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Hartle and Srednicki have suggested that standard quantum theory does not favor our typicality. Here an

alternative version is proposed in which typicality is likely, Eventual Quantum Mechanics. This version

allows one to calculate normalized probabilities for alternatives obeying what I call the principle of ob-

servational discrimination, that each possible complete observation or data set should uniquely distin-

guish one element from the set of alternatives.
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I. INTRODUCTION

Hartle and Srednicki [1] use a type of probabilistic
reasoning that includes standard quantum theory to argue
that ‘‘it is perfectly possible (and not necessarily unlikely)
for us to live in a universe in which we are not typical.’’
However, this leads to their conclusion (iv): ‘‘Cosmo-
logical models that predict that at least one instance of
our data exists (with probability one) somewhere in space-
time are indistinguishable no matter how many other exact
copies of these data exist.’’ If one were forced to abide
by that limitation, then [2] a huge variety of cosmological
models giving sufficiently large universes would predict
nearly unit probability for our data set and hence the same
likelihoods. Thus observations would count for nothing in
distinguishing between these theories, and much of cos-
mology would cease to be an observational science.

Hartle and Srednicki [1] note that a common kind of
reasoning in cosmology starts from an assumption that
some property of human observers is typical. They cite
[3–13] as giving examples of this reasoning, which they
question. They point out that this reasoning would not be
valid in a version of quantum theory in which highly
atypical observations are not highly unlikely. On the other
hand, more recent arguments against the conclusions of
Hartle and Srednicki have been given in [2,14–17]. For
example, Bousso, Freivogel, and Yang argue [17] that ‘‘the
Hartle-Srednicki prescription would put an end to experi-
mental science. It would render all experiments pointless,
because we could not reject any theory until we know how
many other laboratories there are. Given the success of the
scientific method thus far, we may conclude the Hartle-
Srednicki prescription is inappropriate.’’

How can we rescue science from the dire conclusions
Hartle and Srednicki draw from standard quantum theory
and other similar types of probabilistic reasoning? Here I

argue that this can be done by reformulating quantum
theory so that it gives normalizable probabilities for the
alternatives of all possible distinct observations.
Here I shall define standard quantum theory to be any

version of quantum theory in which observably distinct
alternatives are restricted to orthogonal projection opera-
tors (with the probabilities of these alternatives being given
by the expectation values of the corresponding orthogonal
projection operators). Such a quantum theory may be suit-
able for quantum states in which there is no more than one
copy of any observer (or set of communicating observers,
or civilization, or human scientific information gathering
and utilizing system, HSI [1], though here I shall hence-
forth just say ‘‘observer’’ for any of these possibilities).
Then different possible observations by that observer pre-
sumably can be described by orthogonal projection op-
erators. However, for cosmological quantum states for a
universe sufficiently large that there is more than one copy
of an observer that can jointly make distinct observations,
these distinct observations need not correspond to orthogo-
nal projection operators. Therefore, standard quantum the-
ory is not able to assign normalizable probabilities to such
sets of distinct alternative observations.
For example, suppose we consider the observation of

how many heads occur when two coins are tossed in a
certain recorded way. There are three possible distinct ob-
servations for the numbers of heads that occur in one
tossing of two coins (0, 1, and 2). If only one set of two
coins is tossed (e.g., by only one observer), then these
distinct observations can be assigned orthogonal projection
operators. If one has a quantum state in which it is defi-
nitely true that exactly one set of two coins is tossed, and
each head is observed to land definitely heads or tails, then
the expectation value of each of the three projection op-
erators is interpreted in standard quantum theory to be the
probability for that number of heads, and these probabil-
ities are normalized to sum to unity.
However, if there is more than one tossing of two coins

each (say by more than one copy of an observer), then
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distinct observations for the numbers of heads do not cor-
respond to orthogonal projection operators. For example,
one can have N1 heads in one of the tossings (say by one
copy of the observer) and N2 heads in a second tossing of
two coins (say by another copy of the observer), and even if
N1 � N2, these distinct observations do not correspond to
orthogonal projection operators. In nonquantum language,
one says that these two distinct observations are not mu-
tually exclusive, since both can occur (one for each copy of
the observer). If one calculates the expectation values of
the projection operators corresponding to all the distinct
three observations of the number of heads in a tossing,
these expectation values will have a sum that is greater
than unity.

For example, if the coin is fair, then for one tossing of
two coins the probability of 0 heads is 1=4, of 1 head is
1=2, and of 2 heads is 1=4, which sum to unity. However,
for two tossings of two coins each, the probability is 1�
ð1� 1=4Þ2 ¼ 7=16 for the existence of an observation of
0 heads, 1� ð1� 1=2Þ2 ¼ 3=4 for the existence of an ob-
servation of 1 head, and 1� ð1� 1=4Þ2 ¼ 7=16 for the
existence of an observation of 0 heads, which sum to 13=8,
greater than unity. That is, the expectation value for the
projection operator for at least one observation of 0 heads
is 7=16, for at least one observation of 1 head is 3=4, and
for at least one observation of 2 heads is 7=16. When one
has in mind a view that encompasses both coin tossings,
one says that these three possibilities for the number of
heads observed in a tossing are not mutually exclusive,
since, for example, there can be both an observation of
1 head (in one tossing by one observer) and of 2 heads
(in the other tossing by the other copy of the observer).
Therefore, the three projection operators are not orthogo-
nal, and the sum of their expectation values can be greater
than unity.

If one had observational access to both coin tossings,
one could avoid this problem by taking a finer-grained set
of projection operators, each the product of the projection
operator onto a certain number of heads for a particular one
of the tossings of two coins and of the projection operator
onto a certain number of heads for the other one of the two
tossings of two coins. Then one would get nine projection
operators, one for each ordered pair of the number of heads
for each of the two tossings. These nine projection opera-
tors are all orthogonal, and their expectation values will
sum to unity if the quantum state gives no other possibil-
ities (e.g., possibilities that not both coins are tossed twice
or that not all coins each fall heads or tails).

This all works well in laboratory experiments in which
one has observational access to all the relevant possi-
bilities. However, in cosmology in which there may be
experiments being made far away by distant copies of the
observer, for which one does not have observational access
by the copy here on earth, one cannot distinguish all of the
alternatives corresponding to a full set of orthogonal pro-

jection operators. For example, in the coin-tossing experi-
ment in which two tossings occur, one might only have
access to the observation of the number of heads for one
tossing, and one might not even be able to distinguish
which tossing one is observing (e.g., the copies of the ob-
server making the observation might not have any distin-
guishable data). Then one cannot construct from standard
quantum theory projection operators which distinguish the
distinct observations (whether 0, 1, or 2 heads) and which
also are orthogonal. As given in the example above, if one
uses projection operators onto the set of the three possible
distinct observations, they are not orthogonal and can have
expectation values whose sum exceeds unity.
When the probabilistic reasoning of Hartle and

Srednicki is cast into the language of standard quantum
theory, it uses the following technique to avoid the problem
of the nonorthogonality of the set of projection operators
for the distinct three observation possibilities: It uses the
actual observation of the one observer to select the corre-
sponding projection operator and its complementary pro-
jection operator (the identity operator minus the projection
operator onto the actual observed result). These two pro-
jection operators certainly are orthogonal and sum to the
unit operator, so in a quantum state which is normalized
(which we shall always assume), the sum of the expecta-
tion values of these two projection operators is unity. How-
ever, these two orthogonal projection operators do not
correspond to the results that are observationally distin-
guishable to any single copy of the observer.
For example, assume that there are two tossings of two

fair coins, but that the observer of one of the two tossings
cannot distinguish which of the two tossings he or she is
observing. (The two tossings might be observed by two
copies of a locally identical observer, very distantly sepa-
rated in a huge spacetime so that the two copies cannot
communicate with each other.) Suppose that for one of the
tossings of two coins, the observer observes a total of one
head. Hartle and Srednicki make the interpretation [1],
‘‘All we know is that there exists at least one such region
containing our data.’’ Therefore, they would calculate the
probability for the existence of one head (out of two coins
tossed per tossing) in either or both of the tossings, which
for fair coins would be 3=4. This would be the expectation
value of the projection operator onto the existence of one
head in either or both of the two tossings of two coins each.
The complementary probability would be 1=4, the expec-
tation value of the complementary projection operator onto
the nonexistence of exactly one head in either of the two
tossings of two coins each.
However, this complementary projection operator can-

not be tested by a single copy of the observer, since even if
it finds that the number of heads in its tossing is not one, it
cannot know whether or not the other distant tossing gets a
result of just one head out of the two coins tossed. There-
fore, although the one copy of the observer can confirm
the existence of one head (if that is what it observes), it
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cannot falsify the existence of one head (no matter what
it observes).

On the other hand, if the observer wants a set of projec-
tion operators for which in principle it can confirm any one
of them, it could use the three projection operators onto the
existence of 0, 1, and 2 heads, respectively. However, these
are not orthogonal, and for fair coins their expectation
values sum to 13=8, greater than unity. Therefore, these
three expectation values for the three projection operators
whose positive results can be confirmed by the one ob-
server cannot be interpreted as normalizable probabilities.

As I see it, this apparent consequence of standard quan-
tum theory and of similar probabilistic reasoning that
has been beautifully deduced by Hartle and Srednicki [1]
seems to be a reductio ad absurdum of standard quantum
theory and similar reasoning for cosmologies in which
there are indistinguishable copies of observational situa-
tions. However, we shall see below that replacing standard
quantum theory by Eventual Quantum Mechanics can
rectify the situation.

II. GENERAL ANALYSIS OF STANDARD
QUANTUM THEORY

We can generalize this discussion to the case in which
there are m distinguishable possible observations (labeled
by a subscript i that runs from 1 to m) in each of N obser-
vationally indistinguishable observational situations. (That
is, which of the N situations being observed cannot be
distinguished by the identical copies of the observer, but
only the observation outcome itself.) For notational pur-
poses, suppose each observational situation is labeled by a
superscript index K that runs from 1 to N. (We might sup-
pose that in principle K can be determined by some hypo-
thetical superobserver, but not by the ordinary observer
confined to a particular observational situation.)

Now suppose PK
i denotes the projection operator in the

entire quantum state space onto the ith observation in the
Kth situation. This would be the tensor product of the local
projection operator onto the ith observation in theKth local
observation situation and of the local identity operators in
all the other local observation situations and in all other
regions of spacetime. For fixed situation K, the different
projection operators PK

i for different values of i will be
assumed to be orthogonal, PK

i P
K
j ¼ 0 for i � j, because

for a fixed observational situation (fixed copy of the ob-
server), the different possible observations are assumed to
be mutually exclusive.

However, projection operators for different K’s (differ-
ent observation situations for different observers) will not
be orthogonal, even if their i’s are different: PK

i P
L
j � 0 for

K � L, even if i � j. In fact, if hOi denotes the expectation
value of the operator O, then although hPK

i P
K
j i ¼ �ijhPK

j i
when both projection operators apply to the same situation
K, when they apply to different situations K � L (here
assumed to be in separate local regions, with the quantum

state space a tensor product of the state spaces for each
local region), one gets hPK

i P
L
j i ¼ hPK

i ihPL
j i, the product of

the expectation values for the individual projection opera-
tors, which need not be zero.
Because the observer within one observational situation

(one copy of the observer) cannot observe which particular
situation he or she is in and therefore has no access to the
index K that is known only to the hypothetical superob-
server, he or she has no justification for using any particular
projection operator PK

i associated with a particular K.
However, casting the reasoning of Hartle and Srednicki
[1] into quantum language, one can construct the projec-
tion operators Pi ¼ I �Q

KðI� PK
i Þ onto the existence of

the observation i in at least one of the observational situ-
ations, where I is the identity operator for the full quantum
state space, and where

Q
K denotes the product over all K

from 1 to N. If the observer does observe i, that would
confirm the truth value of the corresponding projection
operator Pi, but its complement, I � Pi, cannot be con-
firmed by any observation restricted to a single observa-
tional situation.
One can take pSðiÞ ¼ hPii to be the probability in

standard quantum theory (denoted by the subscript S)
that at least one observation of i occurs, and pSð:iÞ ¼
hðI� PiÞi ¼ 1� pSðiÞ to be the probability that no obser-
vation of i occurs. However, since for N � 1 the different
Pi’s are not orthogonal, the sum of the pSðiÞ’s generically
will not be unity. One can follow Hartle and Srednicki [1]
and say that one has normalizable probabilities pSðiÞ and
pSð:iÞ for any particular i, but one can only test these
if one uses the value of i actually observed. With some
probability the existence of i can be confirmed by an
observer within a single observational situation, but the
negation of its existence, :i, cannot be confirmed at all.
Because of the asymmetry between the confirmability of i
and the nonconfirmability of :i, it seems inappropriate to
use pSðiÞ as a likelihood in a Bayesian analysis.
We can also see, using an example modeled after that in

[17], quantitatively how pSðiÞ can be much larger than the
expectation value of PK

i for any K and hence can be highly
misleading to use as a likelihood in a Bayesian analysis.
For example, take the case in which 20 coins are tossed
by each of a billion widely separated observers (N ¼ 109),
and let the observational results be the sequence of
20 heads and tails (m ¼ 220 ¼ 1 048 576 possibilities).
Let i ¼ 1 correspond to the sequence of all tails (0 heads
in the tossing of 20 fair coins). If one hypothesizes that all
the coins are fair, the expectation value of PK

1 for any K
is 2�20 � 0:954� 10�6, less than one part in a million.

However, pSð1Þ ¼ hP1i ¼ hI �Q
KðI � PK

1 Þi ¼ 1� ð1�
2�20Þ109 � 1� 6:5� 10�415. If one used pSð1Þ as a like-
lihood in a Bayesian analysis, one might say that its value,
very near unity, would tend to confirm the hypothesis that
the coins are fair, whereas after getting 20 tails in a row
(probability less than one in a million if there were only
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one tossing of 20 fair coins), it would seem much more
reasonable to interpret this as evidence against the fair-coin
hypothesis.

So how can we modify standard quantum theory, which
seems to exemplify the type of reasoning used by Hartle
and Srednicki [1], to get more reasonable results, results in
which one can get likelihoods that would not nearly all
tend to unity if there were vastly many indistinguishable
observational situations (identical copies of the observer)?

III. EVENTUAL QUANTUM MECHANICS

Let me now propose a version of quantum theory in
which the probability of an observation within a particular
observational situation does not depend on how many such
situations there are if the quantum state restricted to each
situation (e.g., its density matrix, after tracing over all other
regions) is the same. Since the basic elements will be the
events observable within an observational situation, I shall
call this class of quantum theories Eventual Quantum
Mechanics, or EQM.

To motivate what I am aiming for, let me propose that
the alternatives for the observations within an observa-
tional situation should obey the following key principles
for the set of alternatives:

(1) Prior alternatives principle (PAP)—The set of alter-
natives to be assigned likelihoods by theories Ti

should be chosen prior to (or independent of) the
observation Oj to be used to test the theories.

(2) Principle of observational discrimination (POD)—
Each possible complete observation should
uniquely distinguish one element from the set
of alternatives.

(3) Normalization principle—The sum of the likeli-
hoods each theory assigns to all of the alternatives
in the chosen set should be unity,

X

j

PðOjjTiÞ ¼ 1: (3.1)

I am always assuming that the alternatives within any set
to be considered are mutually exclusive and exhaustive
(complete). For example, if the alternatives are observed
data sets within some class, then each alternative data set
must be different, and all data sets within the class must be
included within that set of alternatives.

For pedagogical simplicity, assume initially that the uni-
verse does have N observational situations that are suffi-
ciently indistinguishable that the observer within each one
cannot distinguish which one is his or hers. (For example,
the distinction might be only in terms of what the surround-
ings are at sufficiently great distances that the observer
within the region does not have observational access to this
information.) Suppose that in each situation there are m
distinguishable observations, say given in the Kth situation
by the m projection operators PK

i for i running from 1 to m

(PK
i each acting on the entire quantum state space, but

trivially as the identity operator outside the Kth observa-
tion situation). Assume they are all orthogonal for each
different i (but the same K), PK

i P
K
j ¼ �ijP

K
i , and that they

sum to the identity operator I for the entire quantum state
space when summed over i,

P
iP

K
i ¼ I for each fixed K.

Now construct the operator Ri ¼ P
KP

K
i , the sum of the

projection operators over all observational situations K but
for the same observation i. Then define the probability of
the observation i in Eventual Quantum Mechanics as the
normalized expectation value of this sum of projection
operators,

pEðiÞ ¼ hRiiP
j
hRji ¼

hP
K
PK
i i

P
j
hP
K
PK
j i

¼ 1

N

X

K

hPK
i i: (3.2)

If one has only one observational situation, N ¼ 1,
as has been the usual implicit assumption in traditional
formulations of quantum theory, then of course Ri is just
the projection operator for the observation in that one
situation, and one has the usual probability interpretation
of standard quantum theory. Thus in that situation,
Eventual QuantumMechanics reduces to ordinary standard
quantum theory.
It is also easy to see that, if all the N regions have the

same quantum state (e.g., the same density matrix) and if
the PK

i ’s are all essentially the same, except for the speci-
fication of which region on which the specific PK

i acts
nontrivially, then hPK

i i is the same for each K, and hRii is
just N times this expectation value. Therefore, in this case
pEðiÞ would be the same as hPK

i i=
P

jhPK
j i ¼ hPK

i i for any
K, the last equality being true because

P
jP

K
j ¼ I and hIi ¼

1 in a normalized quantum state. Thus in the case of N
identical regions, Eventual QuantumMechanics reduces to
what ordinary standard quantum theory would predict for
a single one of these regions. On the other hand, Eventual
Quantum Mechanics does not reduce to what standard
quantum theory predicts for many such regions, as has
been nicely shown by Hartle and Srednicki [1], because
the Ri are not projection operators that are used in standard
quantum theory to give probabilities.
Where Eventual Quantum Mechanics would allow more

general predictions than standard quantum theory applied
to a single observational situation would be in cases in
which the different regions (the different observational
situations for different observers) have different density
matrices. Then the EQM probabilities pEðiÞ would be the
average of the expectation values of the projection opera-
tors PK

i over the N regions, an average probability for the
observation i in each of the N regions.
Moreover, one might further generalize Eventual Quan-

tum Mechanics beyond the last expression of Eq. (3.2) to
allow that the existence of each region, or the existence of
the observer within each region, might itself have a quan-
tum uncertainty and hence a probability less than unity.
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This could be reflected in the normalization of the effective
density matrix for each region and in the possibility that
one might define the PK

j more generally so that
P

jhPK
j i

does not necessarily equal one for each region. Then the
fundamental operator Ri, whose normalized expectation
value gives the probability of the observation i, might not
be simply a sum of projection operators, but perhaps a
weighted sum of projection operators, where the weights
could effectively give the probabilities of the different
regions being realized, or of the existence of the observer
within each of the different regions.

The weights for each region, or for the observer within
each region, need not even be existence probabilities. For
example, they might instead reflect how long each region
lasts, or how long the observer lasts within each region.

So far as I can see, the main essential feature is that one
have a positive operator Ri for each possible event or
observation (or at least an operator Ri whose expectation
value is positive for the actual quantum state of the cosmos,
even if it need not be positive for all possible quantum
states, though it might seem simpler just to require that
each Ri be positive). It might be easiest to understand the
cases in which each operator Ri is a sum of projection
operators, or perhaps a weighted sum of easily understand-
able projection operators, but I do not see that such a
requirement would be essential.

IV. MAKING EVENTUAL QUANTUM
MECHANICS MORE STANDARD

One might try to interpret Eventual QuantumMechanics
in a way that appears more nearly like standard quantum
theory. For example, first consider the case in which each
region, and its observer, definitely exists with unit quantum
probability. Then although the probability pEðiÞ given by
Eq. (3.2) cannot in general be written as the expectation
value of any natural projection operator for the problem, it
could simply be written as the expectation value of the pro-
jection operator PK

i for any particular choice of the region
K if the quantum state were independent of the labeling of
the different regions. That is, if one replaced the arbitrary
density matrix � for the tensor product of theN regions and
for whatever else exists outside them by the density matrix
�� that is the average of � over all N! permutations of the
regions, then pEðiÞ is simply the expectation value of any
one PK

i (arbitrary K) in the averaged state ��:

pEðiÞ ¼ trðPK
i ��Þ: (4.1)

However, even this conversion of pEðiÞ to an expectation
value of a projection operator by changing the state to an
averaged state fails to be true when the quantum probabil-
ity for the existence of the observer is not unity for each
region. If in that case one calculates by Eq. (4.1) each pEðiÞ
and sums them over all possible observations i, the sum
will not be normalized to unity but will be the average
probability of the existence of the observer for each region.

To get a normalized set of probabilities pEðiÞ in that case,
one should instead in the averaged quantum state �� take
each pEðiÞ to be the conditional probability for the ob-
servation i in any one of the regions (say K), given that
there is an observer in that region. If PK

O is the projection

operator onto the existence of an observer in the region K,
then instead of Eq. (4.1), one should use the conditional
probability

pEðiÞ ¼ trðPK
OP

K
i P

K
O ��Þ

trðPK
O ��Þ : (4.2)

One might go even further and define the observer-
conditioned density matrix

�̂ ¼ PK
O ��PK

O

trðPK
O ��Þ ; (4.3)

so that then the conditional probability pEðiÞ can be written
as the expectation value of any one of the projection
operators PK

i :

pEðiÞ ¼ trðPK
i �̂Þ: (4.4)

However, being able to write pEðiÞ as the expectation
value of a projection operator in Eventual Quantum
Mechanics involves replacing an arbitrary quantum state
� with the conditionalized averaged quantum state �̂. If
one wanted to stick with the original quantum state �, the
probability pEðiÞ for the observation i (normalized out of
all possible observations) cannot in general be written as
the expectation value of any natural projection operator.

V. SENSIBLE QUANTUM MECHANICS

One subclass of Eventual Quantum Mechanics theories
is those of Sensible Quantum Mechanics [18–23] or
Mindless Sensationalism [24], in which the alternative
events or data sets or observations are conscious per-
ceptions. Roughly, each individual conscious percep-
tion is all that a conscious observer is aware of or
consciously experiencing at once, what Lockwood [25]
calls a ‘‘phenomenal perspective’’ or ‘‘maximal experi-
ence’’ or ‘‘conscious state,’’ and what Bostrom [26] calls
an ‘‘observer-moment.’’ If this conscious perception is
regarded as a observed data set, the data would be the
content of that awareness. In this set of alternatives, each
different possible conscious perception would be a mem-
ber, and any two perceptions with different contents would
be different observations.
In the case of a discrete set of conscious perceptions, a

particular Sensible Quantum Mechanics theory assigns a
probability to each conscious perception that is the expec-
tation value of a corresponding positive ‘‘awareness opera-
tor.’’ There is no requirement that these positive operators
be orthogonal to each other or even that they be pro-
portional to projection operators (though they might be
approximately proportional to the integral over all of
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spacetime and over the local Lorentz group of projection
operators in local regions).

VI. CONCLUSIONS

Whether typicality is likely depends on the way like-
lihoods are calculated. The way likelihoods are calculated
depends on the set of alternatives to be assigned likeli-
hoods. The set of alternatives must be chosen even before
one can do a Bayesian analysis, so one cannot compare
different theories with different sets of alternatives.

Hartle and Srednicki [1] use a type of probabilistic
reasoning that includes standard quantum theory to select
alternatives that in the quantum case are given by orthogo-
nal projection operators, but their alternatives are not dis-
tinguished by the possible observations in universes large
enough to have many observational situations so similar
that they are not distinguishable to the observers within
them.

On the other hand, alternatives obeying the prior
alternatives principle and the principle of observational
discrimination have normalized likelihoods in which
typicality is automatically favored in the likelihoods.
Since this preference comes directly from the likelihoods
normalized over all possible distinguishable observations
or data sets, it is not and need not be introduced ‘‘through a
suitable choice of priors’’ as Hartle and Srednicki [1]
suggest. Instead, the prior probabilities for theories may
be chosen to ‘‘favor theories that are simple, beautiful,
precisely formulable mathematically, economical in their
assumptions, comprehensive, unifying, explanatory, ac-
cessible to existing intuition, etc. etc.,’’ as Hartle and
Srednicki propose.

Cosmological theories obeying the prior alternatives
principle, the principle of observational discrimination,
and the normalization principle, but apparently not stan-
dard quantum theory for a very large universe, can in
principle be tested by observations. It therefore seems quite
reasonable to adopt these principles. Eventual Quantum
Mechanics and its subclass of Sensible Quantum
Mechanics are frameworks for quantum theories which
do obey these principles and which would make typical

observations more likely. That is, they enable typicality to
be derived as likely.
Typicality by itself does not guarantee that the theory

with the highest posterior probability will make us typical.
However, typicality is favored in the likelihoods. One need
not impose it separately, but in discussions in which one
does not explicitly invoke the full Bayesian framework,
assuming typicality may be a legitimate shortcut for select-
ing between different theories for our observations. We are
unlikely to be highly atypical.
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