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Perihelion precession for modified Newtonian gravity
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We calculate the perihelion precession & for nearly circular orbits in a central potential V(r). Differently
from other approaches to this problem, we do not assume that the potential is close to the Newtonian one.
The main idea in the deduction is to apply the underlying symmetries of the system to show that § must be
a function of r - V"(r)/V'(r) and to use the transformation behavior of & in a rotating system of reference.
This is equivalent to say that the effective potential can be written in a one-parameter set of possibilities as
the sum of centrifugal potential and potential of the central force. We get the following universal formula
valid for V/(r) > O reading §(r) = 27 - [———— — 1]. It has to be read as follows: a circular orbit at
this value r exists and is stable if and only if thls é is well defined as real; and if this is the case, then the
angular difference from one perihelion to the next one for nearly circular orbits at this r is exactly 27 +
8(r). Then we apply this result to examples of recent interest like modified Newtonian gravity and
linearized fourth-order gravity. In the second part of the paper, we generalize this universal formula to
static spherically symmetric space-times ds? = — e df? + 24 g2 + y2402; for orbits near r it reads

§=2m-] Gl — 1] and can be applied to a large class of theories. For the Schwarzschild
3=2r N+ A () /A ()

black hole with mass parameter m > 0 it leads to § = 27  [——— — 1], a surprisingly unknown formula.
It represents a strict result and is applicable for all values r > 6m and is in good agreement with the fact
that stable circular orbits exist for » > 6m only. For r 3> m, one can develop in powers of m and get the

well-known approximation § ~ 672
.
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I. INTRODUCTION

Adkins and McDonnell [1] “calculate the precession of
Keplerian orbits under the influence of arbitrary central-
force perturbations.” For some examples including the
Yukawa potential they present the result as a hypergeomet-
ric function. For nearly circular orbits, they arrive at the
formula for the perihelion precession Aé’p, [1], Eq. (11)

arv
ag, =TV
GMmL du” | =1/

(1.1)
where G is the gravitational constant, M the mass of the
central body, m the mass of the moving test body, L the
radius of the orbit, and u = 1/r the inverted radial coor-
dinate. The potential V is the perturbation of the
Newtonian potential, so the total potential is then given
by V(r) — GMm/r. They mention that this formula
Eq. (1.1) is “equivalent to a formula for the nearly circular
precession that has been used by Dvali, Gruzinov, and
Zaldarriaga [2].”

In the fourth section of [1], the Yukawa potential is
applied in the form [1], Eq. (31)
A>0.

V(r) = % exp(—r/ ), (1.2)

Using the parameter k = L/A they arrive at [1], Eq. (33)
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AB,(x,0) = — (13)

G7]71-;m K2 exp(—k).
In the fifth section of [1], the authors apply the fact, that
within this approach, the famous general relativistic peri-
helion advance can be reproduced by using the first post-
Newtonian correction

G*M*mL

where c is the light velocity. They arrive at [1], Eq. (42)

M
A6,(GR) = 6mGM
2L

(1.5)

and they also present limits for the value of the cosmologi-
cal constant by comparing theoretical and measured values
of the Mercury perihelion advance.

The authors of [2] investigate those kinds of theories
which possess a linearized form of the field equation of the

type
O+ f(O)g;; =Ty

and calculate e.g. the anomalous perihelion precession for
this kind of theories by perturbations around the
Newtonian potential.

In [3], the perturbations in the cosmological context are
calculated for several scalar-tensor theories of gravitation,
and for the different conformal transformations the dis-
tinction between the Einstein and the Jordan frames have
been made. They applied the results also to calculate an
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effective gravitational constant for measurements within
the Solar System. In [4,5], the authors carefully calculate
the possible measurable effects of tensor-multiscalar theo-
ries of gravitation, including the secular rate of perihelion
advance.

Davies [6] deduces the perihelion precession due to a
perturbing central force on an elliptic Keplerian orbit via a
perturbation with the Runge-Lenz vector. He mentions that
one can mimic the influence of the outer planets to the
perihelion shifts of the inner ones by replacing each outer
planet by a ring of the same total mass, so that the effective
potential can remain rotationally symmetric.

II. PERIHELION PRECESSION

A test mass shall move along a periodic orbit in a central
potential V(r). We look for the perihelion precession of this
orbit.

Without loss of generality the test mass has unit mass,
and the motion takes completely place in the equatorial
plane. We parametrize this plane by (r, ¢), denote the time
by ¢, and use the dot to abbreviate for d/dr. Then the
Lagrangian reads

L =1+ r¢? — V(r). 2.1

We assume that V(r) is a C? function at all values » which
belong to the orbit. For the orbit (r(z), ¢(r)) we define
perihelion and aphelion via

r = Itrélllelr(l‘) and r, = I%aéir(t), 2.2)
respectively, where 0 < r; = r, < 00 is assumed.

Let ¢, be the change of ¢(7) during the change from r(z)
from one perihelion to the next aphelion. Because of time-
reversal invariance, the same ¢, is also the change of ¢(r)
from this aphelion to the next perihelion. For 2¢, = 2,
the orbit is exactly closed after one revolution. So it is
adequate to define the perihelion precession 6 by

8 = 2(py — ). (2.3)
For purely radial oscillations, our definition implies ¢, =
0, i.e. 6 = —2r. If purely radial motion is excluded from

the consideration, then all values of 6 with § > —27 may
appear as perihelion precession. For 6 >0 we call it
perihelion advance.

What happens with 6 when the orbit is continuously
deformed? For example, let

r(o) = 4 + g cos(p) + cos(2¢) (2.4)

with some parameter € < 1. For all values € > 0 we get
6 = 0, but at e = 0 we get 6 = —r. This example shows
that 6 does not always continuously depend on the orbits.

However, in the typical cases, 6 is a continuous function
and for a given fixed V(r), we have 8(r|, ry), ie., the
prescription of perihelion and aphelion uniquely determine
the perihelion precession. We now define

PHYSICAL REVIEW D 78, 023512 (2008)

6(7"0) = lim 5(}"], I"z). (25)
rL,r—r

The expression 8(ry, ry) is formally the perihelion preces-
sion of an exact circular orbit which does not make any
sense. So, what is the interpretation of the limit in
Eq. (2.5)? It is just the perihelion precession of nearly
circular orbits which should be well defined for those cases
where the related exact circular orbit is a stable one.

It is the purpose of the present paper to deduce several
formulas for the calculation of 6 and to apply them to
modified Newtonian gravity.

III. NEARLY CIRCULAR ORBITS

How can we calculate the perihelion precession 6(r) for
the nearly circular orbit at r = r4? As we have a second-
order equation of motion, it should be a function of r,
V(ry), V'(ry), and V"(ry) only, where the dash denotes
d/dr. An exact circular orbit at this r value is possible if
and only if the repelling centrifugal force is compensated
by an attractive central force, i.e., if V/(rg) > 0.! Now we
start to simplify the problem: Adding a constant to the
potential does not alter the orbits, so no dependence on
V(rp) should appear. Similarly we argue as follows: if we
multiply the function V by a positive constant, then we can
compensate this by multiplying ¢ also by a suitable positive
constant without changing the orbits, therefore the depen-
dence on the potential can only be in the form of an
expression like

V" (ro)

m = [InV'(ro)],

which is invariant with respect to a multiplication of V by a
positive constant. Finally, we know that & is dimensionless,
and here we need the last possible argument, r,, to produce
a dimensionless quantity from it: we define

ro + V"(ro)

3.1
V'(rp) G-

q:

For example, we assume V(r) = —1/r, then § = —2 ac-
cording to Eq. (3.1); this potential is the exact Newtonian
gravitational field, where we know that all the bounded
orbits are exact ellipses with the center r = 0 being located
at one of their focal points, so we get § = 0 for this case.
This motivates the definition ¢ = ¢ + 2, i.e.,

_ 10" V'(ry)

+ 2. 3.2
V'(ry) -2

Then it holds that 6 must be a function of g. As no other
dependencies exist, it must be a universal function 8[q]

'This sentence is included to fix the sign convention and to
make clear that V/(r,) may be written in the denominator.
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being valid for all potentials, and 6[0] = 0 because for the
Newtonian theory, g = 0.

The next step is to find out the exact form of this
universal function. A first idea to assume exact linearity
in g is not justified, because then the restriction 6 > —27
deduced in the previous section would not be realized.

To find the exact form of this universal function it
suffices to insert a nontrivial one-parameter set of ex-
amples for which the solution is known.

To this end we discuss how the perihelion advance
changes if ¢ is replaced by @ = k - ¢ with an arbitrary
positive parameter k, but r remains unchanged. We get
@y = k - ¢g and with Eq. (2.3) then

5= -2a+k-(6+2m)=k-8+2m-(k—1). 3.3)

The set of possible & values is restricted by 6 > —27r, and
by Eq. (3.3), also § > —2ar. For k = 1 we get, of course,
& = 8. To find the related ¢ values we need the equation of
motion which is deduced in the next section.

IV. THE EQUATION OF MOTION
The Lagrangian Eq. (2.1) reads

L =1+ r*¢?) — V(.
The angular momentum M is a conserved quantity:

L
M=""=7,

. M
hence ¢ = —
() r

4.1)
Radial motion is already excluded, so M # 0. Without loss
of generality we assume M >0, otherwise we would
change the orientation of the r-¢-plane.

The energy E is also a conserved quantity:

E =3+ r*¢?) + V(r). 4.2)
Inserting Eq. (4.1) into Eq. (4.2) we get
M2

= 3 + V() +— 27 4.3)

We derive Eq. (4.3) with respect to ¢ and divide by 7
afterwards. Then we get the Newtonian force equation

M2
0=7i+V(r)——, 4.4)
r
the term with M? represents the centrifugal force. A cir-
cular orbit implies # = 0, so by Eq. (4.4), this is possible at
r=rmry fOr V/(ro) > O Ol’lly.

To evaluate stability, we define the effective potential as
usual:

2

M
Venlr) = V() +5 5 (45)

leading to
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2

Vi(r) — — (4.6)

Véff(r) =

and

3M2
Vi(r) = V"(r) + —— 4.7)
A circular orbit at r = r, requires Veff(ro) = E due to
Egs. (4.3) and (4.5) and V/4(ry) =0 due to Egs. (4.4)

and (4.6). This implies

M(ry) = \/”8 - V/(ro)

and
E(ro) = V(rg) + 2+ V'(ro).

A simple calculation shows that the following four inequal-
ities are all equivalent to each other:

dM(r) -0 dE(ry)

>0,
dl’o dro

Vie(ro) >0,

and

ro - V"'(rg) +3-V'(ry) >0. 4.8)

A perturbation of the circular orbit can be parametrized by
slightly changed initial conditions, or equivalently by
slightly changed values of M and E. In a first step we
restrict to perturbations which have the same angular mo-
mentum M and a slightly changed energy FE instead of E.
So we have to solve

~ '2

E=—+YV

) et (7)-

To get solutions one needs E > E. Thus the problem is now
equivalent to a one-dimensional motion in the potential
Veir. From Eq. (4.9) we get

F= i\/EVE = Vgt (7).

Together with ¢ = M/r* we find

(4.9)

de _ ¢ _

M
_72'\/5’\/1;_ Veff(r).

dr ¥
If the equation E = V,(r) has two solutions r, r, near r,
with r; < ry <r, we get

Yo = \/—[

In the limit £ — E we have ry, r, — ry. We need a positive
finite value for ¢ in this limit, and this is possible for
Vlii(ro) > 0 only, i.e., if inequality (4.8) is valid. If this is
fulfilled, then V. has a regular quadratic minimum at r =
ro and the limit value of ¢, depends on V/;,(r) only, not on
any higher derivatives of V(ry). This strictly confirms the

E - Veff( )'
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assumption made above that the universal formula for &
doesznot depend on derivatives of V higher than the second
one.

In a second step we should also look for perturbations
where M is slightly changed to M. However, such pertur-
bations can be, due to dM(ry)/dr, > 0, rearranged to be
perturbations at a slightly changed circular orbit with
adequately chosen 7 instead of ry, so this does not lead
to new conditions.

Now let (r(¢), ¢(¢)) be a periodic solution and k£ >0 a
parameter. We define 7(r) = r(¢) and ¢(r) = k - ¢(r). We
look for a potential V(r) such that (7(f), &(¢)) becomes a
solution. With Eq. (4.1) we get

M=k-M (4.10)
and with Eq. (4.3)
- P M?
E=—+ +— 4.11
5 V(r) 52 (4.11)

An additive constant to the energy can be compensated by
adding a constant to the potential, so we may assume £ =
E. A comparison of Eq. (4.3) with Eq. (4.10) and (4.11)
leads to

. K> - M? M?
V(r) + 52T V(r) + By

i.e. to
(1 — kZ) . M2

V(r)=V(r) + (4.12)

272

This means that here we used the transformation behavior
of 0 in a rotating system of reference, which is equivalent
to say that the effective potential can be written in a one-
parameter set of possibilities as a sum of centrifugal po-
tential and potential of the central force, and so the knowl-
edge about 6 for one element of this set suffices to
calculate it for all other elements of this one-parameter
set.’?

For example, let V(r) = —1/r, i.e., again the Newtonian
potential; we consider nearly circular orbits at ry = 1.

2As it represents a key point in the deduction, we give also the
idea for a third independent proof of this statement; it is meant as
pedagogic remark: if one considers the analogous problem of
motion in a 4-dimensional pseudo-Riemannian space-time, then
the circular orbits are represented by such geodesics, and the
nearly circular orbits are represented by the geodesic deviation
equation, which itself has the components of the curvature tensor
as coefficients, i.e., no more than second derivatives of the
potentials appear; and our classical problem of motion can be
given as an adequate limit of space-times.

3This is the key point of the deduction: we give as input only
the knowledge of & for the Newtonian potential at r, = 1, then
by this one-parameter set of transformations we produce the
knowledge about 6 for a one-parameter class of potentials, and
this knowledge suffices to identify the universal function 8§[¢]
uniquely.
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Then V'(r) = 1/r? and with Eq. (4.4) we get using # = 0
just M = 1. Inserting this into Eq. (4.12) we get
. 11—k
Vir) = ——+ ———.
() ==+

Now we apply Eq. (3.3). For k = 1 we have, of course, 6 =
0, so we get

(4.13)

S5=2m-(k—1). (4.14)

With the help of Eq. (3.2) and (4.13) we calculate at ryp = 1
VW1
V(1) ko

All values § with § > —1 can appear this way. We invert
this equation and get with the assumption k > 0 the result
k= ! 4.15)
JIT+§ '
Inserting Eq. (4.15) into Eq. (4.14) and removing the tilde
we get for arbitrary values g > —1

1
Olgl =2m|l——-1). 4.16
=27 ) (10
Indeed, this & covers all values 8 > —27 and it is defined
for all values ¢ > —1. Applying Eq. (3.2) and the condition
V!(ry) > 0 already mentioned in Sec. III this is equivalent
to the conditions

ro V' (ry) +3-V(rg) >0 and V'(ry) >0. (4.17)

Equation (4.16) together with Eq. (3.2) defines the uni-
versal function we had looked for in Sec. II. It should be
emphasized that we did not solve any integrals or differ-
ential equations to deduce it, we only applied the obvious
symmetries of the system and the knowledge about the
absence of perihelion precession in Newtonian gravity.

It is still unclear what conditions for the potential V(r)
have to be met that a periodic orbit with prescribed values
of perihelion r| and aphelion r, exists. To this end let us fix
a C? function V(r) and values ry, r, with 0 < r; < r,. Both
at r; and r, we have i = 0, so we get from Eq. (4.3)

M? M?
V(r) + o = V(ry) + . 4.18
(rl) 2’% (r2) 2’% ( )

So one needs the finite version of the condition V'(r;) > 0:

By the way, the purely radial oscillations which are ex-
cluded here appear as M = 0 in Eq. (4.18) and require
AV =0.

Inserting Eq. (4.19) into Eq. (4.18) and solving for M we
get

2AV
M = ryry > (420)
n—n
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Inserting Eq. (4.20) into Eq. (4.3) at r = r; we get

r3V(ry) — riv(r)

2 _ 2
=N

E=

4.21)

That the motion between r; and r, is always possible
requires 7 # 0 in this whole interval,* so we have to fulfil,
see Eq. (4.3),

2

M
E>V(r) + 72 for ry <r<r,. (4.22)
I

Inserting Egs. (4.20) and (4.21) into this inequality we get

132 = rHV(ry) + 123 = rHV(r)

Vir) < 2 (r% — r%)

(4.23)

representing the finite version of the first of the conditions
(4.17); one can prove this statement by inserting r, = r; +
¢ into Eq. (4.23) and applying the limit ¢ — 0 afterwards.

Finally it should be mentioned that in some limiting
cases, also equality instead of a < relation could lead to
some solutions; however, in those cases either V(r) fails to
be a C? function or the test mass would need infinite time to
reach the limit; subsequently, this fails to represent a
periodic motion, and both are excluded from our
considerations.

V. NEARLY CIRCULAR ORBITS—SECOND
ROUND

Now we are ready to formulate the result: Let V(r) be a
C? function and let r, > 0 be a fixed value of the radial
coordinate. Then an exact circular orbit at this r value is
possible if and only if the repelling centrifugal force is
compensated by an attractive central force, i.e., if V/(ry) >
0, where the dash at V denotes d/dr. This orbit represents a
stable one in the sense that small perturbations of the initial
conditions always lead to periodic oscillations around r =
ro, if and only if ry - V' (rg) + 3 - V/(ry) > 0. If both in-
equalities are fulfilled, then the perihelion precession 8(r)
of the nearly circular orbits at r = r, is well defined and
can be calculated by use of Egs. (3.2) and (4.16) to

1
V3 + 1o - V(o) / V' (o)

This equation represents an exact result and is not re-
stricted to potentials close to the Newtonian one.

8(r) = 277-( 1). (5.1)

A priori, an inflexion point might be possible, too, i.e., for
instance 7> 0 on an interval but a single point where 7 = 0.
However, such a behavior is already excluded by our assumption
that we consider only periodic orbits; a little bit more sophisti-
cated one can argue: such a behavior would a priori allow
simultaneously two solutions of the field equations, showing
that the Cauchy problem would be ill-defined at this point.
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If we rewrite Eq. (5.1) in the form

(5.2)

1
o) = 2 <JS T V0T 1)’

then imposing the validity of the inequalities (4.17) is
equivalent to require that Eq. (5.2) represents a well-
defined real function. This fact can be explained as follows.
In the deduction of Eq. (5.2) we only used symmetry
arguments and continuous deformations of the orbits, so
in the connected component of the Newtonian potential
V(r) = —1/r with V'(r) > 0 all regularity conditions will
be met; as V'(ry) = 0 represents a singular point for
Eq. (5.1), it is also clear from that version of the equation
why only V/(r) > 0 is allowed.

To ease comparison with the literature it proves useful to
work in the inverted radial coordinate u = 1/r. We define
W(u) = V(r) and a dash at W shall denote d/du. Then it

holds
W (u) = —r>-V'(r),
(5.3)
W'(u) =213 - V'(r) + * - V().

Because this inversion is a dual transformation we can
exchange u with r and simultaneously V with W in
Eq. (5.3) and get
VI(r) = —u*- W (u),
5.4
VI(r) =2u - W (u) + u* - W (u).
Combining Eq. (3.2) with Eq. (5.4) we get at ug = 1/rg

LW
g=— 7”°W‘,}ru§)”°). (5.5)
Then we get with Eq. (5.1)
1
V1= g - W o)/ W' (uo)
In this coordinate the inequalities (4.17) read, see Eq. (5.3),

Ug * W”(uo) - W/(Mo) >0 and W/(Mo) <0. (57)

6(1/ug) = 2m - ( - 1). (5.6)

Analogously to Eq. (5.2) we can now combine Eq. (5.6)
with inequalities (5.7) to get

1
V1 = g - [In(=W'(up))J

If we have the additional condition that |ug - W/ (uy)| <
|[W'(up)|, then we get from Eq. (5.6) the following approxi-
mation for &:

8(1/ug) = —a - ug - W"(ug)/|W(up)|.

51 /ug) = 277 - ( - 1). (5.8)

(5.9

The Newtonian potential for a central mass m > 0 reads
V(r) = —mG/r, where G is the gravitational constant.
This leads to W(u) = —mGu, hence W/(u) = —mG and
W' (u) = 0. Therefore, Eq. (5.9) is especially useful if the
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central potential under consideration is a small perturba-
tion of the Newtonian potential.

VI. COMPARING WITH ADKINS AND
MCDONNELL

In [1], see also the references cited there, the orbital
precession due to central-force perturbations has been
calculated in details, and applications are given; especially,
their Eq. (11) [i.e. our Eq. (1.1) above]

AD — — T d*V
P GMmL du2 u=1/L

is, after adequate transformation of the notation, almost
identical to our Eq. (5.9).

Let us check this statement in more detail. To this end
we now transform our formulas to the notation used in [1].
This first means, from now on we denote the central mass
by M and the mass of the test body by m, and we reintro-
duce the gravitational constant G and light velocity ¢ into
the formulas, even in those cases where units have been
chosen with G = ¢ = 1. Our W(u) in Eq. (5.9) has then to
be replaced by V(1) — GMmu, where now this V(u) is the
small perturbation of the Newtonian potential according to
[1]. This leads to W'(u) = V'(u) — GMm and W"(u) =
V"(u). So, for the second derivative, there is no difference.
For the first derivative, we have within the used approxi-
mation, that V'(u) can be neglected in comparison with
GMm. So far, the right-hand side of Eq. (5.9) reads

_aug V" (up)
GMm

and evaluating this at uy = 1/L exactly leads to the right-
hand side of Eq. (1.1).
As an example, let V be according to Eq. (1.2), i.e.

V(r) = % exp(—=r/2),  A>0.

Then we have

W) = —GMmu - [1 — Bexp(—1/(Au))] 6.1)
with &« = GMmf3. The perihelion shift according to [1] is
with k = L/ A, see Eq. (1.3):

A0, = —mBk* exp(—k),

6.2)

an expression which is, as a consequence of the approxi-
mation used, completely linear in the parameter S. In fact,
the result is valid only in regions, where the perturbation is
sufficiently small.

Now we apply our formula Eq. (5.6) to the same problem
Eq. (6.1). The factor GMm will cancel out anyhow in
Eq. (5.6), so we may put GMm = 1, i.e. « = (3, already
now. We get

PHYSICAL REVIEW D 78, 023512 (2008)

W(u) = —u + Bu - exp(—1/(Au)),

(6.3)
W) = —1 + (1 + i) - exp(—1/(Au)).

The more conventional form of this potential W appears
when one writes it in dependence on r = 1/u to get

W= —1+E-exp(—r/)\).
ror

6.4)
In the present case, the second inequality (5.7) evaluated at
uy = 1/L and using k = L/A > 0 reads

B (1 + k) <exp(k) (6.5)

and gives a restriction for 8 > 1 only. In more detail, let us
fix any ko > 0, then we define

B = exp(ko)/(1 + o),

and then (6.5) is fulfilled for xk > k only.
In other words, for every 8 = 1 all positive radius values
L appear for a circular orbit. For each 8> 1 there is a
positive ry such that a circular orbit exists for L > r, only.’
For the second derivative we get from Eq. (6.3):

W () = % exp(—1/(Au)). 6.6)
Inserting Egs. (6.3) and (6.6) into Eq. (5.6) we get
S(L) = 277 ( L 1). ©67)

1~ mreestare

Let us examine Eq. (6.7): For very small values | 8| < 1 it
is continuous and Eq. (6.2) is a good approximation to it in
correspondence with the fact that here the perturbation to
the Newtonian potential is small and therefore, Eq. (6.2) is
applicable.

Things are quite different for other cases: From Eq. (6.4)
one can see that only for 8 = 1, the potential remains
bounded as r — 0. For this case and small values of k <
1 Eq. (6.2) gives 8 = —mk?, whereas the exact formula
Eq. (6.7) has in the same case 6 = —27(1 — 1/~/3), a
totally different behavior.

In Sec. 3 of [1] it is mentioned that the development of
perihelion precession in powers of the eccentricity e con-
tains only even powers of e; this means that for sufficiently
small values of e, where linearization in e is justified, our
formulas for nearly circular orbits are applicable, too.

Here, this example was chosen mainly to present how to
apply our formula. However, if one wants to interpret the physics
behind it, one should note that positive values of B would
correspond to ghost degrees of freedom if they have an even
helicity. But if the extra Yukawa force is mediated by a vector
field (like the W and Z bosons), then even positive values of 8
are allowed.
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VIL. APPLICATION TO FOURTH-ORDER
GRAVITY

Further examples are as follows. In [7] we wrote without
explicit proof, see also [8], page 235-236: “Next, let us
study the perihelion advance for distorted circlelike orbits.
Besides the general relativistic perihelion advance, which
vanishes in the Newtonian limit, we have an additional one
of the following behavior: for » — 0 and » — oo it vanishes
and for r = 1/m and r = 1/m, it has local maxima, i.e.,
resonances.”

This refers to linearized fourth-order gravity, see Stelle
[9] for details, where the gravitational potential for a point
mass m reads

V(r) = —mr '(1 + exp(—myr)/3 — 4exp(—m,r)/3).
(7.1)

The perihelion precession of this and similar theories can
be calculated by inserting this potential V(r) into the
Eq. (5.1). Of course, in the region of large values r, the
known approximations like (5.9) would serve also, but our
Eq. (5.1) will give the correct result also for those r values,
where V(r) is far from being close to the Newtonian
potential.

Here in Eq. (7.1), my is the mass of the massive spin 0
graviton stemming from the R? term in the Lagrangian, and
m, is the mass of the massive spin 2 graviton® stemming
from the term C;;;,C"* in the Lagrangian. Both mg and m,
are assumed to be positive to exclude the appearance of
tachyons, but my — o and m, — o0 represent sensible
limits.

In the case my = m, > 0, Eq. (7.1) exactly leads to the
case B =1 discussed in the previous section, the other
cases are similar.

VIII. DISCUSSION—FIRST PART

At the time paper [7] was first published, in 1986, this
was a purely theoretical question. However, recently there
is a development to take such quadratic gravity theories
quite seriously in the sense that their predictions can be
confronted with observations, see e.g. [10-14] and the
references cited there. Also the cosmological solutions of
this kind of theories have been analyzed in more new
details recently, see e.g. [15-27].

Further, it should be mentioned, that for very distorted
orbits, [28,29] give exact results for the perihelion preces-
sion for a perturbed Newtonian potential.

Now, let us look for which potentials V(r) the parameter
8(ry) takes values according to Eq. (5.1) not explicitly
depending on r(. After some calculation we get up to the

5This massive spin 2 excitation is a ghost, i.e., it carries
negative kinetic energy and thereby spoils the stability of the
model. Therefore, this contribution has not a direct phenome-
nological interpretation.
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inessential transformations mentioned above; there is a
parameter ¢ > 0 such that

§ =2m(c™ > = 1) 8.1)
and
1
V(r) =Inr for c =2, V(r) = — =2 else.
c—
(8.2)

As expected, one just gets the self-similar functions as
solutions to this problem. The case ¢ = 1, i.e., 6 = 0 just
recovers the Newtonian case. Here the bounded orbits are
all exact ellipses, the center of symmetry of the potential,
r = 0, being at one of their focal points.

For ¢ = 4, Eq. (8.2) leads to the harmonic oscillator V =
r?/2; here the bounded orbits are also ellipses, but now, the
center of symmetry of the potential coincides with the
center of the ellipses; therefore, the next perihelion is
already after one half rotation, i.e. ¢ = 7 and 6 = —7
in accordance with Eq. (8.1) for this case. This result once
more confirms that our result is a strict one also far from
the Newtonian potential.

To prepare for the next part, we now apply units such
that light velocity ¢ = 1; then it holds that the velocity of
the test particle in the exact circular orbit at r = ry is less
than light velocity if

ro - V'(rg) <L (8.3)

IX. CIRCULAR AND NEARLY CIRCULAR
GEODESICS

In this second part of the paper we generalize the results
of the first part to static spherically symmetric space-times;
see also [30-33] for other papers on similar topics.

Let us now generalize the resulting Eq. (5.1) to the
analogous situation in a 4-dimensional static spherically
symmetric space-time.” We additionally assume that
Schwarzschild coordinates are possible, so we consider
the metric

ds? = —e*dr? + e2*dr? + r*dQ?, .1

where d()? is the metric of the standard 2-sphere and A and
 depend on r only. We look for timelike geodesics in this
space-time (9.1). After suitable rotation of the coordinate
system this geodesic remains completely in the equatorial
plane. Because of the chosen symmetry it holds that geo-

7A deduction fully analogous to that one from the first part
seems not to be easily done. The second variant, namely, to apply
the geodesic deviation equation, also leads to unnecessary com-
plicated expressions. As a third idea one could try to apply
general exact solutions of the geodesic equation as found in the
textbook literature, e.g. [34], but the elliptic integrals appearing
there are not easy to handle, therefore we now choose a fourth
method, namely, the direct calculation with nearly circular
geodesics.
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desics in the equatorial plane of the 4-dimensional space-
time (9.1) are exactly the geodesics in the 3-dimensional
space-time

ds?> = —e®dt* + e**dr? + r*de>. (9.2)

The coordinates in (9.2) are x’ where i = 0, 1, 2, and the
geodesic shall be parametrized by its natural parameter 7:

x'(1) = (t(7), r(7), @(7)). 9.3)
With a dot denoting d/dt we get from (9.2)
— 1= =P + i + rig? (9.4)

We may assume 7 > 0. The components of the geodesic
equation read

0=17+2NiF, 9.5)
0 = e®#(# + u'i?) + Ne* i — r¢?, (9.6)
and
0=rp+2i¢. .7
We define angular momentum M as usual:
M = r*¢. 9.8)

Purely radial motion shall not be considered, so we have
M # 0. Without loss of generality we may assume M > 0,
for otherwise we could reverse the orientation of the equa-
torial plane.

Because of Eq. (9.7), M is a conserved quantity, and we
apply this fact to simplify Eqgs. (9.4) and (9.6) to

— 1= =¥ + i + M?/r? 9.9)

and

0= e®*(# + u'i?) + Ne? 2 — M?*/ 1, (9.10)
respectively. Inserting Eq. (9.9) into Eq. (9.10) we can

cancel t to get
MA M
0= e i+ (X + u)i?) + )u<1 + 7) — 5 1D

Next we look for a circular orbit at a fixed value r, of the
radial coordinate r(7) = ry > 0. With Eq. (9.11) we get

2

M
R Wherez=—2>0.

z
—_— 9.12
z+1 g ( )

ro* A(rg) =

This means that a circular timelike geodesic orbit at r = r
exists if and only if the inequalities

/\/(ro) >0 and ro )\l(ro) <1 (913)

are fulfilled. They are fully analogous to the second of the
inequalities (4.17) and inequality (8.3), respectively.

PHYSICAL REVIEW D 78, 023512 (2008)
From Eq. (9.12) we get

MZ — 7’8 : )l/(rO)

1 =g XN(rg)
For M Eq. (9.14) the condition dM/dry > 0 is equivalent
to

(9.14)

ro - A(rg) + 3 A(rg) > 2ro(A(rg))% (9.15)
Next, let us define energy E by
E = 2i>0. (9.16)

Because of Eq. (9.5), E is a conserved quantity. We can
apply this equation to remove ¢ from Eq. (9.9), leading to®

—1=—E’2" + i + M?/r%. (9.17)
For circular orbits at r = r, this leads to
MZ
E? = 62)‘(’0)(1 + —2). (9.18)
o

Inserting Eq. (9.14) into Eq. (9.18) we get for the energy of
the circular orbit at r = r,
A(ro)
E=— 29 (9.19)
1=y N(ro)
The condition dE/dry > 0 is equivalent to the condition
(9.15).

X. PERIHELION PRECESSION IN SPACE-TIME

We now prescribe a value ry > 0 such that (9.13) and
(9.15) are fulfilled. The circular orbit at r = r has angular
momentum according to (9.14) and energy E according to
(9.19). This circular orbit shall now be perturbed, and the
perturbed orbit shall have the same angular momentum M
but a different energy £ # E. For the radial coordinate r in
dependence on 7 we make the following ansatz:

r=rg+ e-sin(ar), (10.1)

where « is a positive parameter and € shall be small such
that higher powers of € may be neglected. We insert this
ansatz (10.1) into Eq. (9.11) and get the following identity:

) Vo A(rg) +3 - XN(ro) — 2r0(/\’(r0))2‘

V1 _"0'/\/(’”0)‘\/%

a = e_#(rn

(10.2)

It is remarkable that just the inequalities deduced before
ensure that o becomes a well-defined positive real. From
Egs. (10.1) and (10.2) we get that the time from one
perihelion to the next is then 7, defined by

8The material in this section is essentially textbook standard,
as can be found e.g. in [34]; but we presented it here in details to
maintain a self-consistent notation.
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7o = 27/a. (10.3)
The perihelion shift 6 is defined as
8 = ¢(79) = ¢(0) — 2mm; (10.4)

it measures how much the change in the angular coordinate
¢ differs from 27 when the orbit changes from one peri-
helion to the next one. Clearly, for 6 = 0, the orbits are
exactly closed after one revolution. From Egs. (9.8), (10.3),
and (10.4) we get

_27T'M

a 7

(10.5)

-2

thus leading to the final result

52 [ eH(ro) 1]
= Q- - .
V3 = 2rg - M(ry) + 1o - A(rg) /N (rg)

(10.6)

XI. DISCUSSION—SECOND PART

The final formula Eq. (10.6) has a structure quite similar
to the corresponding formula Eq. (5.1) from the first part.
But a direct change over from one of them to the other one
is not easily done, so it was really necessary to deduce both
of them. In Eq. (10.6) one can observe, that the spatial
metric component encoded by the function u essentially
enters the formula but none of their derivatives do enter
here. This is in contrast to the temporal metric component
encoded by the function A from which only the first and
second derivative do enter.

As a first test, let us insert the Schwarzschild—de Sitter
solution into Eq. (10.6). In units where ¢ = G = 1, we
have to insert into Eq. (9.1)

2m A
eZ)L:e—Z,u,Zl_i_i.rz

r 3 ’

where m > 0 is the mass of the source and A = 0 the

(11.1)
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cosmological constant. For A = 0 this leads to

82277-[ (11.2)

7\/1_167/%—1].

This is a strict result and is applicable for all values ry >
6m. Equation (11.2) is surprisingly unknown up to now. It
is in good agreement with the fact that stable circular orbits
exist for ry > 6m only. For rq > m, one can develop in
powers of m and get the well-known approximation

_ 6mTm

o =

(11.3)
o

For example, for ry = 24m, the exact Eq. (11.2) leads to
8= (4/3 —2) = 55,7°, whereas the approximation
(11.3) leads to 6 = 7/4 = 45°.

For A > 0, the condition that a timelike circular orbit
exists is the same as for A = 0, namely, r, > 3m, but the

formula for perihelion shift becomes a little bit more
complicated,

1

J1 —6m/ry
3
-(1+ﬂ-(3+79’" )-1]
6m ro — bm

However, in the case A << 1/m? and r, is not too large,
one gets the useful approximation

5=27T-[

(11.4)

L 7TA}"8'

ro m

In a future paper, Eq. (10.6) shall be applied also to other
spherically symmetric metrics.
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