 þ Pi3P

i
1�. In

the above B123 � Bðk1; k2; �12Þ is the matter bispectrum
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and Pa � PðkaÞ the matter power spectrum. The coeffi-
cient b

g
1 is the large-scale linear bias parameter and c

g
2 �

bg2=b
g
1 is the first nonlinear bias parameter. It is usually

assumed that this relation holds in redshift space as well,
but that it does not in detail can be seen from the work of
[35]. That it nevertheless appears to be a reasonable work-
ing hypothesis was demonstrated by [36]. We shall, here-
after, refer to this model in real and redshift space as PTand
PTs, respectively.

There are several reasons why we wish to improve upon
PTs. First, it is well known that in redshift space the dis-
tortion effects from nonlinear structures, such as Finger-
of-God (hereafter FOG) distortions, pollute the scales that
are usually identified for linear treatment. This cannot
be accounted for in the perturbation theory in any other
way than supposing ad hoc fixes to the model [35,37]. A
pragmatist might argue that one may take scales that are
sufficiently large that these corrections can be neglected.
However, even if we are proficient enough to accurately
separate linear from nonlinear scales, then we are still
faced with losing a significant amount of information
from our data through the restrictions to very large scales.
Therefore some means for robustly modeling the FOG
effects is clearly of great value as this may allow us to
expand the utility of our data set and improve precision.

Second, in our study of the large-scale galaxy power
spectrum [38] we found that there was nontrivial scale
dependence arising from nonlinear bias and gravitational
mode coupling, even on the largest scales currently probed.
One may then ask how these properties affect the predicted
bispectra.

Third, if we assume that galaxy velocity field is an
unbiased tracer for the velocity field of dark matter, then
through studying the higher-order clustering statistics in
redshift space we have a direct probe of the statisti-
cal information of the dynamics of the cold dark matter
(CDM) density field itself [39–42].

In this paper we build a new analytic model for the fully
nonlinear redshift-space bispectrum. We will concentrate
on the isotropically averaged (i.e. the monopole) bispec-
trum, for reasons of simplicity. We work in the context of
the halo model [43], since it naturally affords a means for
including linear and nonlinear density and velocity infor-
mation [44–48] and neatly allows for the inclusion of gal-
axies [44,49–53]. Furthermore, as was shown in [38] the
halo model presents a natural framework for understanding
the origins of the nonlinear scale dependence of bias. How-
ever, the limitations of the halo model predictions for pre-
cision measurements of the matter power spectrum on
large scales have been known for some time now [43,54–
56]. We will therefore use measurements from numerical
simulations to confirm the validity of our predictions.

The paper breaks up as follows: In Sec. II we formalize
the halo model in redshift space, providing general expres-
sions for the 3-point function and bispectrum. Section III

details the necessary components of the model; we pay
special attention to the redshift-space clustering of halo
centers. Section IV presents the central analytic result of
the paper—a calculation of the bispectrum monopole.
Some results of evaluating our expressions are presented
in Sec. V. In Sec. VI we confront our model with measure-
ments fromN-body simulations. In Sec. VII we summarize
our conclusions.
Although our analysis is general, we shall illustrate our

results with specific examples. When necessary, we assume
a flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
cosmological model with energy density at late times
dominated by a cosmological constant (�) and a sea of
collisionless cold dark matter particles as the dominant
mass density. We set �m ¼ 0:27 and �� ¼ 0:73, where
these are the ratios of the energy density in matter and a
cosmological constant to the critical density, respectively.
We use a linear theory power spectrum generated from
cmbfast [57], with baryon content of �b ¼ 0:046 and
h ¼ 0:72. The normalization of fluctuations is set through
�8 ¼ 0:9, which is the root-mean-square (r.m.s.) variance
of fluctuations in spheres of radius 8h�1 Mpc.

II. HALO MODEL IN REDSHIFT SPACE

A. Formalism

In the halo model (see [43] for a review) the density field
is decomposed into a set of dark matter haloes, where a
halo is defined to be a region that has undergone gravita-
tional collapse forming a dense virialized ball of CDM. All
statistical quantities of interest are then considered as sums
over the halo distribution. Thus to understand the large-
scale clustering of a distribution of objects, haloes, gal-
axies, or dark matter, we simply require understanding
of how the haloes themselves cluster; the different tracer
types simply act as weights. In particular, different galaxy
populations ‘‘weight’’ haloes differently: the halo occupa-
tion distribution (HOD) [49–53] specifies how the proba-
bility for obtainingN galaxies depends on halo massM. To
model redshift-space statistics, we require additional in-
formation about how the large-scale velocity field modifies
the halo clustering, as well as a model for the distribution
function of galaxy velocities within each halo. The halo
model in redshift space, at the 2-point level, was developed
by [45–47] (hereafter we shall refer to the halo model in
real and redshift space as HM and HMs, respectively).
However, some unresolved issues remained with regard
to the base formalism. These were resolved by [48] and
our description of 3-point statistics presented here extends
these analyses. For completeness some of these details are
repeated below. Before continuing, we note that the prob-
lem of redshift-space distortions in the halo model was also
recently addressed by [58], who used numerical simula-
tions to construct an empirical model for the distribution
function of halo pairwise velocities. Our approach is com-
plimentary to that, since the results for the large-scale halo
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clustering are derived within the context of the analytic
perturbation theory rather than being fit for.

The density field of dark matter, haloes, or galaxies may
be written as

�s�ðsÞ ¼
X
i

½W��iUs
�;iðs� sijMiÞ; (2)

where� ¼ f1; 2; 3g refers to the particular choice of weight
for the ith halo in the sum, i.e. ½W��i ¼ f1;Mi; N

gðMiÞ; . . .g
depending on the spectra one wishes to model, and where
NgðMiÞ is the number of galaxies in halo i. Us

�;i is the
normalized density distribution of objects in redshift space
within the ith halo. In this paper we shall always assume
that Us

�;i � �sðsÞ=M, is the mass-normalized density pro-
file of dark matter in redshift space, although our formal-
ism does not rely upon this assumption and may readily be
generalized for more complicated mass distributions. At
this point the only difference between Eq. (2) and the real-
space density field is that we have used s to denote comov-
ing spatial positions. However this has the special meaning
that Hubble’s law, v ¼ HðaÞr, is used to infer proper radial
positions from recession velocities, where v is the proper
velocity, HðaÞ � _a=a is the Hubble parameter, and r is the
proper separation (related to comoving coordinate through
r ¼ ax). The notion of redshift-space distortions then fol-
lows from the fact that objects which form through gravi-
tational instability acquire a local peculiar velocity of their
own, and hence the velocity-space mapping in general is
nonlinear. In this paper we shall work in the plane parallel
approximation, where observed structures are located at
infinity. Then the mapping is

sz ¼ z� uzðxÞ; s? ¼ x?; (3)

where the Cartesian components of the position vectors
have been written ðx?; zÞ, with x? ¼ ðx; yÞ. Thus sz and uz
specify the z-components of the redshift-space position
vector s and the comoving peculiar velocity field u, scaled
in units of the Hubble parameter, respectively. Note that we
take u to be negative for convenience.

B. Higher-order correlations

We may now compute the correlation hierarchy for
such a distribution of tracer objects. For a definition of
the higher-order clustering statistics in configuration
space and their Fourier space dual counterparts we refer
to Appendix A. There may also be found useful symmetry
properties that we exploit throughout.

Following [20,43,52,59,60], the real-space 3-point cor-
relation function (�s�) in the halo model, for dark matter,
haloes, or galaxies, is the sum of three terms: the first rep-
resents the case where all three points in space are con-
tained in a single halo; the second is the case where two
points are located in one halo, and the third is in a separate

halo; the third is the case where three points are located in
three distinct haloes—we shall refer to these as the 1-, 2-,
and 3-halo terms and ð�s�;1H; �s�;2H; �s�;3HÞ. These are

written:

�s�ðs1; s2; s3Þ � �s�;1Hðs1; s2; s3Þ þ �s�;2Hðs1; s2; s3Þ
þ �s�;3Hðs1; s2; s3Þ; (4)

�s�;1Hðs1; s2; s3Þ ¼
1

��3
�

Z
dMd3y½W��3nðMÞ

�Y3
i¼1

fUsðy � sijMÞg; (5)

�s�;2Hðs1; s2; s3Þ ¼
1

��3
�

Z Y
i¼f1;2g

fdMid
3yi½W��inðMiÞ

�Usðyi � sijMiÞg½W��1Usðy1 � s3jM1Þ
� �shcðy1; y2jM1;M2Þ þ cyc; (6)

�s�;3Hðs1; s2; s3Þ ¼
1

��3
�

Z Y3
i¼1

fdMid
3yi½W��inðMiÞ

�Usðyi � sijMiÞg
� �shcðy1; y2; y3jM1;M2;M3Þ; (7)

where �shc and �
s
hc are the 2- and 3-point correlation func-

tions of halo centers, conditioned on halo masses and
where nðMÞdM is the halo mass function, which gives
the number density of dark matter haloes with masses in
the range M to Mþ dM.
The inverse Fourier transforms of these 3-point func-

tions are the redshift-space bispectra (cf. Eq. (A18)). They
are written:

Bs�ðk1;k2;k3Þ ¼ Bs�;1Hðk1;k2;k3Þ þ Bs�;2Hðk1;k2;k3Þ
þ Bs�;3Hðk1;k2;k3Þ; (8)

Bs�;1Hðk1;k2;k3Þ ¼ 1

��3
�

Z
dM½W��3nðMÞY

3

i¼1

fUsðkijMÞg;

(9)

Bs�;2Hðk1;k2;k3Þ ¼ 1

��3
�

�
Z Y

i¼f1;2g
fdMi½W��inðMiÞUsðkijMiÞg

� ½W��1Usðk3jM1ÞPshcðk2jM1;M2Þ
þ cyc; (10)
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Bs�;3Hðk1;k2;k3Þ ¼ 1

��3
�

Z Y3
i¼1

fdMi½W��inðMiÞUsðkijMiÞgBshcðk1;k2;k3jM1;M2;M3Þ; (11)

where Pshc and B
s
hc are the Fourier transforms of the 2- and

3-point halo center correlation functions.
Several advantages are gained from transforming to

Fourier space. First, once the integrals over mass are in-
cluded, �s3H requires evaluation of a 12-D integral—the

corresponding term Bs3H is significantly simpler. Indeed,

for the case of real space—not redshift space—and for
spherical haloes, it is possible to write B3H as the product
of 3 2-D integrals. The calculation is slightly more com-
plicated in redshift space but, as we show below, it remains
tractable. Thus, to compute the redshift-space power spec-
trum and bispectrum, we require three components: the
abundance of dark matter haloes nðMÞ; a model for the
redshift-space density profile; and a model for the inter-
clustering of dark matter haloes in redshift space. In the
following sections we describe our choices for these
quantities.

III. INGREDIENTS

A. Halo abundances and bias factors

The halo mass function nðMÞ plays a central role in the
halo model. It has been the subject of much detailed study
[61–64]. These studies suggest that, in appropriately scaled
units, halo abundances should be approximately indepen-
dent of cosmology, power spectrum, and redshift. These
models for nðMÞ also predict that the real-space clustering
of halos should be biased relative to that of the dark matter
[63]; the way in which real-space halo bias depends on halo
mass is related to the shape of nðMÞ. Thus, once the mass
function has been specified, the problem of describing halo
clustering reduces to one of describing the clustering of
the dark matter. Of the many recent parametrizations of
nðMÞ, [63,65–67], we use that of Sheth and Tormen [63].
Changing to that of Warren et al. [66] for instance, does not
affect the large-scale matter predictions and changes the
results in the nonlinear regime by a few percent. Note that
for the bispectrum, as was shown by [52], a more important
issue to be aware of is the finite volume effect, which can
significantly change the measured statistics for small vol-
umes. The halo bias factors associated with this mass func-
tion are reported in [52]; we use these in what follows.
Reference [38] describes other empirical approaches to
determining halo bias parameters.

B. Density profiles in redshift space

Consider the 6-D phase-space density distribution func-
tion for dark matter particles within a particular halo,
denoted F ðx;ujMÞ. The density profile and velocity dis-
tribution function may be obtained by marginalizing over
velocities and positions, respectively:

�ðxÞ ¼ M
Z
duF ðx;ujMÞ;

V 3DðuÞ ¼
Z
dxF ðx;ujMÞ;

(12)

where M is the normalizing mass. The redshift-space
density profile can be readily obtained from the phase-
space distribution through transformation to the new ran-
dom variable s, given by our fundamental mapping
(Eq. (3)). Hence

�sðs?; szÞ ¼ M
Z
dzdx?duzdu?F ðx?; z;u?; uzjMÞ

� �Dðsz � zþ uzÞ�Dðs? � x?Þ;
¼ M

Z
dzdu?F ðs?; z;u?; z� szjMÞ: (13)

We now assume that the density distribution of matter
within each halo can be described by a spherically sym-
metric density profile and that the particle orbits are iso-
tropic and independent of position within the halo, i.e. an
isothermal velocity distribution. Thus, the phase-space
distribution is separable, i.e. F ðx;ujMÞ ¼ �ðxjMÞ �
V 3DðujMÞ=M. Since the velocity distribution function is
isotropic it may now be written as the product of three
independent distributions in the three coordinate direc-
tions: V 3DðujMÞ ¼ V 1DðuxjMÞV 1DðuyjMÞV 1DðuzjMÞ;
and we shall hereafter use the notation that V 1D � V .
Hence,

�sðs?; szjMÞ ¼
Z
dz�ðs?; zjMÞV ðsz � zjMÞ: (14)

Fourier transforming yields the compact expression

Usðk?; kzjMÞ ¼ UðkjMÞV ð�kjMÞ; (15)

where k? denotes a 2-D wave vector perpendicular to the
distortion, and kz ¼ �k ¼ k � ẑ is parallel to it.
This expression shows that the redshift-space profile is

anisotropic because the spherically symmetric real-space
profile U has been convolved along the line-of-sight direc-
tion with displacements generated by the velocity distribu-
tion V . That is to say, V is the quantity in the model
which generates FOG distortions and since it represents
virial motions, it is clearly the sort of nonlinear effect that
PTs based approaches must model ad hoc. We also note
that if V makes the redshift profile substantially aniso-
tropic, then these nonlinear effects may extend farther into
the linear regime than one might otherwise have expected.
We caution that this simple model of the halo phase

space will almost certainly not be strictly valid, since it
clearly neglects many aspects of the more complex physics
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that we understand to play an important role for the internal
dynamics of haloes [68]. Nevertheless, previous studies
have shown that the isothermal model appears to be a
reasonable approximation when ensemble average quanti-
ties are considered [69]. However, as we show in Appen-
dix B this model does not provide a robust description of
the 1-D velocity dispersion mass relation for haloes in our
simulations. We have therefore introduced a parameter 	
into the modeling, that will be used to account for any
small departures away from isothermality (see Sec. VIB
for additional discussion).

Precise details of the models we employ for the density
profile and for the 1-point distribution function of veloc-
ities are presented in Appendix B. Note also that owing to
the density profile and mass function model employing
different conventions for the halo mass, we must convert
between them, and we do this using the procedure from
[70] (see also Appendix B 2).

C. Halo center clustering in redshift space

On large scales the success of our analytic model will
primarily be determined by its ability to reproduce the
large-scale clustering of the halo centers. For this we use
the redshift-space halo-PT developed in [48], which is ac-
curate up to the 1-loop level in perturbation theory. The
main result we draw from that work is the idea that the halo
density field may be written as perturbation series that
involves the standard density PT kernels [6] and the non-
linear bias parameters [8]. Explicitly we have the series

�shcðk; ajM;RÞ ¼
X1
n¼0

½D1ðaÞ�n½�shcðkjM;RÞ�n; (16)

½�shcðkjM;RÞ�n ¼
Z Yn

i¼1

�
d3qi
ð2
Þ3 �1ðqiÞ

�
ð2
Þ3

�½�DðkÞ�nZhc
n ðq1; . . . ;qnjM;RÞ; (17)

whereDðtÞ is the linear theory growth function andfð�Þ �
d lnDðaÞ=d lna is the logarithmic growth rate of the veloc-
ity field. The functions Zhc

n ðq1; . . . ;qnjM;RÞ are the
redshift-space halo-PT kernels symmetrized in all of their
arguments and we make explicit their depen-
dencies on halo mass and the scale over which the density
field has been smoothed. Kernels up to second order are
[35,37,71]:

Zhc
0 ¼ Fhc

0 � b0; (18)

Zhc
1 ¼ Fhc

1 þ fð�Þ�2
1
~G1½1þ b0�; (19)

Zhc
1;2 ¼ Fhc

1;2 þ fð�Þ�2
12
~G1;2 þ 1

2
fð�Þ�12k12

�
�1

q1
~G1½Fhc

2

þ fð�Þ�2
2
~G2� þ�2

q2
~G2½Fhc

1 þ fð�Þ�2
1
~G1�

�

þ 1

2
½fð�Þ�12k12�2�1

q1

�2

q2
~G1

~G2b0; (20)

where we have adopted the short-hand notation:

Zhc
i1;...;in

� Zhc
n ðqi1 ; . . . ;qin jM;RÞ;

Fhc
i1;...;in

� Fhc
n ðqi1 ; . . . ;qin jM;RÞ;

~Gi1;...;in � Wðjqi1 þ � � � þ qin jRÞGnðqi1 ; . . . ;qinÞ;

and where

�i1...in �
ðqi1 þ � � � þ qinÞ � ẑ

ki1...in
; (21)

ki1...in � jqi1 þ � � � þ qin j: (22)

The quantities Fhc
n are the nth order halo-PT kernels (see

Appendix C and [38] for complete details). The functions
Gn represent the nth order Eulerian PT kernels for the
divergence of the velocity field [6]. Note that these ex-
pressions are almost identical to the redshift-space PT ker-
nels derived by [35,37], however they differ in some subtle
ways: one, we have explicitly included their dependence
on the smoothing filter WðqÞ, which is needed to facilitate
the Taylor expansion; and two, we are applying this in
the context of haloes and not galaxies and so they depend
on the nonlinear halo bias parameters biðMÞ, instead of
the nonlinear galaxy bias parameters (see discussion in
Sec. III A). Note that we have also included b0ðMÞ, since
this does not have to be zero, although we will take it to be
so for all our later analysis.
Following standard methods for calculating poly-

spectra, we find that the halo center bispectrum, Bshc;123 �
Bshcðk1;k2;k3jM1;M2;M3; RÞ, up to fourth order in the

redshift-space halo-PT, is

Bshc;123 ¼ 2P11ðk1ÞP11ðk2ÞZhc
1 ðk1jM1; RÞZhc

1 ðk2jM2; RÞ
� Zhc

2 ðk1;k2jM3; RÞ þ 2 cyc: (23)

Inserting our expressions for the redshift-space halo-PT
kernels, Eqs. (18)–(20), into the above expression, reveals
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Bshc;123ðM1;M2;M3Þ
Wðk1RÞWðk2RÞWðk3RÞ

¼ 2b1ðM1Þb1ðM2Þb1ðM3ÞP11ðk1ÞP11ðk2Þ
Y
i¼1;2

f1þ �i�
2
i ½1þ b0ðMiÞ�g

�
F2ðk1;k2Þ

þ �3�
2
12G2ðk1;k2Þ þWðk1RÞWðk2RÞ

Wðk3RÞ
�
c2ðM3Þ

2
þ 1

2
½fð�Þ�12k12�2�1

k1

�2

k2
c0ðM3Þ

þ 1

2
fð�Þ�12k12

�
�1

k1
½1þ �3�

2
2� þ

�2

k2
½1þ �3�

2
1�
���

þ 2 cyc:; (24)

where �i � fð�Þ=b1ðMiÞ and where cjðMiÞ ¼
bjðMiÞ=b1ðMiÞ. As in our real-space work on the power
spectrum, we are now faced with the situation that we have
solved for the bispectrum of halo centers filtered on scale
R, and in fact we would like to recover the unfiltered
bispectrum. As in [38], we take the following ansatz: the
filtering of the spectra can be reversed through the follow-
ing operation:

PðkÞ � PðkjRÞ
W2ðkRÞ ;

Bðk1;k2;k3Þ � Bðk1;k2;k3jRÞ
Wðk1RÞWðk2RÞWðk3RÞ

(25)

and this explains the form of the left-hand side of Eq. (24).
An alternative approach to the filtering issue for the power
spectrum and bispectrum was proposed by [72], we shall
leave the solution of this problem for future consideration.

With these ingredients prepared, we are now in full pos-
session of a complete description of the bispectrum of gal-
axies, haloes, and dark matter in the halo model and in the
presence of a local, nonlinear scale dependent bias. In the
next section we develop these equations further.

IV. THE BISPECTRUM MONOPOLE

A. Euler angle averages

The redshift-space bispectrum is an anisotropic function
on the sphere that depends on 5 variables. The first three
are the triangle configuration, and the other two specify its
orientation with respect to the z-axis. However, it is com-
mon practice to measure this quantity averaged over all
possible orientations of the coordinate frame. Thus to
compare with this isotropized observable, we shall now
derive the isotropized form for the halo model, which we
shall denote �Bs. Interestingly, the following approach is
identical to that which one performs for the triaxial halo
model in real space [20,70], since on small scales, one may
effectively think of transforming to redshift space as sim-
ply transforming a set of spherical haloes into a set of pro-
late ellipsoids whose semimajor axes all point along the
line of sight. Of course, the real situation is more complex,
since the halo centers are also distorted according to the
halo velocity projected along the line of sight, but never-
theless we may borrow some mathematical machinery
from the triaxial halo analysis.

The isotropic function is thus

�Bsðk1; k2; �12Þ
¼ 1

8
2

Z
d�1dðcos�2Þd�3B

s½Rð�1; �2; �3Þk1;

Rð�1; �2; �3Þk2�; (26)

where Rð�1; �2; �3Þ is the rotation matrix for the compo-
nents of the basis vectors.Rð�1; �2; �3Þ is parametrized by
three position or Euler angles, ð�1; �2; �3Þ and these are the
z0 � y0 � z00 rotation angles (see Appendix D for the ex-
plicit form of the matrix we use). Note that we assign
uniform probability on the sphere to each triple of angles.
The following considerations simplify this expression

considerably. First, in the PT expressions for Bs, each term
depends on either the angle between two k-vectors or the
projection of each vector along the z-axis. In the first case,
the use of matrix notation shows that

½k0
i�Tk0

j ¼ ½Rð�1; �2; �3Þki�TRð�1; �2; �3Þkj
¼ kTi Rð�1; �2; �3ÞTRð�1; �2; �3Þkj ¼ kTi kj;

(27)

this is the well-known result that scalar products are in-
variant under rotations of the coordinate basis functions. In
the second case, the projection of each rotated vector onto
the line-of-sight direction (or z-axis) can be written

k0 � ẑ ¼ Rð�1; �2; �3Þk � ẑ
¼ kx sin�2 cos�1 þ ky sin�2 sin�1 þ kz cos�2

� Aðk; �1; �2Þ; (28)

Thus, we see that the resultant function must be invariant
under the �3 rotation, and hence this integral may be com-
puted trivially. Finally, because our final quantity �B must
be independent of the initial locations of the k-vector triple,
we may without loss of generality choose these locations to
be as convenient as possible. Therefore, we let the initial
k1 vector lies along the polar axis and constrain k2 and k3

to lie in the z-y plane: i.e.

½k1�T ¼ ð0; 0; k1Þ; ½k2�T ¼ ð0; k2 cos�12; k2 sin�12Þ;
½k3�T ¼ ð0;�k2 cos�12;�k1 � k2 sin�12Þ; (29)
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where the last equality uses the closure condition:
P
iki ¼

0. Thus, the k-vectors rotated into the new basis and dotted
with the z-direction are now written:

A1 ¼ cos�2ðk1Þz;
A2 ¼ sin�2 sin�1ðk2Þy þ cos�2ðk2Þz;
A3 ¼ � sin�2 sin�1ðk2Þy � cos�2½ðk1Þz þ ðk2Þz�:

(30)

The parameters Ai � Aðki; �1; �2Þ are simply related to
the cosines of the k-vectors along the z-axis:

�1 ¼ A1

k1
; �2 ¼ A2

k2
; �3 ¼ ��1

k1
k3

��2

k2
k3
;

(31)
where q � k2=k1.
We may now apply the above operation directly to our

expressions for the anisotropic bispectrum (Eqs. (9)–(11)).
On inserting the Ai into each instance of �i in the density
profiles (Eq. (15)) and the halo center power spectra and
bispectrum (Eqs. (E4) and (24)), we find that the 1-, 2-, and
3-halo terms for the bispectrum monopole become

�B s
1Hðk1; k2; �12Þ ¼

1

4
 ��3
�

Z
d�1dðcos�2Þ

Z
dM½W��3nðMÞY

3

i¼1

fUðkijMÞV ð�ikijMÞg; (32)

�B s
2Hðk1; k2; �12Þ ¼

1

4
 ��3
�

Z
d�1dðcos�2Þ

Y
i¼f1;2g

�Z
dMi½W��ib1ðMiÞnðMiÞUðkijMiÞV ð�ikijMiÞ

�

�½W��1Uðk3jM1ÞV ð�3k3jM1ÞP11ðk2Þf1þ ½�1 þ �2��2
2 þ �1�2�

4
2g þ cyc; (33)

�B s
3Hðk1; k2; �12Þ ¼

1

4
 ��3
�

Z
d�1dðcos�2Þ

� Y3
i¼1

�Z
dMi½W��inðMiÞUðkijMiÞV ð�ikijMiÞ

�
Bshcðk1; k2; �12; �1; �2jM1;M2;M3Þ: (34)

The only variables that depend on the Euler angles �1 and
�2 are�i and Ai. Each term requires evaluation of no more
than a 4-D embedded integral: two integrals for the Euler
angles, one for the mass and one for the Fourier transform
of the density profile. Note that for simplicity, we have kept
only the leading order contribution to the 2-halo term.
Technically this should be taken up to the 1-loop level to
be consistent with the bispectrum which is 4th order in �.
However, this issue is beyond the scope of the current
paper and will be addressed in [48].

B. Computational considerations

Our expressions for the bispectrum as presented above
are complete. However some calculational effort is still
required before we may attempt a practical implementation
on the computer. We now present some simplifications.

We begin by defining some convenient notation: Let  ðiÞ
�;j

and  v;j denote the following integrals:

 ðiÞ
�;jðk1; . . . ;kjÞ¼ 1

��j�

Z
dMnðMÞbiðMÞ

�Yj
l¼1

f½W��UðkljMÞV ð�lkljMÞg; (35)

 v;jðk1; . . . ;kjÞ¼fð�Þ
��j�

Z
dMnðMÞ

�Yj
l¼1

f½W��UðkljMÞV ð�lkljMÞg: (36)

The first integral generalizes the halo bias weighting
scheme applied to the density field for the situation where
j-points are within a single halo. The second integral gen-
eralizes the weighting scheme to the similar situation for
the halo velocity field. This notation has some similarities
with that of [46], but is different in the way in which the
velocity field is treated—recall that the velocity field has
been assumed to be unbiased.
In this notation we may rewrite the 2- and 3-halo terms

in the bispectrum; the 1-halo term requires no simplifica-
tion. Through rearrangement of the mass integrals and
expansion of the halo center power spectrum through sub-
stitution of the appropriate kernels, we find that the 2-halo
term can now be written

�B s
�;2Hðk1; k2; �12Þ ¼

1

4


Z
d�1dðcos�2ÞfPðk2Þ

� ½ ð1Þ
�;2ðk0

1;k
0
3Þ ð1Þ

�;1ðk0
2Þ

þ ð v;2ðk0
1;k

0
3Þ ð1Þ

�;1ðk0
2Þ

þ  ð1Þ
�;2ðk0

1;k
0
3Þ v;1ðk0

2ÞÞ�2
2

þ  v;2ðk0
1;k

0
3Þ v;1ðk0

2Þ�4
2� þ 2 cycg:

(37)

The 3-halo term is significantly more complex, owing to
the halo center bispectrum being the product of two first
order kernels and one second order kernel. Nevertheless,
we may again isolate the integrals over mass and use the  
functions to obtain
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�B s
3Hðk1; k2; �12Þ ¼

1

4


Z
d�1dðcos�2Þ

�
2Pðk1ÞPðk2ÞT1ðk0

1;k
0
2Þ
�
T2ðk0

1;k
0
2jk0

3Þ ð1Þ
�;1ðk0

3Þ þ T3ðk0
1;k

0
2jk0

3Þ v;1ðk0
3Þ

þW 12;3

 ð2Þ
�;1ðk0

3Þ
2

þ T4ðk0
1;k

0
2jk0

3Þ ð0Þ
�;1ðk0

3Þ
�
þ 2 cyc

�
; (38)

where we have defined the following useful quantities:

T1ðki;kjÞ ¼
Y
m¼i;j

f ð1Þ
�;1ðkmÞ þ�2

m½ v;1ðkmÞ

þ fð�Þ ð0Þ
�;1ðkmÞ�g; (39)

T2ðki;kjjklÞ ¼ F2ðki;kjÞ þ 1

2
W ij;lfð�Þ�ijkij

�
�
�i

ki
þ�j

kj

�
; (40)

T3ðki;kjjklÞ ¼ �2
ijG2ðki;kjÞ

þ 1

2
W ij;lfð�Þ�ijkij

�
�i

ki
�2
j þ

�j

kj
�2
i

�
;

(41)

T4ðki;kjjklÞ ¼ 1

2
W ij;l½fð�Þ�ijkij�2�i

ki

�j

kj
; (42)

and

W ij;l �
WðkiRÞWðkjRÞ

WðklRÞ : (43)

The advantage of this reformulation of the 2- and 3-halo
terms is that we have decomposed the integrand into a set
of algebraic functions of the  integrals (Eqs. (35) and
(36)), and auxiliary functions, and these may all be com-
puted in parallel making the computation highly modular.

C. The large-scale limit

Next we consider the redshift-space bispectrum in the
very large-scale limit, as this should asymptotically reduce
to the standard PT expressions for the bispectrum, modulo
discreteness corrections for the point process associated
with the halo field. However, let us first examine the large-
scale limit of Eqs. (35) and (36). On letting fkig ! 0, the
density profile terms become UsðkiÞ ! 1, the window
function becomes W ij;l ! 1, and so

lim
fkjg!0

 ðiÞ
�;j ¼

hbiðMÞ½W��ji
h½W��ij ;

lim
fkjg!0

 v;j ¼ fð�Þh½W��ji
h½W��ij ;

(44)

where h. . .i ¼ R
dMpðMÞ . . . , with pðMÞ � nðMÞ= �nH, �nH

being the total number density of haloes in the required
mass range. When j ¼ 1 we write these functions more

simply as: the average nonlinear bias parameter for the

tracer particles,  ðiÞ
�;1 � �b�;i, and the logarithmic growth

factor for the linear velocity field  v;1 � fð�Þ.
The bispectrum in the large-scale limit can now be

computed directly. The 1-halo term is trivially obtained,
and the 2- and 3-halo terms can be developed through
replacing the  functions in the general expressions (37)
and (38), for their large-scale forms (44). After some
algebraic manipulation we arrive at the result

�B s
�ðk1; k2; �12Þ ¼ �Bs�;PTðk1; k2; �12Þ þ

1

�n�;2H
½Pðk2Þ

þ Pðk3Þ þ Pðk1Þ� þ 1

�n2�;1H
; (45)

where the large-scale PT bispectrum monopole in redshift
space is given by

�B s
�;PTðk1; k2; �12Þ ¼

1

4


Z
d�1dðcos�2Þ

Y
i¼1;2

f �b�;1

þ�2
i fð�Þ½1þ �b�;0�g

�
2Pðk1ÞPðk2Þ

�
�
�b�;1T2ðk1;k2jk3Þ

þ fð�ÞT3ðk1;k2jk3Þ þ
�b�;2
2

þ �b�;0T4ðk1;k2jk3Þ
��

þ 2 cyc;

(46)

this is equivalent to that found by [35,37]. We also defined
the 1- and 2-halo ‘‘effective’’ number densities to be

1

�n2�;1H
¼ hW3

�i
hW�i3

; (47)

1

�n�;2H
¼ hb1ðMÞ½W��2i

hW�i2
b�;1 þ fð�Þ2

5

h½W��2i
hW�i3

þ fð�Þ
3

�
�h½W��2i
hW�i2

�b�;1 þ hb1ðMÞ½W��2i
hW�i3

�
: (48)

Our final expression for the large-scale limit (Eq. (45))
is similar to the standard theoretical expectation for the
bispectrum recovered from a Poisson point process sam-
pling of a continuous field (cf. Section 43 in [73]). How-
ever, the halo model effective shot-noise terms (the last two
terms on the right-hand side of Eq. (45)), are very different
from the standard form, which would simply have e.g.

SMITH, SHETH, AND SCOCCIMARRO PHYSICAL REVIEW D 78, 023523 (2008)

023523-8



�n�;2H ¼ �n�. These effective number densities, Eqs. (47)

and (48), represent the fact that in the halo model we
assume that dark matter haloes are Poisson sampled into
the density field and that the tracer particles are injected
into these haloes, and so simply act as different weights.
The issue of sampling tracer particles into the density field
has some important implications for how one should ex-
tract information from galaxy surveys. We shall reserve
this investigation for future work.

In Appendix F we present a short discussion of how
these shot-noise corrections can impact the reduced bi-
spectrum. The main results are as follows: For standard
shot noise, and in the low-sampling limit there is no
configuration dependence and Qd ¼ 1=3, subscript d de-
notes discrete. For the case where shot noise is subdomi-
nant, the Qd is reduced relative to the continuum limit Q
for all configurations. In the halo model, and in the low-
sampling limit, again there is no configuration dependence
andQHM ¼ h½W��3ih½W��i=3h½W��2i2. For the case of sub-
dominant shot noise, QHM is not necessarily smaller than
the continuum limit case. In Sec. VI we show some tenta-
tive evidence for these effects in the measurements from
our numerical simulations.

Before continuing, it should also be noted that on setting
fð�Þ ¼ 0, one may recover the 1-loop PT bispectrum in
real space for a set of biased tracer particles �.

D. The small-scale limit and hierarchical models

On small scales, the bispectrum is dominated by the
1-halo term, given by Eq. (32). Our understanding of
its behavior in this limit can be guided by considering
the case where all haloes are of the same mass. In this
situation we have nðMÞ ! �DðM�M0Þ �nH and ��� !
�nH½W��. Applying these conditions to Eq. (32), we have

�B s
1Hðk1; k2; �12jMÞ ¼ 1

4
 �n2H

Z
d�1dðcos�2Þ

� Y3
i¼1

fUðkijMÞV ð�ikijMÞg: (49)

We may follow this same procedure for the power spec-
trum (see Eq. (E2)) and so construct the reduced bispec-
trum, whence

�Q s ¼
R
d�1dðcos�2Þ

Q
3
i¼1fV ð�ikijMÞ=UðkijMÞg=4


Rð0Þ
1;2ða1ÞRð0Þ

1;2ða2Þ=Uðk3jMÞ2 þ 2 cyc
;

(50)

where Rð0Þ
1;2ða1Þ is given by Eq. (E9). Notice that this ex-

pression no longer depends on the weights ½W�� or number
densities of tracers �nH, but simply the real-space profile

and the 1-PT velocity profile. If the density and velocity
profiles were mass independent, then Eq. (50) would pre-
dict the same configuration dependence for all haloes.
However, for realistic redshift-space profiles, this is not
the case (see Appendix B). Thus, if the halo model is a
good description for small-scale clustering, then the hier-
archical model is unlikely to be correct in real or redshift
space, and we may generally extend this statement to any
tracers of the density field. Finally, and somewhat interest-
ingly, notice that if the ratio V ð�ikijMÞ=UðkijMÞ is mass
independent, then the configuration dependence of the bi-
spectrum becomes universal, modulo an amplitude offset.

E. The White-Seljak approximation

The White-Seljak approximation (hereafter WS) is the
supposition that haloes are randomly oriented relative to
each other so that in computing the monopole of the
bispectrum, orientation averages can be taken separately
over each individual halo and over the large-scale orienta-
tion of the halo relative to each other [45,46]. In the triaxial
halo model, [70] showed that the overall contribution from
halo alignment to the matter power spectrum was negli-
gible. Thus we may similarly assume that on large scales
the 2- and 3-halo terms will not be sensitive to the orienta-
tion of the FOGs—and this allows us to use the isotropic
redshift-space density profiles instead of the anisotropic
profiles. However, since the bispectrum is more sensitive
than the power spectrum to the shapes of structure, we shall
be a little more cautious, and demonstrate the validity of
this approximation in Sec. VA.
In the WS approximation we therefore take

� ðiÞ
�;1ðk1Þ �

1

4


Z
d�1dðcos�2Þ ðiÞ

�;1ðk0
1Þ;

� ðiÞ
�;2ðk1; k2; �12Þ �

1

4


Z
d�1dðcos�2Þ ðiÞ

�;2ðk0
1;k

0
2Þ;

(51)

and with similar expressions for the � v;j functions. On

replacement of these terms into Eq. (37) we find that the
2-halo term simplifies to

�B s;WS
�;2Hðk1; k2; �12Þ ¼ Pðk2Þf � ð1Þ

�;2ðk1; k3; �13Þ � ð1Þ
�;1ðk2Þ

þ 1
3½ � v;2ðk1; k3; �13Þ � ð1Þ

�;1ðk2Þ
þ � ð1Þ

�;2ðk1; k3; �13Þ � v;1ðk2Þ�
þ 1

5
� v;2ðk1; k3; �13Þ � v;1ðk2Þg þ 2 cyc:

(52)

Similarly, on applying the WS approximation to Eq. (38),
the 3-halo term reduces to
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�B s;WS
�;3Hðk1; k2; �12Þ ¼ 2Pðk1ÞPðk2Þ

Z d�1

4

dðcos�2Þ �T1ðk0

1;k
0
2Þ
�
T2ðk0

1;k
0
2jk0

3Þ � ð1Þ
�;1ðk3Þ þ T3ðk0

1;k
0
2jk0

3Þ � v;1ðk3Þ

þW 12;3

� ð2Þ
�;1ðk3Þ
2

þ T4ðk0
1;k

0
2jk0

3Þ � ð0Þ
�;1ðk3Þ

�
þ 2 cyc; (53)

where

�T 1ðki;kjÞ ¼
Y
m¼i;j

f � ð1Þ
�;1ðkmÞ þ�2

m½ � v;1ðkmÞ

þ fð�Þ � ð0Þ
�;1ðkmÞ�g: (54)

This completes our analytic investigation. In the next
sections we shall provide numerical evaluation of our
expressions for the bispectrum.

V. ANALYTIC RESULTS

A. Testing the WS approximation

Figure 1 compares the predictions for the reduced
redshift-space matter bispectrum (Eqs. (32), (37), and (38))
with the WS approximate expressions Eqs. (32), (52), and
(53). The four panels show k-space triangles with k2=k1 ¼
2 and with k1 ¼ f0:05; 0:1; 0:5; 1:0gh Mpc�1.

On very large scales (top left panel), k ¼ 0:05h Mpc�1,
the predictions are dominated by the 3-halo term, and the
approximate expressions (thin blue lines) are in almost per-
fect agreement with the exact halo model predictions (thick
red lines), with <2% deviations across different configu-
rations. This is to be expected following our derivation of
the bispectrum in the large-scale limit, cf. Eq. (45); i.e.,
there is no dependence on the halo profiles and so the WS
approximation does not play a role here. On slightly
smaller scales (top right panel) k1 ¼ 0:1h Mpc�1, small
but significant departures are found at the level of<10%. It
can be seen that these are entirely due to deviations in the
3-halo term—the order in which we spherically average the
profiles is now important. However, on still smaller scales
(bottom left panel) k1 ¼ 0:1h Mpc�1, while the discrep-
ancy between the approximate and exact 3-halo term be-
comes larger, the 1- and 2-halo terms begin to dominate
and so the difference in the total appears <6%. Finally, on
the smallest scales considered, the 1-halo term comes to
fully dominate and since no approximation is made here
the results are in good agreement, <5%.

For a given scale, the largest deviations typically appear
for the case of colinear triangles, i.e. where all three
k-vectors are colinear. This leads us to suppose that the
equilateral bispectrum as a function of scale will show
agreement at the level of <5% across a wide range of
scales under this approximation. Since current observatio-
nal measurements of the bispectrum on large scales have
sample and cosmic variance errors of the order �50% on
scales k1 � 0:1h Mpc�1, going down to several percent at
k1 � 1h Mpc�1, we anticipate that, at least for current

data, the WS approximation should be useful. We highlight
again that the main advantage of this approximation is the
increased speed with which one can compute the bispec-

trum: the  ðiÞ
�;j and  v;j functions are only evaluated once

for a particular configuration, as opposed to thousands of
times. However, in all that follows we shall only show
results for the exact evaluation (no WS approximation) of
our redshift-space halo model.

B. Comparison with perturbation theory

Figure 2 compares the analytic predictions for the re-
duced bispectrum from our model with corresponding re-
sults from PT. The four panels show again k-space triangles
with k2=k1 ¼ 2 and for the same scales as presented in
Fig. 1. The solid (red) lines in each panel show our HMs
predictions (recall HMs means halo model in redshift
space) in the WS approximation. The (red) dash lines
show the PTs predictions, as given by our Eq. (46). The
(blue) dotted lines correspond to real-space PT predictions.
On the largest scales k1 ¼ 0:05h Mpc�1 (top left panel),

the HMs and PT results match almost perfectly: the
configuration dependence shows excess signal for colin-
ear triangles, indicating that on these very large scales
nonlinearity induces structures that are, on average, more
filamentary than spherical [35,74] (in this diagram spheri-
cal perturbations are best probed by isosceles triangles,
�12 � 2
=3). However, we notice that there is a small de-
viation <5% for the situation where the k1 and k2 vectors
are aligned. This owes to the fact that the 1- and 2-halo
terms are nonvanishing as k! 0, and as discussed in
Sec. IVC, this gives rise to an ‘‘effective shot-noise’’-
like behavior. A discussion of why colinear k1 � k2 tri-
angles (i.e. �12 ¼ 0) are more preferentially affected is
given in Appendix F). It should also be noted that unlike
for the case of standard shot noise, QHM >QPT for con-
figurations close to isosceles triangles.
On slightly smaller scales k1 ¼ 0:1h Mpc�1, both the

PT and PTs predictions show a small increase in configu-
ration dependence, with the PTs having slightly more
signal for colinear triangles than PT. The HMs predictions
are in qualitative agreement with PT. However, the flat-
tening off seen in the previous panel is now much more
apparent. Recalling the corresponding panel in Fig. 1, it
can be seen that this is attributed to the rapidly rising 1- and
2-halo terms.
On smaller scales still k1 ¼ 0:5h Mpc�1, the PTand PTs

predictions continue their previous trends, exhibiting a
slightly increased configuration dependence. However, the
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HMs predictions are quite different, having a very strong
U-shaped configuration dependence. This owes to the
1- and 2-halo terms becoming dominant.

On the smallest scales considered k1 ¼ 1:0h Mpc�1, the
HMs predictions show a dramatic configuration depen-
dence, with a very strong signal for colinear triangles and
a broad plateau for triangle shapes around isosceles con-
figurations—this is the ‘‘ U-shape,’’ which was first noted
in the bispectrum by [35] and in the 3-point correlation
function by [36]. Recalling Fig. 1 (bottom left panel), we
see here that the prediction is completely dominated by
the 1-halo term, and so this U-shape feature is simply an

imprint of the halo shape in redshift space—the FOG. This
result constitutes a more direct demonstration of the dis-
cussion from Sec. IVD, that hierarchical models are
unlikely to be a good description for the higher-order
clustering statistics.
In this section we have shown from purely theoretical

considerations that to use the galaxy bispectrum on large
scales k1 < 0:1h Mpc�1 as a precise tool for cosmology,
one needs to understand exactly how to include the FOG
effect into the modeling and also how to include nontrivial
discreteness effects of matter. In the next section we con-
front the model with results from numerical simulations.

FIG. 1 (color online). Configuration dependence of the reduced bispectrum monopole in redshift space—comparison of the
predictions from the exact halo model expressions with those under the WS approximation. Top sections of each panel show results
for triangles with k2=k1 ¼ 2 and on scales: k1 ¼ f0:05; 0:1; 0:5; 1:0gh Mpc�1. The dash, dot-dash, and dotted lines in each panel
correspond to the 1-, 2-, and 3-halo terms, respectively. The solid lines correspond to the sum. Thick (red) and thin (blue) lines are the
exact halo model and WS approximate results, respectively. Bottom sections of each panel show the ratio of the total WS approximate
bispectra to the exact halo model calculation. Line styles have the same meaning as in the top panels.

ANALYTIC MODEL FOR THE BISPECTRUM OF GALAXIES . . . PHYSICAL REVIEW D 78, 023523 (2008)

023523-11



VI. COMPARISON WITH
NUMERICAL SIMULATIONS

A. Numerical simulations

In order to test our redshift-space bispectrum we gen-
erated an ensemble of 8 LCDM simulations, these were
identical in every way, except that for each simulation
different random realizations of the initial Fourier modes
were drawn. The cosmological parameters for the en-
semble were selected to be in broad agreement with
the WMAP best-fit model [5]: �m ¼ 0:27, �� ¼ 0:73,
�b ¼ 0:046, h ¼ 0:72, and �8ðz ¼ 0Þ ¼ 0:9. We used
the cmbfast [57] code to generate the linear theory
transfer function, and we adopted the standard parameter
choices, and took the transfer function output redshift to be
at z ¼ 0. The initial conditions for each simulation were
then laid down at z ¼ 49 using the publicly available
2LPT initial conditions generator [75,76]. Subsequent
gravitational evolution of the equations of motion was

then performed using the publicly available Gadget2
code [77]. Each simulation was run with N ¼ 4003 parti-
cles in a comoving volume of length L ¼ 5123h�1 Mpc
and with a comoving force softening set to 70h kpc. The
simulations were performed using a 4-way dual core
Opteron processor system, and each ran to completion in
roughly �1800 time steps from redshift z ¼ 49 to z ¼ 0
and this translates to �2 days of wall clock time.

B. Estimating the power spectrum

Before comparing our analytic model with the bispectra
estimates from the simulations, it is instructive to compute
the real and redshift-space power spectra of the z ¼ 0
outputs of the ensemble.
The density Fourier modes are estimated using the con-

ventional fast fourier transform (FFT) method: the dark
matter particles were assigned to a regular cubical grid
using the ‘‘Cloud-In-Cell’’ (CIC) scheme [78]. The FFT of
the gridded density field was then computed using the

FIG. 2 (color online). Comparison of analytic model predictions with results from PT. The configuration dependence is shown for
triangles with k2=k1 ¼ 2 and on scales: k1 ¼ f0:05; 0:1; 0:5; 1:0gh Mpc�1. In all panels: solid (red) lines represent redshift-space halo
model predictions (HMs); dash (red) lines correspond to redshift-space tree-level PT (PTs) [35]; and dotted (blue) lines correspond to
real-space tree-level PT.
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publicly available FFTW routines [79]. Each resulting
Fourier mode was then corrected for the convolution with
the mesh by dividing out the Fourier transform of the mass-
assignment window function. For the CIC algorithm this
corresponds to the following operation:

�dðkÞ ¼ �gðkÞ=WCICðkÞ; (55)

where

WCICðkÞ ¼
Y
i¼1;3

��
sin½
ki=2kNy�
½
ki=2kNy�

�
2
�
; (56)

where subscript d and g denote discrete and grid quantities,
and where kNy ¼ 
Ng=L is the Nyquist frequency of the

mesh and Ng is the number of grid cells.

The power spectra of the discrete particles on scale kl are
then estimated by performing the following sums:

�̂P dðklÞ ¼
V�
M

XM
l¼1

j�dðklÞj2; (57)

where M is the number of Fourier modes in a spherical
shell in k-space of thickness �k. Note that the mode-by-
mode correction differs from the analysis of [54,80] where
the correction for charge assignment was performed by
computing the spherically averaged window and dividing it
out. Mode-by-mode correction for the power spectrum was
also performed in [38,74].

Figure 3 shows the mean and 1-� errors for the power
spectra of dark matter particles in both real and redshift
space. The errors are computed directly from the 8 realiza-
tions. The spectra were computed using a 10243 FFT and
we show all frequencies up to the Nyquist frequency—
the highest k-modes show signs of increased power from
both Poison shot noise (triple dot-dash green line) and the
aliasing of power from smaller scales. We note that on the
largest scales probed, the power spectra show a sequence of
wiggles, these are the well-known baryonic acoustic oscil-
lations (BAO) that have been discussed much in recent
times [3,38,81–83]—we shall not discuss these in this
paper. The solid lines show the total halo model predictions
in real (blue, darker lines) and redshift space (red, lighter
lines). We see that, while the real-space model does rea-
sonably well, with an accuracy of the order �10%, the
redshift-space predictions fare less well, especially for
scales k > 0:2h Mpc�1. Here the model systematically
underpredicts the data by roughly �20%.

These predictions were very sensitive to how we
modeled the FOG effects, i.e. the 1D velocity dispersion
of particles within haloes ðkjMÞ. Originally, we had sim-
ply used Eq. (B12) with 	 ¼ 1, however in this case the
predictions were particularly poor. We therefore inves-
tigated the M� �1D relation in our simulations more
closely. Using a standard friends-of-friends (FoF) algo-
rithm with link length f ¼ 0:2, we located all haloes
with M> 1:0� 1013M�=h. The 1D velocity dispersions

were then estimated for each halo and binned as a function
of mass. We found that 	 ¼ 1 overpredicted the measured
values by >20%. Fitting on 	 it was found that 	 ¼ 0:76
provided a better fit to the data, but it was not perfect, it
having an accuracy no better than �10% (see Fig. 6). As
can be seen from the figure using 	 ¼ 0:76 does not gen-
erate the correct power spectrum.
A possible reason for this discrepancy could be that the

2-halo term in the redshift-space power spectrum only
includes linear halo motions—nonlinear terms do contrib-
ute to this term (see [42,44,83]) and inclusion of these
nonlinear corrections may help alleviate this problem.
Another is that the concentration—mass relation, which
is vital for getting the correct normalization of the halo
density profiles, may not be sufficiently accurate. Indeed
we note a small discrepancy between the real-space mea-
surements and halo model predictions. Recent improve-
ments on this relation by [84] may help to alleviate this

FIG. 3 (color online). Real and redshift-space power spectrum
of dark matter particles at z ¼ 0 measured from the ensemble
of LCDM simulations. Top panel: The power spectrum. Blue
(darker) and red (lighter) points show real and redshift-space
quantities, respectively. The solid, dot-dash, and dotted lines
show the total halo model, 1-halo, and 2-halo terms. The triple
dot-dash curve shows the predictions for the Poisson shot-noise
error. The dash line shows the linear theory. Bottom panel: The
measured power spectra ratioed with a no-baryon linear theory
power spectrum that has the same overall transfer function
shape. Note that for the redshift-space spectra, we have scaled
out the Kaiser boost.
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problem. Also, we have neglected the scatter in the con-
centration parameter, and it is well known that this can
change the predictions by a few tens of percent in the
nonlinear regime [85]. Additionally, there is the issue of
halo triaxiality [20,70]. A further possibility is the break-
down of our model for the halo phase-space distribution:
as noted by [86,87], while the isotropic model for veloc-
ities appears reasonable in the outer regions of haloes,
especially for low to intermediate masses, there are small
departures in the inner regions. Reference [87] also shows
that the 3D velocity dispersion declines as a function of ra-
dius by�25%, out to the virial radius. We shall not pursue
these subtle corrections here, since our purpose is simply to
present the theoretical framework and show that it, never-
theless, gives reasonable agreement with the simulation
data. It should also be understood that these more complex
descriptions can be incorporated into our calculational
framework.

C. Estimating the bispectrum

Our estimator for the bin and spherical averaged bispec-
trum was developed following the work of [74], but with
some changes. Our estimator can be written:

�̂Bdðk1; k2; �12Þ ¼ 1

V1V2

Z
V1;V2

d3q1
ð2
Þ3

d3q2
ð2
Þ3

� B̂dðq1;q2;�q1 � q2Þ; (58)

where

Vi ¼
Z kiþ�k=2

ki��k=2

d3q

ð2
Þ3 ¼
4
k2i�k

ð2
Þ3
�
1þ ð�kÞ2

12k2i

�
: (59)

A practical implementation of this estimator involves com-
puting the following sum:

�̂B d ¼
V2
�

Ntri

XNtri

n1;n2

Re½�dðkn1
Þ�dðkn2

Þ�dðk�n1�n2
Þ�; (60)

where ni is an integer vector from the k-space origin to a
mesh point and so labels the modes, and where Ntri repre-
sents the number of independent momentum conserving
k-vector triangles in the shells V1 and V2. In the above
we take only the real part of the product of the three Fou-
rier modes, owing to the reality of the bispectrum (see
Eq. (A21)). Note that when computing the sums over
k-space triangles we randomly sample modes from the set
of all possible triangles. Typically we limit the compu-
tations to 104 modes per shell (i.e. 108 triangles). This
method gives a sufficient number of independent k-space
triangles for a high accuracy estimate, while keeping code
execution times tolerable.

To accurately estimate Q we are also required to esti-
mate the combination �Qfac � �Pðk1Þ �Pðk2Þ þ �Pðk2Þ �Pðk3Þ þ
�Pðk3Þ �Pðk1Þ. There are several approaches to achieving this:
one, we could simply estimate the power spectrum as in
Eq. (57) and then construct �Qfac from this; alternatively one

can compute an estimate of �Qfac using only those same
modes that are used to estimate �B. We adopt this latter
approach since we expect that it will reduce sample vari-
ance. Along with our estimates for B, we also therefore
accumulate

�̂P i;d ¼
V�
Ntri

XNtri

ni

j�dðkniÞj2; i 2 f1; 2g; (61)

�̂P 3;dð�12Þ ¼
V�
Ntri

XNtri

n3

j�dðkn3
½�12�Þj2; (62)

�̂Q fac;dð�12Þ � �̂P1;d
�̂P2;d þ �̂P2;d

�̂P3;d þ �̂P3;d
�̂P1;d: (63)

We draw close attention to the fact that these estimates for
the power spectra �̂P1, �̂P2, and �̂P3 are not the same as in
Eq. (57): in the above case we average over all k-space
triangles that are used and not just the unique modes. We
have also made it explicitly clear that the estimates for �̂P1

and �̂P2 do not change with �12, but that �̂P3 does. Following
this procedure helps to reduce cosmic variance. We also
note the following pitfall: had we estimated Qfac for each
k-space triangle and then averaged these estimates over

all triangles, i.e. taken �Qfac � Pðk1ÞPðk2Þ þ 2 cyc, then
we would have been angle averaging products of power
spectra. In real space, where P is an isotropic function on
the sphere, this makes no difference, however in redshift
space, where P is anisotropic, this approach would be
incorrect and no U-shape would be seen in Q.
In order to correct B and P for discreteness we also

estimate the shot-noise terms as [73]:

�̂P shot �
V�

N
; (64)

�̂B shot �
V�

N
½ �̂P1;d þ �̂P2;d þ �̂P3;d� þ

V2
�

N2
; (65)

�̂Q fac;shot � 2
V�
N

½ �̂P1;d þ �̂P2;d þ �̂P3;d� þ 3
V2
�

N2
: (66)

Estimates of the shot-noise corrected continuous spectra
are then arrived at through the following set of operations:

�̂P ¼ �̂Pd � �̂Pshot; (67)

�̂B ¼ �̂Bd � �̂Bshot; (68)

�̂Q fac ¼ �̂Qfac;d � �̂Qfac;shot; (69)

�̂Q ¼ �̂B= �̂Qfac: (70)

In our measurements we shall show both spectra with and
without the shot-noise corrections.
Lastly, as a consistency check, we also estimate the

imaginary bispectrum, which is given by Eq. (60) only
now we take the imaginary piece of the product. Thus, if
our estimate is correct, then this quantity should on average
be zero. However, as the number of independent triangles
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becomes small the imaginary piece may become nonzero
due to statistical fluctuations.

D. Bispectrum results

Figure 4 shows the mean and the 1-� errors on the mean
(i.e. we divide the standard error bars by 1=

ffiffiffi
7

p
) for the

configuration dependence of the bispectrum Bðk1; k2; �12Þ
in both real and redshift space for the 8 LCDM simulations.
The four panels show results for k-space triangles with
k2=k1 ¼ 2 and k1 ¼ f0:05; 0:1; 0:5; 1:0gh Mpc�1 and thin
(blue) and thick (red) lines distinguish between real and
redshift-space quantities.

Considering the largest scales (k ¼ 0:05h Mpc�1), we
see that the ensemble estimate is rather noisy, this owes to
the large sample variance on these scales. Nevertheless, it
can be discerned that the redshift-space (large solid stars)
estimate has a slightly higher amplitude than the real-space
(solid points) estimate. We also note that there are a few
bins that give a significant nonzero contribution to the
imaginary bispectra. We attribute this to the large sample
variance errors, but in the main these points are below the
true signal. In all cases the results for the bispectra appear
to be consistent with the PT and HM predictions, to within
the errors. To say anything more definite on these scales
will require much larger simulation volumes, and we shall
defer this question for future study.

On intermediate scales (k ¼ 0:1h Mpc�1), the estimates
for the real and redshift-space spectra are much more
significant, the errors being well defined. This is supported
by the fact that the imaginary spectra have amplitudes that
are now too small to be plotted. It can be seen that the
results have a strong dependence as a function of triangle
configuration. On comparing with the PT and PTs, we see
that on these scales PT underpredicts the measured quan-
tity by roughly �20%, whereas PTs overpredicts the am-
plitude by a similar amount. Considering the predictions
of the HM and HMs, it is clear that in real space the model
is a significant improvement over PT; whereas in redshift
space, while the configuration dependence appears to have
been slightly improved, the amplitude is still too large.

On smaller scales (k ¼ 0:5h Mpc�1), we see that the
estimates of the spectra are of even higher signal to noise
and that they form tight-loci across the configuration.
Again the imaginary bispectra are insignificant. It may be
noticed that there is a large difference between the real-
space PT and the simulation estimate—almost 2 orders of
magnitude, this is due to the fact that B�QP2 and the
power spectrum is significantly larger than linear. How-
ever, this dramatic change in the measured bispectrum is
captured relatively well by the HM, which underpredicts
the result by only �20%. Turning to the redshift-space
results, we are surprised to see that the PT is of the same
amplitude and has somewhat similar configuration depen-
dence as the estimate. This agreement seems coincidental,
given the poor agreement in real space. In reality the true

dynamics on these scales must already be very nonlinear.
Lastly, we draw attention to the fact that our HMs result is
in excellent agreement with the simulation data.
Examining scales on the order of the virial radii for

clusters (k ¼ 1:0h Mpc�1), we see again that the estimates
are of very high significance. Again, the HMs predictions
are in excellent agreement. This essentially vindicates our
form for the 1-halo term, and means that the configuration
dependence is very much governed by the FOG distortions.

E. Reduced bispectrum results

Figure 5 shows similar results as in Fig. 4 but for the
configuration dependence of the reduced bispectrum,
Qðk1; k2; �12Þ. Again errors are shown on the mean of Q.
On the largest scales probed, (k ¼ 0:05h Mpc�1), the

estimates are noisy, but there is evidence for an excess
of signal for colinear triangles—meaning that on average
structures are more filamentary than spherical on the
largest scales [35,74]. Also, the data appear to be scattered
about the theoretical predictions, with all models being
equally good fits to the data.
Considering intermediate scales (k ¼ 0:1h Mpc�1),

the estimates are much more significant and possess
well-defined configuration dependencies—both showing
an excess of signal for colinear triangles. However, the
real-space bispectrum appears to be in excess of the
redshift-space quantity. This is in contrast to the PT and
PTs predictions which, while they qualitatively capture the
overall shape, predict the reverse trend, the results being
discrepant by roughly �20%. This problem is also mir-
rored in the HM and HMs predictions, but the flatter con-
figuration dependence of the data is better captured by the
halo model. As was discussed in Sec. IVC, this flattening
can be attributed to the impact of the 1- and 2-halo terms
acting as effective shot-noise contributions. The amplitude
offsets still require explanation, and we refer to our dis-
cussion of Sec. VIB for some possible remedies, but to that
list we may now add the need for loop corrections to the
tree-level bispectra. As was shown in [74], in real space the
1-loop corrections are significant on these large scales.
On smaller scales (k ¼ 0:5h Mpc�1), we see that, as

was noted in Fig. 5, the real-space measurements have in-
creased in amplitude and have become much flatter across
the configuration—the HM predictions agree rather well
with this result. This implies that the statistic is already in
the fully nonlinear regime, since the 1- and 2-halo terms
are dominating the signal here. There is very little relation
between standard PT to the measurements, as expected.
Turning to the redshift-space estimates, it can be seen that
the configuration dependence displays a reasonably strong
U-shape. The PTs predictions do not describe this shape
very well, but are not as discrepant as in real space. How-
ever, HMs predictions capture the form of the configu-
ration dependence exceptionally well, but are offset by
�10%–20%.
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Considering the scales associated with the virial
radii of clusters (k ¼ 1:0h Mpc�1), we see that the
estimates in real space are surprisingly unchanged
and that the HM still provides a very good description
of the data. For the redshift-space estimates, we find
that there is now a very strong U-shape configuration

dependence, in full agreement with the results from
[35]. Again, the HMs predictions capture this result re-
markably well, although there is a small amplitude
offset. It is believed that this may be mitigated by imple-
menting the improvements discussed in Sec. VI B and
VID.

FIG. 4 (color online). Configuration dependence of the bispectrum in real and redshift space measured for the dark matter particles in
the ensemble of LCDM simulations. The four panels show the configuration dependence for k-space triangles with k2=k1 ¼ 2 and for
scales k1 ¼ f0:05; 0:1; 0:5; 1:0gh Mpc�1. Red (lighter) and blue (darker) colors distinguish between real and redshift-space quantities.
The solid points with error bars show measurements: large solid points are for the real (dots) and redshift-space (stars) monopole
bispectra; the corresponding smaller points are the imaginary bispectra (which should be zero). The solid lines show the predictions
from HM (thin) and HMs (thick). The triple dot-dash lines show the predictions from PT (thin) and PTs (thick). In the top left panel, for
clarity we have suppressed the errors on the imaginary bispectra.

SMITH, SHETH, AND SCOCCIMARRO PHYSICAL REVIEW D 78, 023523 (2008)

023523-16



We also note that the small discrepancies between the
real-space HM predictions and the simulations, are entirely
consistent with the work of [20]—in reality haloes are
triaxial rather than spherical, and this shows up as a char-
acteristic increase in signal for colinear triangles and a
suppression for isosceles configurations.

F. Code comparison

Owing to the algorithmic differences between the bi-
spectrum estimation procedure presented in Sec. VI C and
that presented in [88], we decided to compare the results

obtained from these two approaches. Besides providing an
important cross-check, this also enables us to examine how
accurately the two codes are recovering Q. Overall we
found very good agreement between both methods, and
full results are presented in Appendix G.

VII. CONCLUSIONS

In this paper, we have provided a new analytic model
for the redshift-space bispectrum of dark matter, haloes,
and galaxies in the plane parallel approximation for the
redshift-space distortion. On large scales, the model pre-

FIG. 5 (color online). Same as Fig. 4 only this time for the reduced bispectrum. Additionally, where visible the open symbols
represent the shot-noise corrected estimates.
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dictions have a direct correspondence to the nonlinear per-
turbation theory and on small scales, the predictions are
entirely governed by the phase-space density of galaxies/
dark matter internal to the haloes. This is the first time that
the information from bulk flows and virial motions have
been naturally incorporated into an analytic model for the
higher-order clustering statistics in redshift space.

In our analytic model, the bispectrum is represented as a
sum over three terms; these correspond to all of the pos-
sible distinct arrangements of three points in three haloes,
and we referred to these as the 1-, 2-, and 3-halo terms. A
practical evaluation of the monopole of the bispectrum (a
direct observable), with realistic models for halo profiles,
abundance, and clustering, required the execution of a set
of 4-D numerical integrals. For the terms that involved
large-scale correlations (2- and 3-halo terms) it was shown
that these expressions could be easily modularized, and so
are best computed in parallel. The 1-halo term must be
integrated with an efficient higher-dimensional integrator.

It was shown that the large-scale predictions in the
model, which are governed by the 2- and 3-halo terms,
can be simplified greatly under the approximation that the
angle average of the product of anisotropic density profiles
and large-scale clustering of halo centers can be performed
separately [45,46]. This approximation was accurate to
<10% on scales k ¼ 0:1h=Mpc, elsewhere it was of the
order <5%.

The predictions for the bispectrum monopole were com-
pared with analytic PT in real and redshift space. On very
large scales k ¼ 0:05–0:1h Mpc�1, the model closely
agreed with the redshift-space PT predictions, but with
some small deviations noticeable. It was argued that these
were due to the ‘‘effective’’ shot-noise-like behavior of the
1- and 2-halo terms in the low-k limit. On smaller scales
k ¼ 0:5–1:0h Mpc�1 the analytic model showed a dra-
matic departure from the PT predictions and displayed
a U-shaped anisotropy [35,36]. This was the imprint in
the configuration dependence of the FOG distortions from
nonlinear virial motions. No trace of the PT remained in
the model predictions on these scales. The model predic-
tions showed that there was no scale where a hierarchical
model provided a good description of the configuration
dependence of the bispectrum.

The predictions were then confronted with measure-
ments of the power spectrum, bispectrum, and reduced
bispectrum from an ensemble of numerical simulations.
On very large scales k ¼ 0:05h Mpc�1 it was found that
the PT and halo model predictions were equally good, to
within the errors. On smaller scales, k ¼ 0:1h Mpc�1,
departures between PT and the simulations were noted
at the level of �10%–20%. Therefore, studies that use
the lowest order PT to extract galaxy bias are unlikely to
be robust on scales k * 0:1h=Mpc. The halo model was
a better description of the data, but was not in perfect
agreement. Plausible improvements to the halo model on

these scales were discussed. On even smaller scales, k ¼
0:5–1:0h Mpc�1, the configuration dependence of the bi-
spectrum was flat in real space, whereas in redshift space
there was a very strong U-shape feature. The numerical
results were reasonably well reproduced by our halo model
predictions, a significant improvement over PT that breaks
down at these scales.
We cross-validated our results from the numerical simu-

lations by comparing our bispectrum estimates with those
obtained from an independent code [88]. The results were
found to be in very good agreement.
It was also shown that the assumption of isothermal

velocities for dark matter in haloes was in error at the level
of 10%–20%, as indicated from the 1-D velocity dispersion
mass relation for haloes in the simulations. A parameter 	
was introduced to account for this departure and a best-fit
value of 	 ¼ 0:76 was found. However, this simple change
to the model was still unable to reproduce the measured
functional form. We thus recognize that to produce robust
predictions for galaxy clustering in redshift space at the
percent precision level, significant advances in our under-
standing of the phase-space structure of dark matter in
haloes and also of the haloes themselves will be vital for
correct interpretation of survey data.
In future work we shall extend our analysis to examine

halo and galaxy bispectra. It will also be important to
resolve whether or not the halo model’s effective shot-
noise terms are important for modeling real survey data.
Finally, owing to the fact that different galaxy populations
are easily and naturally included into our description, it is
hoped that this approach will help to facilitate extraction of
information from current and future hi-fidelity large-scale
structure surveys of the Universe.
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APPENDIX A: DUALITY OF
CLUSTERING STATISTICS

This section defines the configuration and Fourier space
clustering statistics and their dual relationship with one
another. It also shows how the cosmological assumptions
impose certain important conditions upon these statistics.
We shall assume that ensemble averages are taken over a

volume, V�, of the Universe sufficiently large for the fun-
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damental k-space cell volume to be considered infinitesi-
mally small; outside of this large volume our stochastic
fields are exactly zero. This allows us to define Fourier
transforms in the volume. We shall also let these fields be
ergodic, whence ensemble averages are equivalent to aver-
ages over volume.

1. Real-space representation: correlation functions

The fractional density field of matter is defined:

�ðx; tÞ � ½�ðx; tÞ � ��ðtÞ�= ��ðtÞ; (A1)

where �ðx; tÞ is the local density at coordinates ðx; tÞ and
��ðtÞ is the density of the homogeneous background at
time t. The n-point connected autocorrelation functions
of � represent the excess probability from the product of
the individual independent 1-point distributions of obtain-
ing a particular set of values at all points, e.g. the proba-
bility of obtaining fluctuations at three points ða; b; cÞ can
be written:

Pða; b; cÞ � PðaÞPðbÞPðcÞ½1þ C2ða; bÞ þ C2ðb; cÞ
þ C2ðc; aÞ þ C3ða; b; cÞ�; (A2)

where C2 and C3 are the connected 2- and 3-point corre-
lation functions. We may now be clear about what we mean
by connected correlation function: the connected correlator
may not be reduced to sums over products of lower order
connected correlators. In cosmology these are more com-
monly written:

�2ðx1;x2jtÞ � h�ðx1; tÞ�ðx2; tÞic; (A3)

�3ðx1;x2;x3jtÞ � h�ðx1; tÞ . . .�ðx3; tÞic; (A4)

�nðx1; . . . ;xnjtÞ � h�ðx1; tÞ . . .�ðxn; tÞic: (A5)

These functions obey an integral constraint

1

V�

Z
d3xn�nðx1; . . . ;xnÞ ! 0; n > 1: (A6)

This follows from noting that on marginalizing the proba-
bility functions over one variable, say the Nth variable,
one finds that the resulting distribution depends on n�
1-points, and therefore from Eq. (A2) must not depend on
the n-point connected correlation function.

If the density field obeys the cosmological principle, that
is statistical homogeneity and isotropy on scales greater
than the coherence scale of our fields, then the correlation
functions are invariant under translation and rotation of
the coordinate system. They are also parity invariant real
functions and are invariant to exchange of vector argu-
ments. Thus,

�nðx1; . . . ;xnÞ¼�nðx1þx0; . . . ;xnþx0Þ ðtranslationÞ;
(A7)

¼ �nðRx1; . . . ;RxnÞ ðrotationÞ; (A8)

¼ �nð�x1; . . . ;�xnÞ ðparityÞ; (A9)

¼�nðx2;x1; . . . ;xnÞ ðexchangeÞ;
¼�nðxi;x2; . . .x1; . . . ;xnÞ: (A10)

For anisotropic fields rotation invariance is broken and for
inhomogeneous fields translation symmetry is broken. For
homogeneous fields we may immediately apply the trans-
lational invariance and drop one of the vector arguments in
our function. Setting x0 ¼ �xn in Eq. (A7) gives

�nðx1; . . . ;xnÞ ¼ �nðx1n; . . . ;xðn�1ÞnÞ; (A11)

where xij � xi � xj and we shall not write the zero argu-
ment in the nth space. In this paper we will mainly be con-
cerned with clustering statistics that obey homogeneity, but
are anisotropic, as this is exactly the case for the redshift-
space distortion in the plane parallel approximation. Lastly,
we have the closure relation: x21 þ x32 þ � � � þ x1n ¼ 0.

2. Fourier space representation: poly-spectra

Under the conditions stated earlier, the density field
�ðx; tÞ may be equivalently written as an infinite sum
over plane waves through the Fourier transform, where
our Fourier convention is

�ðxÞ ¼ V�

ð2
Þ3
Z
d3k�ðkÞe�ik�x

, �ðkÞ ¼ 1

V�

Z
d3x�ðxÞeik�x: (A12)

Transforming the density terms in Eqs. (A3)–(A5), leads to

�2ðr12Þ ¼
Z Y1

i¼1

�
d3ki
ð2
Þ3

�
P2ðk1;k2Þe�ik1�r12 ;

½k1 þ k2 ¼ 0�;
(A13)

�3ðr13; r23Þ ¼
Z Y2

i¼1

�
d3ki
ð2
Þ3

�
P3ðk1;k2;k3Þe�ik1�r13�ik2�r23 ;

½k1 þ k2 þ k3 ¼ 0�; (A14)

�nðr1n; . . . ; rðn�1ÞnÞ ¼
Z Yn�1

i¼1

�
d3ki
ð2
Þ3

�
Pnðk1; . . . ;knÞ

� e�ik1�r1n�����ikðn�1Þ�rðn�1Þn ;�Xn
i¼1

ki ¼ 0

�
; (A15)

where we have very generally defined the n-point spec-
trum as
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Vn�1
� h�sðk1Þ . . .�sðknÞi ¼ Psnðk1; . . . ;knÞ½�D1...n�

� ð2
Þ3=V�; (A16)

this condition simply arises from the imposed harmonic
boundary conditions within our volume: only overlapping
waves are constructive. The short-hand notation ½�D12...� �
�Dðk1 þ k2 þ . . .Þ has been adopted for the argument of
the Dirac delta function. The presence of this term ensures
that the sum of k-vectors forms a null vector, k1 þ � � � þ
kn ¼ 0 and we shall refer to this as the closure condition.
For the case of (n ¼ 2), we have the power spectrum
P2ðk1;k2Þ � Pðk1Þ and for (n ¼ 3) we have the bispec-
trum P3ðk1;k2;k3Þ � Bðk1;k2;k3Þ.

Conversely, the power spectra may also be written as
inverse Fourier transforms of the correlation functions:

Pðk1Þ ¼
Z
d3r12�ðr12Þeik1�r12 ; (A17)

Bðk1;k2;k3Þ ¼
Z
d3r13d

3r23�ðr13; r23Þei½k1�r13þk2�r23�;

(A18)

Pnðk1; . . . ;knÞ ¼
Z
d3r1n . . . d

3rðn�1Þn�nðr1n; . . . ; rðn�1ÞnÞ
� ei½k1�r1nþ���þkðn�1Þ�rðn�1Þn�: (A19)

From these relations and the properties of the correlation
functions, Eqs. (A7)–(A10), we may now infer the corre-
sponding properties for the poly-spectra. Translational in-
variance in configuration space means that the poly-spectra
are invariant under a phase shift to the Fourier density
fields. Invariance to rotation of the coordinate frame leads
to rotation invariance of the poly-spectra:

Pnðk1; . . . ;knÞ ¼
Z
d3½Rr1n� . . . d3½Rrðn�1Þn��nðRr1n; . . . ;Rrðn�1ÞnÞei½k

T
1
Rr1nþ���þkTðn�1ÞRrðn�1Þn�;

¼
Z
d3r1n . . . d

3rðn�1Þn�nðr1n; . . . ; rðn�1ÞnÞei½r
T
1n
RTk1þ���þrTðn�1ÞnR

Tkðn�1Þ�

¼ PnðRTk1; . . . ;RTknÞ: (A20)

Parity invariance and the reality of the configuration space
functions leads to the reality of the poly-spectra:

Pnðk1; . . . ;knÞ ¼ Pnð�k1; . . . ;�knÞ
¼ ½Pnðk1; . . . ;knÞ��; (A21)

where the � corresponds to complex conjugation. Many of
these properties simplify the analysis in the main text.

APPENDIX B: CALCULATIONAL DETAILS

1. The NFW density profile with the
Bullock et al. normalization

As described in Sec. III B to compute the redshift-space
density profile we require a model for the real-space den-
sity profile �ðrÞ and a model for the 1-point velocity
distribution function of particles in a halo. For the den-
sity profile we adopt the Navarro-Frenk-White (NFW)
model [89]:

�ðrÞ ¼ �c½yð1þ yÞ2��1; y � r=rc: (B1)

This model is fully determined by two parameters, �c and
rc, a characteristic density, and radius. These two parame-
ters are not independent, but are related by the mass
enclosed:

�c ¼ ���virc
3=3

lnð1þ cÞ � c=ð1þ cÞ ; c � rvir
rc
; (B2)

where c is the concentration parameter and is the ratio of
the virial radius to the characteristic radius. The virial ra-
dius is the boundary layer within which all particles have
undergone violent nonlinear relaxation. It is taken to be
specified through

Mvir ¼ 4
3
r

3
vir�vir ��; : (B3)

�vir is the density contrast for virialization, which may be
estimated from the spherical collapse model. For flat uni-
verses with a cosmological constant a good fit to the func-
tional form is provided by [90]

�vir ¼ ½ð18
2 þ 82x� 39x2�=�ðaÞ;
x � ½�ðaÞ � 1�: (B4)

To obtain the concentration parameter as a function of
mass we follow the model of Bullock et al. [91]. For this
we have

c ¼ K
a

acðMvirÞ ; (B5)

where we take K ¼ 3:0 and where acðMvirÞ is the collapse
expansion factor for a halo of mass Mvir. The collapse
expansion factor for a halo of mass M may be determined
through solving the relation
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D1ðacÞ
D1ða0Þ

�ðFMvir; a0Þ ¼ �c; (B6)

where F ¼ 0:001 is taken as a fixed fraction of the initial
mass, DðaÞ is the linear theory growth factor at epoch a.
The parameter �c ¼ 1:686 is the linearly extrapolated
density threshold for collapse from the spherical collapse
model, where we ignore the slight dependence on cos-
mology [92]. As was shown by [91] this model provides
a very good description of the ensemble average properties
of dark matter haloes. More sophisticated models may
be constructed that take into account that haloes are more
complicated, e.g. a halo of mass M drawn at random from
the ensemble will have a concentration parameter that is
drawn from a probability distribution of possible concen-
trations. In addition one may include substructure [93] or
halo triaxiality [20,70]. However, we shall leave these
additional embellishments for future study.

2. Conversion between Sheth and Tormen and
Bullock et al. mass definitions

The definitions of halo mass that are used in the Sheth
and Tormen mass function and the Bullock et al.model for
the density profile are inconsistent. We recall that the Sheth
and Tormen halo mass is defined:

MST ¼ 4
3
r

3
ST200 ��: (B7)

We resolve this inconsistency using the methodology of
[70], which briefly is as follows: For a given halo of the
NFW type, the physical values of the characteristic density
and radius are independent of our specific choice of halo
mass. Using the relation for the physical density as a
constant we arrive at the mapping

�
cvir
cST

�
3 ¼ 200

�vir

�
lnð1þ cvirÞ � cvir=ð1þ cvirÞ
lnð1þ cSTÞ � cST=ð1þ cSTÞ

�
: (B8)

Thus if we take a Bullock et al. mass and derive the
appropriate cvir we may then solve the above expression
to find cST. Following this we may then obtain the corre-
sponding Sheth and Tormen mass through application of
the relation,

MST ¼ 200

�vir

�
cST
cvir

�
3
Mvir: (B9)

3. 1-point velocity distribution profile

For the 1D velocity distribution function we adopt the
standard Maxwellian distribution [45–47,94]:

V ½uzj�1DðMvirÞ�duz ¼ 1ffiffiffiffiffiffiffi
2


p
�1D

exp

�
� u2z
2�2

1D

�
duz;

(B10)

where �1D is the 1D velocity dispersion. For haloes that
possess an isothermal density distribution, this quantity is
related to the halo circular velocity (Vc) through the fol-
lowing relation [95]:

�2
1DðMvirÞ ¼ 	V2

c=2; V2
c ¼ GMvir

rvir
: (B11)

Note that we have included a parameter 	 into Eq. (B11),
this may be used to account for the fact that the relation
is only approximately true for the NFW density profile
model. It also serves the further purpose of allowing us to
turn off the fingers-of-god through setting 	! �	 1. As
discussed in Sec. VIB and shown in Fig. 6 	 ¼ 0:76
provides a reasonable fit to the velocity dispersion mass
relation from simulations. On combining the above rela-
tions we have

FIG. 6 (color online). Mass vs 1D velocity dispersion mea-
sured for FoF haloes in simulations. Points show mean and
1-sigma errors for measurements from the numerical simula-
tions. The solid and dash line shows the predictions from
Eq. (B12) with 	 ¼ f0:76; 1:0g. The bottom panel shows the
ratio of the data with respect to the 	 ¼ 0:76 model.
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�2
1DðMvirÞ ¼ 100	

2
�mðaÞ½HðaÞrvir�2: (B12)

Notice that the ratio �1DðMvirÞ=rvir is independent of halo
mass. One immediate consequence of this is that in redshift
space the ratio of the line-of-sight projection of particles in
a halo compared to the transverse length will be a constant,
�1D=ðHrvirÞ � 3, regardless of mass. In other words, FOGs
lead to density profiles which are self-similar. In our analy-
sis we take 	 ¼ 0:76 (see Fig. 6). Finally, the Fourier
transform of the velocity distribution is

V ð�1k1Þ ¼ expf�1
2½k1�1�1DðMvirÞ�2g: (B13)

APPENDIX C: EULERIAN PT AND
HALO-PT KERNELS

The first two symmetrized Eulerian PT kernels for the
density and divergence of the velocity field are [6]:

F1;2 ¼ 5

7
þ�12

2

�
q1
q2

þ q2
q1

�
þ 2ð�12Þ2

7
; (C1)

G1;2 ¼ 3

7
þ�12

2

�
q1
q2

þ q2
q1

�
þ 4ð�12Þ2

7
; (C2)

where F1;...;j � Fjðq1; . . . ;qjÞ and where �12 �
q1 � q2=q1q2.

The Halo-PT kernels, symmetrized in all of their argu-
ments, may be written in terms of the Eulerian PT kernels
up to 2nd order as [38]:

Fhc
0 ¼ b0ðMÞ; (C3)

Fhc
1 ¼ b1ðMÞWðjkjRÞF1; (C4)

Fhc
1;2 ¼ b1ðMÞWðjkjRÞF1;2

þ b2ðMÞ
2

Wðjq1jRÞWðjq2jRÞF1F2; (C5)

where Fhc
1;...;j � Fhc

j ðq1; . . . ;qjjM;RÞ and where k ¼
q1 þ � � � þ qj.

APPENDIX D: ROTATION MATRIX

Owing to there being several equivalent ways to de-
fine the Euler angles and hence the rotation matrix
Rð�1; �2; �3Þ, we make explicit our adopted choice. The
angles are defined as follows: �1 describes a rotation of the
coordinate system around the z-axis; �2 a rotation around
the new y0-axis; and �3 a rotation around the new z00-axis
([96]). Thus, the components of any vector k specified
in some initial Cartesian system can be transformed into
the scalar components of the new rotated basis vectors
through k0 ¼ Rð�1; �2; �3Þk. The z� y0 � z00 rotation
matrix is [96]:

R ð�1; �2; �3Þ �
½C�2C�1C�3 � S�1S�3� ½C�2S�1C�3 þ C�1S�3� �S�2C�3

½�C�2C�1S�3 � S�1C�3� ½�C�2S�1S�3 þ C�1C�3� S�2S�3

S�2C�1 S�2S�1 C�2

0
@

1
A; (D1)

and we employed the economic notation Cx ¼ cosx and
Sx ¼ sinx.

APPENDIX E: REDSHIFT-SPACE POWER
SPECTRUM MONOPOLE IN THE HALO MODEL

The redshift-space power spectrum of tracer particles �
can be written in the linear halo model as

Ps�ðkÞ ¼ Ps�;1HðkÞ þ Ps�;2HðkÞ: (E1)

Ps�;1HðkÞ ¼
Ps�;1HðkjRÞ
½WðkjRÞ�2

¼ 1

��2
�

Z
dMnðMÞ½W��2jUsðkjMÞj2; (E2)

Ps�;2HðkÞ ¼
Ps�;2HðkjRÞ
½WðkjRÞ�2

¼ 1

��2
�

Z Y2
i¼1

fdMinðMiÞ½W��iUsðkjMiÞg

� PshcðkjM1;M2; RÞ
½WðkjRÞ�2 : (E3)

At linear order the redshift-space power spectrum of halo
seeds is

PshcðkjM1;M2; RÞ ¼ Z1ðkjM1; RÞZ1ðkjM1; RÞP11ðkÞ
¼ ½WðkRÞ�2b1ðM1Þb1ðM2ÞP11ðkÞ

� f1þ�2½�1 þ �2� þ �1�2�
4g;

�i � fð�Þ
b1ðMiÞ ; (E4)

where b0 ¼ 0 can be seen from the fact that the halo
and density fluctuation fields are by definition mean zero
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fields and recalling that at linear order h�h1ðrjMÞi ¼
b0ðMÞ þ b1ðMÞh�1ðrjMÞi. The redshift-space power spec-
trum monopole is thus

P̂ s
�;1HðkÞ ¼

1

��2
�

Z
dMnðMÞ

� ½W��2jU�ðkjMÞj2Rð0Þ
1;2½k�ðMÞ�; (E5)

Ps�;2HðkÞ ¼
1

��2
�

Z Y2
i¼1

fdMinðMiÞb1ðMiÞ

� ½W��iUðkjMiÞgRð0Þ
2;2½k�2ðMÞ�; (E6)

where we have defined the redshift-space multipole factors

R ðlÞ
1;n½a� ¼

2lþ 1

2

Z 1

�1
d�P lð�Þ exp½�a2�2�; (E7)

RðlÞ
2;n½b� ¼

2lþ 1

2

Z 1

�1
d�P lð�Þ½1þ A�2 þ B�4�

� exp½�b2�2�: (E8)

Here a2 � nk2�2ðMÞ=2, b2 � k2½�2ðM1Þ þ � � � þ

�2ðMnÞ�=2 we have set A ¼ �1 þ �2 and B ¼
�1�2, and we have assumed our Gaussian model for the
1-pt velocity distribution function from Eq. (B13). Thus,
the monopole [l ¼ 0; P 0ð�Þ ¼ 1] moments are

R ð0Þ
1;nðaÞ ¼

ffiffiffiffi



p
2

erf½a�
a

; (E9)

Rð0Þ
2;nðbÞ ¼

Rð0Þ
1;nðbÞ
4b4

½4b4 þ 2b2Aþ 3B� � expð�b2Þ
4b4

� ½2b2ðAþ BÞ þ 3B�: (E10)

Our expression differs from that of [45,46], but is con-
sistent with the formulation of [47]. For further discus-
sion and comments on this subject, and for an evaluation of
the power spectrum to higher order in the halo-PT series,
see [48].
Note that when a	 1 and b	 1, then

R ð0Þ
1;nðaÞ ¼ expð�a2ÞX

1

j¼0

2j

ð2jþ 1Þ!!a
2j

¼ X1
j¼0

ð�1Þj
j!ð2jþ 1Þa

2j; (E11)

Rð0Þ
2;nðbÞ ¼

expð�b2Þ
4b4

�
½4b4 þ 2b2Aþ 3B�X

1

j¼0

2j

2jþ 1Þ!! b
2j � 2b2ðAþ BÞ � 3B

�

¼ expð�b2Þ
4b4

�
½4b4 þ 2b2Aþ 3B�

�
1þ 2b2

3
þ 4b4

15
þ 8b6

105
þ . . .

�
� 2b2ðAþ BÞ � 3B

�

¼ expð�b2Þ
�
1þ A

3
þ B

5
þ 2b2

3

�
1þ A

5
þ 3B

35

�
þ 4b4

15

�
1þ A

7
þ B

21

�
þ . . .

�



�
1þ �1 þ �2

3
þ �1�2

5

�
(E12)

reducing to the Kaiser formula on large scales [40].

APPENDIX F: IMPACT OF SHOT NOISE ON THE
REDUCED BISPECTRUM

It is of interest to consider how standard shot noise and
also the halo model effective shot-noise terms impact the
reduced bispectrum. On large scales QHM can be written:

QHM ¼
BPT þ 1

�n2H;B
½P1 þ P2 þ P3� þ 1

�n21H;B

ðP1 þ 1
�n1H;P

ÞðP2 þ 1
�n1H;P

Þ þ 2 cyc
; (F1)

where we have added a subscript P or B to distinguish
between shot-noise terms from the halo model power
spectrum and bispectrum, respectively.

In the low-sampling limit �nHP	 1, we have the re-
sult that

QHM ¼ 1

3

�h½W��3ih½W��i
h½W��2i2

�
(F2)

for the case of standard shot noise, the term in square
brackets is unity, and we haveQd ¼ 1=3, where superscript
d means discrete.
In the high sampling limit, �nHP� 1, the denominator in

Eq. (F1) becomes


 1

Qfac

�
1� 2

�n1H;P

P1 þ P2 þ P3

Qfac

� 3

�n21H;P

1

Qfac

�
; (F3)

whereQfac � P1P2 þ 2 cyc and where we have treated the
last two terms in the square brackets as small quantities,
relative to Qfac. On replacing this in Eq. (F1), we find
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QHM �QPT ¼ P1 þ P2 þ P3

Qfac

�
1

�n2H;B
� 2

�n1H;P
ð1þQPTÞ

�

þ 1

Qfac

�
1

�n21H;B
� 3

�n21H;P
ð1þQPTÞ

�
: (F4)

We can also use the above expression to derive the effect of
standard shot noise on the reduced bispectrum, by simply
considering all of the number density terms to be identical,
and this gives

Qd �QPT ¼ �ðP1 þ P2 þ P3Þ
�nQfac

ð1þ 2QPTÞ

� 1

�n2Qfac

ð2þ 3QPTÞ: (F5)

Considering standard shot noise first, in Eq. (F5), we see
that the effect of discretization of matter is always to
reduce the value ofQd relative toQPT (the continuum limit
case). Considering now the halo model, in Eq. (F4), we see
that the difference between this and QPT depends on the
sign of the quantities in square brackets. For dark matter,

the first term can be seen to be negative, since �n2H;B ¼
�n1H;P. However, the sign of the second term is not as

obvious to deduce. If it is negative, then the effect is as
for standard shot noise; on the other hand, if the reverse
is true, then Qd >QPT.
Lastly, the configuration dependence ofQd �QPT in the

standard shot-noise case can be understood from the fol-
lowing: if we assume that all k-vectors are larger than the
turnover scale in the power spectrum, then the quantity
Qfacð�12 ¼ 1Þ>Qfacð�12 ¼ 0Þ. This implies that the dif-
ference is largest when k1 and k2 are parallel.

APPENDIXG: BISPECTRUMCODECOMPARISON

In this appendix we compare results from our recipe for
estimating the reduced bispectrum, presented in Sec. VI C,
with those obtained from an independent prescription used
by one of us over the years, e.g. [88], which uses full
sampling of all k-space triangles on the Fourier grid. The
two methods are very similar, but some subtle differences
exist, these can be summarized: for the ‘‘full sampling
code’’:

FIG. 7 (color online). Comparison of the reduced bispectrum estimates obtained from the method presented in Sec. VIC with those
obtained from the ‘‘full sampling code’’ of [88]. As in Fig. 5, our results are represented by solid symbols, and those from the alternate
method are denoted by open symbols. Again, errors are on the mean and real and redshift-space estimates from the same code have
been slightly offset in the x-axis to enhance clarity.
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(1) B is estimated in linear bins of thickness a 1� kf
for k¼0:05, 0:1½h Mpc�1� and 4�kf for the case

k¼0:5, 1:0½h Mpc�1� (kf¼2
=L); whereas for

our code estimates are made in �log10k bins of
thickness 0.05;

(2) the configuration dependence of B is estimated as a
linear function of k3, whereas for our code it is
estimated as a linear function of �12;

(3) all of the available independent k-modes are used,
whereas we sub- or oversample modes from the
available set depending on the number of available
modes;

(4) Q is constructed from estimates of B and P in a
post-processing fashion, whereas we estimate Q on
the fly for each triangle that is used in the estimate.

Figure 7 shows the results of this comparison. The solid
symbols denote our results, and the corresponding open

symbols denote the results from the ‘‘full sampling code.’’
Overall we find very good agreement between both
methods. On the largest scales that we have considered,
k1 ¼ 0:05h Mpc�1, it appears that our method is a factor
of 2–3 times more noisy than that of R. Scoccimarro,
however we have a factor of 2 more bins in �12, which
accounts for some of this discrepancy. On smaller scales
k1 � 0:1h Mpc�1 the estimates are of comparable quality,
with ours being slightly more noisy. The discrepancy
on large scales owes to the fact that we have subsampled
triangles from the possible set; this can be mitigated
by oversampling from the number of available modes.
On smaller scales the benefits of our approach are
that we may obtain a high accuracy estimate with-
out requiring all of the triangles and this also has the
practical advantage of keeping the computational time
tolerably low.
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