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Recollapsing homogeneous and isotropic models present one of the key ingredients for cyclic scenarios.

This is considered here within a quantum cosmological framework in the presence of a free scalar field

with, in turn, a negative cosmological constant and spatial curvature. Effective equations shed light on the

quantum dynamics around a recollapsing phase and the evolution of state parameters such as fluctuations

and correlations through such a turn around. In the models considered here, the squeezing of an initial

state is found to be strictly monotonic in time during the expansion, turn around, and contraction phases.

The presence of such monotonicity is of potential importance in relation to a long-standing debate

concerning the (a)symmetry between the expanding and contracting phases in a recollapsing universe.

Furthermore, together with recent analogous results concerning a bounce, one can extend this monoto-

nicity throughout an entire cycle. This provides a strong motivation for employing the degree of squeezing

as an alternative measure of (quantum) entropy. It may also serve as a new concept of emergent time

described by a variable without classical analog. The evolution of the squeezing in emergent oscillating

scenarios can in principle provide constraints on the viability of such models.
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I. INTRODUCTION

Classical cosmology has shown enormous progress over
the recent years. Despite this, a number of fundamental
questions remain. Central among these is the fact that
within the classical general relativistic framework, the
initial state of the universe is singular, which would result
in the breakdown of the laws of physics. To obtain a
satisfactory scenario with a nonsingular initial state, one
often looks to quantum gravity and quantum cosmology. In
fact, with a loop quantization one can generically resolve
the big bang singularity in cosmological and other models
[1,2]. In the simplest cases, a bounce results, which keeps
the volume nonzero and the universe away from the clas-
sical singularity reached otherwise at the big bang. The
possibility of a contracting phase (or several phases) before
the hot big bang has recently been invoked in a number of
cosmological scenarios, including several models pro-
posed as alternatives to standard inflation, such as, for
example, pre-big bang [3] and the ekpyrotic/cyclic scenar-
ios [4–6]. The assumed nature of such phases, however, has
so far been mostly rather ad hoc, without a satisfactory
treatment of the classical singularity. The presence of such
phase(s) raises important questions, including their nature
and their relation to the present phase of the universe. This
in turn relates to fundamental questions such as, among
others, cosmological entropy and the arrow of time.

Now, given that the big bang was a high-energy, strong-
curvature regime, the understanding of the pre- and post-

bounce phases would require a full control of dynamical
evolution of the quantum state through such a bounce.
Moving through a bounce, a wave packet can spread and
deform significantly, implying that the universe before the
bounce could, for all we know, have been in a state very
different from what we see now. Thus, to understand the
cosmological dynamics through such bounces, all aspects
of a quantum space-time are essential, including its fluc-
tuations and higher moments.
In loop quantum cosmology, solvable models with con-

trolled state properties exist if the matter source is a free,
massless scalar. This has been analyzed numerically [7–
10] and analytically [11,12]. More general models can be
treated by means of effective equations [13,14], as they are
also employed here for the recollapse. Note that the con-
cept of effective equations is much more general than
simply providing correction terms to classical equations.
With a complete set of consistent effective equations one
can, in fact, derive dynamical properties such as expecta-
tion values, fluctuations, correlations, or higher moments
for full quantum states. As we will see below, state prop-
erties can be studied directly by using effective equations,
which provide an economical and representation-
independent approximation scheme of the evolution of
states. (For another discussion of effective equations espe-
cially in quantum cosmology, see [15].)
If one combines the quantum bounce with a classical

recollapse, cyclic models ensue. Such oscillatory models,
according to which the universe undergoes many (and
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possibly an infinite number of) bounces, have been em-
ployed in order to construct nonsingular emergent models
which can set the initial conditions for a successful phase
of inflation. Since such a universe can pass through many
cycles, and hence many high energy, strong-curvature
regimes, this could result in even more severe changes of
its state compared to a single bounce. We should note that
oscillatory models have a long history in cosmology at
least since the studies by Tolman in the 1930’s [16,17]—
albeit within a classical setting. Interestingly, Tolman also
considered the question of cosmological entropy for these
models, claiming that the entropy during the expanding
phase should be slightly lower than during the subsequent
collapsing phase. In these studies entropy refers to that of
the content of the universe [16,17] and ignores contribu-
tions from (quantum) gravity.

There are, however, important problems with these mod-
els, including the lack of treatment of singularities and the
uncorroborated assumption that the bounces themselves
leave the entropy of the universe unchanged. The consid-
eration of oscillatory models within a quantum cosmologi-
cal framework, on the other hand, not only allows
singularities to be avoided, but also introduces many
more quantum degrees of freedom, thus allowing the ques-
tion of entropy to be considered in a different light.

This is the setting we consider in this paper. We will
analyze the recollapse in detail, which is a semiclassical
regime but, crucially, still described in terms of a quantum
state. We especially focus on the evolution of state parame-
ters through the recollapse, which provides insights to the
question of what their generic change may be. In particular,
we are interested in how strongly fluctuations of a generic
state respect time-reversal symmetry for time reflections
around the recollapse point. If fluctuations are symmetric
in this sense, there is not much change between the pre-
and post-recollapse phases. A violation of the symmetry,
on the other hand, would provide a measure for the generic
change of the quantum state in the recollapse phase. The
analysis is thus complementary to what has already been
studied for the bounce [18,19]: Can the quantum state after
the recollapse be very different from what it was before?
Especially in the presence of many cycles, this question is
important for understanding the viability of oscillatory
cosmological models over epochs long compared to the
life time of individual cycles.

For technical reasons, we shall take a free massless
scalar as the matter source in all models considered in
detail here. However, we shall also demonstrate the robust-
ness of our claims under the inclusion of potentials. The
free scalar has the advantage that it can be used as a global
internal time parameter and thus gives rise to true
Hamiltonian, rather than constrained, evolution. Any non-
constant potential or even a mass term would spoil this
feature. (Here we refer to the classical situation. We will
later encounter and entertain the possibility of genuine

quantum variables as a measure for time even in situations
where no obvious classical clock may exist.) Moreover, in
the absence of a cosmological constant and for flat, iso-
tropic space, this matter content provides an exactly solv-
able model even after quantization (loop or otherwise)
[11]. Thus, there are no dynamical quantum corrections
whatsoever in this case; the system is harmonic and
presents the simplest and most controlled model of quan-
tum cosmology. (There may, however, be quantum geome-
try corrections of kinematical type which give rise to a
bounce in loop quantum cosmology. But they turn out not
to spoil the dynamical solvability [11].) However, this
exact model does not allow a recollapse, and we therefore
have to add extra ingredients and with them nontrivial
quantum corrections. Nevertheless, the resulting systems
will be manageable and provide key contributions for
highly controlled cyclic models. While there is no scalar
potential in the main part of the paper, we verify that in fact
our results remain robust in the presence of general non-
zero potentials. Moreover, our analysis provides a starting
point to analyze equations in the presence of a potential
perturbatively. For the bounce, such equations are devel-
oped in [13,14], which in some cases even allow conclu-
sions valid to all orders in the potential and in quantum
moments [20]. Since our main question is about limitations
to the symmetry of fluctuations around cosmological turn-
ing points, a highly controlled model is reliable as any
limitation there would only grow if the model becomes
more complicated. (See also [18,19] in this context.) In
Sec. III C we will comment in more detail on possible
effects of a potential.

II. RECOLLAPSING MODELS

We shall confine ourselves to isotropic and homogene-
ous settings. There are two different ways to achieve a
recollapsing cosmological model: by including a negative
cosmological constant or by allowing positive spatial cur-
vature. We shall first describe the general scheme of our
analysis and then specialize to these two cases. In deriving
our central result, namely, the monotonic increase of
squeezing during a single recollapse phase, we employ
effective equations based on a Wheeler-DeWitt quantiza-
tion, rather than loop quantization. These two schemes are
close to each other in the regime of interest here. Only at
the end of this paper will we use results of loop quantum
cosmology in the application to a cyclic scenario where a
recollapse phase is joined to a bounce phase. In anticipa-
tion of this we choose the specific form of our basic
variables with motivation from loop quantum cosmology,
as explained below, although this does not affect the main
results.

A. Prescription

In the presence of a cosmological constant and a free
massless scalar field, the Friedmann equation takes the
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form
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where p� is the momentum corresponding to the homogeneous scalar field � and can be written as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ kf20
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8�Gð1� xÞf0V
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�
2x=ð1�xÞ ��f20

�
8�Gð1� xÞf0V

3

�ð1þ2xÞ=ð1�xÞ
s

(2)

in terms of canonical gravitational variables

V ¼ 3a2�2x

8�Gð1� xÞf0 and P ¼ �f0a
2x _a (3)

with fV; Pg ¼ 1. The introduction of this pair of canonical
variables and the parameters f0 and x is motivated by loop
quantum cosmology and deserves further explanation:
While f0 will not be of much consequence in what follows,
we keep it for general reference. It has dimensions such
that P becomes dimensionless; for x ¼ �1=2, for instance,
it has the dimension of length and for x ¼ 0 it is itself
dimensionless. Its significance lies in the fact that it deter-
mines a fundamental scale for the loop quantization which
becomes relevant at the bounce. Moreover, the fundamen-
tal length can depend on the evolution of the universe, and
thus a, if the underlying discreteness of quantum gravity is
being refined during evolution. This possibility is taken
into account by the parameter x, which makes the momen-
tum P depend differently on a for different choices of x.
How precisely these parameters arise has been discussed,
e.g., in [21,22]. The dynamical behavior of loop quantum
cosmology is sensitive to their values, but in this paper we
will mainly analyze recollapses where effects of the loop
quantization are not expected to play large roles. We will
nevertheless see that it is of interest to keep all possibilities,
especially of x. For all choices of f0 and x, the variables
used here are canonically related to each other, and we
emphasize that the choice of the values of the parameters
does not qualitatively change our results. Nevertheless,
some quantitative aspects can change, and also equations
of motion may be easier to solve for some x than others.

Physically, different values of x correspond to different
ways in which an inhomogeneous discrete quantum state
can be refined during its evolution on microscopic levels
[21]. For x ¼ 0 the variableP corresponds to an underlying
state which has a constant number of lattice sites as the
universe expands, while for x ¼ �1=2 the state has a
constant geometrical size at each lattice site and thus
requires new sites to be generated during expansion. A
precise value of x could, in principle, be determined if one
could derive a reduced Hamiltonian of an isotropic model
from a full, inhomogeneous Hamiltonian (such as those

introduced in [23]). Since this is not yet available, we have
to keep the value of x free and look instead for possible
phenomenological constraints.
Classical solutions as functions of � are readily deter-

mined from the Hamiltonian H / p� and its canonical

equations of motion in terms of�, which will be presented
below. Such equations of motion determine the relational
dependence of, e.g., Vð�Þ through the Hamiltonian equa-
tion of motion dV=d� ¼ fV;Hg. Our main interest, how-
ever, is in possible effects which may result from the
behavior of quantum states. In particular, a quantum sys-
tem has not only expectation values as free variables,
which could be associated with the classical variables
ðV; PÞ, but also fluctuations, correlations, and higher mo-
ments. Dynamically, all these variables couple in a general
quantum system. These coupled equations of motion can
be derived from the usual commutator relations such as

dhV̂i=d� ¼ �i@�1h½V̂; Ĥ�i or, more compactly, from a

quantum Hamiltonian HQ :¼ hĤi. (For details we refer

to [24,25] or, in the context of cosmological models,
[12,19].) Here, the expectation value is computed in a state
with a general set of moments. As is well known, for a
general classical Hamiltonian HðV; PÞ we have

hHðV̂; P̂Þi � HðhV̂i; hP̂iÞ where the difference amounts to
quantum corrections to the classical dynamics. These cor-
rections depend, e.g., on quantum fluctuations or, more
generally, on moments

Ga;b ¼ hðV̂ � hV̂iÞaðP̂� hP̂iÞbiWeyl; (4)

of the state used for the expectation values. (In the defini-
tion of moments, we assume the basic operators to be
totally symmetric or Weyl ordered as indicated by the

subscript.) Upon writingHQ ¼ hĤi in terms of expectation

values and the moments, we obtain the complete quantum
Hamiltonian. This in turn generates the Hamiltonian equa-

tions of motion for [26] V :¼ hV̂i, P :¼ hP̂i as well as all
the moments Ga;b. (As before, the equations of motion are
given by df=d� ¼ ff;HQg where fV; Pg ¼ 1 and for Ga;b

the Poisson brackets follow from expectation values of
commutators divided by i@.)
This is the basis for the derivation of effective equations

which may provide good approximations in regimes where
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the infinite set of all moments can be truncated to finitely
many variables. In the following we shall only consider the
second order moments which, for better clarity, we denote
as

GPP ¼ G0;2 ¼ hP̂2i � P2 (5)

GVP ¼ G1;1 ¼ 1
2hV̂ P̂þP̂ V̂i � VP (6)

GVV ¼ G2;0 ¼ hV̂2i � V2: (7)

Their Poisson brackets can be then derived as in

fGVV;GPPg ¼ fhV̂2i � V2; hP̂2i � P2g
¼ 1

i@
h½V̂2; P̂2�i � 2P

i@
h½V̂2; P̂�i � 2V

i@
h½V̂; P̂2�i

þ 4VP

i@
h½V̂; P̂�i

¼ 2hV̂ P̂þP̂ V̂i � 4VP ¼ 4GVP: (8)

Similarly,

fGVV;GVPg ¼ 2GVV and fGVP;GPPg ¼ 2GPP: (9)

Such Poisson brackets, when used in dGa;b=d� ¼
fGa;b;HQg, determine the evolution of the quantum varia-

bles of a state. This demonstrates how effective equations
are able to go well beyond simple corrections to classical
equations, which will be made ample use of in this article.

B. Negative cosmological constant

For �< 0, k ¼ 0, our system has the classical
Hamiltonian

H ¼ ð1� xÞ
� V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20ð8��Gð1� xÞf0V=3Þð1þ2xÞ=ð1�xÞ

q
;

(10)

for �-evolution, i.e. p� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G=3

p
H (a specific sign

has been chosen here for the square root; the other choice
simply amounts to replacing� with��). The factor in p�

can be eliminated by redefining �. Evolution is analyzed
best for x ¼ �1=2, in which case

H ¼ 3

2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q
; (11)

is linear in V. The corresponding quantum Hamiltonian,
including moments of second order, is

HQ ¼ 3

2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q
þ 3

4
j�jf20

V

ðP2 þ j�jf20Þ3=2
GPP

þ 3

2

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q GVP; (12)

which includes the quantum moments GPP, GVP in correc-

tion terms. Higher moments are ignored here, and GVV

does not occur thanks to the linearity ofH in V. (For� ¼ 0
we have the solvable free system, in which no coupling
terms between expectation values and moments arise [11].)
The quantum Hamiltonian determines the Hamiltonian
equations of motion

dV

d�
¼ 3

2

VPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q � 9

4
j�jf20

VP

ðP2 þ j�jf20Þ5=2
GPP

þ 3

2
j�jf20

GVP

ðP2 þ j�jf20Þ3=2
(13)

dP

d�
¼ � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q
� 3

4
j�jf20

GPP

ðP2 þ j�jf20Þ3=2
:

(14)

Quantum fluctuations appear here in coupling terms and
are themselves dynamical, subject to equations of motion

dGPP

d�
¼ �3

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q GPP (15)

dGVP

d�
¼ 3

2
j�jf20

V

ðP2 þ j�jf20Þ3=2
GPP (16)

dGVV

d�
¼ 3j�jf20

V

ðP2 þ j�jf20Þ3=2
GVP

þ 3
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ j�jf20
q GVV: (17)

These equations satisfy

d

d�
ðGVVGPP � ðGVPÞ2Þ ¼ 0

such that a state initially saturating the (generalized) un-
certainty relation

GVVGPP � ðGVPÞ2 � @
2

4
(18)

will keep saturating it. Such a state would be considered a
dynamical coherent state whose properties can be analyzed
by our equations. In what follows, however, we will not
restrict states to be on the saturation surface although they
certainly must satisfy the uncertainty relation.
If we first ignore all moments and their quantum back-

reaction, we find the classical solutions

Pclassicalð�Þ ¼ P0 coshð3ð���0Þ=2Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 � j�jf20

q
sinhð3ð���0Þ=2Þ (19)
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Vclassicalð�Þ ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 þ j�jf20

q

�P0 sinhð3ð���0Þ=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 þ j�jf20

q
coshð3ð���0Þ=2Þ

: (20)

The volume has a turning point, and we can simplify
expressions without loss of generality by choosing our
initial values there, i.e. P0 ¼ Pð�0Þ ¼ 0 and shift � such
that �0 ¼ 0. Then, we have simply

Pclassicalð�Þ ¼ �
ffiffiffiffiffiffiffi
j�j

p
f0 sinhð3�=2Þ (21)

Vclassicalð�Þ ¼ V0

coshð3�=2Þ : (22)

These solutions describe the recollapse of a universe with a
past and a future singularity. Analytical solutions of equa-
tions amended by quantum geometry effects, where the
singularities are replaced by bounces and thus provide
cyclic solutions, have been derived e.g. in [27]. However,
quantum backreaction effects, which complicate the analy-
sis, were not included in the equations used there.

In a next step, we can solve the equations of motion
(15)–(17) approximately by assuming the classical solu-
tions for P and V. Thus, we are still ignoring quantum
backreaction effects at this stage, which if present would
imply that the moments back-react by the coupling terms
in (13) and (14) and change the classical solutions. For
small fluctuations, this will be a good approximation, and
solutions obtained for the moments will allow us to check
self-consistently for how long in � it will remain valid.

It is then easy to solve for GPP, to give

GPPð�Þ ¼ GPP
0 cosh2ð3�=2Þ; (23)

which shows that GPP is inversely proportional to the
volume squared, and which in turn allows to solve for

GVPð�Þ ¼ GVP
0 þ V0G

PP
0ffiffiffiffiffiffiffij�jp
f0

sinhð3�=2Þ
coshð3�=2Þ : (24)

With this, one can finally solve for

GVV ¼
GVV

0 þ 2
V0G

VP
0ffiffiffiffiffi

j�j
p

f0
tanhð3�=2Þ þ V2

0
GPP

0

j�jf20
tanh2ð3�=2Þ

cosh2ð3�=2Þ :

(25)

With quantum backreaction to second order in moments,
i.e. solving the full Eqs. (13)–(17) without starting with the
classical solutions, the equations are more highly coupled.
One can derive some solutions by dividing (14) by (15),
thus providing a differential equation for PðGPPÞ:

dP

dGPP
¼ P2 þ j�jf20

2PGPP þ 1

4

j�jf20
PðP2 þ j�jf20Þ

: (26)

This can be written in a simpler form thus

dðP2 þ j�jf20Þ
d logGPP

¼ P2 þ j�jf20 þ
1

2

�

P2 þ j�jf20
GPP;

(27)

whose solution yields

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j�jf20 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðGPPÞ2 � j�jGPP

qr
(28)

such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ j�jf20

q
¼

�
cðGPPÞ2 � j�jf20GPP

�
1=4

; (29)

with a constant of integration c.

C. Positive spatial curvature

With � ¼ 0 but k ¼ 1, the system is simplest to solve
for x ¼ 0, which makes it again linear in V. The quantum
Hamiltonian is then the same as before, (12), with �
replaced by �1 (and a missing factor of 3=2 arising from
1� x in the Hamiltonian, which simply rescales �). We
can thus immediately take over the solutions already
found. For other values of x, the equations are more highly
coupled and do not allow simple solutions. Nevertheless,
we can use the solutions already provided to find informa-
tion also about these systems by simply replacing ðV; PÞ in
the x ¼ 0-solutions by

~V :¼ 1

Gf0
ðð1� xÞGf0VÞ1=ð1�xÞ (30)

~P :¼ P

ðð1� xÞGf0VÞx=ð1�xÞ ¼ P=ðGf0 ~VÞx: (31)

(We have chosen the factors ofG and f0 such that ~P has the
same dimensions as f0, which will be useful later.) This has
to be done also in the moments, i.e. we will obtain their

solutions not for GVV , say, but for G
~V ~V . These are not

directly the fluctuations of our basic variables for x � 0 but
they still give important information about the spreading
and other properties of states. For instance, we will deter-

mine the correlation G
~V ~P instead of GVP. Both parameters

contain equally interesting information about squeezing
and the symmetry of fluctuations around the recollapse.

In particular, if G
~V ~V is not symmetric around the recol-

lapse, then nor will be GVV .

III. IMPLICATIONS

Several conclusions can be drawn from the solutions
found to the given order.

RECOLLAPSING QUANTUM COSMOLOGIES AND THE . . . PHYSICAL REVIEW D 78, 023515 (2008)

023515-5



A. Volume ratio between recollapse and high curvature
regimes

Our solutions correspond to state parameters in a
Wheeler-DeWitt quantization because we use elementary
variables ðV; PÞwhich are assumed to be quantized to well-
defined operators. Those operators, together with the
Hamiltonian, then determine the dynamics. The latter
have not been written explicitly here, but they are the
central ingredient to Hamiltonian equations of motion via
the Poisson brackets of quantum variables such as (8) and
(9).

The Wheeler-DeWitt quantization does not easily solve
the singularity problem. For models without quantum
backreaction effects, i.e. spatially flat models sourced by

a free massless scalar, hV̂i simply follows the classical
trajectory into the singularity. On the other hand, in general
models such as those considered here, there are quantum
backreaction effects which one may expect to become
stronger as the solution for V approaches zero—the clas-
sical singularity. This could stop V altogether, or delay its
approach to zero sufficiently strongly such that zero would
not be reached in a finite amount of proper time (but
possibly still finite in �). However, this is difficult to
analyze if all moments are required, and unlikely to result
in a generic resolution of singularities.

A loop quantization does provide a natural solution of
the singularity problem in isotropic models, but it requires
one to use a different set of basic variables. (At a basic
level, singularities in homogeneous and spherically sym-
metric models have been shown to be absent by allowing
general wave functions to be extended through classical
singularities [28–31]. More specific examples for bouncing
wave packets are derived in [7,11]. For a discussion and
comparison of results concerning singularities see [2].)
While V would still be represented as an operator in the
quantization, the curvature (or connection) component P is
not. Instead, loop quantum gravity is based on a quantum
representation in which only holonomies of the Ashtekar
connection are represented, in this way providing the ki-
nematical structures for a well-defined, background inde-
pendent quantization of full gravity [32–34]. In the
cosmological models studied here, this means that it is
not P which is part of the elementary algebra but
expði�PÞ, for arbitrary real �. (Note it is P which enters
here, rather than ~P of (30) because x represents the free-
dom in the refinement of a discrete underlying state and
thus determines the form of holonomies in a reduced
isotropic setting [21]. This is, in fact, the main reason
why we allow for different values of x.) Using the expo-
nential instead of an expression linear in P changes the
basic algebra as well as the Hamiltonian, in particular, at
large P. In a flat, isotropic model with a free scalar field,
the classical singularity is then resolved and replaced by a
bounce.

To study the oscillating models we need to consider a
combination of bounces and recollapses which is more

complicated because of the structure of required quantum
evolution equations. Nevertheless, one can study cyclic
solutions by patching together bounce and recollapse
phases. For small curvatures, we can use the equations
and the corresponding solutions provided in this paper to
an excellent approximation, even for a model of loop
quantum cosmology. However, we can use this only
when P is not too large and have to cut off our solutions
at the latest when jPj � 1. (At this point, the precise value
of f0 would set the corresponding scale for _a.) This leaves
only a finite range of sizes for the universe between this
high curvature regime and the recollapse. The high curva-
ture regimes can also be described by effective equations,
which are in fact precise without quantum backreaction,
but require a different set of basic variables [11].
For a negative cosmological constant, we have the ratio

V0=VjPj¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=j�jf20

q
. Thus, for a small cosmologi-

cal constant compared to f�2
0 , the ratio is huge. Since f0

arises from quantum gravity and has the dimension of
length in this case which is based on x ¼ �1=2, f0 should
take a value near the Planck length. Thus, j�jmust only be
small compared to a Planckian value which can safely be
assumed to be the case. For the closed model with x ¼ 0,

on the other hand, we have V0=VjPj¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=f20

q
with a

dimensionless f0. In this case, there are no strong reasons
to expect quantum gravity to provide a value of f0 small
compared to one (without reference to a second scale larger
than the Planck length, which should not appear in the
basic variables V and P where f0 enters). This is certainly
not enough for a macroscopic universe which has to grow
large out of the high curvature regime. For this reason we
have to use other values for x in this case: then, jPj ¼ 1 is
reached at much smaller values for ~P as provided by our
solutions. Although the qualitative behavior is unchanged
compared to other x, changes in x have an important
quantitative implication (which was first emphasized in
[10]). For example for x ¼ �1=2, the high curvature re-
gime starts at

coshð�Þ � 1

6

�
108Cþ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12þ 81C2

p �
1=3

þ 2

ð108Cþ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�12þ 81C2

p Þ1=3
where C ¼ ðGf0V0Þ2=3=f20. For large V0, this is approxi-

mately coshð�Þ � V2=9
0 (or, for general x � 0, coshð�Þ �

V�x=ð1�xÞ2
0 ). Thus, the ratio V0=VjPj¼1 � V�x=ð1�xÞ2

0 is no

longer constant and grows with V0 for negative x. For x ¼
�1=2, the ratio is given by V2=9

0 which is large enough for

large V0, leaving ample room for a growing universe.

B. Quantum backreaction effects

From our solutions we can determine whether quantum
backreaction effects are strong around the recollapse. As
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one can easily see, there are no possible divergences in the
equations of motion (13) and (14) which would enhance
the coupling terms. Quantum backreaction effects can only
be strong if the quantum variables are large, which can be
avoided at least for some time by choosing a semiclassical
initial state. Thus, the equations to the order provided here
are reliable to a high degree and can be used to determine
the state properties around the recollapse. In particular, our
equations of motion and solutions for quantum variables
themselves can be used to see how long the approximation
remains valid.

C. Evolution of the spread

Of particular interest is whether fluctuations depend
strongly on � or remain nearly constant during the evolu-
tion. If they change rapidly, the behavior of neighboring
cycles would be noticeably different from each other be-
cause the state would have changed significantly. In sce-
narios with a large or an infinite number of cycles, large
differences should even be generic between widely sepa-
rated cycles.

As we have seen, GPP is always proportional to the
inverse volume squared when quantum backreaction ef-
fects can be ignored. Thus, curvature fluctuations must be
symmetric around the recollapse and do not change sig-
nificantly: At any volume after the recollapse we have the
same GPP as at the same volume before. For the other
quantum variables, however, the situation is different.
Ignoring products of quantum variables, we can rewrite
(17) approximately as

d

d�

�
GVV

V

�
¼ 3j�jf20

GVP

ðP2 þ j�jf20Þ3=2
; (32)

for a negative cosmological constant with x ¼ �1=2 or

d

d�

�
GVV

V

�
¼ 2GVP

ðP2 þ f20Þ3=2
; (33)

for a closed model with x ¼ 0 and � ¼ 0. This shows that
GVV would be a function only of V, and thus symmetric
around the recollapse, if GVP ¼ 0, i.e. the state is un-
squeezed. One may assume this as an initial condition,
but GVP itself is dynamical and subject to the evolution
equation (16). Its time derivative cannot be zero since,
thanks to the uncertainty relation, GPP is nonzero unless
volume fluctuations diverge. Even an initially unsqueezed
state will become squeezed after some time, and thus also
affect the volume fluctuations.

Even if GVV=V is not constant, GVV may be symmetric
around the recollapse but behave differently with respect to
V. In fact, (25) shows that GVV is symmetric around the
recollapse if GVP

0 , i.e. the correlation at the recollapse,

vanishes even though GVP would become nonzero away
from the recollapse. But since this happens only under the

special condition of GVP
0 ¼ 0, it could generically be sat-

isfied only in one cycle of an oscillatory universe.
From (24), we can estimate the change in squeezing per

recollapse by

lim
�!1

GVPð�Þ � lim
�!�1

GVPð�Þ ¼ 2V0G
PP
0ffiffiffiffiffiffiffij�jp
f0

(34)

as an upper bound. The change may be small for small
fluctuations GPP

0 , but is enlarged by a factor of V0 (as well

as 1=
ffiffiffiffiffiffiffij�jp

f0 in the presence of�< 0, which is large given
that j�jf20 is small; if the recollapse is triggered by positive

spatial curvature, we have the same formula with � set to
�1). In a large universe, this change can be quite signifi-
cant. Note that in (34) we have used � ! �1, and thus a
range which includes the high curvature regimes where the
equations have to be amended by effects of the loop
quantization and the specific solution would change. We
can take this into account by reducing the range of �;
however, this does not change the result but only affects the
numerical factor in the change of squeezing. There is thus a
significant change during the classical recollapse, irrespec-
tive of how the high curvature regime is dealt with. For
instance, we have

GVPjsinhð3�=2Þ¼1 ¼ GVP
0 þ V0G

PP
0ffiffiffiffiffiffiffiffiffiffi

2j�jp
f0

; (35)

whose numerical coefficient is different, but which still
carries the large factor of V0. In fact, the tanh- behavior of
GVP demonstrates that the greatest change in correlations
occurs near the recollapse.
To quantify the production of squeezing during recol-

lapse phases, it may be helpful to transform the solution for
GVPð�Þ to proper time rather than using the relational
formulation with respect to�. The relation between proper
time � and � can in general be complicated, but can easily
be obtained for x ¼ �1=2 by integrating

d�

d�
¼ p�

V
¼ p�

V0

coshð3�=2Þ

to obtain

�ð�Þ ¼ 2
3arsinhðtanð3p�ð�� �1Þ=2V0ÞÞ:

Without loss of generality, we chose � to vanish at �1,
which may be different from the recollapse time �0. The
whole range �1<�<1 corresponds to a finite proper
time interval �V0�=3p� < �� �1 <V0�=3p�. This

highlights the fact that we are not including effects of the
loop quantization, such that the endpoints of the �-range,
where the volume vanishes, correspond to future and past
singularities a finite proper time away.

RECOLLAPSING QUANTUM COSMOLOGIES AND THE . . . PHYSICAL REVIEW D 78, 023515 (2008)

023515-7



Inserting this in the solution (24) for GVP, we obtain

GVPð�Þ �GVPð�0Þ ¼ V0G
VP
0ffiffiffiffiffiffiffij�jp
f0

sinð3p�ð�� �1Þ=V0Þ;

(36)

which shows the growth of squeezing in proper time during
each recollapse (which is in fact monotonic in the given
range of �).

Starting with an initially unsqueezed state it may seem
that for many cycles the state remains almost unchanged
from cycle to cycle. Its volume fluctuations may always
seem to attain nearly the same size at the same volume.
However, this is so only because of the special initial state
chosen, from which squeezing builds up slowly. For small
GVP, (32) and (33), respectively, we show that GVP=V is
nearly constant in both cases considered. The change in
volume fluctuations before compared to after the recol-
lapse seems insignificant from cycle to cycle but becomes
noticeable over many cycles. Moreover, if the initial state
had already had some squeezing, volume fluctuations rela-
tive to volume would change much more rapidly. In this
way, the choice of initial state can strongly influence the
long-term behavior.

In a cyclic model, it is especially important to ask what
significance one should attribute to the choice of initial
state. Is it to be posed in ‘‘our’’ cycle, and if not, how many
cycles ago? If we could have observational input on prop-
erties of the state, we could certainly pose an initial con-
dition in our cycle and see how the state evolves to or from
there. However, state properties are hardly under control,
and this possibility remains elusive. We thus have to pose
initial conditions many cycles ago based on some general
principle of emergence, but we never know how many.
Thus, even though we know that an initially unsqueezed
state builds up squeezing only slowly, this does not say
much about the present state if we do not know how many
cycles ago the state was unsqueezed.

An interesting question is whether in a cyclic model one
generically expects to have a finite or an infinite number of
past cycles. The problem with the finite case is that it does
not resolve the origin question. In the emergent scenarios
[35–39], as well as some other such models, the universe is
assumed to have undergone an infinite number of past
cycles so as to remove the question of the origin. In that
case any given cycle would have an infinite number of
precursors and generically we therefore have to expect the
current state to be squeezed. (We will argue in the next
subsection that bounces do not affect the qualitative be-
havior of the squeezing, especially its monotonicity). The
question then is how the squeezing in a generic cycle is
determined. If each cycle produces the same amount of
squeezing, a generic cycle would have infinitely squeezed
states, which could not be semiclassical. However, as (34)
shows, the amount of new squeezing per cycle depends on
the recollapse volume V0 of that cycle. For growing cycles,

as in the emergent scenario, the change in squeezing is
initially small and approaches zero for cycles in the infi-
nitely distant past. Depending on the precise scenario, the
sum of all squeezing contributions may converge, such that
a finite value results for a generic cycle. Whether this is the
case and what this precise value could be depends on which
concrete model one is using, and we will not follow this
route here. It is, however, interesting that this in principle
allows one to restrict the possibilities for emergent scenar-
ios by the amount of squeezing they would predict.
Another interesting and related question is that in the

emergent models the eventual nonuniformity of cycles is
produced by a nonconstant potential. (In initial regions
where the potential is flat, the universe would just periodi-
cally oscillate around the center point; the eventual asym-
metric emergence is induced by a nontrivial change in the
underlying potential.) This raises the question of what
happens to these models when treated quantum mechani-
cally. Taking the case of a negative cosmological constant,
corresponding to a constant negative potential, as a guide
suggests that, even though in the flat regions of the poten-
tial there is a classical symmetry expressed by the exact
periodicity in the dynamics, we nevertheless acquire a
quantum mechanical asymmetry due to the evolution in
squeezing. A more complicated question is what happens
in the regions where there is already a classical asymmetry
induced by the nonflat potential.
To be specific, let us look at the closed model with x ¼

0, while including a scalar potential Wð�Þ. In this case, �
will no longer serve as a global internal time, but it is still a
good indicator of local internal time in phases where � is
monotonic (i.e. outside zeros of p�). In this way, we can

still draw conclusions for the behavior of quantum varia-
bles near a recollapse. In this case we have the Hamiltonian

H ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ f20 � 8��GWð�Þf30V=3

q
; (37)

and a corresponding quantum Hamiltonian

HQ ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ f20 � 8��GWð�Þf30V=3

q

þ 1

2

Vðf20 � 8��GWð�Þf30V=3Þ
ðP2 þ f20 � 8��GWð�Þf30V=3Þ3=2

GPP

þ PðP2 þ f20 � 4��GWð�Þf30V=3Þ
ðP2 þ f20 � 8��GWð�Þf30V=3Þ3=2

GVP

� 4��GWð�Þf30ðP2 þ f20 � 2��GWð�Þf30VÞ=3
ðP2 þ f20 � 8��GWð�Þf30V=3Þ3=2

�GVV; (38)

expanded to moments of second order. In contrast to the
previous cases, this includes not only the quantum mo-
ments GPP, GVP but also GVV in correction terms. The
quantum Hamiltonian then determines equations of mo-
tion, which for GVP results in
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dGVP

d�
¼ Vðf20 � 8��GWð�Þf30V=3Þ

ðP2 þ f20 � 8��GWð�Þf30V=3Þ3=2
GPP

þ 8��GWð�Þf30ðP2 þ f20 � 2��GWð�Þf30VÞ=3
ðP2 þ f20 � 8��GWð�Þf30V=3Þ3=2

�GVV: (39)

Since P2 þ f20 � 8��GWð�Þf30V=3 is required to be posi-
tive and P is small near a recollapse, the sign of this
expression remains unchanged compared to the free model.
Thus, inclusion of a potential does not change our mono-
tonicity result. Notice that we have not assumed the po-
tential to be small since the analysis involves only an
expansion in moments rather than in Wð�Þ. The rate of
change of correlations depends on the value of the poten-
tial, but it has a definite sign: GVP is either growing or
decreasing during a recollapse phase. We should note that
the rate of change of GVP is according to Eq. (39) defined
with respect to �, which would seem to indicate that it
should change sign as� goes through a turning point. This
is, however, not the case since for a given potential at a
turning point of � the sign of p�, which is our quantum

Hamiltonian HQ, also changes. Thus, at such a turning

point there is also a sign flip in the equation of motion,
which ensures that the rate of change of GVP remains
globally monotonic even though in this case� is no longer
a global monotonic time variable. A varying potential will
affect the rate by which GVP changes, and thus lead to
different absolute changes in squeezing before and after the
recollapse. But correlations will always change, and thus
our qualitative discussion remains unaltered in this case.

In the cyclic models with many cycles one can only draw
conclusions from the consideration of generic rather than
special initial states. Thus one needs to consider the con-
sequences of generic initially squeezed states, rather than
special unsqueezed initial states. While a state may have
been uncorrelated at some time, we cannot know how
many cycles ago this may have been, or after how many
cycles it may be so in the future. For statements relevant to
a single cycle, which are the only ones with a chance of
being observable, it is not legitimate to use special initial
states which are known to change between cycles. In fact
as can be seen from Eqs. (32) or (33), there is no strong
bound on the change of volume fluctuations relative to
volume from one cycle to the next without a sharp limit
on correlations. Quantum properties of the collapse phase
can thus differ from those of the expansion phase. As (25)
shows, the time-asymmetric term has a single factor of V0,
while the last term is multiplied with V2

0 . One can thus

expect that the asymmetry is not pronounced strongly for a
universe of large recollapse size V0, but the precise behav-
ior depends also on the moments. Then, the last term
containing V2

0 is suppressed by a factor of GPP
0 which

must be small near the recollapse where P ¼ 0; see

Fig. 1 for a numerical example. Moreover, over several
cycles the change in quantum properties will add up.
Correlations in a semiclassical state are bounded, and so

GVP is restricted but may certainly vary. And as long as it
can easily be nonzero and affect the behavior of single
cycles, it must be taken into account in cyclic models with
many cycles. Moreover, in addition to the recollapse
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FIG. 1. An example of a recollapsing universe which grows to
large volume. Plotted are the volume expectation value hV̂ið�Þ
as well as the fluctuations around it. While the detailed behavior
of the fluctuations cannot be discerned from this total plot, the
asymmetry around the recollapse is clearly visible in the zoom
shown in Fig. 2.
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FIG. 2. The recollapse phase of Fig. 1 in more detail. The
central line is the volume expectation value, and solid lines
around it illustrate the spread �V of a state which is symmetric
around the bounce. Dashed lines show how asymmetric the
volume fluctuations can be if the state is correlated at the
recollapse. Initial conditions are set at the recollapse, where in
units with @ ¼ 0:2 we have V0 ¼ 104, GVV

0 ¼ 200, GPP
0 ¼

10�4, and GVP
0 ¼ 0 for the solid lines and GVP

0 ¼ 0:1 for the

dashed lines. The latter state thus saturates the generalized
uncertainty relation (18).
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phases discussed here, squeezing has a similar influence on
the asymmetry of fluctuations around the bounce [12]. This
shows that the different cycles of a universe can indeed be
very different from each other, even though they are con-
nected by deterministic evolution of an underlying state.
The generic behavior of quantum properties is much more
subtle than the assumption of unsqueezed states would
suggest. Current knowledge is insufficient to determine
what came before, or what will come after.

D. Entropy

A central question in cosmology is how to successfully
define a notion of cosmological entropy, and a number of
attempts have been made in this direction. This is in turn
hoped to provide a notion of cosmological arrow of time.
The notion of entropy is connected to that of information
associated with the degrees of freedom considered. In
addition to the usual thermodynamic entropy which is
normally associated with matter/energy degrees of free-
dom of the constituent components of the universe [17],
possible notions of entropy associated with the geometrical
[40] and gravitational [41] degrees of freedom of the uni-
verse have also been put forward.

Motivated by the thermodynamical notion of entropy
and the associated second law of thermodynamics a neces-
sary, but not sufficient, condition that has often been re-
quired of general notions of entropy is that of monotonicity
in time. An important step has therefore often been to look
for variables defined in terms of the underlying dynamics
that evolve monotonically. In addition to notions of entropy
associated with classical degrees of freedom, one would
also expect entropic measures associated with the quantum
mechanical degrees of freedom. An immediate question
that any such measure needs to answer concerns the nature
of its relationship with the thermodynamic measure of
entropy. In particular an important question in the case of
recollapsing/oscillating cosmological models is: do (or
should) the expanding and recollapsing evolutionary
phases possess oscillating or monotonic entropies?
Furthermore, how should the entropy associated with dif-
ferent cycles evolve in oscillating models?

This question has in fact been the subject of a long
standing and intense debate concerning the relation be-
tween the so-called thermodynamical and cosmological
arrows of time [40,42]. The question is whether the ob-
served asymmetric (monotonic) thermodynamical time ar-
row in the current expanding phase of the universe has a
counterpart in cosmology, particularly in a recollapsing
universe. A number of studies have been made in this
connection [43–46]. Given the absence of a dynamical
explanation for the observed asymmetry in the universe,
most such studies assume that the observed thermody-
namic arrow of time must arise from the boundary con-
ditions of the universe [45,46].

Our results above seem to indicate that the degree of the
squeeze of the quantum gravity state may provide a notion
of entropy purely associated with quantum degrees of
freedom. To the best of our knowledge, this is a new
possibility not considered before. (Relating entropy to
the squeezing of a matter state, however, has been consid-
ered in the context of particle production; see e.g. [47–54].)
As can be seen from (16) and (39), the squeezing of a state
is strictly monotonic in time during expansion, recollapse,
and contraction of a cycle in the models considered. This
demonstrates that even in isotropic models, which include
the microscopic dynamics only in a highly averaged form,
quantum aspects prevent one from viewing a collapsing
universe simply as a time-reverse of its expansion. The
quantum theory’s arrow of time cannot reverse at the
recollapse.
Unfortunately, it is difficult to follow its evolution

through a bounce because this phase can only be described
in a different set of basic variables [J ¼ V expðiPÞ for P]
which make the equations solvable. For classical variables,
these are easily translated into each other. But the trans-
formation is nonlinear, such that moments transform in a
highly complicated way. In any case, the change in squeez-
ing is nevertheless generic because it is unlikely that the
bouncewill restore fluctuations to precisely the value of the
preceding cycle. Moreover, one can roughly estimate the
squeezing as it evolves through the bounce. In the bounce

phase, only operators such as Ĵ :¼ V̂ expðiP̂Þ exist and give
rise to a solvable evolution. Moments between V and J can
thus be computed exactly [12], but it is difficult to trans-
form between the V-J and V-P moments. However, the
bounce happens near P��=2, and with �P :¼P��=2

we have, up to reordering, ReJ¼hV̂ cosðP̂Þi¼
hV̂ cosð�=2þ�P̂Þi¼�hV̂ sin�P̂i��hV̂�P̂i¼�hV̂ðP̂�
�=2Þi. Thus, ReJ þ VP� �

2 V ��GVP provides an esti-

mate for the V-P squeezing as it evolves through the
bounce in terms of expectation values. Since expectation
values are symmetric around the bounce in the absence of a
potential, not much additional squeezing is generated
around the bounces.
Most of the squeezing is thus generated in the recollapse

phases, which resembles recent results for cyclic models
with bounces based on the Hagedorn phase of string theory
[55]. In the present context with a quantum measure for
entropy in the form of squeezing, this may seem counter-
intuitive given that the recollapse is a much more classical
phase than the bounce. However, the production of corre-
lations is not so much a matter of quantum versus semi-
classical behavior but rather of the dynamics in a given
regime. A state may remain semiclassical to an excellent
degree, and yet receive a significant amount of squeezing.
Whether or not this happens depends on the equation of
motion forGVP, or the underlying Hamiltonian. The analy-
sis presented in this article unambiguously shows the pro-
duction of correlations in a recollapse phase even though it
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is semiclassical. Although our qualitative estimates for the
bounce phases are difficult to make precise, the monotonic
behavior of correlations at small curvature appears to be an
interesting and reliable property.

The precise amount of squeezing depends on initial
conditions. If all moments could initially be zero, they
would remain so and no squeezing would develop.
However, this initial condition is impossible because the
moments are subject to the uncertainty relation (18). Thus,
unless the volume uncertainty diverges, GPP cannot be
zero in (16) and an initially unsqueezed state inevitably
develops squeezing over time which can grow large over
many cycles. It is thus quantum uncertainty, together with
the specific dynamics of the system, which prevents the
existence of perfectly symmetric states.

There is a sense in which small squeezing presents a
special state with a distinguished discrete symmetry. Under
time reversal, we map � � ��, P � �P, and GVP �
�GVP while the other variables remain unchanged. Thus, a
time reversible solution would have vanishing squeezing
which one may view as a special state analogous to low
entropy. As (25) shows, this is obtained for vanishing
correlations at the recollapse. However, since GVP would
generically be nonzero at a recollapse, especially in a
cyclic model, there is no solution which is exactly time
reversible. Again, it is the uncertainty relation as an addi-
tional condition, which eliminates those initial values
which would correspond to time-reversal solutions.

IV. CONCLUSIONS

We have studied the evolution of recollapsing models
within an isotropic and homogeneous quantum cosmologi-
cal framework in presence of a scalar field. To allow a
recollapse we consider, in turn, a negative cosmological
constant as well as a positive curvature model. We derive
the resulting quantum evolution equations to second order
in moments of a state and study their effects on the recol-
lapsing dynamics of the universe, i.e. the expanding, turn
around and contracting phases. These effective equations
allow us to observe that state properties generically change
during the recollapse, making quantum fluctuations in the
expansion and contraction phases different. At large vol-
umes as they are realized at a recollapse, the change is not

as noticeable as it can be for states travelling through a
bounce [18,19], but it is significant especially in a cyclic
model with several recollapse phases. As in the case of the
bounce, the asymmetry of fluctuations is controlled by
quantum correlations which have often been ignored in
previous studies.
The specific equations analyzed here thus allow us to

identify correlations as a quantum measure for the change
of fluctuations. More precisely, we find that the squeezing
of an initial state is strictly monotonic in time throughout
these three phases for the models considered. Importantly,
we have shown this finding to be robust under the inclusion
of a matter potential. Combining these results with the
corresponding ones concerning a bounce in loop quantum
cosmology we have shown that squeezing of an initial state
evolves monotonically throughout a whole cycle. The ab-
sence of perfectly symmetric states is a combined conse-
quence of the specific dynamics of the quantum system
together with the presence of quantum uncertainty.
Such monotonicity is of potential importance in two

regards. First, it sheds new light on a long standing inten-
sive debate concerning the (a)symmetry between the ex-
panding and contracting phases in a recollapsing universe.
As shown here, the contracting phase cannot be a time
reverse of the expanding phase. Second, it motivates the
adoption of the degree of squeezing as an alternative
measure of (quantum) entropy.
Qualitatively, we also consider the evolution of the

squeezing of an initial state in emergent nonsingular oscil-
lating universes in which the universe is assumed to have
undergone a large (possibly infinite) number of past cycles.
We argue that the consideration of the amount of squeezing
in the universe can in principle provide some constraints on
the viability of such emergent models. In any case, given
that a generic cycle does have nonvanishing correlations,
squeezings of the quantum gravity state must be taken into
account in order to draw reliable conclusions about cyclic
models.
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