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Departamento de Matemática, Universidade Lusófona de Humanidades e Tecnologias, Avenida Campo Grande, 376,
1749-024 Lisboa, Portugal

(Received 22 December 2007; published 16 July 2008)

We present a phase-space noncommutative extension of quantum cosmology and study the Kantowski-

Sachs cosmological model requiring that the two scale factors of the Kantowski-Sachs metric, the

coordinates of the system, and their conjugate canonical momenta do not commute. Through the

Arnowitt-Deser-Misner formalism, we obtain the Wheeler-DeWitt (WDW) equation for the noncommu-

tative system. The Seiberg-Witten map is used to transform the noncommutative equation into a

commutative one, i.e. into an equation with commutative variables, which depend on the noncommutative

parameters � and �. Numerical solutions are found both for the classical and the quantum formulations of

the system. These solutions are used to characterize the dynamics and the state of the universe. From the

classical solutions we obtain the behavior of quantities such as the volume expansion, the shear, and the

characteristic volume. However, the analysis of these quantities does not lead to any restriction on the

value of the noncommutative parameters � and �. On the other hand, for the quantum system, one can

obtain, via the numerical solution of the WDW equation, the wave function of the universe for

commutative as well as for the noncommutative models. Interestingly, we find that the existence of

suitable solutions of the WDWequation imposes bounds on the values of the noncommutative parameters.

Moreover, the noncommutativity in the momenta leads to damping of the wave function, implying that

this noncommutativity can be of relevance for the selection of possible initial states of the early universe.
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I. INTRODUCTION

Noncommutative space-time and its physical implica-
tions have recently been studied with great interest. This
interest has its roots in developments in string theory/M
theory, where a noncommutative, effective, low-energy
gauge theory action naturally arises when one describes
the low-energy excitations of open strings in the presence
of a Neveu-Schwarz constant background B field [1,2].
Noncommutative theories are also considered to explain
some physical effects such as the quantum Hall effect [3]
and the noncommutative Landau problem [4,5]. Moreover,
noncommutative extensions of the gravitational quantum
well have also been examined in connection with the
measurement of the first two quantum states of the gravi-
tational quantum well for ultracold neutrons [6,7].

In this work we shall assume that the noncommutativity
of space-time is a characteristic feature of quantum gravity
and that its effects should be significant at very high energy
scales, at the early universe. Thus, it is natural to consider
the role of noncommutative geometry in the context of
quantum cosmology. Before considering in detail our
quantum cosmological setting, let us review the main ideas
behind the noncommutative extensions of quantum
mechanics.
The usual formulations of noncommutative quantum

mechanics (NCQM) considered in the literature [6–10]
are based on canonical extensions of the Heisenberg alge-
bra. Time is required to be a commutative parameter, and
the theory lives in a 2d-dimensional phase space of opera-
tors with noncommuting position and momentum varia-
bles. The extended Heisenberg algebra reads

½q̂i; q̂j� ¼ i�ij; ½q̂i; p̂j� ¼ i@�ij;

½p̂i; p̂j� ¼ i�ij; i; j ¼ 1; . . . ; d
(1)

where �ij and �ij are antisymmetric real constant ðd� dÞ
matrices and �ij is the identity matrix. Theoretical predic-

tions for specific noncommutative systems have been com-
pared with experimental data leading to bounds on the
noncommutative parameters obtained in the field theory
and gravitational quantum well contexts, respectively
[6,11]. At those energy scales, the bounds for the non-
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commutative parameters are

� � 4� 10�40m2; � � 1:76� 10�61 kg2m2s�2:

(2)

A great deal of work has been devoted to studying the
structural and formal aspects of the quantum theory based
on the algebra (1). The extended Heisenberg algebra is
related to the standard Heisenberg algebra:

½R̂i; R̂j� ¼ 0; ½R̂i; �̂j� ¼ i@�ij;

½�̂i; �̂j� ¼ 0; i; j ¼ 1; . . . ; d;
(3)

by a class of linear (noncanonical) transformations:

q̂ i ¼ q̂iðR̂j; �̂jÞ; p̂i ¼ p̂iðR̂j; �̂jÞ; (4)

which are often referred to as the Seiberg-Witten (SW)
map [2]. With these transformations, one is able to convert
a noncommutative system into a modified commutative
system, which is dependent on the noncommutative pa-
rameters and on the particular SW map. The states of the
system are then wave functions of the ordinary Hilbert
space, and the dynamics is determined by the usual
Schrödinger equation with a modified �, �-dependent
Hamiltonian. One stresses, however, that the physically
relevant quantities such as expectation values, probabil-
ities, and eigenvalues of operators are independent of the
chosen SW map [10].

In this paper we study a noncommutative extension of
quantum cosmology (QC). We assume that space-time
noncommutativity is significant at very high energy scales
and thus that nontrivial effects might have emerged at early
times. We use the canonical quantization prescription to
obtain a minisuperspace quantum model for the Universe,
arising from the Wheeler-DeWitt (WDW) equation (see
e.g. [12,13] and references therein) based on a Kantowski-
Sachs (KS) metric.

The KS cosmological model has been previously studied
in the context of noncommutative quantum cosmology,
although only for the case where just the configuration
variables are noncommutative [14,15]. Here, we shall ex-
tend noncommutativity to the momentum sector as well.
This provides a more general formulation, which displays
several distinctive features. Moreover, it also provides the
natural setting to analyze the influence of the magnitude of
the noncommutative parameters on the overall behavior of
the theory. Indeed, noncommutativity of the momentum
sector should not be discarded, as there are instances where
the momentum noncommutative corrections may be larger
and more susceptible to experimental detection [6]. In this
paper we shall study both the classical and the quantum
formulations of the full noncommutative KS cosmological
model. Phase-space noncommutativity in quantum cos-
mology has been considered previously [16,17]. How-
ever, this has been done in a different context, namely,
that of multidimensional cosmology.

At the classical level, the effect of noncommutativity can
be studied through the behavior of physical quantities such
as the volume expansion �ðtÞ, with respect to the proper
time of a comoving observer, the shear �ðtÞ, and a char-
acteristic length scale lðtÞ (see e.g. Ref. [18] for an exten-
sive discussion). If from the qualitative point of view,
noncommutativity in the configuration variables leads to
no major effect when compared with the commutative
case, a nontrivial noncommutativity in momenta introdu-
ces a distinct effect in what concerns the behavior of the
shear (cf. Fig. 1 below). It is relevant to point out, however,
that the analysis of the classical noncommutative model,
either in configuration space or in phase space, does not
yield any bound or restriction of the possible values of the
noncommutative parameters � and � or of the relevant
canonical conjugate momenta of the KS model.
This picture changes at the quantum level. Here, our

approach is tantamount to converting the full noncommu-
tative model into a modified commutative system using a
suitable SW map. This yields a deformation of the minis-
uperspace due to the noncommutativity of the variables. By
examining the physical solutions of theWDWequation, we
find that they exist only for particular values of the non-
commutative parameters. This is particularly relevant as
the most natural outcome of quantum gravity is likely to
involve noncommutative features.
Furthermore, we will see that noncommutativity leads to

a richer structure of states for the early universe. However,
this is the case only when momenta noncommutativity is
included. In this case the fundamental solutions of the
WDW equation (which are featureless oscillations for
both the commutative and configuration noncommutative
cases) display a damping behavior. We expect, by refining
the cosmological model and/or by choosing other defor-
mations of the Heisenberg algebra, to obtain normalized
solutions of the WDW equation. This will provide a major
breakthrough for the physical interpretation of the initial
state of the universe.
This paper is organized as follows. In Sec. II, we review

the original formulation of the commutative classical and
quantum KS cosmological models. We extend the formal-
ism to encompass noncommutativity in both coordinates
and momenta. We consider in detail the classical and the
quantum formulations of this noncommutative extension
and obtain the noncommutative WDW equation. In
Sec. III, we present our numerical solutions for the classi-
cal Hamiltonian equations and for the WDWequation. We
analyze the classical behavior of three relevant physical
quantities—the volume expansion, the shear, and a char-
acteristic volume. We then numerically solve the WDW
equation and depict some typical wave functions analyzing
the set of values for � and � for which a solution exists and
the wave function has features such as damping behavior.
Finally, in Sec. IV, we discuss our results and put forward
some conclusions.
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II. THE COSMOLOGICAL MODEL

Let us consider a cosmological model given by the KS
metric, which has the correspondent line element given by

ds2 ¼ �N2dt2 þ X2ðtÞdr2 þ Y2ðtÞðd�2 þ sin2�d’2Þ:
(5)

In the Misner parametrization, this can be written as [18]

ds2 ¼ �N2dt2 þ e2
ffiffi
3

p
�dr2

þ e�2
ffiffi
3

p
�e�2

ffiffi
3

p
�ðd�2 þ sin2�d’2Þ; (6)

where � and � are scale factors and N is the lapse
function. The presence of at least two scale factors is
necessary to consider a noncommutative extension of the
classical problem. Following the Arnowitt-Deser-Misner
construction, one can derive the Hamiltonian for this met-
ric,

H ¼ NH ¼ Ne
ffiffi
3

p
�þ2

ffiffi
3

p
�

�
�P2

�

24
þ P2

�

24
� 2e�2

ffiffi
3

p
�

�
;

(7)

where P� and P� are the canonical momenta conjugate to

� and �, respectively. The lapse function N will be taken

to be N ¼ 24e�
ffiffi
3

p
��2

ffiffi
3

p
�. This corresponds to a particular

gauge choice, which is motivated by technical simplicity
(related only to the classical treatment). Our results are,
nevertheless, all gauge independent. At the quantum level,
the treatment is manifestly covariant as the lapse function
does not enter at all in the formalism. At the classical level,
only the dynamics of the fundamental variables is gauge
dependent, while the three relevant physical variables (the
volume expansion, the shear, and the characteristic vol-
ume) are gauge invariant. We will see this explicitly in the
next sections. We will consider the classical and the quan-
tum formulations separately.

A. The classical model

Classically, the equations of motion for the phase-space
variables �, �, P�, and P� can be obtained from the

Poisson bracket algebra. For the commutative case, the
Poisson brackets are

f�; P�g ¼ 1; f�;P�g ¼ 1;

f�; �g ¼ 0; fP�; P�g ¼ 0;
(8)

FIG. 1. Volume expansion �ðtÞ, shear �ðtÞ, and characteristic volume l3ðtÞ for (i) � ¼ � ¼ 0 (the commutative model, thin line),
(ii) � ¼ 5, � ¼ 0 (configuration space noncommutative model, dashed line), and (iii) � ¼ 5, � ¼ 0:1 (full noncommutative model,
thick line). The initial conditions are �ð0Þ ¼ 10, P�ð0Þ ¼ 0, P�ð0Þ ¼ 0:4, and �ð0Þ ¼ 1:65. Notice that the singularity corresponds

to t! �1, while the asymptotic region of the metric corresponds to t! 1.
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and thus, the equations of motion with respect to the
internal time are the usual Hamiltonian equations _X ¼
NfX;H g for each of the canonical variables X. In the
constraint hypersurface

H � 0 (9)

this leads to [15]

_� ¼ �2P�; _P� ¼ �96
ffiffiffi
3

p
e�2

ffiffi
3

p
�;

_� ¼ 2P�; _P� ¼ 0:
(10)

The solutions for � and � are

�ðtÞ ¼
ffiffiffi
3

p
6

ln

�
48

P2
�0

cosh2½2 ffiffiffi
3

p
P�0

ðt� t0Þ�
�
;

�ðtÞ ¼ 2P�0
ðt� t0Þ þ �0:

(11)

In previous works the noncommutative extension of this
model has been considered [14,15]. However, this has only
been done for spatial noncommutativity (i.e. for noncom-
mutative configuration variables� and�). In Ref. [15], the
authors obtained classical solutions for the system de-
scribed by the Hamiltonian constraint (9) in the context
of a noncommutative phase space with symplectic struc-
ture given by Eqs. (8) with f�; �g ¼ �, instead of
f�; �g ¼ 0.

Clearly, a more general noncommutative extension can
be obtained by imposing a noncommutative relation be-
tween the two coordinates � and �, and also between the
two canonical momenta P� and P�, as follows:

f�; P�g ¼ 1; f�;P�g ¼ 1;

f�; �g ¼ �; fP�; P�g ¼ �:
(12)

In this case the classical equations of motion for the non-
commutative system are

_� ¼ �2P�; (13a)

_P� ¼ 2�P� � 96
ffiffiffi
3

p
e�2

ffiffi
3

p
�; (13b)

_� ¼ 2P� � 96
ffiffiffi
3

p
�e�2

ffiffi
3

p
�; (13c)

_P� ¼ 2�P�: (13d)

It seems that an analytical solution of this system is beyond
reach, given the entanglement among the four variables.
On the other hand, a numerical solution can be obtained
and used to provide predictions for several physical rele-
vant quantities. We will proceed in this way in the next
section. But before that, let us point out that Eqs. (13a) and
(13d) yield a constant of motion:

_P� ¼ ��ð�2P�Þ ¼ �� _� ) P� þ �� ¼ C; (14)

that will play an important role in solving the noncommu-
tative WDW equation.

B. The quantum model

Here and henceforth, we assume a system of units where
c ¼ @ ¼ G ¼ 1. Consequently, the noncommutative pa-
rameters � and �, being an intrinsic feature of quantum
gravity, should be of order 1 as is the Planck length, LP ¼
1.
The canonical quantization of the classical Hamiltonian

constraint Eq. (9) yields the commutative WDW equation
for the wave function of the universe. For the simplest
factor ordering of operators, this equation reads

expð ffiffiffi
3

p
�̂þ 2

ffiffiffi
3

p
�̂Þ½�P̂2

� þ P̂2
�� 48e�2

ffiffi
3

p
�̂� ð�;�Þ ¼ 0;

(15)

where P̂� ¼ �i @
@� , P̂� ¼ �i @@� are the fundamental mo-

mentum operators conjugate to �̂ ¼ � and �̂ ¼ �, re-
spectively. Notice that Eq. (15) depends on the prescribed
factor order. This is, however, a common feature to all
quantum cosmological models (both commutative and
noncommutative). Indeed, we may say that the full identi-
fication of the quantum cosmological model requires spec-
ifying an operator ordering. For our model we choose the
simplest factor order, which has already been studied in the
past both for the commutative and the configuration non-
commutative cases. This allows us to compare our results
with the previous ones found in the literature.
The solutions of (15) can be shown to be of the form [14]

 �
� ð�; �Þ ¼ e�i�

ffiffi
3

p
�Ki�ð4e�

ffiffi
3

p
�Þ; (16)

where Ki� are modified Bessel functions.
We now require the coordinates and the canonical mo-

menta to be noncommutative and obtain the extended
Heisenberg algebra,

½�̂; �̂� ¼ i�; ½P̂�; P̂�� ¼ i�;

½�̂; P̂�� ¼ ½�̂; P̂�� ¼ i:
(17)

Our strategy to obtain a representation of the algebra (17)
is to transform it into the standard Heisenberg algebra
through a suitable nonunitary linear transformation,
dubbed the SW map:

�̂ ¼ ��̂c � �

2�
P̂�c ; �̂ ¼ ��̂c þ �

2�
P̂�c

;

P̂� ¼ �P̂�c
þ �

2�
�̂c; P̂� ¼ �P̂�c �

�

2�
�̂c;

(18)

where the index c denotes commutative variables, i.e.

variables for which ½�̂c; �̂c� ¼ ½P̂�c
; P̂�c� ¼ 0 and

½�̂c; P̂�c
� ¼ ½�̂c; P̂�c� ¼ i. This transformation can be in-

verted, provided

	 � �� < 1: (19)

In that case the inverse transformation reads
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�̂c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p
�
��̂þ �

2�
P̂�

�
;

�̂c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p
�
��̂� �

2�
P̂�

�
;

P̂�c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p

�
�P̂� � �

2�
�̂

�
;

P̂�c ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p

�
�P̂� þ �

2�
�̂

�
:

(20)

Substituting the noncommutative variables, expressed in
terms of commutative ones, into the commutation relations
(17), one obtains a relation between the dimensionless
constants � and �:

ð��Þ2 � ��þ 	

4
¼ 0 , �� ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p
2

: (21)

Using the transformation (18), one may regard (17) as an
algebra of operators acting on the usual Hilbert space
L2ðIR2Þ. In this representation the WDW equation (15) is
deformed into a modified second order partial differential
equation, which exhibits an explicit dependence on the
noncommutative parameters:�
�
�
�i� @

@�c

þ �

2�
�c

�
2 þ

�
�i� @

@�c
� �

2�
�c

�
2

� 48 exp

�
�2

ffiffiffi
3

p �
��c þ i

�

2�

@

@�c

���
 ð�c; �cÞ ¼ 0:

(22)

This equation is fairly complex and cannot be fully solved
analytically. However, the noncommutative quantum ver-
sion of the constant of motion Eq. (14),

Ĉ ¼ P̂� þ ��̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p �
�P̂�c þ

�

2�
�̂c

�
; (23)

commutes with the noncommutative Hamiltonian con-
straint Eq. (22). We stress once again that this is only valid
for the chosen operator ordering. This allows one to trans-
form the partial differential equation (22) into an ordinary
differential equation, which can then be solved numeri-
cally. We will present these results in the next section.

III. SOLUTIONS

A. Classical solutions

The relevant physical variables for the classical system
are as follows: the volume expansion �ðtÞ, with respect to
a timelike vector field U, which we parametrize by proper

time, so that U �U ¼ �1; the shear, �ðtÞ ¼ ½��
��
�1=2,
where ��� ¼ ½ð1=2Þðu�;
 þ u
;�Þ � ð1=3Þ�h�
�h��h
� is

the shear tensor [18]; and a characteristic volume for the
metric, l3ðtÞ. In these definitions the semicolon stands for
the covariant derivative. The h�� are the components of the

tensor h, which is the projection onto the set of vectors

perpendicular to U, and u� are the covariant components

of U in four dimensions, given by u� ¼ g��u
�. The

volume expansion and the shear are related with the dy-
namics of the space-time and measure the rate at which an
element of volume in the universe deforms [18]. The
characteristic volume can be obtained from a characteristic
length scale lðtÞ, which is defined in terms of the volume

expansion as � ¼ 3 _l=ðlNÞ [15]. For the KS metric these
quantities are given by [15]

�ðtÞ ¼ 1

N

� _X

X
þ 2

_Y

Y

�
¼ �

ffiffiffi
3

p
24

ð _�þ 2 _�Þe
ffiffi
3

p
�þ2

ffiffi
3

p
�; (24)

�ðtÞ ¼ 1ffiffiffi
3

p
N

� _X

X
� _Y

Y

�
¼ 1

24
ð2 _�þ _�Þe

ffiffi
3

p
�þ2

ffiffi
3

p
�; (25)

l3ðtÞ ¼ XðtÞY2ðtÞ ¼ e�
ffiffi
3

p
��2

ffiffi
3

p
�; (26)

where XðtÞ and YðtÞ are the same variables as in Eq. (5). As
can be seen by their expressions in terms of XðtÞ and YðtÞ,
these quantities are all diffeomorphism invariant and hence
not affected by the choice of the lapse function [18].
Through the numerical solutions of the noncommutative

classical system Eqs. (13), we are able to obtain estimates
for these quantities. In Fig. 1 we depict these results. They
are obtained for the commutative KS model and for its
extensions displaying noncommutativity in the configura-
tion and in the phase-space variables. The thin line exhibits
the behavior of the commutative model ð� ¼ � ¼ 0Þ. The
noncommutative cases are described by dashed (� ¼ 5,
� ¼ 0) and thick lines for � ¼ 5 and � ¼ 0:1, respec-
tively. Notice that the singularity corresponds to t!
�1, while the asymptotic region of the metric corresponds
to t! 1.
There are four initial conditions for our problem, �ð0Þ,

�ð0Þ, P�ð0Þ, and P�ð0Þ. Three of them, �ð0Þ, P�ð0Þ, and
P�ð0Þ, are related to each other due to the constraint (9).

Then, if one chooses numerical values for P�ð0Þ and

P�ð0Þ, one immediately obtains a value for �ð0Þ. �ð0Þ is
an independent initial condition, and it is chosen in order to
maximize the effect of noncommutativity on the physical
quantities.
A simple analysis of the behavior of the physical quan-

tities leads to the conclusion that, for constant values of the
initial conditions and �, the variation of � implies that the
�ðtÞ and �ðtÞ functions tend towards a straight line for
negative t and to zero for positive t; on its turn, the overall
magnitude of l3 increases with the growth of �. This is also
the pattern for higher values of �. On the other hand, in the
situation where � and the initial conditions remain con-
stant and � varies, we obtain an analogous qualitative
behavior for �ðtÞ, �ðtÞ, and l3ðtÞ. Notice that in Fig. 1,
negative t values are considered to depict the complete
behavior of the physical quantities. The results are invari-
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ant under a time translation; thus the time origin is some-
what arbitrary.

It is relevant to point out that our results are quite stable
in what concerns changes of the initial conditions, and that
the chosen values are fairly typical. We may however point
out that, when�ð0Þ assumes negative values, the expansion
volume and the shear get smaller, while the characteristic
volume gets larger, when compared to the �ð0Þ ¼ 0 case.
For �ð0Þ positive, the opposite is found. On the other hand,
the variation of P�ð0Þ has a direct influence on the overall

magnitude of the characteristic volume, l3ðtÞ.
The results depicted in Fig. 1 show that, from a qualita-

tive point of view, noncommutativity in the configuration
variables leads to no noticeable effect when compared with
the commutative case in what concerns �ðtÞ and l3ðtÞ;
however, a nontrivial noncommutativity makes the behav-
ior of the shear rather ‘‘symmetric’’ with respect to the
arbitrary origin of time, where it assumes the minimal
value. The effect is not so sharp for the case of noncom-
mutativity in configuration and momentum variables, but is
still clearly present in this situation as well. Given that the
shear corresponds to the distortion in the evolution of the
metric, one observes that noncommutativity implies that
the metric is less distorted in its evolution.

Finally, it is important to realize that the analysis of the
classical noncommutative model does not yield any re-
striction on the possible values of the noncommutative
parameters � and �. This feature will actually emerge
from the analysis of the quantum version of the noncom-
mutative KS cosmological model.

B. Solutions for the WDW equation

In this section, all variables are operators. To keep the
notation simple, we shall omit the hats on the operators as

there is no risk of confusion here. Let us now consider
Eq. (22) in detail. From Eq. (23) we can define A ¼ Cffiffiffiffiffiffiffi

1�	
p .

It then follows that

�P�c þ
�

2�
�c ¼ A: (27)

As we have already mentioned, the noncommutative
WDW equation (22) is fairly complex and does not seem
to allow for an analytical solution. Our strategy will consist
in solving it numerically by transformation into an ordi-
nary differential equation. It is easy to verify that the
constant of motion Eq. (14) commutes with the
Hamiltonian in the constraint space of states, that is,

½P�þ��;H� ¼ ½P�þ��;�P2
� þP2

�� 48e�2
ffiffi
3

p
�� ¼ 0:

(28)

Thus, one can look for solutions of Eq. (22) that are
simultaneous eigenstates of the Hamiltonian and of the
constraint Eq. (27). If  að�c; �cÞ is an eigenstate of the
operator Eq. (27) with eigenvalue a 2 IR, then

�
�i� @

@�c
þ �

2�
�c

�
 að�c; �cÞ ¼ a að�c; �cÞ: (29)

Solving this equation, one obtains

 að�c; �cÞ ¼ <ð�cÞ exp
�
i

�

�
a� �

2�
�c

�
�c

�
: (30)

Substituting the wave function (30) into Eq. (22) yields

�2

�<00

< � i
�

�2

<0

< �c � �2

4�4
�2
c

�
þ i�

�<0

< � i
�

2�2
�c

�
�c � �2

4�2
�2
c þ

�
a� �

2�
�c

�
2 � �

�

�
a� �

2�
�c

�
�c þ �2

4�2
�2
c

� 48 exp

�
�2

ffiffiffi
3

p �
��c � �

2��
ða� �

2�
�cÞ

��
¼ 0; (31)

where <0 � d<
d�c

. After some algebraic manipulations, one gets

�2<00 þ
�
�
�c

�
� a

�
2<� 48 exp

�
�2

ffiffiffi
3

p �c

�
þ

ffiffiffi
3

p
�

��
a

�
< ¼ 0: (32)

Performing the change of variables,

z ¼ �c

�
! d

dz
¼ �

d

d�c

; (33)

one finally finds for �ðzÞ � <ð�cðzÞÞ

�00ðzÞ þ ð�z� aÞ2�ðzÞ

� 48 exp

�
�2

ffiffiffi
3

p
zþ

ffiffiffi
3

p
�

��
a

�
�ðzÞ ¼ 0: (34)

This second order ordinary differential equation can be
solved numerically. The equation itself depends on the
eigenvalue a and on the noncommutative parameters �
and �.
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Figure 2 depicts numerical solutions of Eq. (34) for
particular choices of values of a, �, and �. The noncom-
mutative parameters � and� are assumed to be in the range
of values of the previous classical analysis. The eigenvalue
a was taken to be a ¼ Cffiffiffiffiffiffiffiffiffiffi

1���
p and is determined through

Eq. (14) from the classical values P�ð0Þ and �ð0Þ used to

generate the solutions of Eqs. (13).
The qualitative features of the solutions displayed in

Fig. 2 remain within a suitable range of variation of �, �,
and a. The choice � ¼ 5 is fairly typical in what concerns
the properties of the wave function. Furthermore, it is
consistent with the point of view that the noncommutative
parameters should be of order 1 close to the fundamental
quantum gravity scale. After these general remarks, we are
in a position to list the most salient features of our results:

(1) For � ¼ 5, we find that the wave function is ill
defined (it blows up) for �c > 0:12, suggesting
a system’s upper limit for momenta
noncommutativity.

(2) For fixed � ¼ 5, the variation of � yields a wave
function with damping behavior for � in the range
0:05<�< 0:12.

(3) The lower limit for � having a damping impact on
the quantum behavior of the system seems to be
around �	 0:05 for all � > �. Clearly, higher �
values (cf. Fig. 2) have a great influence on the wave
function. Indeed, for � ¼ 0 the wave function sim-
ply oscillates. For 0<�< 0:05, the wave function
is actually amplified instead of exhibiting a damping
behavior.

(4) The variation of � affects the numerical values of
�ðzÞ, but qualitative features of the wave function
remain unchanged. For instance, for � ¼ 4 and
maintaining the initial conditions, the damping oc-
curs at a slightly different range, 0:07<�< 0:16.

(5) The qualitative features of the wave function for
large z are essentially the ones depicted in Fig. 2
for z � 30.

FIG. 2. Representation of the numerical solutions of Eq. (34) for different values of the noncommutative parameters. In the four
plots, P�ð0Þ ¼ 0:4 and �ð0Þ ¼ 1:65.
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(6) For �> �, the damping behavior of the wave func-
tion is more difficult to observe. For instance,

(i) If � ¼ 1, the wave function has a damping behavior
for 0< �< 0:83. For � > 0:83 it blows up.

(ii) If � ¼ 2, for 0< �< 0:1, the damping behavior is
observed; however for � values greater than 0.1, the
wave function is ill defined.

(iii) Finally, if � 
 3 there are no possible ranges for �
for which the wave function is well defined.

Our criterion to determine bounds for the noncommuta-
tive parameters is based on the existence of well-defined
smooth solutions of the WDW equation. These solutions,
as we have seen, do not exist for arbitrary values of � and
�. We should point out that if, in addition, we could
provide a gauge invariant measure, then, at least in princi-
ple, we would be able to determine supplementary bounds
on � and � by requiring the formalism to yield finite
probabilities. Unfortunately, the issues of gauge fixing
and of defining a suitable inner product remain open prob-
lems in quantum cosmology and are, of course, beyond the
scope of this paper.

One should notice that it is the momenta noncommuta-
tivity that has the strongest impact on the functional form
of the eigenstates of the Hamiltonian constraint, as we
clearly see in Fig. 2. One of the most interesting features
of the introduction of the momenta noncommutativity is
that it turned the fundamental solutions of the Hamiltonian
constraint from featureless oscillations into damped wave
functions displaying an ‘‘almost’’ normalizable functional
form. This is a welcome property as it introduces features
in the wave function, selecting the preferred states for the
quantum cosmological model and hints on the set of suit-
able initial conditions for the classical cosmological
model. Moreover, this property suggests that, for other
cosmological models or other types of noncommutativity,
the Hamiltonian constraint may display a discrete spectrum
and thus normalizable eigenstates. This would be a major
breakthrough allowing one to bypass the problem of in-
troducing a measure and to gauge fix in order to obtain
finite probabilities. This issue will be further discussed in
the next section.

IV. CONCLUSIONS

In this work we have studied the effects of phase-space
noncommutativity on the minisuperspace KS quantum
cosmological model and examined its most distinctive
features. We found that, despite the difficulty of the prob-
lem, a constant of motion could be identified allowing for
numerical solutions of the WDW equation in the noncom-
mutative setting.

The resulting solution allows one to study the behavior
of the dynamical functions, and classically determine the
behavior of the volume expansion, shear, and characteristic
volume. The evolution of these quantities is obtained for a
particular set of initial conditions. We find that the classical

effects associated with momenta noncommutativity, � �
0, are qualitatively different from those with � ¼ 0, but
� � 0, in particular, in what concerns the shear.
Furthermore, for positive and large values of �ð0Þ, the
volume expansion and the shear are quite huge, while the
characteristic volume is extremely small. At the quantum
level the effects of noncommutativity are more profound
as, on the one hand, the existence of solutions for the
WDW equation imposes bounds on the noncommutative
parameters and, on the other hand, the momenta noncom-
mutativity introduces a damping behavior in the wave
function for growing values of the� variable. This implies
that the wave function is more peaked for small values
of �, which is a rather interesting and new portrait of
the quantum aspects of the very early universe and is
entirely due to the introduction of the momentum
noncommutativity.
Notice that some authors choose to convolute the fun-

damental wave functions with certain kernels (typically
Gaussians) to obtain wave functions with features. For
instance, in Ref. [14], the wave function for � ¼ 0 has
been constructed,

 ð�; �Þ ¼ N
Z þ1

�1
d�e�að��bÞ2 �ð�; �Þ; (35)

where

 �ð�; �Þ ¼ ei�
ffiffi
3

p
�Ki�ð4e�

ffiffi
3

p
�þð3=2Þ��Þ; (36)

and an expression for j ð�; �Þj2 is depicted for certain
values of a, b. This wave function also displays a damping
behavior. However, this is a consequence of the convolu-
tion with the Gaussian and not of the structure of the
fundamental solutions  �ð�; �Þ which, in this case, are
just featureless oscillations [see Fig. 2(b)]. Indeed the sole
effect of the configuration space noncommutativity is a
shift in the solution of the commutative model [see Figs. 2
(a) and 2(b)]. This is in sharp contrast with momenta
noncommutativity where, as indicated in Figs. 2(c) and 2
(d), the damping of the fundamental solutions occurs
even in the absence of the configuration space
noncommutativity.
We remark, nevertheless, that the canonical noncommu-

tativity considered in this work is not by any means unique.
There are other admissible deformations of the Heisenberg
algebra [19–24]. A deformation of the fundamental algebra
is tantamount [see Eqs. (15) and (22)] to adding new
interactions to the Hamiltonian. In our case, the inclusion
of momentum noncommutativity has led to a damping
effect on the wave function of the universe, but not quite
enough to render it normalizable. It seems like an interest-
ing avenue to explore whether other types of noncommu-
tativity (as well as other cosmological models) might yield
normalizable solutions of the noncommutative WDW
equation. A simple example reveals that this is indeed a
possibility worth exploring. Even with the simple non-
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commutative extension considered in this work, one may
turn a Hamiltonian constraint with a continuous spectrum
(and non-normalizable eigenfunctions) into one with a
discrete spectrum (and normalizable eigenfunctions).
Consider the nonrelativistic, general parametrized system
described by a Hamiltonian constraint of the form

Ĥ ¼ P̂2
� þ P̂2

� � �:

We use the same notation as used previously to avoid
unnecessary complications. Here �, � are arbitrary con-
figuration variables and � is a positive real constant. The
physical states are the solutions of the eigenvalue equation:

Ĥ ¼ 0:

If P̂�, P̂� commute, then Ĥ has a continuous spectrum and

the physical wave functions (plane waves) are not normal-
izable. The standard procedure to obtain physical predic-
tions for this system is to introduce a measure yielding
finite probabilities [25–27]. We see that, in spite of being a
nonrelativistic system, this model displays some of the
features of our cosmological model.

We now introduce the noncommutativity and set

½P̂�; P̂�� ¼ i�. By performing the SW transformation as

in Eq. (17), we obtain

Ĥ ¼ P̂2
�c

2M
þ P̂2

�c

2M
þ 1

2
M!2�̂2

c þ 1

2
M!2�̂2

c �!L̂z � �;

where M ¼ 1
2�2 , ! ¼ �, and L̂z ¼ �̂cP̂�c � �̂cP̂�c

. This

is the Hamiltonian of a two-dimensional harmonic oscil-
lator coupled to an external constant magnetic field, which
is well known in the context of the Landau problem. This
Hamiltonian has discrete spectrum and normalizable ei-
genfunctions [4]. Hence the physical states, solutions of the

constraint equation Ĥ ¼ 0 (for certain values of �), yield
finite probabilities, and we can avoid the problem of in-
troducing a measure. Notice that, as usual, the solutions of

the noncommutative constraint Ĥ ¼ 0 are functions of
the commutative variables; i.e. they are of the form
 ð�c; �cÞ. This is the standard procedure. Since  is
normalizable, probability distributions can then be con-

structed independently for the noncommutative variables
� and � (this issue will be further discussed in the next
paragraph). In conclusion, our example suggests that, in
the context of the quantization of general parametrized
systems, finite probabilities can be obtained through (mo-
mentum) noncommutativity, at least for nonrelativistic,
finite-dimensional models. It remains an open question
whether this is also possible in the context of quantum
cosmology.
Finally, let us briefly discuss some related issues on the

status of the amplitude j ð�; �Þj2 in the context of non-
commutative systems. The quantity j ð�; �Þj2 cannot be
interpreted as a joint probability distribution for � and �
(even upon smoothing it with a kernel), as these variables
do not commute. It is a well-known fact that noncommut-
ing variables (such as position and momentum) can at best
be statistically described by a quasiprobability distribution
(such as the Wigner function [28]), due to Heisenberg’s
uncertainty principle. The exact expression for such a
quasiprobability distribution would be [29]

 ð�; �Þ ?�  ð�; �Þ; (37)

for a single noncommutative scale factor,�, or � ð� ¼ 0Þ.
Here ?� is the Moyal product [30]:

Að�; �Þ ?� Bð�; �Þ

¼ Að�; �Þ exp
�
i�

2

�
@Q

@�

~@

@�
� @Q

@�

~@

@�

��
Bð�; �Þ; (38)

where @Q and ~@ act on A and B, respectively.
When the momenta are also noncommutative ð� � 0Þ, it

is proven that the quantity Eq. (37) must be replaced by
[31]

1

"2
 

�
�

"
;
�

"

�
?�  

�
�

"
;
�

"

�
; (39)

where " is the free dimensionless parameter from the SW
map (18).
Returning to the work of [14], the correct expression for

the amplitude associated to Eq. (22) should actually be
given by Eq. (37):

 ð�; �Þ ?�  ð�; �Þ ¼ N 2
Z þ1

�1
d�

Z þ1

�1
d�e�að��bÞ2�að��bÞ2½ �ð�; �Þ ?�  �ð�; �Þ�: (40)

A simple calculation using the Bopp shift representation of the ?� product

Að�; �Þ ?� Bð�; �Þ ¼ A

�
�; �� i�

2

~@

@�

�
B

�
�; �þ i�

2

@Q

@�

�
(41)

yields

 ð�; �Þ ?�  ð�; �Þ ¼ N 2
Z þ1

�1
d�

Z þ1

�1
d�e�að��bÞ2�að��bÞ2Ki�ð4e�

ffiffi
3

p
�þð3=2Þ�ð�þ�ÞÞKi�ð4e�

ffiffi
3

p
��ð3=2Þ�ð���ÞÞ: (42)
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Since one is unable to solve the WDW equation analyti-
cally for the � � 0 case, one cannot write down the
corresponding expression for Eq. (39). To summarize,
noncommutative quantum mechanics is not just ordinary
quantum mechanics with additional interactions (via the
SW map). This procedure is just an artifact to solve the
problem (typically an eigenvalue equation). However, one
still has to extract the physical predictions (expectation
values, probabilities). The point of noncommutative quan-
tum mechanics is that the physical configuration (or mo-
mentum) variables do not commute, and one has to resort
to expressions such as Eqs. (37) and (39) to make the right
predictions.

An interesting aspect of this quasiprobability formula-

tion is that these distributions  ?�  may, and usual,

assume negative values, which precludes their interpreta-
tion as probability measures. It would be interesting to
investigate under which conditions, that is to say, for which
range of values for �, �, these quasidistribution will be
(almost) point-wise non-negative, as this would signal the
emergence of a commutative universe.
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