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We study the impact of a stochastic background of primordial magnetic fields on the scalar contribution

of cosmic microwave background (CMB) anisotropies and on the matter power spectrum. We give the

correct initial conditions for cosmological perturbations and the exact expressions for the energy density

and Lorentz force associated to the stochastic background of primordial magnetic fields, given a power-

law for their spectra cut at a damping scale. The dependence of the CMB temperature and polarization

spectra on the relevant parameters of the primordial magnetic fields is illustrated.
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I. INTRODUCTION

Large-scale magnetic fields are almost everywhere in
the Universe, from galaxies up to those present in galaxy
clusters and in the intercluster medium [1]. The dynamo
effect provides a mechanism to explain the observed
magnetic fields associated to galaxies, whereas those as-
sociated to clusters may be generated by gravitational
compression. Both these mechanisms require an initial
magnetic seed, although with different correlation length.

A possible explanation for this initial seed has driven the
interest in primordial magnetic fields in the early universe.
Cosmology described by a homogeneous and isotropic ex-
panding metric neither supports a uniform magnetic field
nor a gravitational amplification of gauge fields because of
conformal invariance; the generation of large-scale mag-
netic fields has therefore generated a lot of interest. A sto-
chastic background (SB) of primordial magnetic fields
(PMF) can provide the initial seeds for the large-scale
magnetic fields observed, but can also leave imprints on
different observables, as the cosmic microwave back-
ground (CMB) pattern of temperature and polarization
anisotropies [2,3] and the matter power spectrum.

A SB of PMF is modeled with zero energy and pressure
at the homogeneous level in a Robertson-Walker metric.

This SB carries perturbations, of any kind, i.e. scalar,
vector, and tensor, and it is usually studied in a quasilinear
approximation, i.e. its energy momentum tensor (EMT)—
quadratic in the magnetic fields amplitude—is considered
at the same footing as first order terms in a perturbative
series expansion. Vector [4,5] and tensor [4,6,7] metric
perturbations sourced by a PMF SB have been the object
of several investigations. Beyond the technical simplicity
of vector and tensor over scalar, the former are not gen-
erated by a perfect fluid and therefore represent a key
prediction of a PMF SB. We know, however, that tempera-
ture and polarization anisotropies sourced by scalar fluc-
tuations with adiabatic initial conditions are a good fit to
the whole set of observations; it is therefore crucial to
investigate how a PMF SB can modify these scalar fluctu-
ations. Analytic [8] and numerical [9–11] works in this
direction have already been made. However, a detailed
analysis which takes into account the Lorentz force on
baryons, a careful treatment of initial conditions, and an
accurate treatment of the Fourier spectra of the PMF EMT
is still lacking. As is clear in the following, our work
addresses carefully these issues.
The goal of this paper is to investigate the impact of a

SB of PMF on scalar cosmological perturbations and, in
particular, on CMB temperature anisotropies and matter
power spectrum. Our paper is organized as follows. In
Sec. II we review how to add a fully inhomogenous SB
of PMF treated in the one-fluid plasma description [2] to
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the Einstein-Boltzmann system of equations. In Secs. III
and IV we review the baryons evolution and we give the
initial conditions for cosmological perturbations in a form
suitable to be plugged in most of the Einstein-Botzmann
codes. In Sec. V we give the PMF energy density and
Lorentz force power spectra and compare our results
with the ones given in the literature. In Secs. VI, VII, and
VIII we show the results obtained by our modification of
the Einstein-Boltzmann code CAMB [12] for cosmologi-
cal scalar perturbations, CMB spectrum of temperature and
polarization, and matter power spectrum, respectively. In
the appendix we show the detailed calculations for the
convolution integrals leading to the energy density and
Lorentz force, starting from a power-law spectrum sharply
cut at a given scale for the PMF.

II. STOCHASTIC MAGNETIC FIELDS AND
COSMOLOGICAL SCALAR PERTURBATIONS

We model a SB of PMF as a fully inhomogenous com-
ponent, considering B2 at the same level of metric and den-
sity fluctuations in a perturbative expansion.1 Although a
SB of PMFs carries no energy at the homogeneous level, it
affects scalar cosmological perturbations in three different
ways. First, inhomogeneous PMFs carry energy density
and pressure and therefore gravitate at the level of pertur-
bations. Second, inhomogeneous PMFs have anisotropic
stress—differently from perfect fluids—which adds to the
photon and neutrino ones, with the caveat that the pho-
ton anisotropic stress is negligible before the decoupling
epoch. Last, but not least, inhomogeneous PMFs induce a
Lorentz force on baryons, which indirectly affects also
photons during the tight-coupling regime.

At linear order PMFs evolve like a stiff source and
therefore it is possible to discard all the backreaction of
gravity onto the SB of PMF. Before the decoupling epoch
the electric conductivity of the primordial plasma is very
large, therefore it is possible to consider the infinite con-
ductivity limit, in which the induced electric field is zero.
Within the infinite conductivity limit the SB of PMF time
evolution simply reduces to: Bðx; �Þ ¼ BðxÞ=að�Þ2.2

The evolution of the metric perturbations in the presence
of the PMF is governed by the Einstein equations:

G�� ¼ 8�ðT�� þ �PMF
�� Þ: (1)

In the infinite conductivity limit the EMT of PMF:

�0PMF
0 ¼ ��B ¼ � jBðxÞj2

8�a4
; (2)

�0PMF
i ¼ 0; (3)

�iPMF
j ¼ 1

4�a4

�jBðxÞj2
2

�i
j � BjðxÞBiðxÞ

�
: (4)

In the Fourier space3 the Einstein equations with the con-
tribution of PMF in the synchronous gauge are

k2�� 1

2
H _h¼ 4�Ga2ð�n�n�n þ�BÞ;
k2 _�¼ 4�Ga2�nð�nþPnÞ�n;

€hþ 2H _h� 2k2�

¼�8�Ga2
�
�nc

2
sn�n�n þ�B

3

�
;

€hþ 6 €�þ 2H ð _hþ 6 _�Þ� 2k2�

¼�24�Ga2 �½�nð�n þPnÞ	n þ	B�; (6)

where by n we label the components, i.e. baryons, cold
dark matter (CDM), photons, and neutrinos. The PMF

EMT conservation— r��
�PMF
� ¼ 0—leads to

	B ¼ �B

3
þ L; (7)

where 	B represents the PMFs anisotropic stress and L the
Lorentz force. The energy density of PMF evolves like
radiation: �Bðx; �Þ ¼ �Bðx; �0Þ=að�Þ4.

III. BARYONS EVOLUTION

The presence of PMFs in a globally neutral plasma
induces a Lorentz force on baryons. The general expres-
sion for the Lorentz force is [8]:

Liðx; �0Þ ¼ 1

4�

�
BjðxÞrjBiðxÞ � 1

2
riB

2ðxÞ
�
; (8)

where Lðx; �Þ ¼ Lðx;�0Þ
a4

. We are interested only in the

scalar perturbations and the scalar part of the Lorentz force

defined as r2LðSÞ � riLi is therefore

r2LðSÞ ¼ 1

4�

�
ðriBjðxÞÞrjBiðxÞ � 1

2
r2B2ðxÞ

�
: (9)

1Note that in such a way we do not take into account the
modification of the sound speed of baryons induced by PMFs,
pionereed in [13], since it would be technically of second order
in the equations of motion. However, since the baryons speed of
sound goes rapidly to zero in the matter dominated era, this
effect, leading to a shift in the Doppler peaks, may be anyway
important.

2We choose the standard convention in which at present time
t0, aðt0Þ ¼ 1.

3As Fourier transform and its inverse, we use—in agreement
with [14]—:

Yð ~k; �Þ ¼
Z d3x

ð2�Þ3 e
�i ~k� ~xYð ~x; �Þ;

Yð ~x; �Þ ¼
Z

d3kei
~k� ~xYð ~k; �Þ;

(5)

where Y is a generic function.
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In the presence of an electromagnetic source the con-
servation equations of the baryon component of the pri-
mordial fluid becomes

r��T
�� baryons / F��J�; (10)

where J� is the quadrivector of the density current and F��

is the Maxwell tensor. The primordial plasma can be
considered globally neutral, this leads to J0 ¼ 0 and there-
fore to the fact that the energy conservation of baryons is
not modified by the presence of the Lorentz term. The
Euler equation for baryons is instead affected by the
Lorentz force and the scalar part is therefore [2]:

_� b ¼ �H �b þ k2c2sb�b � k2
L

�b

: (11)

Now we study how the tight-coupling regime is modified
by the presence of a SB of PMF [15]. The Euler equation
for photons during the tight-coupling regime is

_� 
 ¼ k2
�
�


4
� 	


�
þ ane	Tð�b � �
Þ: (12)

Combining the photons and baryons equations gives

_� b

¼�H�bþ c2sk
2�bþ k2Rð�


4 �	
ÞþRð _�
� _�bÞ� k2L
�b

ð1þRÞ ;

with

_� b � _�
 ¼ 2R

ð1þ RÞH ð�b � �
Þ þ �

ð1þ RÞ
�
� €a

a
�b

þ�H k2

2
�
 þ k2

�
c2s _�b �

_�


4

�
þH k2

L

�b

�
:

The photon Euler equation in the tight-coupling regime
instead is

_�
 ¼ �R�1

�
_�b þH�b � c2sk

2�b þ k2
L

�b

�

þ k2
�
�


4
� 	


�
: (13)

We note that there is a term depending on the Lorentz force
which disappears when the tight-coupling ends, leaving the
normal Euler equation for the photon velocity.

IV. INITIAL CONDITIONS

Our study of a SB of PMF requires the initial conditions
for scalar cosmological perturbations deep in the radiation
era (see [2] for the results in the longitudinal gauge). The
magnetized adiabatic mode initial conditions in the syn-
chronous gauge are given by [16]

h ¼ C1ðk�Þ2; � ¼ 2C1 � 5þ 4R�

6ð15þ 4R�ÞC1ðk�Þ2 �
�
�Bð1� R�Þ
6ð15þ 4R�Þ þ

LB

2ð15þ 4R�Þ
�
ðk�Þ2;

�
 ¼ ��B � 2

3
C1ðk�Þ2 þ

�
�B

6
þ LB

2ð1� R�Þ
�
ðk�Þ2; �� ¼ ��B � 2

3
C1ðk�Þ2 �

�
�Bð1� R�Þ

6R�

LB

2R�

�
ðk�Þ2;

�b ¼ � 3

4
�B � C1

2
ðk�Þ2 þ

�
�B

8
þ 3LB

8ð1� R�Þ
�
ðk�Þ2; �c ¼ �C1

2
ðk�Þ2;

�
 ¼ �C1

18
k4�3 þ

�
��B

4
� 3

4

LB

ð1� R�Þ
�
k2�þ k

�
�B

72
þ LB

24ð1� R�Þ
�
ðk�Þ3; �b ¼ �
; �c ¼ 0;

�� ¼ � ð23þ 4R�Þ
18ð15þ 4R�ÞC1k

4�3 þ
�
�Bð1� R�Þ

4R�

þ 3

4

LB

R�

�
k2��

�ð1� R�Þð27þ 4R�Þ�B

72R�ð15þ 4R�Þ þ ð27þ 4R�ÞLB

24R�ð15þ 4R�Þ
�
k4�3;

	� ¼ 4C1

3ð15þ 4R�Þ ðk�Þ
2 � �B

4R�

� 3

4

LB

R�

þ
� ð1� R�Þ
R�ð15þ 4R�Þ

�B

2
þ 3

2

LB

R�ð15þ 4R�Þ
�
ðk�Þ2;

(14)

where R� ¼ ��=ð�� þ �
Þ and C1 is the constant which
characterizes the regular growing adiabatic mode as given
in [14]. We have checked that the result reported in [11]
and ours [16] agree.

Note how the presence of a SB of PMFs induces a new
independent mode in matter and metric perturbations, i.e.
the fully magnetic mode. This new independent mode is
the particular solution of the inhomogeneous system of the

Einstein-Botzmann differential equations: the SB of PMF
treated as a stiff source acts indeed as a force term in the
system of linear differential equations. Whereas the sum of
the fully magnetic mode with the curvature one can be with
any correlation as for an isocurvature mode, the nature of
the fully magnetic mode—and therefore its effect—is dif-
ferent: the isocurvature modes are solutions of the homo-
geneous system (in which all the species have both
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background and perturbations), whereas the fully magnetic
one is the solution of the inhomogeneous system sourced
by a fully inhomogeneous component.

It is interesting to note how the magnetic contribution
drops from the metric perturbation at leading order,
although it is larger than the adiabatic solution for pho-
tons, neutrinos, and baryons. This is due to a compensation
which nullifies the sum of the leading contributions (in the
long-wavelength expansion) in the single species energy
densities and therefore in the metric perturbations. A
similar compensation exists for a network of topologi-
cal defects, which does not carry a background EMT as
the PMF SB studied here.4

V. MAGNETIC FIELD POWER SPECTRA

Power spectra for the amplitude and the EMT of SB
of PMF have been the subject of several investigation
[4,6,8,9]. We shall work in the Fourier space according to
Eq. (5). We shall consider PMFs with a power-law power
spectrum, which therefore are characterized by two pa-
rameters: an amplitude A and a spectral index nB. PMFs are
suppressed by radiation viscosity on small scales: we ap-
proximate this damping by introducing an ultraviolet cut-
off in the power spectrum at the (damping) scale kD.

The two-point correlation function for a statistically
homogeneous and isotropic field is

h ~B�
i ð ~kÞ ~Bjð ~k0Þi ¼ �3ð ~k� ~k0Þ

�
ð�ij � k̂ik̂jÞPBðkÞ

2

þ �ijl
kl
k
PHðkÞ

�
; (15)

where �ijl is the totally antisymmetric tensor, PB and PH

are the nonhelical and helical part of the spectrum for theB
amplitude, respectively. Scalar cosmological perturbations
only couple to the nonhelical part of the spectrum and we
shall therefore consider only PB in the following.

A. Magnetic energy density

As is clear from Eqs. (1)–(3), the EMT for PMF is
quadratic in the field amplitude. The PMF energy density
spectrum is [9]:

j�BðkÞj2 ¼ 1

128�2a8

Z
d3pPBð ~pÞPBðj ~k� ~pjÞð1þ�2Þ;

(16)

where� ¼ ~pð ~k� ~pÞ
pj ~k� ~pj ¼

k cos��pffiffi
ð

p
k2þp2�2kp cos�Þ . As for the two-point

function in the coincidence limit, j�BðkÞj2 is infrared finite
for nB >�3 and needs a prescription in the ultraviolet.
Since the spectrum of the components of PMF EMT are

relevant for the final impact on cosmological perturbations
and CMB anisotropies, it is better to address these points
carefully.
The usual choice in the literature is to modify the scalar

part two-point function of Eq. (15) for zero helicity as [8]

h ~B�
i ð ~kÞ ~Bjð ~k0Þi ¼

�
�3ð ~k� ~k0Þð�ij � k̂ik̂jÞ PBðkÞ

2 for k < kD
0 for k > kD

;

with

PBðkÞ ¼ A

�
k

k�

�
nB
; (17)

where k� is a reference scale. With such a choice the two-
point function in the coincident limit (the mean square of
the magnetic field) is

hB2ðxÞi ¼
Z
k<kD

d3kPBðkÞ ¼ 4�A

nB þ 3

knBþ3
D

knB�
: (18)

It is also usual in the literature to give the amplitude of B at
a given smearing scale kS by imposing a Gaussian filter:

hB2ðxÞikS ¼
Z

d3kPBðkÞe�k2=k2S ¼ 2�A
knBþ3
S

knB�
�

�
nB þ 3

2

�
:

(19)

By smearing the magnetic power spectrum and integrating
for k < kD, one gets

hB2ðxÞicutkS
¼

Z
k<kD

d3kPBðkÞe�k2=k2
S

¼ 2�A
knBþ3
D

knB�

�
�

�
nB þ 3

2

�
� �

�
nB þ 3

2
;
k2D
k2S

��
;

(20)

where the incomplete Gamma function �ð. . . ; . . .Þ [17] has
been introduced. Note how nB >�3 in order to prevent
infrared divergencies either in the mean square field or the
amplitude of the field smeared at a given scale. In the
following by hB2i we mean the value given by Eq. (18).
Figure 1 shows how hB2ðxÞikS may be much larger than

hB2i for nB > 0.
The exact result for the Fourier convolution leading to

the magnetic energy density Fourier square amplitude is
one of the new main results of this paper. The convolution
involves a double integral, one in the angle between k and
p and one in the modulus of p. The angular integral, often
omitted in the literature, is responsible for a nonvanishing
j�BðkÞj2 only for k < 2kD. The detailed calculations and
the results for the energy density convolutions are given in
Appendix A for several values of nB. The generic behavior
for k � kD and nB >�3=2 is white noise with amplitude

j�BðkÞj2 ’ A2k2nþ3
D

16�k2n� ð3þ 2nBÞ
(21)

and then goes to zero for k ¼ 2kD, which is a result

4Note, however, that a network of topological defects does not
scale with radiation and interacts only gravitationally with the
rest of matter, i.e. a Lorentz term is absent.
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obtained by performing correctly the integral. The pole for
nB ¼ �3=2 in Eq. (21) is replaced by a logarithmic diver-
gence in k in the exact result; for nB <�3=2 the spectrum
is no more white noise for k � kD. Figure 2 shows the
dependence of k3j�BðkÞj2 on nB at fixed hB2i.

Our result is different from the one reported in the
literature [8], which is

j�BðkÞj2KR ¼ 3A2k2nBþ3
D

64�k2nB� ð3þ 2nBÞ
�
1þ nB

nB þ 3

�
k

kD

�
2nBþ3

�
;

(22)

and is not limited in k. In Fig. 3 we show the difference
between the literature result [8] and our result for nB ¼
2;�3=2. For numerical calculations of the PMF EMT
Fourier convolution integrals, see [18,19].

B. Lorentz force

As is clear from previous sections, we also need the
Lorentz force

jLðkÞj2 ¼ 1

128�2a8

Z
d3pPBðpÞPBðjk� pjÞ½1þ�2

þ 4
�ð
���Þ�; (23)

and the magnetic anisotropic stress

j	BðkÞj2 ¼ 1

288�2a8

Z
d3pPBðpÞPBðjk� pjÞ½9ð1� 
2Þ

� ð1� �2Þ � 6ð1þ 
��� 
2 � �2Þ
� ð1þ�2Þ�; (24)

where 
 ¼ k̂ � p̂, � ¼ ~k � ð ~k� ~pÞ=ðkj ~k� ~pjÞ and � ¼ ~p �
ð ~k� ~pÞ=ðpj ~k� ~pjÞ.

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

FIG. 2 (color online). Plot of magnetic energy density power
spectrum k3j�BðkÞj2 in units of hB2i2=ð1024�3Þ versus k=kD
for different nB for fixed hB2i. The different lines are for nB ¼
�3=2, �1, 0, 1, 2, 3, 4 ranging from the solid to the longest
dashed.

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

FIG. 3 (color online). Comparison of magnetic energy density
convolution k3Dj�BðkÞj2 obtained in this paper (dotted, solid

lines) in units of hB2i2=ð1024�3Þ and the one in Eq. (22)
(dashed, long-dashed lines) versus k=kD for nB ¼ 2, �3=2
with fixed hB2i.
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1.0
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2.0

2 1 0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

FIG. 1 (color online). Plots of the different ways of computing the magnetic power spectra (in units of 4�AknBþ3
D =knB� ) versus nB for

kS ¼ kD=2 (left) and kS ¼ kD (right). hB2i, hB2ikS , hB2icut;kS are represented by solid, dotted, and dashed lines, respectively.
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We decide to compute the spectrum of the Lorentz force
and obtain the anisotropic stress by Eq. (7). The exact
computation for the Lorentz force power spectrum is given
in Appendix B for several values of nB. A term��B can be
easily identified in Eq. (9); since we know from the exact
computation that the integral of PBðpÞPBðjk� pjÞ�
ð1þ�2Þ is larger than the remaining piece in Eq. (23)
we chose the signs for �BðkÞ and LðkÞ as opposite.

Figure 4 shows the dependence of k3jLðkÞj2 on nB at
fixed hB2i. Figure 5 compares the approximation LðkÞ ’
��BðkÞ suggested in Ref. [8] with the exact calculation. As
can be checked in Appendix B, our exact calculations for
the values of nB studied here show that

jLðkÞj2 ’ 11
15j�BðkÞj2 for k � kD: (25)

VI. RESULTS FOR COSMOLOGICAL
PERTURBATIONS

In order to study the effects of a SB of PMFs on CMB
anisotropies and matter power spectrum we modified the
CAMB Einstein-Boltzmann code [12] (June 2006 version)
by introducing the PMF contribution in the Einstein equa-
tions, in the evolution equation for baryons and initial
conditions, following Eqs. (6), (11), and (14).
We note that implementing the baryons evolution as

from Eq. (11), the MHD approximation in a globally
neutral plasma is used up to the present time: this makes
the Lorentz term nonvanishing up to the present time.
Although the term L=�b in Eq. (11) decreases with time,
its effect on the baryon velocity is crucial. At late time—
deep in the matter era when the baryons sound speed is
effectively zero—baryons velocity can be approximated as

�lateb ’ �k2
�
La

�b

�
�

a
: (26)

Our modified Einstein-Boltzmann code reproduces cor-
rectly this asymptotic regime for different wavelengths,
as can be seen by Fig. 6. The corresponding effects on
the density contrasts for the same wavelengths are shown
in Fig. 7. In Fig. 8 the effects due to the pure magnetic
mode and due to the correlation with the adiabatic mode
are shown. Figure 9 displays the importance of the Lorentz
term compared to the purely gravitational effect in the
PMF contribution.

VII. RESULTS FOR CMB TEMPERATURE AND
POLARIZATION POWER SPECTRA

In this section we show the results on the CMB tem-
perature and polarization pattern obtained by our modifi-
cations of the CAMB code. Figure 10 shows the various
contributions to the total CMB temperature and polariza-
tion angular power spectra from the pure magnetic mode
and its correlation with the adiabatic mode. Figure 11
shows the dependence of the total temperature power
spectrum on the spectral index nB. Note that the Lorentz
force of a fully correlated magnetic mode decreases the
density contrasts. As a consequence the CMB angular
power spectrum decreases in an intermediate range of
multipoles, as shown in Fig. 12.

VIII. RESULTS FOR THE MATTER
POWER SPECTRA

In Fig. 13 we present the results for the linear CDM
power spectrum evaluated at present time in the presence
of SB of PMF. By analyzing Fourier spectra we have
checked that the adiabatic results are recovered for k >
2kD. We compare the results obtained by neglecting or by
taking into account the Lorentz term. By considering the
equations evolved and the previous figures, it is clear how
the Lorentz term treated as in Eq. (11) is a leading con-

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

FIG. 4 (color online). Plot of the Lorentz force power spec-
trum k3jLðkÞj2 in units of hB2i2=ð1024�3Þ versus k=kD for
different nB for fixed hB2i. The different lines are for nB ¼
�3=2, �1, 0, 1, 2, 3, 4 ranging from the solid to the longest
dashed.

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

FIG. 5 (color online). Comparison of the magnetic energy
density and Lorentz force power spectra versus k=kD for fixed
hB2i. The solid (medium dashed) and long-dashed (short-dashed)
lines are, respectively, for k3j�BðkÞj2 and k3jLðkÞj2 for nB ¼ 2
(nB ¼ �3=2).
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tribution for baryons which gives rise to a long-time effect
as show in Fig. 6. Through gravity CDM is affected as
shown in Figs. 7–9 and therefore a large feature is present
in the linear CDM matter PS.

IX. CONCLUSIONS

We have investigated the impact of a SB of PMF on
scalar cosmological perturbations and its impact on CMB
anisotropies and matter power spectrum. The effects on
the CMB angular power spectrum is one of the distinc-
tive features of stochastic PMF together with non-
Gaussianities [18] and Faraday rotation [20]: future
missions as PLANCK [21] will greatly improve the pres-
ent constraints [10,22].

We have analyzed the SB of PMF in the one-fluid MHD
approximation [2] as a source for cosmological pertur-
bations and we have inserted such modifications in the
CAMB code [12]. Our numerical code improves previous
studies [10,11] for the treatment of initial conditions and

exact convolutions for the PMF EMT. Note that the present
constraints [10,22] used neither the correct initial condi-
tions nor the correct convolutions for the PMF energy
density and Lorentz force power spectra. Reference [11]
uses the correct initial conditions, but a power spectrum for
the PMF energy-density with a spectral index which is
twice the one for the power spectrum of the magnetic field.
We have shown extensively in Sec. VI and Appendix A and
B that this is not the case.
We have also shown how the Lorentz term for baryons in

the one-fluid plasma description [2] may lead to a long-
time effect which we have described analytically in
Eq. (26). This last point deserves further investigation.
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FIG. 6. Evolution of baryons velocity for 4 different wave numbers with (dashed line) and without (solid line) PMF. k2L=�b (dot-
dashed line) and the solution �lateb (dotted line) are also plotted: note how the numerics agree with �lateb at late times. The cosmological

parameters of the flat �CDM model are �bh
2 ¼ 0:022, �ch

2 ¼ 0:123, � ¼ 0:04, ns ¼ 1, H0 ¼ 72 kms�1 Mpc�1.
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FIG. 7 (color online). Evolution of baryons (dotted line), CDM (solid line), and photons (dashed line) density contrast for 4 different
wave numbers with fully correlated (blue, lighter line) and without (black, darker line) PMF. The cosmological parameters are the
same as Fig. 6.

FIG. 8. Time evolution of baryons (left) and CDM (right) density contrasts with vanishing PMF (solid line), fully correlated (dashed
line), fully anticorrelated (dotted line), and purely magnetic initial conditions (dot-dashed line). The other cosmological parameters are
the same as Fig. 6.
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FIG. 9 (color online). Time evolution of baryons (dashed line) and CDM (solid line) density contrasts for purely adiabatic with
vanishing PMF (black, darker line), fully correlated (left panel) and anticorrelated (right panel) PMF with vanishing (blue,
intermediate line) and nonvanishing (red, lighter line) Lorentz force for k ¼ 1 Mpc�1. These figures show clearly that the
Lorentz force and the gravitational contribution are of opposite sign, and the Lorentz term is more important. The cosmological
parameters are the same as Fig. 6.

FIG. 10. CMB temperature angular power spectra obtained with
ffiffiffiffiffiffiffiffiffihB2ip ¼ 3� 10�7 Gauss, nB ¼ �1, kD ¼ � in comparison with

the adiabatic spectrum with vanishing PMF (solid line): TT, EE, TE are displayed in the top left, top right, bottom panel, respectively.
The purely magnetic, correlation, fully correlated, fully anticorrelated, and uncorrelated spectra are represented as triple dotted-
dashed, dashed, dotted, dot-dashed, and long-dashed lines, respectively. The other cosmological parameters are the same as Fig. 6.
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APPENDIX A: ENERGY DENSITY

We use the convolution for the magnetic energy density
spectrum in Eq. (16) with the parametrization for the
magnetic field PS given in Eq. (17). Since PBðkÞ ¼ 0 for
k > kD, two conditions need to be taken into account:

p < kD; j ~k� ~pj< kD: (A1)

The second condition introduces a k-dependence on the
angular integration domain and the two allow the energy
power spectrum to be nonzero only for 0< k< 2kD. Such
conditions split the double integral (over 
 and over p) in
three parts depending on the 
 and p lower and upper limit
of integration. For simplicity we normalize the Fourier
wave number to kD and we show the integrals with this
convention. The splitting in the three parts is shown in

FIG. 11. In the left panel variation of the CMB temperature angular power spectrum with nB in comparison to the case with

vanishing PMF (solid line). In the left figure
ffiffiffiffiffiffiffiffiffihB2ip ¼ 8� 10�7 Gauss, kD ¼ 2� and fully correlated initial conditions are

considered. The spectral indexes plotted are nB ¼ �3=2, �1, 1, 2 (dotted, dot-dashed, dashed, and long-dashed lines, respectively).
In the right panel, variation of the CMB angular power spectrum with kD in comparison to the case with vanishing PMF (solid line). In

the right figure
ffiffiffiffiffiffiffiffiffihB2ip ¼ 3� 10�7 Gauss, nB ¼ �1, and kD ¼ 2�, �, �=2 (dotted, dot-dashed, and dashed, respectively). In both

panels the initial conditions are fully correlated and the other cosmological parameters are the same as Fig. 6.

FIG. 12. In the left panel CMB temperature power spectrum obtained with fully correlated PMF with (dashed line) and without
(dotted line) Lorentz term in comparison with the vanishing PMF (solid line). As is clear from the previous section, the Lorentz force
of a fully correlated magnetic contribution decreases the density contrasts and therefore there is a range in which the CMB TT angular
power spectrum is decreased with respect to the adiabatic case. In the right panel we show the same figure with uncorrelated spectra. In

the figures
ffiffiffiffiffiffiffiffiffihB2ip ¼ 3� 10�7 Gauss, kD ¼ 2�, and nB ¼ 2 are considered. The other cosmological parameters are the same as

Fig. 6.
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Fig. 14: in region a the angular integration has to be done
between �1 and 1, while within b and c regions between
ðk2 þ p2 � 1Þ=2kp and 1.

A sketch of the integration is thus the following:

1Þ 0<k< 1
Z 1�k

0
dp

Z 1

�1
d
 . . .þ

Z 1

1�k
dp

Z 1

k2þp2�1
2kp

d
 . . .

�
Z 1�k

0
dpIaðp; kÞ þ

Z 1

1�k
dpIbðp; kÞ

2Þ 1<k< 2
Z 1

k�1
dp

Z 1

k2þp2�1
2kp

d
 . . .�
Z 1

k�1
dpIcðp; kÞ

(A2)

The angular integrals can be performed as

Ia ¼
Z 1

�1
pnþ2

�
2� k2ð1� 
2Þ

k2 þ p2 � 2kp


�
ðk2 þ p2

� 2kp
Þn=2d


¼ 2pn�1

knð2þ nÞð4þ nÞ ½ðkþ pÞnþ2ðk2 � kð2þ nÞp
þ ð1þ 4nþ n2Þp2Þ � jk� pjnþ2ðk2 þ kð2þ nÞp
þ ð1þ 4nþ n2Þp2Þ�; (A3)

Ib ¼ Ic ¼
Z 1

k2þp2�1=2kp
pnþ2

�
2� k2ð1� 
2Þ

k2 þ p2 � 2kp


�
ðk2 þ p2 � 2kp
Þn=2d


¼ pn�1

4knð2þ nÞð4þ nÞ ½8k
4 þ 2n� 8k2nþ 6k4nþ n2 � 2k2n2 þ k4n2 � 16k2p2 þ 24np2 � 12k2np2 þ 6n2p2

� 2k2n2p2 þ 8p4 þ 6np4 þ n2p4 � 8jk� pjnþ2ðk2 þ kð2þ nÞpþ ð1þ 4nþ n2Þp2Þ�: (A4)

Note that the divergent terms at the denominator n and
nþ 2 simply mean that the above formulae are not appli-
cable for n ¼ 0 and n ¼ �2 (logarithmic terms appear in
these special cases).

Particular care must be used in the radial integrals. In
particular, the presence of the term jk� pjnþ2 in both
integrands, needs a further splitting of the integral domain
for odd n:

Z ð1�kÞ

0
dp !

8><
>:
k < 1=2

� Rk
0 dp . . . with p < kRð1�kÞ
k dp . . . with p > k

k > 1=2
Rð1�kÞ
0 dp . . . with p < k

Z 1

ð1�kÞ
dp !

8><
>:
k < 1=2

R
1
ð1�kÞ dp . . . with p > k

k > 1=2

� Rk
ð1�kÞ dp . . . with p < kR
1
k dp . . . with p > kZ 1

ðk�1Þ
dp !

�
1< k< 2

R
1
ðk�1Þ dp . . . with p < k :

It is important to study some relevant behavior of the
integrands in p. For p� 0:

Ia � 8
3k

npnþ2: (A5)
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p
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k
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c

FIG. 14. Integration domains in the ðk; pÞ plane.

FIG. 13. Linear cold dark matter power spectrum obtained
with fully correlated PMF with (dashed line) and without (dotted
line) Lorentz term, with uncorrelated PMF, and the Lorentz force
(dot-dashed line) in comparison with the vanishing PMF (solid

line). In the figure
ffiffiffiffiffiffiffiffiffihB2ip ¼ 3� 10�8 Gauss, kD ¼ 2�, and

nB ¼ 2 are considered. The other cosmological parameters are
the same as Fig. 6.
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For p� k the above integrands behave as

Ia � 2kn�2

nðnþ 2Þðnþ 4Þ ½2
nþ2knþ4nðnþ 3Þ

� ððk� pÞ2Þnþ2=2ðnþ 1Þðnþ 4Þk2�; (A6)

Ib � kn�2

4nðnþ 2Þðnþ 4Þ ½nð4ðnþ 4Þk2 þ nþ 2Þ
� 8ððk� pÞ2Þnþ2=2ðnþ 1Þðnþ 4Þk2�: (A7)

It is important to stress again that for n >�3 the diver-
gences in p� 0 and p� k are integrable.

Following the scheme (A2) we can now perform the
integration over p. Our exact results are given for particu-
lar values of nB.

1. nB ¼ 4

j�BðkÞj2nB¼4 ¼
A2k11D
64�k8�

�
4

11
� ~kþ 4

3
~k2 � ~k3 þ 8

21
~k4

�
~k5

24
�

~k7

192
þ

~k11

9856

�

2. nB ¼ 3

j�BðkÞj2nB¼3 ¼
A2k9D
64�k6�

(
4
9 � ~kþ 20

21
~k2 � 5

12
~k3 þ 4

75
~k4 þ 4

315
~k6 � ~k9

525 for 0 	 ~k 	 1

ð2� ~kÞ2 264�436~kþ863~k2�528~k3þ48~k5þ48~k6þ16~k7þ4~k8

6300k for 1 	 ~k 	 2

3. nB ¼ 2

j�BðkÞj2nB¼2 ¼
A2k7D
64�k4�

�
4

7
� ~kþ 8

15
~k2 �

~k5

24
þ 11

2240
~k7
�

4. nB ¼ 1

j�BðkÞj2nB¼1 ¼
A2k5D
64�k2�

� 4
5 � ~kþ 1

4
~k3 þ 4

15
~k4 � 1

5
~k5 for 0 	 ~k 	 1

ð2� ~kÞ2 8�4~k�~k2þ4~k4

60k for 1 	 ~k 	 2

5. nB ¼ 0

j�BðkÞj2nB¼0 ¼
A2k3D
64�

8>>>>><
>>>>>:

1
96~k

½~kð116�102~k�84~k2þ ~k3ð53þ4�2Þ�24~k3 log½k�2Þ
þ12logð1� ~kÞð�1þ4~k2�3~k4þ4~k4 log~kÞ�48~k4PolyLog½2;�1þ~k

~k
�� for 0	 ~k	 1

1
96~k

½116~k�102~k2�84~k3þ53~k4þ log½�1þ ~k�ð�12þ48~k2�36~k4þ24~k4 log~kÞ
þ24~k4PolyLog½2; 1~k��24~k4PolyLog½2;�1þ~k

~k
�� for 1	 ~k	 2

6. nB ¼ �1

j�BðkÞj2nB¼�1 ¼
A2kDk

2�
64�

�
4� 5~kþ 4~k2

3 þ ~k3

4 for 0 	 ~k 	 1
ðð�2þ~kÞ2ð8�4~kþ3~k2ÞÞ

12~k
for 1 	 ~k 	 2

7. nB ¼ �3=2

j�BðkÞj2n¼�3=2 ¼
A2k3�
64�

8>>>>>>><
>>>>>>>:

1
45 ½8ð�33þ29~k�4~k2þ8~k3Þffiffiffiffiffiffiffi

1�~k
p

~k
þ 264

~k
þ 60~kþ 5~k3 � 90�

þ360 log½1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� k

p � � 180 log~k� for 0 	 ~k 	 1
1
45 ½� 8ð�33þ29~k�4~k2þ8~k3Þffiffiffiffiffiffiffiffiffiffi

�1þ~k
p

~k
þ 264

~k
þ 60kþ 5k3 � 180 arctan½ 1ffiffiffiffiffiffiffiffiffiffi

�1þ~k
p �

þ180 arctan½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ ~k

p
�� for 1 	 ~k 	 2

(A8)
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APPENDIX B: LORENTZ FORCE

In order to obtain a complete estimate of the contribu-
tion of PMFs to the perturbation, the convolution for the
Lorentz force power spectrum is also necessary. The an-
isotropic stress can be obtained directly from its relation

with the Lorentz force and the magnetic energy density.
We report here the Lorentz force convolution in Eq. (23)
with the magnetic field PS in Eq. (17) for particular values
of nB.

1. nB ¼ 4

jLðkÞj2nB¼4 ¼
A2k11D
64�k8�

�
4

15
� 2~k

3
þ 44~k2

45
� 5~k3

6
þ 8~k4

21
� 17~k5

240
�

~k7

960
þ

~k11

16 128

�

2. nB ¼ 3

jLðkÞj2nB¼3 ¼
A2k9D
64�k6�

(
44
135 � 2~k

3 þ 556~k2

735 � 4~k3

9 þ 164~k4

1575 þ 4~k6

2079 � 11~k9

11 025 for 0 	 ~k 	 1

� 44
135 þ 64

24 255~k5
� 16

945~k3
þ 88

525~k
þ 2~k

3 � 556~k2

735 þ 4~k3

9 � 164~k4

1575 � 4~k6

2079 þ 11~k9

33 075 for 1 	 ~k 	 2

3. nB ¼ 2

jLðkÞj2nB¼2 ¼
A2k7D
64�k4�

�
44

105
� 2~k

3
þ 8~k2

15
�

~k3

6
�

~k5

240
þ 13~k7

6720

�

4. nB ¼ 1

jLðkÞj2n¼1 ¼
A2k5D
64�k2�

� 44
75 � 2~k

3 þ 32~k2

105 þ 4~k4

315 � ~k5

25 for 0 	 ~k 	 1

� 44
75 þ 64

1575~k5
� 16

105~k3
þ 8

15~k
þ 2~k

3 � 32~k2

105 � 4~k4

315 þ ~k5

75 for 1 	 ~k 	 2

5. nB ¼ 0

jLðkÞj2nB¼0 ¼
A2k3D
64�

8>>>>><
>>>>>:

43
48 � 1

16~k4
� 1

32~k3
þ 7

48~k2
þ 13

192~k
� 67~k

96 þ ~k2

48 þ 17~k3

384 � log½1�k�
16~k5

þ log½1�k�
6~k3

� log½1�k�
8~k

þ 1
48
~k3 log½1� k� for 0 	 ~k 	 1
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48 � 1

16~k4
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þ 1
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6. nB ¼ �1

jLðkÞj2nB¼�1 ¼
A2kDk

2�
64�
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15 � 2~k� 4~k2
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15~k3
þ 8
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þ 2~k

3 þ 4~k2
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64�
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>>>>>>>>>>>>:

� 1

8775
ffiffiffiffiffiffiffi
1�~k

p
~k5
2ð�3072þ 3072

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
þ 1536~kþ 4544~k2 � 4160

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
~k2 � 1888~k3

þ25 340~k4 � 25 740
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
~k4 � 26 540~k5 � 80~k6 þ 160~k7 þ 6435

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
~k5�

�25 740
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
~k5 log½1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
þ 12 870

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k

p
~k5 log½~k� for 0 	 ~k 	 1

� 1

8775
ffiffiffiffiffiffiffiffiffiffi
�1þ~k

p
~k5
4ð�2ð�768ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ ~k

p
Þ þ 384~kþ 16ð71þ 65

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ ~k

p
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p
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1ffiffiffiffiffiffiffiffiffiffi
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�
�6435
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p
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(B1)
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