
Torsion cosmology and the accelerating universe

Kun-Feng Shie,1 James M. Nester,1,2,3,* and Hwei-Jang Yo4,+

1Department of Physics, National Central University, Chungli 320, Taiwan
2Graduate Institute of Astronomy, National Central University, Chungli 320, Taiwan

3Center for Mathematics and Theoretical Physics, National Central University, Chungli 320, Taiwan
4Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan

(Received 15 September 2007; published 18 July 2008)

Investigations of the dynamic modes of the Poincaré gauge theory of gravity found only two good

propagating torsion modes; they are effectively a scalar and a pseudoscalar. Cosmology affords a natural

situation where one might see observational effects of these modes. Here, we consider only the ‘‘scalar

torsion’’ mode. This mode has certain distinctive and interesting qualities. In particular, this type of

torsion does not interact directly with any known matter, and it allows a critical nonzero value for the

affine scalar curvature. Via numerical evolution of the coupled nonlinear equations we show that this

mode can contribute an oscillating aspect to the expansion rate of the Universe. From the examination of

specific cases of the parameters and initial conditions we show that for suitable ranges of the parameters

the dynamic ‘‘scalar torsion’’ model can display features similar to those of the presently observed

accelerating universe.
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I. INTRODUCTION

One of the outstanding successes of theoretical physics
in the latter part of the last century that led to a much
deepened understanding was the recognition that all the
known fundamental physical interactions, the strong,
weak, and electromagnetic—not excepting gravity—can
be well described in terms of a single unifying principle:
that of local gauge theory. Although there are other pos-
sible gauge approaches, for gravity it seems highly appro-
priate to regard it as a gauge theory for the local symmetry
group of Minkowski spacetime: the Poincaré group [1,2].
Such a consideration led to the development of the
Poincaré gauge theory (PGT) of gravity [3–8]. The PGT
has a priori independent local rotation and translation
potentials, which correspond to the metric-compatible con-
nection and orthonormal coframe; their associated field
strengths are the curvature and torsion. The spacetime then
has generically a Riemann-Cartan geometry. Because of its
gauge structure and geometric properties the PGT has been
regarded as an attractive alternative to GR. The general
theory includes as exceptional cases Einstein’s general rel-
ativity (GR) with vanishing torsion, the Einstein-Cartan
theory with nondynamic torsion algebraically coupled to
the intrinsic spin of the source, as well as the teleparallel
theories wherein curvature vanishes and torsion represents
the gravitational force (a sort of opposite to Riemannian
geometry). Aside from these exceptions the generic PGT
has, in addition to the metric familiar from Einstein’s GR, a
connection with some independent dynamics. This addi-
tional dynamics is reflected in the torsion tensor.

There is a natural physical source for the torsion of
spacetime, namely, spin 1=2 fermions. The effect is gen-
erally assumed to be small at ordinary densities, but could
have a major influence at high densities (e.g., beyond
1048 gm=cm3), and thus it was expected to have important
physical effects in the early universe [1]. Torsion cos-
mology investigations were initiated by Kopcńyski [9].
Some early investigations attracted attention especially
because they noted that torsion might prevent the (at that
time newly recognized) singularities. However, this hope
quickly faded. Indeed, it soon was argued that nonlinear
torsion effects were more likely to produce stronger singu-
larities [10].
The various PGT dynamic modes beyond those of the

metric were first investigated via the linearized theory (for
outstanding examples of such investigations see [4,11]). To
this order the connection dynamics (which can be repre-
sented by the torsion tensor) decomposes into six modes
with certain spins and parity: 2�, 1�, 0�. Many possible
combinations of well-behaved (carrying positive energy at
speed � c, criterion often referred to as ‘‘no ghost, no
tachyon’’) propagating modes in the linear PGT theory
were identified. They were classified into about a dozen
separate cases, almost any combination of up to 3 dy-
namic modes is allowed. Some nice investigations of the
PGT theory were also made using the Hamiltonian analysis
[8,12,13], with findings consistent with the conclusions of
the linearized investigation. Later, however, some potential
problems were identified [14]. This prompted deeper in-
vestigations, which noted that effects due to nonlinearities
in the constraints could be expected to render most of the
aforementioned dynamic cases physically unacceptable
[15]. A fundamental investigation identified two special
cases, the so-called ‘‘scalar torsion’’ modes, which could
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be proved to be problem free, having a well posed initial
value problem [16]. Subsequently, Hamiltonian investi-
gations [17,18] supported the conclusion that these two
dynamic ‘‘scalar torsion’’ modes may well be the only
physically acceptable dynamic PGT torsion modes.

In one mode (referred to as the ‘‘pseudoscalar’’ because
of its 0� spin content) only the axial-vector torsion is
dynamic. (As a consequence of the dynamic field equations
it turns out to be dual to the gradient of a scalar field;
however, it is not possible to treat this scalar field as the
primary dynamical object without changing the nature of
the theory [19].) Axial torsion is naturally driven by the
intrinsic spin of fundamental fermions; in turn, it naturally
interacts with such sources. Thus, for this mode one has
some observational constraints [20]. Note that except in the
early universe one does not expect large spin densities.
Consequently, it is generally thought that axial torsion
must be small and have small effects at the present time.
This is one reason why we do not focus on this mode here.

The other good mode 0þ, the so-called ‘‘scalar torsion’’
mode, has a certain type of dynamic vector torsion. (As a
consequence of the dynamic equations given below in
Sec. II B, it too turns out to be the gradient of a scalar
field; this scalar field cannot, however, be regarded as a
fundamental potential—for essentially the same reasons as
those mentioned in connection with the ‘‘pseudoscalar’’
mode.) There is no known fundamental source that directly
excites this mode. Conversely, this type of torsion does not
interact in any direct obvious fashion with any familiar
type of matter [21]. Hence, we do not have much in the way
of constraints as to its magnitude. We could imagine it as
having significant magnitude and yet not being dramati-
cally noticed—except indirectly through the nonlinear
equations. This mode, in particular, has also attracted our
interest because of a conspicuous consequence of the non-
linear equations: in this case, there is a critical nonzero
value for the affine scalar curvature.

Our theoretical PGT analysis thus led us to consider just
two dynamic torsion modes. An obvious place where we
might see some physical evidence for these modes is in
cosmological models. The homogeneous and isotropic
assumptions of cosmology greatly restrict the possible
types of nonvanishing fields. Curiously, for torsion there
are only two possibilities: 0þ, i.e., vector torsion which,
moreover, has only a time component (and is thus effec-
tively the gradient of a time-dependent function), and axial
torsion 0�, which is effectively the dual of a vector with
only a time component (and thus can be specified as the
gradient of a time-dependent function). Hence, the homo-
geneous and isotropic cosmologies are naturally very suit-
able for the exploration of the physics of the dynamic PGT
‘‘scalar modes.’’

Thus, cosmological models offer a situation where dy-
namic torsion may lead to observable effects. Here, we will
not focus on the early universe, where one could surely

expect large effects (although their signature would have to
be disentangled from other large effects), and instead in-
quire whether one can see traces of torsion effects today. In
particular, we will here consider accounting for the out-
standing present day mystery—the accelerated universe, in
terms of an alternate gravity theory with an additional
natural dynamic geometric quantity—torsion [22].
The observed accelerating expansion of the Universe

suggested the existence of a kind of dark energy with a
negative pressure. The idea of a dark energy is one of the
greatest challenges for our current understanding of fun-
damental physics [23–25]. Among a number of possibil-
ities to describe this dark energy component, the simplest
may well be by means of a cosmological constant �.
However, there are some reasons for dissatisfaction with
this model. In particular, the so-called cosmological con-
stant problem notes that the theoretically estimated value
of the vacuum energy density is about 10120 times larger
than the inferred cosmological constant. Moreover, the
coincidence or fine-tuning problem notes that it is highly
unlikely that we should be living in the relatively short era
when the rapidly changing ratio of the material energy and
the cosmological constant is nearly unity.
In the light of these problems there have been many in-

teresting dynamical dark energy proposals. A popular idea
is some unusual type of minimally coupled scalar field �
(quintessence field), which has not yet reached its ground
state and whose current dynamics is basically determined
by its potential energy Vð�Þ. This idea has received much
attention over the past few years and a considerable effort
has been made in understanding the role of quintessence
fields on the dynamics of the Universe (see, e.g., [26–28]).
However, without a specific motivation from fundamen-
tal physics for the light scalar fields, these quintessence
models can be constructed relatively arbitrarily. There is a
lot of room for speculation.
Here, we consider another possibility for explaining the

accelerating universe: dynamic scalar torsion. We explore
the possibility that the dynamic PGT connection, reflected
in dynamic PGT torsion, provides the accelerating force in
the universe. As noted above, there are certain ‘‘scalar
torsion’’ modes, which could have dynamical behavior.
They could naturally provide the accelerating force in the
universe. Here, we will show that the effect of torsion
cannot only make the expansion rate oscillate, but also
can force the universe to naturally have an accelerating
expansion in some periods and a decelerating expansion at
other times. Scalar torsion cosmology can avoid some of
the problems that occur in other models.
A comprehensive survey of the PGT cosmological mod-

els was presented some time ago by Goenner and Müller-
Hoissen [29]. Although that work only solved in detail a
few particular cases, it developed the equations for all the
PGT cases—including those for the particular model we
consider here. However, that work was done prior to the
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discovery of the accelerating universe, and torsion was thus
imagined as playing a big role only at high densities in the
early universe. More recently, investigators have begun to
consider torsion as a possible cause of the accelerating
universe (see, e.g., [30,31]), but the subject has not yet
been explored in detail [32].

We have taken a first step in the exploration of the
possible evolution of the Universe with the scalar torsion
mode of the PGT. The main motivation is twofold: (1) to
have a better understanding of the PGT, in particular, the
possible physics of the dynamic ‘‘scalar torsion’’ modes;
(2) to consider the prospects of accounting for the out-
standing present day mystery—the accelerating universe—
in terms of an alternate gravity theory, more particularly in
terms of the PGT dynamic torsion. With the usual assump-
tions of isotropy and homogeneity in cosmology, we find
that, under the model, the Universe will oscillate with
generic choices of the parameters. The torsion field in the
model plays the role of the imperceptible ‘‘dark energy.’’
With a certain range of parameter choices, it can account
for the current status of the Universe, i.e., an accelerating
expanding universe with a value of the Hubble constant,
which is approximately the present one. These promising
results should encourage further investigations of this
model, with a detailed comparison of its predictions with
the observational data.

The remainder of this work is organized as follows: We
summarize the formulation of the PGT and the ‘‘scalar
torsion’’ mode, and then translate the equations into a
certain effective Riemannian form in Sec. II; the special-
ization of these relations to the form describing a cosmo-
logical model is presented in Sec. III. Then a preliminary
analytical analysis aimed at revealing the behavior of the
solutions is presented in Sec. IV. In Sec. V, we present the
results of our numerical demonstrations for various choices
of the parameters and the initial data. The implications of
our findings are discussed in Sec. VI, and Sec. VII is a
conclusion.

II. THE FIELD EQUATIONS

A. Poincaré gauge theory of gravitation

Our considerations in this work are entirely classical.
The form of the gravity theory we wish to consider here,
the PGT, was worked out some time ago on the basis of
the fundamental principles of gauge theory and geometry
[1–8]. In the PGT, there are two sets of local gauge
potentials, the orthonormal frame field (tetrad) ei

� and
the metric-compatible connection �i�

�, which are associ-

ated with the translation and the Lorentz subgroups of the
Poincaré gauge group, respectively. The field strengths
associated with the frame and connection are the torsion

Tij
� ¼ 2ð@½iej�� þ �½ij�

�ejj�
�Þ; (1)

and the curvature

Rij�
� ¼ 2ð@½i�j��� þ �½ij�

��jj��
�Þ; (2)

which satisfy the Bianchi identities

r½iTjk�
� � R½ijk�

�; (3)

r½iRjk�
�� � 0: (4)

From the frame one constructs some auxiliary quantities:
the reciprocal frame ei�, which satisfies e

i
�ei

� ¼ ��
� and

ei�ej
� ¼ �j

i, and the metric gij ¼ ei
�ej

����. Here, our
conventions are as follows: the Greek indices are the local
Lorentz indices; whereas the Latin indices are the coordi-
nate indices. We use the metric signature (� , þ, þ, þ).
Following the standard paradigm, the conventional form

of the PGT action, which is invariant under local Poincaré
gauge transformations, is taken to have the form

A ¼
Z
d4xeðLG þ LMÞ: (5)

Here e ¼ detðei�Þ, eLGðei�; @jei�;�i��; @j�i��Þ ¼
eLGðei�; Tij�; Rij��Þ is the geometric gravity Lagrangian

density and eLMðe;�;  ; @ Þ ¼ eLMðei�;  ;Di Þ is the
minimally coupled source Lagrangian density, where  
represents all the matter and other interaction fields. We
will not explicitly need the field equations for the non-
geometric fields. Varying with respect to the geometric-
gauge potentials gives the gravitational field equations. As
explained in detail in the aforementioned references, they
take the form

rjH�
ij � E�

i ¼ T �
i; (6)

rjH��
ij � E��

i ¼ S��
i; (7)

with the field momenta

H�
ij :¼ @eLG

@@jei
� ¼ 2

@eLG

@Tji
� ; (8)

H��
ij :¼ @eLG

@@j�i
�� ¼ 2

@eLg
@Rji

�� ; (9)

and

E�
i :¼ ei�eLG � T�j

�H�
ji � R�j

��H��
ji; (10)

E��
i :¼ H½���

i: (11)

The source terms here

T �
i :¼ @eLM

@ei
� ; (12)

S��
i :¼ @eLM

@�i
�� ; (13)

are, respectively, the Noether energy-momentum and spin
density currents, which (as a consequence of the assumed
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minimal coupling) automatically satisfy suitable energy-
momentum and angular momentum conservation laws.

The Lagrangian is chosen (as usual in gauge theories) to
be at most of quadratic order in the field strengths, then the
field momenta are linear in the field strengths

H�
ij ¼ e

l2
X3
k¼1

akT
ji
�

ðkÞ
; (14)

H��
ij ¼ �a0e

l2
ei½�e

j
�� þ

e

�

X6
k¼1

bkR
ji
��

ðkÞ
; (15)

here, the three Tji�

ðkÞ
and the six Rji��

ðkÞ
are the algebraically

irreducible parts of the torsion and the curvature, respec-
tively. The torsion, in particular, splits into the algebrai-
cally irreducible torsion vector, axial vector and tensor

Ti ¼ Tij
j; Pi ¼ 1

2�ijkmT
jkm;

Qijk ¼ TiðjkÞ � 1
3Tigjk þ 1

3giðjTkÞ;
(16)

which recompose to give

Tijk ¼ 4
3Q½ij�k þ 2

3T½igj�k þ 1
3�ijkmP

m: (17)

The ak and bk in the Lagrangian are free coupling
parameters. Because of the Bach-Lanczos identity only
five of the six bk’s are independent. a0 is the coupling
parameter of the scalar curvature R :¼ R��

��. Note that

(because of the assumed quadratic Lagrangian, linear-in-
field strength canonical momenta) one obtains, as in the
standard physics paradigm, 2nd order equations for the
potentials by varying the Lagrangian Lg of the PGT in-

dependently with respect to the frame and connection. It
should be remarked that these PGT equations are quite
different from the problematical 4th order type of equa-
tions obtained from Riemannian geometry based Lagrang-
ians of the form Rþ ðR::::Þ2 when varied with respect to
the metric.

In the PGT, in addition to the dynamic metric repre-
sented by the translational gauge potential (the orthonor-
mal frame), the rotational gauge potential (the connection)
has some independent dynamics. As in other gauge theo-
ries, it is usually convenient to describe the dynamics of the
connection (a noncovariant, gauge dependent potential)
in terms of a tensorial field strength. In the PGT case, these
modes can be described by the torsion tensor. As men-
tioned in the introduction, the various PGT dynamic tor-
sion modes were first investigated via the linearized theory;
it was shown that the torsion decomposes into six modes
with certain spins and parity 2�, 1�, 0�. Later investiga-
tions [15–18] concluded that effects due to nonlinearities in
the constraints could be expected to render all of these
cases physically unacceptable except for the two ‘‘scalar
torsion’’ modes spin-0þ and spin-0�. These two dynamic

scalar torsion modes apparently are the only physically
acceptable dynamic PGT torsion modes.

B. Simple spin-0þ mode

Here, we only investigate the simple spin-0þ case, i.e.,
choosing a2 ¼ �2a1, a3 ¼ �a1=2 and taking all the bk’s
to vanish except for b6 ¼ b � 0. (For a detailed analysis of
this case please see [17].) Our gravitational Lagrangian
density for this spin-0þ mode is then

Lg ¼ �a0
2
Rþ b

24
R2 þ a1

8
ðT���T��� þ 2T���T

���

� 4T�T
�Þ; (18)

where T� :¼ T��
�. The Hamiltonian analysis showed that

the number of degrees of freedom in Lg is three: the scalar

torsion mode and two helicity states of the usual massless
graviton (provided the scalar torsion mode is massive, i.e,
a1 � a0). It is necessary to impose certain sign conditions
on the parameters (see [4,8,11–13,17]):

a1 > 0; b > 0: (19)

There is a simple argument that accounts for the signs of
these two parameters. In order to have least action the
kinetic energy contribution from any dynamic variable
must be positive (for if such a term were negative the
action would have no lower bound, since we could have
an arbitrarily large time rate of change for a dynamic
variable). Consider that b is the parameter associated
with the quadratic scalar curvature term R2. With the
help of Eq. (2), it can be seen that the scalar curvature
includes some time derivatives of one of our basic dynamic

fields, the connection components R2 ¼ ðei�ej�Rij��Þ ¼
ð2et�ej� _�j

�� þ � � �Þ2 ¼ 4ðet�ej� _�j
��Þ2 þ � � � � 0:

Hence, the coefficient of this term in the action should
be positive. A similar argument based on (1), taking into
account the chosen metric signature and the restricted form
of the torsion in our model as a consequence of the field
equations, Eq. (24) below, gives the sign of a1.
Varying Lg (18) with respect to the potentials ei

�, �i
��

gives the specific second order field equations of the gen-
eral form (6) and (7) for this mode. Assuming S��

i ¼ 0
(i.e., the source spin current is negligible) we investigate
first Eq. (7), obtaining for this mode the three decomposed
equations

r�R ¼ � 2

3

�
Rþ 6�

b

�
T�; (20)

0 ¼ �
�
Rþ 6�

b

�
P�; (21)

0 ¼ �
�
Rþ 6�

b

�
Q���; (22)
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where � :¼ a1 � a0 is the effective mass of the linearized
0þ mode. There is a special case with no dynamical scalar
torsion if R ¼ �6�=b, a constant. We do not treat this
exceptional degenerate situation as an isolated case (it is
considered below as a limit of the generic case). Assuming
that Rþ 6�=b � 0 generically leads to

P� ¼ Q��� ¼ 0: (23)

Using these two constraints gives the restricted form of
the torsion

Tij
� ¼ 2

3T½iej�
�: (24)

Substituting into Eq. (6) with our specific parameter
choices gives the restricted field equation

rjH�
ij � E�

i ¼ e

�
2a1
3

½ei�r�T
� � ei�

�rjT
j�

� ei�

�
� a0

2
Rþ b

24
R2 � a1

3
TiT

i

�

þ R�
i

�
b

6
R� a0

��
¼ T �

i: (25)

Now, we have a complete set of the field equations, (20)
and (25) along with (23). In [16], it was argued that this
system had a well posed initial value problem. However
that may be, the two main field equations are rather
complicated. They really look nothing like the familiar,
well-analyzed equations of GR. To help understand the
significance of these new relations, and to use our previous
experience, we will do a translation of (20) and (25) into a
certain effective Riemannian form—transcribing from
quantities expressed in terms of the orthonormal tetrad
ej
� and connection �i

�� into the ones expressed in terms

of the metric gjk and torsion Tij
k. Then we can compare the

result with the more familiar field equations in GR.

C. Translation

As is well known, the PGT affine connection can be
represented in the form

�ij
k ¼ ��ij

k þ 1
2ðTijk þ Tkij þ TkjiÞ; (26)

where ��ij
k is the Levi-Civita connection,

�� ij
k ¼ 1

2g
kmðgmj;i þ gmi;j � gij;mÞ; (27)

and Tij
k is the torsion. Accordingly, the affine Ricci cur-

vature and scalar curvature can be represented as

Rij ¼ �Rij þ �rjTi þ 1
2ð �rk � TkÞðTjik þ Tkij þ TkjiÞ

þ 1
4ðTkmiTkmj þ 2TjkmT

mk
iÞ; (28)

R ¼ �Rþ 2 �riT
i þ 1

4ðTijkTijk þ 2TijkT
kji � 4TiT

iÞ; (29)

where �Rij and �R are the Riemannian Ricci curvature and

scalar curvature, respectively, and �r is the covariant de-

rivative with the connection ��ij
k.

For the case of interest here the torsion tensor has the
restricted form (24). Consequently, the affine Ricci curva-
ture and scalar curvature become

Rij ¼ �Rij þ 1
3ð2 �rjTi þ gij

�rkT
kÞ þ 2

9ðTiTj � gijTkT
kÞ;
(30)

R ¼ �Rþ 2 �riT
i � 2

3TiT
i: (31)

Applying this translation selectively [33] in Eqs. (20) and
(25) gives an alternate form of the field equations

�r iRþ 2

3

�
Rþ 6�

b

�
Ti ¼ 0; (32)

a0

�
�Rij � 1

2
gij �R

�
� b

6
R

�
RðijÞ � 1

4
gijR

�
� 2�

3
ð �rðiTjÞ

� gij
�rkT

kÞ ��

9
ð2TiTj þ gijTkT

kÞ ¼ �T ij; (33)

while contracting Eq. (33) with the help of Eq. (31) yields

a1 �R��R ¼ T : (34)

Note that the relation (33) can be rewritten into the form
of Einstein’s equation

a0

�
�Rij � 1

2gij
�R

�
¼ ��ij :¼ �ðT ij þ ~T ijÞ; (35)

where T ij is the source energy-momentum tensor and the

contribution of the scalar torsion mode to the effective total
energy-momentum tensor �ij is

~T ij ¼ � 2�

3
ð �rðiTjÞ � gij

�rkT
kÞ ��

9
ð2TiTj þ gijTkT

kÞ

� b6
6
R

�
RðijÞ � 1

4
gijR

�
: (36)

However, it should be kept in mind that ~T ij is only an

effective quantity. Using this effective quantity allows us to
use some of the insight we have obtained from our expe-
rience with GR. Thus, we can regard the contribution of
~T ij to the right-hand side of (35) as something like that of

an exotic field. This hybrid form is practical for our needs
here, even though it is not really a proper fundamental

physical description (one way to see this is to note that ~T ij

cannot be obtained as the Hilbert energy-momentum den-
sity of some effective source Lagrangian).
Equations (35) and (36) do allow us to appreciate some

of the similarities and differences between this model and
other accelerating universe models. However, to properly
understand this model, one should consider the torsion
dynamics geometrically rather than trying to regard it as
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just another field in a Riemannian spacetime obeying
Einstein’s equations.

It is remarkable that the torsion vector—as a conse-
quence of the field Eq. (32)—turns out to be the gradient
of a scalar function. In fact, we can identify the function as
�ð3=2Þ lnðRþ 6�=bÞ. However, (especially given its geo-
metric nature) we do not see any way to introduce this
scalar potential directly into the Lagrangian as a funda-
mental field. Were that possible one could then directly
compare features of our scalar torsion model with the
various scalar field dark energy models. But as far as we
can see, notwithstanding a few similarities, our model is
really not much like those scalar field models.

III. FIELD EQUATIONS FOR
TORSION COSMOLOGY

For cosmology, assuming homogeneous and isotropic
leads to the Friedmann-Robertson-Walker metric

d s2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd	2 þ sin2	d
2Þ

�
;

(37)

where aðtÞ is the expansion factor, and k is the curvature
index. Here, to see the effects we are interested in as well as
match the observations, it is sufficient to consider only the
simplest case: the flat universe with k ¼ 0. This yields the
nonvanishing (Riemannian) Ricci and scalar curvature

�R t
t ¼ 3

€a

a
¼ 3ð _H þH2Þ; (38)

�R r
r ¼ �R	

	 ¼ �R


 ¼ €a

a
þ 2

_a2

a2
¼ _H þ 3H2; (39)

�R ¼ 6

�
€a

a
þ _a2

a2

�
¼ 6ð _H þ 2H2Þ; (40)

where H :¼ _a=a. The torsion Ti should also be only time
dependent, i.e., Ti ¼ TiðtÞ. So from (32) the spatial parts of
Ti vanish. Letting TtðtÞ ¼ �ðtÞ we have

_R ¼ � 2

3

�
Rþ 6�

b

�
�: (41)

Integrating this equation leads to

R ¼ 6ð _H þ 2H2 �H�Þ � 2 _�þ 2

3
�2

¼ � 6�

b
þ

�
Rðt0Þ þ 6�

b

�
exp

�
� 2

3

Z t

t0

�dt0
�
: (42)

From the field equations we can finally give the necessary
equations to integrate

_a ¼ aH; (43)

_H ¼ �

6a1
Rþ 1

6a1
T � 2H2; (44)

_� ¼ � a0
2a1

Rþ 1

2a1
T � 3H�þ 1

3
�2; (45)

_R ¼ � 2

3

�
Rþ 6�

b

�
�; (46)

where

b

18

�
Rþ 6�

b

�
ð3H��Þ2 � b

24
R2 � 3a1H

2 ¼ T tt ¼ �;

(47)

T ¼ gijT ij ¼ 3p� �; (48)

p ¼ w�: (49)

Here, we consider only the matter-dominated era, where
the pressure p is negligible.
For the effective energy-momentum tensor contribution

from the scalar torsion mode ~T ij, the explicit expression is

~T t
t ¼ �3�H2 þ b

18

�
Rþ 6�

b

�
ð3H ��Þ2 � b

24
R2;

(50)

~T r
r ¼ ~T 	

	 ¼ ~T 


 ¼ 1

3½�ðR� �RÞ � ~T t
t�; (51)

and the off-diagonal terms vanish.

We define �eff � �þ �T ¼ �3a0H
2, where �T � ~T tt

is the torsion-induced mass density. �eff means the effec-

tive mass density which is deduced from GR. pT � ~T r
r
is

an effective pressure due to contributions induced by the
dynamic torsion.

IV. A PRELIMINARYANALYSIS OF
THE EQUATIONS

Equations. (43)–(46) are the main equations for the
integrations to evolve the system. Regarding the parame-
ters in the field equations, the Newtonian limit requires
a0 � �ð8�GÞ�1. We take a1 > 0 and b > 0 to satisfy the
energy positivity requirement [17]. Moreover, the no
tachyon condition for the scalar torsion is then also satis-
fied: � ¼ a1 � a0 > ð8�GÞ�1 > 0.
Before the detailed results are shown, we briefly analyze

the equations to obtain some insight about their behavior.
Let us first study the behavior of the affine scalar curvature
R. The second derivative of R with respect to time can be
obtained by operating a time derivative on Eq. (46) and
using Eq. (45)

€R ¼ � 2

3
_R�� 2

3

�
Rþ 6�

b

�
_� � 2a0�

a1b
R; (52)
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here we assumed that all the variables, i.e., H, �, R are
much smaller than the coefficient of the leading order term,
i.e., 2a0�=a1b. For T , which appears on the right-hand
side of (45), we know it consists at least of quadratic terms
of H, R, and � from (47), so it should be smaller than the
other variables. This shows that the coefficient of R on the
right-hand side of (52) is negative 2a0�=a1b < 0. From
this analysis we find that the late-time behavior of Rwill be
essentially oscillating with the period

T ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a1b

2a0�

s
: (53)

By a similar argument, it is easy to infer that � has the
same periodical behavior.

Next, we direct our attention to the behavior of the
expansion factor a. The acceleration of the expansion
factor a can be obtained by combining Eqs. (34), (43),
(44), (50), and (51)

€a ¼ �RþT
6a1

a� _a2

a
¼ 3pT þ �eff

6a0
a: (54)

From this the relation between the acceleration of the
expansion €a and the quantity 3pT þ �eff can be clearly
seen. Since a0 < 0, it shows that €a > 0 as long as 3pT þ
�eff < 0, and vice versa. We will discuss this relation and
its demonstration in the next section.

The period of a and H, if they exist, should be same as
that of � and R. Because the variables are all highly
coupled to each other to form an equation set, there should
generically exist a common period in the solution. This
point will be demonstrated in the later numerical analysis.

We need to look into the scaling features of this model
before we can obtain the sort of results we seek on a
cosmological scale. In terms of fundamental units we can
scale the variables and the parameters as

t! t=‘; a! a; H ! ‘H; � ! ‘�;

R! ‘2R; a0 ! ‘2a0; a1 ! ‘2a1;

�! ‘2�; b! b;

(55)

where ‘ � ffiffiffiffiffiffiffiffiffiffi
8�G

p
. So the variables and the scaled parame-

ters a0, a1, and b all become dimensionless, and a0 ¼ �1.
Furthermore, Eqs. (43)–(46) remain unchanged under such
a scaling. However, as we are interested in the cosmologi-
cal scale, it is practical to use another scaling to turn the
numerical values of the scaled variables ‘‘gentler’’ (i.e., not
stiff) from the numerical integration. In order to achieve
this goal, let us introduce a dimensionless constant T0,
which represents the magnitude of the Hubble time (T0 ¼
H�1

0 ¼: 4:41504	 1017 seconds.) Then the scaling is

t! T0t; a! a; H ! H=T0;

� ! �=T0; R! R=T2
0 ; a0 ! a0;

a1 ! a1; �! �; b! T2
0b:

(56)

With this scaling, all the field equations are kept unchanged
while the period T ! T0T.

A. Parameter choice with constant scalar curvature

Equation (46) is of special interest among the field equa-
tions because of the existence of a constant value 6�=b. It
shows that the scalar affine curvature remains a constant
R ¼ �6�=b forever as long as its initial data has this
special critical value. It is tempting to see how the system
evolves with R ¼ �6�=b initially.
As mentioned in Sec. II, the positivity of the kinetic

energy in the Hamiltonian analysis of the spin-0þ case
requires b > 0, a1 > 0, thus �> 0, since a0 < 0. With
such an assumption, the scalar affine curvature should
not have the value R ¼ �6�=b initially since this initial
choice will require the matter density � to be negative from
Eq. (47). Such a choice violates the assumption of energy
positivity.
However, if we tentatively relax the parameter require-

ment for positive kinetic energy, i.e., allowing a1 ¼
� �a1 < 0 such that � ¼ �m< 0, the scenario will turn
out to be quite intriguing. Under such a new parameter
requirement, if we set initially the scalar affine curvature

R ¼ � 6�

b
¼ 6m

b
> 0; (57)

then R will remain at this constant value for all the time.
From Eqs. (47) and (50), we can derive

� 3a0H
2 ¼ �þ �T > 0; (58)

where

� ¼ 3 �a1H
2 � 3

2

m2

b
; (59)

�T ¼ 3

2

m2

b
� 3mH2: (60)

Here, the matter density will be positive as long as the
parameters are chosen suitably, such that �a1H

2 �
m2=2b > 0. And the more interesting point is that the
torsion-induced mass density �T could ‘‘act like a dark
energy’’ if the suitable parameter values are chosen. We
can simplify the field Eq. (44) to

_H ¼ 3

4

m2

�a1b
� 3

2
H2; (61)

and it leads to

€a ¼ 1

2

�
3

2

m2

�a1b
�H2

�
a: (62)
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Combining with Eq. (54), 3m2=2 �a1b > H2 as long as
3pT þ �eff < 0. By solving Eq. (61), the solution will
show that

H ! mffiffiffiffiffiffiffiffiffiffiffi
2 �a1b

p for t! 1: (63)

By comparing this to a universe with a cosmological
constant � where the Hubble function H approaches toffiffiffiffiffiffiffiffiffi
�=3

p
as t! 1, we can see how to choose suitable values

such that the cosmological constant � and thus the dark
energy can be mimicked in this torsion cosmological
model with a constant affine scalar curvature. We will
demonstrate numerically the behavior of this case in the
next section.

V. NUMERICAL DEMONSTRATION

In this section, we would like to demonstrate two points:
(1) The degenerate case R ¼ �6�=b with the relaxed
parameter choice mentioned in Sec. , i.e., a1 < 0 and �<
0 instead of the normal choice a1 > 0 and�> 0. Although
such a choice is against the positivity of kinetic energy, we
would like to explore this scenario a little bit more, since it
could mimic the cosmological constant and the other cos-
mological models with a negative kinetic energy [34]. We
can see that the torsion in the system becomes kinetic
instead of being dynamic, and the expansion is accelerating
at late time; (2) In generic cases, i.e., Rþ 6�=b � 0, with
the proper parameter choice (i.e., a1 > 0 and �> 0), the
torsion in the system is dynamic, and its functional pattern
has a periodic feature, i.e., it could be accelerating for a
while, and then be followed by a period of deceleration
with the pattern repeating. With suitable adjustments of the
parameters and the initial values of the fields involved, it is
possible to change the period of the dynamic fields as well
as their amplitudes. Furthermore, in the model, with some
choices of the parameters and the initial values of the
fields, it is possible to mimic the main apparent dynamic
features of the Universe, i.e., the value of the Hubble
function is the current Hubble constant in an accelerating
universe after a period of time on the order of the Hubble
time. In such a case, this model will describe an oscillating
universe with a period on the order of magnitude of the
Hubble time. This allows us to constrain the parameters
and/or the value of the torsion field by comparing the
observed data with the result from this model.

The 4th-order Runge-Kutta method is applied for the
integration of the field Eqs. (43)–(46). The Universe
is assumed to be matter-dominated, thus, T � ��. The
mass density � is determined from the fields via Eq. (47).
The fields and the parameters are scaled with Eq. (55) and
(56) to be dimensionless, and to achieve a realistic
cosmology.

A. Case I: Constant R case

In this case, the initial values of the fields are as follows:

aðt0Þ ¼ 50; Hðt0Þ ¼ 1;

�ðt0Þ ¼ 10; Rðt0Þ ¼ 6m

b
;

and the parameters are taken to be

a0 ¼ �1; b ¼ 10�4;

where t0 is the initial time t0 ¼ 1, the present time of our
universe. Under this setting,

� ¼ �3a0H
2 þ 3mH2 � 3m2

2b
¼ 3þ 3m� 1:5	 104m2:

(64)

In order that the mass density in the current universe is
about � � 30%, the parameter m is chosen as

m ¼ 0:012:

This shows that H ! m=
ffiffiffiffiffiffiffiffiffiffiffi
2 �a1b

p � 0:84. The detailed re-
sult is shown in Fig. 1, where the evolved values of H, €a,
�, and R are plotted as the (black) solid curve in different
panels.
It is obvious in the bottom-right panel of Fig. 1 that the

affine scalar curvature R remains constant, 6m=b. The be-
havior of the torsion� can be understood through Eq. (45).
� will increase (or decrease) until its value balances the
right-hand side of Eq. (45); this mainly depends on the sign
change of the term 3H� providedH > 0 andT > 0. With
the current initial choice in this case,� decreases promptly
at present until the balancing point is reached, as seen in
the bottom-left panel of Fig. 1. However, � will not be a
constant since the right-hand side of Eq. (45) still changes
with time. The Hubble function H will always decrease,
and approach to the fixed value m=

ffiffiffiffiffiffiffiffiffiffiffi
2 �a1b

p � 0:84, as
shown in the upper-left panel of Fig. 1, since the right-
hand side of Eq. (61) is always negative. The acceleration
of the expansion factor €a is positive at late time, as seen in
the upper-right panel of Fig. 1.
It is very interesting to see how the Universe evolves

if the scalar affine curvature R has a tiny deviation from
the constant value 6m=b. Therefore, we chose the initial
values of R as Rðt ¼ 1Þ ¼ 6m=b� 10�8 and Rðt ¼ 1Þ ¼
6m=bþ 10�8 and evolved the system while keeping all the
other initial choices the same as in the R ¼ 6m=b case. The
results are also plotted in Fig. 1. In Fig. 1, the (blue) dashed
lines are for the Rðt ¼ 1Þ ¼ 6m=b� 10�8 case and the
(red) dotted-dashed lines are for the Rðt ¼ 1Þ ¼ 6m=bþ
10�8 case. The results show that once the scalar affine
curvature R is smaller than 6m=b by a tiny amount, the
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values of R and thus the other fields will eventually return
to a damped-oscillating mode. Therefore, the Universe will
eventually approach a static condition. On the other hand,
if the scalar affine curvature R is bigger than 6m=b by a
tiny amount, the values of R and thus the other fields will
rise unboundly. Either way, the affine curvature will never
recover its constant value. Therefore, the constant curva-
ture case represents an unstable universe with an effective
cosmological constant or a negative-kinetic-energy field.
This phenomenon demonstrates the inherent instability of a
system with a negative kinetic energy. However, as long as
the deviation of R from 6m=b is small enough, it would be
difficult from Fig. 1 to predict the future of the Universe,
since all the lines of these three cases are virtually over-
lapped together until a very late time. By careful fine-
tuning we can arrange for a large variety of outcomes.
This ‘‘chaotic’’ behavior well illustrates just how we can
lose all physical predictability if we allow such unphysical
parameter choices.

Although the above parameter choice has the virtue
of explaining the accelerating expansion of the Universe
and the cosmological constant, we cannot accept such a
parameter choice here, since it violates the fundamental
assumption of the positivity of the kinetic energy. There-
fore, in the following cases, we will return to our normal
physical assumption, i.e., a1 > 0 and �> 0.

B. Case II: Oscillating acceleration of a

For this case, we take the initial values of the field to be

að0Þ ¼ 10; Hð0Þ ¼ 5	 10�3;

�ð0Þ ¼ 2	 10�4; Rð0Þ ¼ �2	 10�3;

and the parameters are taken to be

� ¼ 1:2; b ¼ 4;

The results plotted in Fig. 2 show that €a, �, and R are
damped periodic.
In particular, R has a periodic character as shown in the

bottom-right panel of Fig. 2. According to Eq. (53), its

period is T ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�a1b=2a0�

p � 3:63, which is close to
the period of the variables shown in Fig. 2. The most
interesting part is the behavior of €a, which is periodic
with the same period as � and R. As shown in the top-
right panel of Fig. 2, €a could be positive as well as being
negative, and the pattern of its function is similar to the
pattern of R. Therefore, the behavior of H is a declining
baseline plus a damped oscillation, as shown in the top-left
panel of Fig. 2.
On a broader viewpoint of the evolution of this system,

€a, �, and R will be slowly damped, and H will approach
zero after a long time. The important feature of this case is
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FIG. 1 (color online). Evolution of the Hubble function H, the 2nd time derivative of the expansion factor €a, the temporal com-
ponent of the torsion �, and the affine scalar curvature R as functions of time with the parameter choice and the initial data in
Case I. The (black) solid lines represent the result of Rðt ¼ 0Þ ¼ 6m=b, the (blue) dashed lines represent the result of Rðt ¼ 1Þ ¼
6m=b� 10�8, and the (red) dotted-dashed lines represent the result of Rðt ¼ 1Þ ¼ 6m=bþ 10�8, while all the other initial choices
are fixed.
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that the Universe could oscillate due to dynamic torsion. In
such a scenario, the present day acceleration of the Univ-
erse is not so strange, €a is oscillating, and it happens to be
increasing at this time. Furthermore, the oscillation period
would be determined mainly by the parameters and the
initial values of the fields in this model. This encouraged us
to try to find parameter values and initial conditions that
more nearly resemble the current status of the Universe.
Such a choice will be shown in the next case.

C. Case III: A presently accelerating universe

In this case, we would like to compare the numerical
values of the torsion model with the observational data of
the Universe. The initial data is set at the current time t0 ¼
1, after scaling, instead of t0 ¼ 0. The parameters and
initial conditions chosen are as follows:

aðt0 ¼ 1Þ ¼ 50; Hðt0 ¼ 1Þ ¼ 1;

�ðt0 ¼ 1Þ ¼ 1:4;

Yðt0 ¼ 1Þ � Rðt0 ¼ 1Þ þ 6�

b
¼ 6:2;

and

� ¼ 1:09; b ¼ 1:4:

Here, the initial data has been scaled according to Eqs. (55)
and (56) such that the current value of the Hubble function

is unity. Therefore, we get realistic values in our universe:
the Hubble constant at present Hðt0 ¼ 1Þ is

H ¼ 1

4:41504	 1017
� 1
s
� 70

km

s �Mpc
: (65)

The results of the evolution with the parameters and initial
conditions are plotted in Fig. 3. In the top-left panel the
Hubble functionH is damped oscillating at late time. In the
top-right panel, it is obvious that €a is damped and oscillat-
ing during the evolution and is positive at the current time
t � 1, which means the expansion of the universe is cur-
rently accelerating. �ðtÞ and RðtÞ are also plotted in Fig. 3
to show the correlation of the evolution between these
variables. We observe that the values of the variables HðtÞ,
€aðtÞ, RðtÞ, and �ðtÞ become relatively high before t=T0 ¼
0:4. However, this situation need not be taken too seriously,
since it describes the earlier time of the universe, and our
matter-dominated era assumption is not appropriate for
such an early period of time.
In order to have a deeper understanding of the settings of

this case, the matter density �, the effective mass density
�eff ¼ �þ �T, and the quantity 3pT þ �eff are plotted in
the bottom panels of Fig. 3. The value of �, shown in the
bottom-left panel, is decreasing at t � 1 as the Universe is
expanding and is always positive, while the effective mass
density �eff , plotted in the same panel, shows an ‘‘oscil-
lating’’ behavior around the curve of �. The oscillating
behavior of �eff comes from the contribution of the torsion-
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FIG. 2. Evolution of the Hubble function, the 2nd time derivative of the expansion factor, the temporal component of the torsion, and
the affine scalar curvature as functions of time with the parameter choice and the initial data in Case II.
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induced mass density �T and simply indicates that �T is not
positive definite in general. In fact, the value of �T turns
from negative to positive when the time is around t � 0:7.
As to the quantity 3pT þ �eff , we can understand its im-
portance for the evolution of the Universe through Eq. (54)
in which the value of this quantity decides the status of the
acceleration. We can see this much more clearly by check-
ing the correlation between the curves of €a and 3pT þ �eff

in Fig. 3. Also by comparing the two bottom panels of
Fig. 3, it is obvious that the torsion-induced pressure pT is
negative when the Universe accelerates, and positive when
the Universe decelerates.

In this case, the scaled value of �ðt ¼ 1Þ ¼ 0:83 and its
physical value is �ðt ¼ T0Þ ¼ 2:61	 10�30 g=cm3. The
Universe is supposed to be very close to the critical density,
�c � 3c2H2=8�G ¼ 9:47	 10�30 g=cm3; we find the ra-

tio �m � �=�c ¼ 28%. In the standard �CDM model,
�m 
 30% with 5% baryonic matter and 25% dark matter.
For our model �T � �T=�c ¼ 72% acts like the energy
density of dark energy. Therefore, this torsion model is
able to describe a presently accelerating expansion of the
Universe with a proper amount of matter density. From the
field equations we can see that the effect of the ‘‘dark
energy’’ mainly comes from the nonlinearity of the field
equation driven by the dynamic scalar torsion.

D. Other cases

We continue to look at two more cases, which are listed
in Table I along with Case III, obtained by taking different
values of the parameters and the initial conditions, along
with physical values of the significant mass density �. We
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find that the results of the other two cases have a behavior
qualitatively similar to that of Case III.

Now, we would like to compare our results with the
supernovae data. Distance estimates from SN Ia light
curves are derived from the luminosity distance

dL �
ffiffiffiffiffiffiffiffiffiffiffi
Lint

4�F

s
¼ cT0að1Þð1þ zÞ

Z t

1

dt

aðtÞ ; (66)

where Lint andF are the intrinsic luminosity and observed
flux of the SN, and the redshift z � að1Þ=aðtÞ � 1. Log-
arithmic measures of the flux (apparent magnitude, m) and
luminosity (absolute magnitude, M) were used to derive
the predicted distance modulus [35]

� ¼ m�M ¼ 5log10dL þ 25; (67)

where m is the flux (apparent magnitude), M is the lumi-
nosity (absolute magnitude), and dL in the formula should
be in units of megaparsecs. We found the relations between
the predicted distance modulus � and the redshift z in the

three cases; they are plotted in Fig. 4. For comparison,
we also plot the prediction of the �CDM model with
�m ¼ 0:3 and �� ¼ 0:7 by employing the following for-
mula [36]

dL ¼ cT0ð1þ zÞ
Z z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ zÞ2ð1þ�mzÞ � zð2þ zÞ��

p :

(68)

The astronomical observational data [36,37] are also plot-
ted in Fig. 4 for comparison. The plots show that for small
redshift z (e.g., z < 1:9) all three cases of the dynamical
torsion models give an accelerating universe just like the
�CDM model does. For larger z these cases might turn
the Universe into a deceleration mode, which is consistent
with the behavior of the various quantities shown in Fig. 3.
We can see that Case V gives the closest curve behavior to
the one from the �CDM model, although in Case V the
matter density is only about 26% of the critical density.
However, it was not meant to have a detailed comparison
in this plot between our models with the �CDM model.
Instead, in Fig. 4, we demonstrate the possibility of the
scalar torsion field accounting for the effect of dark energy
with a suitable set of parameters and initial data. This
allows us to study the dark energy problem from a new
and different angle.

VI. DISCUSSION

In this work we introduce into the evolution of a universe
without a cosmological constant a certain dynamical
PGT scalar torsion mode taken from our earlier work
[17]. From the assumption of the homogeneity and iso-
tropy of the Universe, only the temporal component of the
torsion � will survive and affect the evolution of the Uni-
verse at late times. With the field Eqs. (43)–(46), we
analyzed analytically and numerically the evolution of
the system. We found that in generic cases, i.e., Rþ
6�=b � 0, with the proper parameter choice (i.e., a1 > 0
and �> 0), the torsion� in the system is dynamic, and €a,
�, R tend to have a damped periodic behavior with the
same period, while the behavior of H is a declining base-
line plus a damped oscillation. With certain choices of the
parameters of � and b, and of the initial data of H, �, and
R, like Cases III–V in the previous section, this model can
describe an oscillating universe with an accelerating ex-
pansion at the present time.

TABLE I. Here the parameter a0 is set to be 1 in all of the three cases; Hð1Þ means Hðt ¼
nowÞ, �ð1Þ means �ðt ¼ nowÞ, etc, under the scaling Eqs. (55) and (56).

Case � b Hð1Þ �ð1Þ Yð1Þ að1Þ €að1Þ �ð1Þ
10�30 g=cm3

III 1.09 1.4 1 1.4 6.2 50 27.59 2.61

IV 1.27 1.1 1 0.8 11.3 50 70.29 5.23

V 1.38 1.1 1 1.1 9.9 50 4.57 2.48

0 0.5 1 1.5 2
z

30

35

40

45

µ

ΛCDM
Case III
Case IV
Case V

210

z
-1

0

1

∆µ

FIG. 4 (color online). Comparison of different torsion models
and the standard �CDM model with the observational data via
the relation between the distance modulus � and the redshift z.
The supernovae data points, plotted with (brown) circles, come
from [36]. The result of standard �CDM model (�m ¼ 0:3,
�� ¼ 0:7) is plotted by the bold (red) dotted line. The results of
Case III, IV, V are represented by the bold solid line, the (blue)
dashed line, and the (green) dotted-dashed line, respectively. In
the inset, the models and data are shown relative to an empty
universe model (� ¼ 0).
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Before we can give an adequate discussion of the via-
bility of this model as an explanation of the accelerating
universe, we should check whether this model can survive
under the constraints of the theoretical and experimen-
tal tests.

There have been numerous investigations on the exis-
tence of torsion since this geometric quantity entered the
realm of gravity (see [38–40] and the references therein).
As mentioned above, this model has not only passed the
important classical tests (‘‘no ghosts’’ and ‘‘no tachyons’’),
it is also one of the two scalar torsion modes—the only
PGT cases which are known to have a well posed initial
value problem [17] and which may well be the only viable
dynamic PGT torsion modes that can evade the nonlinear
constraint problems. There have also been some laboratory
tests in search of torsion [41,42]. The main idea among
these experiments is the spin interaction between matter
and torsion. The cosmological tests on torsion investigate
the effect of torsion-induced spin flips of neutrinos in the
early universe, which could alter the helium abundance and
have other effects on the early nucleosynthesis [43,44].
However, Dirac fermions interact only with the totally
antisymmetric pseudoscalar part of the torsion. Thus, these
tests can only consider the pseudo-scalar mode (axial-
vector torsion), not the scalar-mode torsion used in our
model. The type of torsion used in our model does not
interact directly with any known matter. Thus, these tests
cannot really give a serious constraint on the amplitude of
our scalar-mode torsion.

Among the models in which torsion is applied to the
cosmological problem, Capozziello et al. [31,45] have
done a serious study on replacing the role of the cosmo-
logical constant in the accelerating universe. With a totally
antisymmetric torsion without dynamical evolution, their
model is consistent with the observational data by tuning
the amount of the torsion density, although this model
cannot solve the coincidence problem. On the other hand,
the oscillating universe models with a designed mecha-
nism: an oscillating potential, an oscillating parameter of
the equation of state, etc. [46–48] aim to solve the coinci-
dence problem. Here, we found that our model takes some
virtues from both kind of models, i.e., our model is capable
of solving the coincidence problem of an accelerating
universe with a dynamical scalar-mode torsion, which is
naturally obtained from the geometry of the Riemann-
Cartan spacetime, instead of from an exotic scalar field
or a designed mechanism.

If we consider the spacetime as Riemannian instead of
Riemann-Cartan, by absorbing the contribution of the tor-
sion of this model into the stress-energy tensor on the right-
hand side of the Einstein equation, then this contribution
will act as a source of the Riemannian metric, effectively
like an exotic fluid with its mass density �T and pressure pT

varying with time (even though the time evolution of the
torsion is not like that of a such a fluid). Moreover, the

effective fluid appears to have presently a negative pres-
sure, and consequently a negative parameter in the effec-
tive equation of state, i.e., !T � pT=�T, which drives the
Universe into accelerating expansion. Note that there is no
constraint on the value of !T, which appears here, and its
value could vary from time to time. It should be stressed
that this is not a real physical fluid situation; the truth is that
!T is nothing like ‘‘a torsion field equation of state,’’ it
is just a proportionality factor between �T and pT, two
expressions which effectively summarize the contribution
of torsion acting as a source of the metric. The ratio !T is
of interest only to help understand the acceleration of this
model and to enable a limited comparison with other dark
energy proposals.
One might be concerned about the value of the parame-

ter b. Its value should be small enough to be consistent with
the constraints on the effect of the quadratic order term R2

on the large-scale structure of the Universe. The values of b
we choose, i.e., b=ða0T2

0Þ in the conventional unit, are on

the order of unity. These chosen values are bigger than the
magnitude of a related parameter, estimated in [49]; how-
ever, one cannot expect that estimate to be applicable
here—since in that work quadratic Riemannian curvature
terms were considered (they lead to 4th order field equa-
tions) instead of the affine curvature terms we have used
(which give 2nd order equations). As far as we know the
parameter � does not have too much constraint on it,
except for its positivity as a mass parameter, since the
baryonic matter will only interact with the scalar torsion
indirectly by gravitation.
One may wonder how large must the torsion be in order

to produce observable effects in the the present day uni-
verse, e.g., the observed acceleration? Conversely, how
large can the torsion be without violating some observa-
tional constraint? The questions merit a detailed study.
Here is a simple argument that indicates a magnitude.
Let us compare the terms in the Lagrangian density and
the field equations for the PGT scalar torsion model and the
Einstein theory with a cosmological constant. Note that
the presumed cosmological constant is ‘‘so small’’ that it
has no noticeable effect in the laboratory, nor on the solar
system scale, nor on the galactic scale. Nevertheless, it is
large enough to have the dominant effect on the cosmo-
logical scale. Hence, we are led to infer that we should con-
sider a1T

2 
 bR2 
�
 a0�
H2. With such a choice
we can expect that torsion may be able to accelerate the
Universe and yet not be conspicuous on smaller scales.
The 0þ torsion mode in this model effectively gives a

scalar field, yet this scalar field is, in fact, quite different
from the various scalar field models of ‘‘exotic matter,’’
e.g., the quintessence models, in several significant ways:
(i) torsion cosmology is derived naturally from a geometric
gravitational theory, which is based on fundamental gauge
principles, instead of on the hypothesis of the existence of a
dark energy tailored to producing an explanation of an
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accelerating universe; (ii) thus, there are only a couple of
free parameters in torsion cosmology, instead of an ad hoc
potential that can be rather arbitrarily chosen to fit the ob-
servations. Therefore, a torsion cosmological model should
be more restrictive, and should be easier to be confirmed or
falsified; (iii) based on its tensorial character, the coupling
of torsion to the other fields is nothing like that which has
ever been advocated for hypothetical scalar fields. Conse-
quently, we see no way to simply replace the scalar-mode
torsion with an effectively equivalent quintessence model.
Thus, torsion cosmology and the quintessence models are
characteristically different, even though there are some
similarities.

Because of its intriguing behavior, we also turned our
attention to a degenerate case R ¼ �6�=b in Case I with
the relaxed parameter choice of a1 < 0 and �< 0 instead
of the normal choice a1 > 0 and �> 0. Although such a
choice is against the positivity of kinetic energy, we ex-
plored this scenario, since it could mimic the cosmological
constant and the other cosmological models with a nega-
tive kinetic energy. Indeed, the result does show an ac-
celerating universe at late time. However, our further
numerical experiments also show that in such a case it de-
scribes a very unstable universe. A small perturbation from
the constant curvature will cause a sudden change, which
would only become apparent at some time in the future.

VII. CONCLUSION

In this work we considered the scalar torsion mode of the
PGT on in a cosmological setting and proposed it as a via-
ble model for explaining the current status of the Universe.
Besides having a better understanding of the PGT, we
study the prospects of accounting for the outstanding pres-
ent day mystery—the accelerating universe—in terms of
an alternate gravity theory, more particularly in terms of
the PGT dynamic torsion. With the usual assumptions
of isotropy and homogeneity in cosmology, we find that,
under the model, the Universe will oscillate with generic
choices of the parameters. The torsion field in the model
could play the role of dark energy. With a certain range of
parameter choices, it can account for the current status of
the Universe, i.e., an accelerating expanding universe with
a value of the Hubble constant, which is approximately the
present one. Thus, we have considered the possibility that a
certain geometric field, dynamic scalar torsion—which is
naturally expected from spacetime gauge theory—could
fully account for the accelerated universe.

The source of the torsion could come indirectly from the
huge density of the particles with sufficient spin alignment
in the early universe. This scalar mode of torsion could be

considered as a ‘‘phantom’’ field, at least in the matter-
dominated epoch, since it will not interact directly with
matter; it only interacts indirectly via gravitation. Then the
dynamics of the scalar torsion mode could drive the Uni-
verse in an oscillating fashion with an accelerating expan-
sion at present. It is quite remarkable that a gauge theory of
dynamic geometry naturally presents us with such a phan-
tom field. This natural geometric field could act like a dark
energy.
However, there are also some points that need to be

studied in much more detail before this model can more
closely conform to reality. The model in Cases III–V of
the previous section, suggests that the mass parameter
of the torsion � might be close to a0, and the parameter
for the ‘‘kinetic’’ energy density of the torsion b may need
to be as huge as T2

0 to achieve an accelerating universe. The

restricted window of the parameter choices, which allows a
behavior like that of our universe, might render the model
less favored, even though the matter in the Universe is not
able to directly interact with the torsion. Meanwhile, the
required choice of initial data and the values of the pa-
rameters may make this model unsuited to solving the fine-
tuning problem.
These dark sides should not be able to diminish the

possibility of the scalar mode of the torsion in this model
playing a significant role in the evolution of the Universe.
The model has only a few adjustable parameters, so scalar
torsion may be easily falsified—as ‘‘dark energy.’’ If it
turns out that the accelerated universe cannot be explained
in this way—that something else has the dominant dark
energy role—it would still be reasonable to expect that
there may be some observable cosmological effects from
dynamic scalar torsion. Also, here we only used one of the
viable modes of torsion in PGT; thus, our model will be
more general if it is extended to include all the viable
PGT torsion modes. We believe that future investigations
along this line should be open to these possibilities.
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