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We explore the formation of cosmic string Y-junctions when strings of two different types collide,

which has recently become important since string theory can yield cosmic strings of distinct types. Using a

model containing two types of local U(1) string and stable composites, we simulate the collision of two

straight strings and investigate whether the dynamics matches that previously obtained using the Nambu-

Goto action, which is not strictly valid close to the junction. We find that the Nambu-Goto action performs

only moderately well at predicting when the collision results in the formation of a pair of Y-junctions

(with a composite string connecting them). However, we find that when they do form, the late-time

dynamics matches those of the Nambu-Goto approximation very closely. We also see little radiative

emission from the Y-junction system, which suggests that radiative decay due to bridge formation does not

appear to be a means via which a cosmological network of such string would rapidly lose energy.

DOI: 10.1103/PhysRevD.78.023503 PACS numbers: 98.80.Cq

I. INTRODUCTION

Cosmic strings [1,2] may not have played the primary
role in the seeding of cosmic structure, with inflation
appearing to have had that function, but they may still be
important cosmological entities. Observations of, for ex-
ample, the cosmic microwave background (CMB) radia-
tion, merely limit the allowed string tension. And current
data sets do not do so particularly stringently: it is required
that the string tension is less than about one third of that
which would see them dominate the temperature anisotro-
pies in the CMB [3–6]. Indeed they may still prove to make
the primary contribution to the as-of-yet undetected CMB
polarization B-mode [7–9]. Future CMB data, galaxy red-
shift surveys, gravitational wave experiments and gravita-
tional lens surveys promise to either greatly tighten the
existing constraints, or to plausibly detect cosmic strings.

This is particularly important for (super)string/M theory,
since it has recently been realized that fundamental super-
strings need not be limited to microscopic scales. Now
these fundamental F strings, along with other string theory
entities called D strings, appear able to play the role of
cosmic strings [10,11]. And these cosmic superstrings
would have particular properties, for example, because of
the extra dimensions required by string theory, or because
(p, q) bound states of p F strings and q D strings can form,
with Y-shaped junctions where they unzip into two more
basic constituents. As a result, the detection of cosmic
strings would provide an exciting observational window
upon string theory.

There has been a great deal of recent work on the topic
of cosmic superstrings: from studies predicting their for-
mation in brane inflation models [12,13] right through to
their dynamics at late times. However, the latter case is not
completely understood even for the traditional situation of
gauged U(1) strings, with there being some question marks
over the rate at which strings self-intersect and chop off
small loops [14–21]. The more complex case of cosmic
superstrings is therefore particularly challenging. Various
authors have used numerical simulations of field theories to
represent cosmic superstrings on horizon-size scales, in-
cluding the use of linear sigma models [22] and global
SUð2Þ=Z3 strings [23], as well as more realistic models
involving local strings [24,25]. These have largely ad-
dressed the question, ‘‘Do cosmic superstring networks
evolve in the same manner as traditional gauge strings, in
that their mean energy density scales with the total density
of the universe?’’ The concern is that the bound states and
Y-junctions would slow the subhorizon decay of the
strings, resulting in them dominating the universe at late
times. That would, of course, be in clear contradiction with
observation but fortunately the above simulations, as well
as analytical modeling [26,27], suggest that superstring
networks may exhibit scaling. However, this work is very
challenging and the issue is not completely resolved.
Given the complex array of strings seen in such horizon-

scale simulations, it is difficult to understand the micro-
physics involved in the problem and this is essential for a
reliable understanding of the results. However Copeland,
Kibble, and Steer [28,29], hereafter CKS, have recently
used the Nambu-Goto approximation to study the collision
between two straight strings, and have shed a great deal of
light upon Y-junction formation. Unfortunately, the
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Nambu-Goto action assumes that the string separation and
curvature scale are far greater than the string width and it is
therefore not strictly valid at the site of the Y-junction
itself. It cannot include, for example, the interaction be-
tween the strings, which is of course associated with the
formation of the bound state. Indeed, the attraction be-
tween strings in the vicinity of the Y-junction may naively
be expected to increase the bridge growth rate and to allow
bridge formation when it is ruled out under the Nambu-
Goto approximation. Moreover, it has been suggested [26]
that the energy liberated by the formation of stable com-
posites could be released as radiation and therefore help
prevent the network from dominating the universe, but the
Nambu-Goto action does not allow for such radiation.

Hence in this article we investigate the formation and
dynamics of Y-junctions using 3D field theory simulations
of a model involving two coupled Abelian Higgs models,
as introduced by one of us in Ref. [30]. Specifically we
study the formation of bound states when two straight
strings collide and then we compare our results with the
analytical predictions from CKS. Reference [31] has pre-
viously studied such collisions for a single Abelian Higgs
model in the type I regime, when bound states and Y-
junctions can form, and this has been revisited in order to
test the CKS results by Ref. [32]. Type I strings offer a
different type of coalesce in that there is a single type of
flux present and have been studied recently for theories
containing supersymmetric flat directions [33]. Here our
model contains two independent U(1) symmetries, model-
ing the separate F- and D-string charges, and hence our
results are of a different nature to those of Ref. [32].
Furthermore, our detailed measurements from the collision
aftermath are the first to quantitatively investigate, not
merely whether a composite region forms, but also its
growth rate and precise dynamics. These are also important
with regard to the understanding of the Y-junctions, as well
as to the future application of the CKS approach.

In the next section we discuss the dynamics of
Y-junctions under the Nambu-Goto approximation, before
discussing the field theoretic model employed here in
Sec. III. We then discuss our simulation method in
Sec. IV and our qualitative results in Sec. V. Only with
those results in hand can we discuss the methods behind
our detailed measurements from the simulations or the
results from them, which form Secs. VI and VII, respec-
tively. Finally we then present our interpretation of these
results and our conclusions.

II. NAMBU-GOTO DYNAMICS

The Minkowski space-time dynamics of three strings
meeting at a Y-junction was solved analytically by CKS
[28,29] under the Nambu-Goto action. Since no attraction
between strings is included in this action, their approach
was to add a Lagrange multiplier in order to constrain the
three strings to coincide at the junction. Initial conditions

may then be chosen such that there are two strings lying in
the yz plane as shown in Fig. 1(top), each making an angle
� to the z axis and travelling with velocities v and �v in
the x direction. However, the Nambu-Goto action cannot
illuminate the creation of a composite bridge string upon
their intersection and it must be inserted by hand how the
strings connect to each other in the final state, with two
such possibilities shown in Fig. 1. We refer to these here as
cosine and sine connectivities, since the essential differ-
ence between them is just the choice of placement for the
angles � and �, and correspondingly whether cosine or
sine terms appear in the primary equation below.
In general there is a third possibility for the connectivity

of the strings, in which there is no partner exchange and a
bridge simply grows between the two initial strings [28].
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FIG. 1 (color online). The intersection of two strings to form a
pair of Y-junctions, as seen in the Nambu-Goto picture. The
initial state of the two strings (top) is with them lying parallel to
the yz plane and travelling with velocities �v in the x
direction, while there is a choice of final state (middle and
bottom) depending upon how the two strings connect to each
other. In either case, a bridge string links the two Y junctions and
the initial strings have kinks travelling along them. We denote
the middle case as a cosine linkage, and the bottom case as a sine
linkage.
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However, this is forbidden in the field theoretic model that
we consider here and we will not discuss it further.

Having chosen the connectivity, the next step in the CKS
method is to solve for the bridge velocity and orientation. If
the two incident strings have energies per unit (invariant)
length, �1 and �2, that are equal, then the symmetry
present in the problem greatly simplifies matters. First,
the two Y-junctions must remain in the yz plane at all
times. Secondly, the bridge must lie either along the z
axis (cosine link) or along the y axis (sine link), and hence
both the bridge speed and orientation are trivial [28].

Even in an unsymmetric case (�1 � �2), the bridge
must lie still parallel to the yz plane due to the symmetry
between the two Y-junctions and its velocity must be
parallel to the x axes [29]. For cosine connectivity, as
shown in the middle panel of Fig. 1, CKS then derive the
following equation for the bridge velocity u [29]:

0 ¼ u4S2sin2�þ u2½R2ð1� v2Þ þ S2ðv2cos2�� sin2�Þ�
� S2v2cos2�; (1)

where we introduce the notation R ¼ �3=ð�1 þ�2Þ and
also S ¼ ð�1 ��2Þ=ð�1 þ�2Þ. If �1 ¼ �2, then S is
zero and the solution is just u ¼ 0, as noted above. For S �
0, this equation always yields one positive root for u2,
while the sign of u matches that of S if string 1 initially
had positive x velocity.

With u having been determined, the angle � between the
bridge and the z axis may then be found using [29]:

tan� ¼ u

v
tan�: (2)

Of course, if S ¼ u ¼ 0, then � is simply zero and, as
noted above the bridge lies simply on the z axis for cosine
connectivity.

From these values of u and �, the rate at which the length
of the bridge grows may be solved for [29]. For S � 0 it is
convenient for us to use the invariant half-bridge length
s3 ¼ l3=�u, where the physical bridge length is 2l3 and

�u ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
is the usual Lorentz factor. This yields

the neat causality constraint: _s3 < 1; since the Y-junction,
which moves in the yz plane at speed dl3=dt and at speed u
in the x direction, cannot traverse at superluminal speeds.
A simple expression for _s3 was noted in Ref. [34] and in
our notation this is

_s 3 ¼ �u cos�� R� cos�

� cos�� R�u cos�
: (3)

Although there is no explicit dependence upon S here, this
is realized through �u and � and can have a large impact on
the result. However, if S ¼ 0 then �u and cos� are both
equal to unity and may be therefore omitted, leaving a
particularly compact expression [28].

If sine connectivity is chosen instead, then it is simply
the case that the replacement �! ð�=2� �Þ and �!

ð�=2� �Þ should be made, or equivalently for the above
equation, the cosines are merely changed to sines.
Of course, the solution only makes physical sense if

_s3 > 0 and Fig. 2 shows the region of the �v plane where
CKS solutions are possible for the three cases that we will
explore later using field theory simulations. Case A has
S ¼ 0 and R ¼ 0:84, and Eq. (3) then implies that a cosine
bridge can only form if �< arccosð�RÞ. That is, for a
given v there is a certain � above which a CKS solution
is not possible and hence it is implied that the strings must
simply pass through each other. Swapping arccosð�RÞ for
arcsinð�RÞ gives the constraint for a sine bridge, which for
case A is not shown in the figure since it is just a repeat of
the cosine case but with �! ð�=2� �Þ. However, if R
was less than cosð45�Þ then there would be a range of � for
which growing solutions exist for both connectivities and
the Nambu-Goto action would not then reveal which solu-
tion would be followed. This is something we will explore
later, but only for a case with S � 0.
Case B has (almost) the same value of R but also has

S ¼ 0:3. This yields, in fact, a largely similar situation with
respect to the figure, although with bridge formation pos-
sible over a slightly larger area. For jSj> R2 the situation
becomes quite different and this is possible under case C.
Considering first only cosine connectivity, the plotted
case Cc highlights that CKS solutions are permitted for
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FIG. 2 (color online). The Nambu-Goto predictions for when
cosine bridges can form in cases A, B, and C that we will explore
using field theory simulations, with sine bridges also included
for case C. Case A has S ¼ 0 and R ¼ 0:84 while case B has
S ¼ 0:30 and R ¼ 0:84. Case C has S ¼ 0:25 but in the field
theory case the value of R depends on the connectivity due to
flux cancellation for a cosine bridge (Cc) with R ¼ 0:37 but not
for a sine bridge (Cs), which then has R ¼ 0:90. Case Cc
therefore has jSj>R2. Note that Y-junctions under both Cc
and Cs are possible outcomes for a small region of parameter
space while for cases A and B there is no overlap between sine
bridges (not shown) and the cosine bridges.
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at high v for all �. However, a subtle point is that, in our
field theory, flux cancellation (see Sec. V) occurs for the
cosine connectivity to yield a low R of 0.37 but this does
not happen for sine connectivity and hence case Cs has a
larger R of 0.9. Since the condition jSj> R2 is not met for
Cs, then this last case appears simply like cases A and B
but with �! ð�=2� �Þ, although we plot it now since it
is not simply a repeat of Cc. Importantly, there is a region
in which both Cc and Cs solutions are possible and hence
for case C we will simulate initial conditions for which the
Nambu-Goto dynamics make no prediction as to which
solution will actually be followed.

When bridge growth is permitted, the CKS solution for
straight incident strings evolves such that the bridge grows
at the constant rate specified by Eq. (3), with the bridge
orientation � and velocity u constant also. Kinks travel out
along the initial strings, as shown in Fig. 1, and the ge-
ometry simply scales in size with the time t since the
collision.

III. Uð1Þ � Uð1Þ DUAL ABELIAN HIGGS MODEL

We now explore these dynamics from a field theory
perspective, including strings which have finite width,
interact strongly in the region close to the Y-junction,
and may radiate. To do so we employ the dual U(1) model
of Ref. [30], which has also been used in horizon-volume
simulations in Ref. [25]. This involves two Abelian Higgs
models coupled only via the potential term and having
Lagrangian density:

L ¼ � 1

4
F��F

�� � ðD��Þ�ðD��Þ � �1

4
ðj�j2 � 	2Þ2

� 1

4
F ��F �� � ðD� Þ�ðD� Þ � �2

4
ðj j2 � �2Þ2

þ 
ðj�j2 � 	2Þðj j2 � �2Þ: (4)

We have followed the notation of Ref. [30] and defined the
gauge-covariant derivatives as

D�� ¼ @��� ieA��; (5)

D� ¼ @� � igB� ; (6)

and the antisymmetric field strength tensors as

F�� ¼ @�A� � @�A�; (7)

F�� ¼ @�B� � @�B�: (8)

The only coupling between the two otherwise independent
Abelian Higgs models is via the final potential term of
Eqn. (4). Its form is chosen to ensure that the local U(1)
symmetries associated with each Abelian Higgs model are
preserved:

�! �ei!A; A� ! A� þ 1

e
@�!A; (9)

 !  ei!B; B� ! B� þ 1

g
@�!B; (10)

since these are directly related to the presence of string
solutions.
For 
 ¼ 0 it is well known that string solutions exist for

each half of the model [35] (see Refs. [1,2] for reviews).
These are characterized by the phase of � (or  ) having a
net winding of 2�m (or 2�n) around any closed path that
encloses the string. For 
 � 0, static and straight (m, n)
string solutions, involving both halves of the model, were
found in [30]. By way of an example, consider � ¼ 	, e ¼
g, and �1 ¼ �2 so that�ð0;1Þ ¼ �ð1;0Þ and also let 2e2 ¼ �1

(so that the Bogomol’nyi limit [36] applies in both halves
of the model). Then if 
 ¼ 0:4

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
,

�ð1;1Þ ¼ 0:840½�ð1;0Þ þ�ð0;1Þ�; (11)

and hence parallel �ð0;1Þ and �ð1;0Þ strings can reduce their

energy by combining to give a composite �ð1;1Þ string.

Smaller (positive) values of 
 yield a lower reduction in

energy by composite formation, while 
 � 0:5
ffiffiffiffiffiffiffiffiffiffiffiffi
��� 

p
re-

sults in the model being unphysical, because then the
potential is unbounded from below. Finally, negative 

yields an increase in energy so composite solutions are
unstable and such values are not of interest here. The
values of �ðm;nÞ for the strings involved in our simulations

are shown in Table I.

IV. SIMULATION METHOD

A. Evolution algorithm

In order to simulate the collision of two straight strings
we represent the fields of the model using only their values
at discrete points in space and time, and then write approx-
imations to the second order dynamical equations in terms
of the fields at these points. There is no unique way to
proceed, however, for the Abelian Higgs model in
Minkowksi space-time, it has become popular to use the
approach of Ref. [37]. In that method, a discrete
Hamiltonian is constructed and then the equations of mo-
tion for the discretized variables are obtained from it. The
Hamiltonian is chosen to preserve the U(1) gauge symme-
try of the Abelian Higgs model, at least in a certain discrete

TABLE I. The energy per unit length of a static string with a
winding of 2�m in the phase of � and of 2�n in the phase of
 , with parameters �1 ¼ �2 ¼ 2e2 ¼ 2g2 ¼ 2, 	 ¼ �, and

 ¼ 0:4

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
. Note that an Abelian Higgs string of unit wind-

ing would yield � ¼ 2�	2 [36].

m n �ðm;nÞ=2�	2 �ðm;nÞ=ðmþ nÞ�ð1;0Þ
1 0 0.864 1

1 1 1.452 0.840

2 0 1.622 0.938

2 1 2.088 0.805

NEIL BEVIS AND PAUL M. SAFFIN PHYSICAL REVIEW D 78, 023503 (2008)

023503-4



form. As such the simplifying gauge choice A0 ¼ 0may be
chosen but the discrete Hamilton’s equation for A0, which
is the analogue of Gauss’s law in the model, is preserved
precisely by the remaining discrete equations. This would
be difficult to achieve via the direct replacement of the
derivatives in the dynamical equations with finite differ-
ences. Note also that this approach may be generalized to
flat Friedman-Robertson-Walker (FRW) cosmologies via
the use of a discretized action, as in Ref. [38].

Since the coupling between the two Abelian Higgs
models in the present action is via the potential term
only, and involves no field derivatives, then this does not
greatly affect the discretization of the system. We therefore
applied the above procedure to arrive at our evolution
algorithm for the Uð1Þ � Uð1Þ model in Minkowksi
space-time (although our program was derived directly
from the FRW code of Ref. [38]). Parallel computation
was made available via the use of the LATfield library [39],
with simulations performed across up to 32 processors of
the UK National Cosmology Supercomputer [40]. The
(scalar1) fields were represented on the sites of a cubic
lattice of spacing �x and therefore yielded a uniform (as
opposed to adaptive) spatial resolution, while a constant
timestep �t was also employed.

B. Initial conditions

We desire to start the evolution with two straight, infinite
strings moving towards each other, but unfortunately there
are no such analytical solutions known. Using the code
written for [30], however, we can rapidly obtain numerical
solutions for isolated static strings with given winding
numbers, which we then employ here to construct the
initial conditions following a procedure similar to that
used by Ref. [37] for the Abelian Higgs model.2

The isolated string code solves for the radial profile of a
string using a cylindrical polar coordinate system around
its center, which we denote as ðr0; �0; z0Þ and the dashes
denote that we are in the string rest frame, rather than the
simulation frame. Via the appropriate choice of gauge, the
profile can be written as

�ðr0; �0; z0Þ ¼ 	fðr0Þeim�0 ; (12)

A0
�ðr0; �0; z0Þ ¼

m

e
aðr0Þ; (13)

 0ðr0; �0; z0Þ ¼ �pðr0Þein�0 ; (14)

B0
�ðr0; �0; z0Þ ¼

n

g
bðr0Þ; (15)

with the other components of the gauge fields simply zero.
That is, for a given m and n this code returns the four
functions fðr0Þ, aðr0Þ, pðr0Þ, and bðr0Þ for an array of
discrete r0 values.
In order to obtain the solution for the string in the

simulation frame, that is a string moving at a speed v in
the x direction, we must follow a similar procedure, but
then apply a Lorentz boost. However, we also wish the
string to be rotated through an angle � in yz plane, as
shown in Fig. 1. We therefore perform a Lorentz boost and
simultaneous rotation, giving � and A� in the simulation

frame as

� ¼ �0; (16)

A0 ¼ �ðA0
0 � vA0

x0 Þ; (17)

Ax ¼ �ðA0
x0 � vA0

0Þ; (18)

Ay ¼ A0
y0 cos�� A0

z0 sin�; (19)

Az ¼ A0
y0 sin�þ A0

z0 cos�: (20)

Throughout this section equations for � and A� will have

obvious  and B� analogues, and we will therefore not

repeatedly note that the second half of the model is to be
treated in the same manner of the first. From Eq. (17) it can
seen that if the above rest frame solution with A0

0 ¼ 0 and

r0A0
x0 ¼ �A0

�0 sin�
0 is inserted, then the resulting A0 is

nonzero. That is, the solution is not of the appropriate
form for use in the A0 ¼ 0 evolution algorithm.
Therefore, before applying the boost we perform a

gauge transform m!A such that A0
x0 becomes zero:

1

e
@x0 ðm!AÞ ¼ �A0

x0 : (21)

A solution to this equation is given by

!Aðx0; y0Þ ¼ � e

n

Z x0

0
A0
x0 ðX0; y0; z0ÞdX0; (22)

and if the static solution above is inserted, this becomes

!Aðx0; y0Þ ¼
Z x0

0

y0

X02 þ y02
a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X02 þ y02

q �
dX0; (23)

which we evaluate numerically. Note that the integral is
finite for all x0 and y0 since a must tend to 1 as r0 ! 1 in
order to give finite energy per unit string length.
We choose zero as the lower integral limit because then

!Aðx0; y0Þ is an odd function with respect to both x0 and y0.
As a result !A needs only to be found in one quadrant and

1The gauge field components are represented halfway along
the links between the sites (Ax on a link parallel to the x axis, Ay
on a link parallel to the y axis, etc.), explicitly transporting the
phase of the scalar fields across the links.

2See also Ref. [41] for an alternative approach for the Abelian
Higgs model, employing instead the Lorentz gauge, and
Ref. [42], which in fact employs a Lagrangian similar to
Eq. (4), but in a different regime in order to model super-
conducting strings.
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can then be easily applied to all four:

!Aðx0; y0Þ ¼ �!Að�x0; y0Þ ¼ �!Aðx0;�y0Þ
¼ þ!Að�x0;�y0Þ: (24)

Having determined!A, then the gauge transform yields:

�0 ¼ 	fðr0Þeimð�0þ!AÞ;

A0
y0 ¼

m

e

�
1

r0
aðr0Þ cos�0 þ @y0!A

�
; (25)

with all other components of A0
� now zero. The

y0-derivative of !A can be itself written as an integral but
a simpler and numerically faster procedure is to calculate
!Aðx0; y0 � �y0Þ for �y0 much less than the y0 grid spacing
and then find the gradient via a (centered) finite difference.
The fields in the simulation frame are then

�ðx; y; zÞ ¼ �0ðx0; y0Þ; (26)

A0ðx; y; zÞ ¼ 0; (27)

Axðx; y; zÞ ¼ 0; (28)

Ayðx; y; zÞ ¼ A0
y0 ðx0; y0Þ cos�; (29)

Azðx; y; zÞ ¼ A0
y0 ðx0; y0Þ sin�; (30)

where

x0 ¼ �ðx� vtÞ; (31)

y0 ¼ y cos�þ z sin�: (32)

However, it is also required to specify the time deriva-
tives of the fields since the equations of motion are second
order. The string solution is simply translating at a velocity
v in the x direction; therefore, these derivatives can
straightforwardly be obtained as

@t� ¼ �v@x�; (33)

where @x� can be found from �ðx� �x; y; zÞ; and with an
analogous equation for the gauge field.

Obviously, the above procedure generates only a single
string and so it is required to superpose two such solutions,
one with positive v and one with negative v, but positioned
such that they are initially separated by a distance much
larger than the string width. Since the equations of motion
are nonlinear there is no precise means to do this; however,
for such separations a good approximation is simply to sum
the single string gauge fields Aþ

� and A�
� to give the total:

A� ¼ Aþ
� þ A�

�: (34)

Then for the scalar fields,

�

	
¼ �þ

	

��
	

(35)

results in a superposition of complex phases and minimal
interference of the core of one string due to the approxi-
mately constant, near vacuum field of the other [37,41,43].
Using these equations, the time derivatives must then
superpose as

@tA� ¼ @tA
þ
� þ @tA

�
�; (36)

	@t� ¼ �þ@t�� þ��@t�þ: (37)

In this way two straight strings are created such that they
are approaching each other and, given the form of the time
dependence in Eq. (31), their center lines will collide at
time t ¼ 0. That is, the initial separation is set by the
choice of the simulation start time tstart.

C. Boundary conditions

Since the evolution algorithm uses finite differences to
represent spatial derivatives, then the update of a field at a
particular site requires the knowledge of neighboring sites.
However, at the simulation boundaries the fields are not
known for all neighbors and a method must be chosen to
determine a value for them. Here we simply employ our
initial conditions code (but with t � tstart) to calculate these
unknown field values [41]. Hence there is a halo of sites
surrounding the main simulation volume whose values we
update by using the initial conditions algorithm after each
time step.
Note that our boundary conditions will therefore reflect

waves travelling along the strings and that the simulations
are reliable only while the boundaries are causally unaware
of the interaction between the two strings. We therefore
must chose our lattice size appropriately to yield an ade-
quate time to study the collision aftermath before artifacts
of the boundary conditions reduce the reliability of the
simulations.

V. QUALITATIVE RESULTS

Before revealing our methods for quantitative measure-
ments of the post-collision environment we must first
present our basic qualitative results. We limit ourselves
to model parameters 2 ¼ �1 ¼ �2 ¼ 2e2 ¼ 2g2 and 
 ¼
0:4

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
and also choose equal energy scales for the two

halves of our model	 ¼ �. As briefly mentioned in Sec. II,
we consider three different sets of initial string windings:
cases A, B, and C, as shown in Fig. 3. We will now discuss
each one in turn.

A. ð1; 0Þ þ ð0; 1Þ ! ð1; 1Þ?
For the collision of a (1,0) string with a (0, 1) string to

plausibly yield a (1, 1) string, we have �1 ¼ �2 and R ¼
0:840, and we do indeed find that a composite (1, 1) region
forms for low values of v and �, with a Y-junction at either
end and having cosine linkage.

NEIL BEVIS AND PAUL M. SAFFIN PHYSICAL REVIEW D 78, 023503 (2008)

023503-6



An example with v ¼ 0:2 and � ¼ 20� is shown in
Fig. 4. The basic expectations from the CKS solution are
indeed seen in this case, albeit with the two strings attract-
ing each other slightly before the theoretical collision time
of t ¼ 0, and as can be seen in the upper half of the figure,
the central region of the upper string is attracted down
towards the lower one (and vice versa). The dip (or raise)
breaks up into waves travelling in opposite directions,3

resulting in low amplitude x-displacement patterns which
move along the strings once the Y-junctions have formed.
There is also a smaller disturbance travelling along each
string with a displacement in the yz plane, created during
the parallel realignment of the two strings at the intersec-
tion. In general such waves may be more or less pro-
nounced and, for example, as � is decreased then the
t < 0 interaction has a greater z range and the strings
then undergo many oscillations as the strings align parallel
to each other.

At late times, when any such oscillations have subsided
and the displacement waves are far from the Y-junctions,
these junctions do not settle down to take on precisely the
sharp Y-shape as in the Nambu-Goto case. As would be
expected for interacting strings of finite width, the (1, 0)
and (0, 1) strings curve gradually away from the z axis as
we move out from the junction, with the radius of curvature
being a few times the string width.

The formation of the bridge is accompanied by a burst of
low intensity radiation, which is shown in Fig. 5. Notice
that the energy density in the radiation is tiny compared to

that in the string core and that this represents the peak of
radiation production. The initial burst soon ceases and
there is then no reliably resolvable radiation produced at
late times.
Keeping � fixed and increasing v reveals that, as ex-

pected from the CKS calculations, eventually the compos-
ite region no longer forms and the strings merely pass
through each other. The only trace of the interaction is
then displacement waves, similar to those seen when Y-
junctions do form. However, the limiting v for composite
formation is often somewhat below the CKS prediction, as
shown in Fig. 6 for this symmetric case. Note that we need
only consider �< 45� due to the symmetry present in the
initial conditions. This discrepancy between the Nambu-
Goto and field theory cases is somewhat more extreme than
reported by Ref. [32] for the Abelian Higgs model in the

FIG. 4 (color online). Isosurfaces of j�j ¼ 0:5	 and j j ¼
0:5� from a type A collision: ð1; 0Þ þ ð0; 1Þ. The upper two
frames are from t ¼ �6	�1, showing the attraction of the
strings towards each other and intersection at negative times
rather than the Nambu-Goto value of t ¼ 0. The lower two
frames are from the later time of t ¼ þ30	�1, showing the
established bridge and Y-junctions. The initial speeds were v ¼
0:2 and the strings made an angle � ¼ 20� to the z axis.

A: (1,0)+(0,1) → (1,1) B: (2,0)+(0,1) → (2,1)

Cc: (1,1)+(0,−1) → (1,0) Cs: (1,1)+(0,−1) → (1,2)

FIG. 3 (color online). Schematic illustrations of the three
collision types A, B, and C considered here, with the difference
between the two possible connectivities which exist for type C
highlighted: Cc (cosine) and Cs (sine).

3In order to understand this, it may be useful to the reader to
note that x ¼ xþðsþ tÞ þ x�ðs� tÞ is the general solution to
the equation of motion €x ¼ @2x=@s2 of Nambu-Goto strings and
that for an initially static string xþðsþ tÞ is equal to x�ðs� tÞ.
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type I regime, something that we will return to in our
conclusions. We will also investigate the transition from
bridge-forming collisions to non-bridge-forming collisions
in Sec. VII when we discuss quantitative measurements
from the simulations.

Interestingly at larger � we find that there are still two
possibilities for the final state of the system. For large
speeds it remains the case that the strings pass through
each other, while for lower values the strings become
locked together and an X-junction forms, as illustrated in
Fig. 7. These are denoted by an X in Fig. 6.

The Nambu-Goto solution for four strings connected in
an X-junction is trivial, given the present initial conditions
and the equal tensions �1 ¼ �2. The X-junction itself is
simply static by symmetry and the string located between it
and the kinks must then also be stationary (since the
junction just reflects incident waves). However, the
Nambu-Goto equations for four connected strings cannot
yield any constraints because the connectivity is put in by
hand.

The field simulations show a very similar situation to
these Nambu-Goto dynamics, albeit for additional minor
oscillations, as in the Y-junction cases. There is only a
small interaction region, but this will have a lowered
energy per unit invariant length. The small amount of
energy liberated by this, and a larger amount of energy
liberated by the complete retardation of the incident

strings, must then go into the increased length of the string,
since there is again little excitation of radiative modes.
However, since the binding is over only a short length of
string it would be expected that even a small perturbation
from these very idealized initial conditions, such as a low
amplitude disturbance travelling along one of the strings,
would easily break up the X-junction. The strings would
then separate due to their tensions and therefore we do not
believe that X-junctions would be cosmologically impor-
tant in this model. They may, however, be more relevant in
non-Abelian models [28].

B. ð2; 0Þ þ ð0; 1Þ ! ð2; 1Þ?
A similar situation exists also for the unsymmetric case

of a (2, 0) string colliding with a (0, 1) string to yield a
possible (2, 1) composite. Since S ¼ 0:305 it would be
expected from CKS that, when a bridge forms, it would not
be static and would not lie parallel to one of the coordinate
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FIG. 6 (color online). Incident velocities v and angles �
which are seen in simulations to yield Y-junctions when �1 ¼
�2 (i.e. S ¼ 0) and R ¼ 0:840. Here Y denotes the formation
of a bridge with Y-junctions at either side, points that the strings
passed through each other, and X denotes that the strings became
locked together to form an X-junction. The CKS prediction is
that the region beneath the curve could yield Y-junctions.

FIG. 7 (color online). Isosurfaces of energy density T0
0 ¼

0:5	4 from a collision of type A, when � ¼ 40� and v ¼
0:2, showing the formation of an X-junction. Results are shown
for time t ¼ 30	�1.

FIG. 5. Energy density slices through a case A simulation,
showing the initial burst of radiation as the bridge first forms.
These images are heavily saturated in the bridge core, as is
required to resolve the small amount of radiation emitted, and
are taken from an � ¼ 20�, v ¼ 0:2 simulation at t ¼ 21	�1.
In the uppermost pane, the bridge appears darker than the initial
strings because it lies in the x ¼ 0 plane, while the initial strings
are 4:2	�1 off this plane, and note that the two panes share
different spatial scales.
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axes but instead traverse in the same direction as the
heavier initial string and be orientated closer to it. This
is indeed the result apparent in Fig. 8 although we return
to this comparison from a quantitative perspective in
Sec. VII.

As for case A, there is a burst of radiation as the bridge
forms, but again the emission appears to be weak and
limited to the bridge coalescence phase. The distribution
of Y-junction formation events across the �v plane, shown
for this case in Fig. 9, is also similar to case A. No Y-
junctions are found when CKS solutions are forbidden, but
the limiting velocity at a given � is again lower than the
Nambu-Goto dynamics would allow.

Also mirroring case A, large values of � give X-junction
formation at low v. Even in this unsymmetric case the
Nambu-Goto solution for a X-junction is trivial and after
performing a Lorentz transform to the rest frame of the
junction, the strings between the junction and the kinks
would become static. This appears to be essentially what is
seen in the simulations although with small oscillations as
before.

C. ð1; 1Þ þ ð0;�1Þ ! ð1; 0Þ or (1, 2)?
As shown in Fig. 3, the intersection of a (1, 1) string with

a (0,�1) string can yield Y-junctions of two types depend-
ing upon the connectivity. Related to this is that the nega-
tive sign in (0, �1) has no absolute meaning without
further qualification, and here we use the minus sign to
denote that if � ¼ 0 then the two strings carry opposing
 -fluxes. Hence the naive expectation is that, for small �,
the  fluxes will annihilate and a (1, 0) bridge will form,
which would yield R ¼ 0:373. We refer to this case as Cc,
since it has cosine connectivity with respect to �. On the
other hand, for � close to 90�, the phase of  will wind
around the strings in the same direction and it might be
anticipated that a (1, 2) bridge will form, givingR ¼ 0:901.
We label this case with sine linkage as Cs. For this set of
initial windings, therefore, the difference between the two
connectivities has an impact upon the value of R and it is
not simply cos�! sin� and cos�! sin� in Eq. (3) for the
bridge growth rate.

Since jSj> R2 for a (1, 0) bridge, then the Nambu-Goto
prediction is that, as was shown in Fig. 2, bridge formation
will occur for all � at large initial velocities (v > 0:791).
On the other hand, this is not true for the heavier (1, 2)
bridge and the prediction is then very much like that for
cases A and B. There is, however, a small region of over-
lap, where both Cc and Cs allow bridge-forming CKS
solutions and the Nambu-Goto equations make no predic-
tions as to which connectivity will actually be given.
Indeed it is seen in the simulations that cosine bridge

formation can occur at very high velocities for all values of
� tested, as shown in Fig. 10. An example of Cc bridge
configuration is then shown in Fig. 11. Collisions yielding
sine connectivity appear, as expected, only in the bottom
right of the �v plane, while both Cs and Cc solutions are
seen to populate the region in which CKS allows both
solution types. There are no bridges seen in the region
which CKS solutions are not possible, but as with
cases A and B, the simulations show that the Nambu-
Goto dynamics do not yield the boundaries between al-
lowed and disallowed regions with total accuracy.
The match between the CKS predictions and the simu-

lations results is, however, somewhat closer in the present
case. This is perhaps because, now differing from the first
two collision types, the incident strings both have a finite
 -winding. Conventional cosmic string lore would dictate
that if two (0, 1) strings collided, they would intercommute
and therefore we have good reason to expect a significant
interaction in this case, rather than a case where the two
strings pass through each another. Indeed, Fig. 12 shows
the center lines of the strings detected via the winding of
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FIG. 9 (color online). Incident velocities v and angles �
which are seen in simulations to yield Y-junctions when S ¼
0:305 and R ¼ 0:840. Here Y denotes the formation of a bridge
with Y-junctions at either side, points denote that the strings
passed through each other and X denotes that the strings became
locked together to form an X-junction. The CKS prediction is
that the region beneath the curve should yield Y-junctions.

FIG. 8 (color online). Isosurfaces of energy density T0
0 ¼

0:5	4 from a type B collision: ð2; 0Þ þ ð0; 1Þ, with � and v
as in Fig. 4. The snapshot is for t ¼ 24	�1. Of the two initial
strings, it is the (2, 0) string which appears thicker and notice that
the (2, 1) bridge is angled toward this string.
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the scalar field phases around lattice grid squares and
shows that in this type of Cs collision, the first step toward
the formation of a Cs bridge is an intercommutation
of  strings. The strings in the interaction region are then
two (0, 1) strings with a (1, 0) string between them and
the system has two paths via which to form Y-junctions:
either (i) the  strings upzip from the binding �-string

and leave a type Cc bridge, or (ii) the  strings zip up
further along the� string producing a Cs bridge. The illus-
trated case is one in which both are possible under the
Nambu-Goto approximation, but the field theory chooses
the latter. Note that there is a further  -string intercommu-
tation event before the end of the simulation but the (1, 2)
bridge is stable and such intercommutation events are
inconsequential.
Even when neither Cc nor Cs bridges form, there is still

the intercommutation between the  strings. However,
again a second intercommutation event occurs and, now
in contrast with the illustrated case, the binding energy of
the strings is not sufficient to hold them together so the
(1, 1) and (0, �1) strings simply separate.
As in collisions of types A and B, there is a burst of low

intensity radiation as the bridge forms, but with the emis-
sion seeming to decay away at late times.

VI. MEASUREMENT OF THE BRIDGE LENGTH,
VELOCITY, AND ORIENTATION

A. Symmetric case: �1 ¼ �2

Having seen that Y-junctions form in the present model
in a very similar manner to the CKS solutions, we desire to
test the CKS predictions quantitatively by measuring the
bridge length as a function of time, as well as its velocity
and orientation. We start by detailing our method for
case A since then symmetry dictates that the only possible

FIG. 11 (color online). Isosurfaces of energy density T0
0 ¼

0:5	4 from the collision of (1, 1) string with a (0, �1) string
with initial speed v ¼ 0:6 and � ¼ 20�, showing a (1, 0) bridge
has formed. The snapshot is shown for t ¼ 44	�1.
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FIG. 12 (color online). The reconstructed string center-lines
for a type Cs collision: ð1; 1Þ þ ð0;�1Þ ! ð1; 0Þ, occurring in
the region of the �v plane where the Nambu-Goto dynamics
suggests that both Cc and Cs are possible: � ¼ 70� and v ¼
0:2. Results are shown for t ¼ �24	�1 (left), t ¼ 0 (center)
and t ¼ 24	�1 (right), showing the � string center line in black
(blue online) and the  string center line in gray (green online).
Center lines are detected using the winding of the scalar field
phases around lattice plackettes (see Sec. VI and appendix).
Lengths are shown in lattice units: �x ¼ 0:5	�1.
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FIG. 10 (color online). Incident velocities v and angles �
which are seen in simulations to yield Y-junctions for case C:
ð1; 1Þ þ ð0;�1Þ, and compared to the CKS predictions from
Fig. 2. The final state of the system is denoted by a c when a
(1,0) cosine bridge and Y-junction pair formed, an s when a (1,
2) sine bridge was seen, an X when a X-junction formed, and a
dot when the strings passed through each other. Additionally (c)
denotes a case when a cosine bridge formed and grew, but that a
displacement wave caused a late-time intercommutation be-
tween the (1, 1) and (0, �1) strings, after which the bridge
collapsed.

NEIL BEVIS AND PAUL M. SAFFIN PHYSICAL REVIEW D 78, 023503 (2008)

023503-10



(mean) bridge velocity is zero and the only possible (mean)
orientation is parallel to either the z axis or the y axis. We
restrict ourselves to �<�=4 as before, thanks to the
symmetry present in the problem, and from our previous
observations need only consider bridges forming along the
z axis.

In order to measure the bridge length in this symmetric
case we may merely count the number of sites along the
line x ¼ y ¼ 0 which have j�j=	 < � or j j=� < �, with
� some chosen threshold. Multiplication by �x and divi-
sion by 2 then yields a measure of the physical half-bridge
length, which for the static bridge is equal to the invariant
half-length s3. Note that since no other string lies on this
line and any initial oscillations along the bridge are only
transiently important, then this is a reliable method which
gives easily interpreted results.

B. General case: �1 � �2

Unfortunately the above procedure is not readily appli-
cable to the general case and we must therefore employ a
more complex method to determine the bridge length for
cases B and C, as well as additionally measuring the non-
trivial bridge velocity and orientation which they yield.

In past work [15,16,38,44], Abelian Higgs strings have
been detected using a net winding of the scalar phase
around the smallest closed loops resolved in the simula-
tion: the lattice plackettes. However, extending this to
detect, for example, (1, 1) strings is nontrivial since it is
not guaranteed that the phase of � has a net winding
around precisely the same plackette as the phase of  .
Furthermore, for (2, 1) strings it is not even assured that
� will exhibit a 4� winding around a plackette rather than
there being merely two close-by 2� windings.

Our approach is therefore to first trace the path of every
(1, 0) and (0, 1) elemental string through the simulation
volume, such that a 4�winding in� denotes that two (1, 0)
strings thread the plackette.4 We then detect, say a (2, 1)
bridge, by searching through these paths for regions in
which precisely two � string paths and one  path string
approach within a certain distance of each other.

The easiest method of reconstructing the string paths is
to suppose that a straight segment of string of length �x
passes through each plackette which has a net winding.
Unfortunately, constructing the paths out of an array of
perpendicular segments can yield to a significant overesti-
mate in the total length. For the cosmological simulations
of Refs. [15,16], this overestimation was countered by
smoothing the paths on the scale of the string width,
although here we may employ a quite different approach.

A basic observation from the simulations is that any
bridge that forms is straight and, even if oscillations are

present initially, these quickly decay. We therefore take the
change in position vector �r along each segment and
perform the vectorial sum over all detected bridge seg-
ments. We then measure the physical bridge length 2l3 as
the modulus of the resulting vector, divided by the total
winding (jmj þ jnj) of the bridge:

2l3 ¼ 1

jmj þ jnj j��rj (38)

This effectively fits a straight line through the jmj þ jnj
element string paths in the selected bridge region and then
determines its length5 (although note that it is in fact only a
function of where the elemental paths cross the bridge
detection thresholds).
However, we additionally perform an interpolation in

order to more accurately locate the intersection of the
string center lines within the plackettes, for which we
employ the method described in Appendix A. The vectors
�r are then taken to link two such intersections. Actually
for our vector-based l3 estimator this is important only for
the ends of the vector and has a small effect. However, this
interpolation is more important for the measurement of
bridge velocity u and the angle �, the methods for which
are described momentarily. Furthermore, the use of our
interpolation scheme and a direct � j�rj sum of lengths
yields a second l3 estimator that we have employed as a
check, and which we find performs surprisingly well.
In principle, the angle � could be taken as that between

the z axis and the summed bridge vector � �r; however,
this would potentially yield a small systematic error. For
example, where a (2, 1) bridge splits into (2, 0) and (0, 1)
strings, the vector will be biased towards the (2, 0) string
and, as a result, � will be overestimated. Although the
effect will be small, the CKS predictions for � show a
very mild dependence upon v for fixed �, R, and S, and we
wish to accurately explore this in the field theory case. We
therefore perform a second vectorial sum using only the
central 80% of the bridge and then measure � using

tan� ¼ �80%�ry
�80%�rz

; (39)

that is, the angle between this new resultant vector and the
z axis.
Finally, in order to determine the bridge x velocity u, we

use the weighted mean of the segment x coordinates over
the central 80% of the bridge:

�x ¼ �80%ðxþ þ x�Þj�rj
2�j�rj ; (40)

where x� are the endpoints of a segment. Note that the
subplackette interpolation scheme is more important in this

4Note that we use the gauge-invariant winding measure of
Ref. [44] since in the discrete case the winding in the scalar
phase can be removed by a finite gauge transformation.

5Both � and  strings are taken to traverse the bridge in the
same direction and therefore a (1, 1) string, for example, would
not yield erroneous cancellations in the vectorial sum.
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case since it derives from the precise values of x� even in
the central regions of the bridge, rather than just at the
extremes.

Given these measurements of l3 and �x, we determine
dl3=dt and u by performing linear fits for late times, while
for � we take the mean during the corresponding period.
Note that we do not combine our measurements of u and
dl3=dt to yield _s3, but rather compare our measurements of
physical length to the CKS predictions in this quantity
using Eqs. (1) and (3).

VII. NUMERICAL RESULTS

We now present the results of applying the above algo-
rithms to the three cases for which we presented qualitative
results in Sec. V. As before, our simulations all have 2 ¼
�1 ¼ �2 ¼ 2e2 ¼ 2g2, 	 ¼ �, and 
 ¼ 0:4

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
.

A. ð1; 0Þ þ ð0; 1Þ ! ð1; 1Þ
In the symmetric case of a (1, 0) string colliding with a

(0, 1) string, we find that the bridge half-length varies as
shown in Fig. 13 for � ¼ 20� and v ¼ 0:2. The CKS
prediction is also indicated on the plot, being the straight
line for which l3 ¼ 0 when t ¼ 0, and the two sets of
measurements from the simulation do approximately track
this. The difference between the latter two is simply due to

the choice of a different threshold � below which both
j�j=	 and j j=� must be in order for a site to be consid-
ered as part of the bridge. Of course, it would be expected
that the case of � ¼ 0:75 would show larger l3 values than
� ¼ 0:5 since a larger threshold will be crossed further
from the string center lines.
If the CKS solution was precisely followed by these

center lines, it would be expected that these two measures
each would show l3 ¼ t _sCKS3 þ c, where c is constant and
equal to the distance between the point on the z axis at
which the threshold is crossed at the point where the three
string center lines meet. This is approximately what is
seen, although it should be noted that the collision of the
center lines occurs slightly before t ¼ 0 due to the attrac-
tion between the strings. Of course, for t� 	�1 the offset
c will become negligible and hence from a cosmological
perspective we are really only interested in whether the
late-time gradient is accurately predicted by the CKS
solution.
The measured gradients for various � and v values are

shown in Fig. 14 and compared to the CKS predictions. An
approximate uncertainty estimation is performed such that
dl3=dt is taken from a linear fit to the final third of the
apparent linear region, with the error bar shown being the
standard deviation across the three thirds. This method is
sensitive to both systematic differences between the early-
and late-time dynamics and to the measurement uncertain-
ties. The plot shows that when Y-junctions form there is
excellent agreement between the simulations and the
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FIG. 13 (color online). The measured l3 as a function of t
measured from a �x ¼ 0:5	�1 simulation for a case A colli-
sion: ð1; 0Þ þ ð0; 1Þ, with � ¼ 20� and v ¼ 0:2. Results shown
are derived from the count of sites on x ¼ y ¼ 0 with j�j< �	
and j j< �� and using � ¼ 0:5 (crosses, blue online) and � ¼
0:75 (triangles, green online), while the CKS prediction is shown
by a dashed gray line. Circles (blue online) indicate the results
for � ¼ 0:5 from a shorter simulation but with �x halved from
0:5	�1 to 0:25	�1, highlighting that the simulated dynamics
are not precisely those of the continuum, while the measure-
ments themselves are accurate to within �x=2 and the corre-
sponding uncertainties are too small to be shown on this plot.
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FIG. 14 (color online). The measured dl3=dt values from a
class A collision, shown as a function of v for fixed �,
compared to the CKS predictions. Results are shown for � ¼
10� (uppermost), 20� (middle), and 25� (lower). The simulations
had �x ¼ 0:5 and were of sufficient size that signals emitted
from the box center at t ¼ 0 would reach the corners of the yz
plane by t ¼ 60	�1, except for ð� ¼ 20�; v ¼ 0:2Þ, ð� ¼
20�; v ¼ 0:3405Þ, and ð� ¼ 25�; v ¼ 0:31Þ which ran till t ¼
120, 90, and 120	�1.
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Nambu-Goto predictions. However, if v is increased at
fixed �, then there is a certain critical value vc where
dl3=dt drops suddenly to zero and away from the CKS
solution. There is not, as one might have expected, a
gradual divergence from the CKS predictions, and the
results seen in Fig. 6 are not due to dl3=dt in our model
slowly falling away from the Nambu-Goto value and
reaching dl3=dt ¼ 0 at a lower value of v. Instead it is
the case that either Y-junctions do not form at all, or they
form and a dl3=dt value equal to (or at least extremely
close to) the CKS value is observed.

B. ð2; 0Þ þ ð0; 1Þ ! ð2; 1Þ
The measurements of dl3=dt, u, and � from a collision

of type B are shown as a function of v for fixed � ¼ 20� in
Fig. 15, with uncertainties estimated via the same approxi-
mate method as for case A. Results indicate that, as in the
type A collisions, if Y-junctions form then these three
measures are well predicted by the Nambu-Goto physics.
Even the slight departure from u / v, a case which would
appear on our u=v plot as a horizontal line, is quite obvious
and in concordance. However, resolving the change in �
with v, at fixed �, is more challenging, being just 0.6�
across the entire range over which Y-junctions are seen to
form. Hence our simulations have struggled to concretely
resolve the trend, although they do give an indication of the
slight increase at larger v. It did not seem worthwhile to
utilize very large simulations in order to reduce the mea-
surement uncertainties since it is surely of little conse-
quence whether the CKS predictions get the bridge
orientation wrong by small fractions of a degree, and in

any case, we explore this variation more completely for
case C.
As in case A, the plot shows that when v is increased to a

certain critical value, the CKS predictions suddenly fail
and Y-junctions do not form for greater speeds. Again there
is no gradual reduction in the late-time dl3=dt value.
However, in this case, with symmetry not fixing u and �,
we see additionally that these two appear to match the CKS
predictions right up to this critical speed.

C. ð1; 1Þ þ ð0;�1Þ ! ð1; 0Þ
Case Cc provides a quite different collision, in that jSj>

R2, and also the initial strings both have a net winding in  .
As shown in Fig. 16, the dl3=dt results are for type Cc
collisions and at � ¼ 60� are in complete concordance
with the CKS predictions. This agreement appears to be
maintained also for both u and �, with the more sensitive
dependence of the latter upon v, relative to case B, clearly
resolved by these data.

VIII. DISCUSSION OF THE RESULTS

As noted earlier, the Nambu-Goto action is not valid in
the vicinity of a Y-junction and ignores, for example, the
attraction between the strings in that region. In this section,
however, we present a discussion of why we would in fact
expect the Nambu-Goto dynamics to be a good description
of the late-time behavior seen in our simulations. To do so
we first rederive the CKS solution using energy and mo-
mentum conservation for Nambu-Goto strings, rather than
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FIG. 15 (color online). The measured physical bridge half-
length growth rate dl3=dt, bridge speed u, and bridge orienta-
tion � from type B collisions with � ¼ 20�, compared to CKS
predictions. The simulations had �x ¼ 0:5 and were of suffi-
cient size that signals emitted from the box center at t ¼ 0
would reach the corners of the yz plane by t ¼ 60	�1 (except
for v ¼ 0:39 when this value was 120	�1).
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FIG. 16 (color online). The measured physical bridge half-
length growth rate dl3=dt, bridge speed u (blue), and bridge
orientation � (red) values from type Cc collisions with � ¼
60�, compared to CKS predictions. The simulations at low speed
had �x ¼ 0:5, which was then decreased to accommodate
Lorentz contraction, with the simulation size such that signals
emitted from the box center at t ¼ 0 would reach the corners of
the yz plane by t ¼ 60	�1.
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the equations of motion, and then we discuss the changes
that the field theory case would yield. A corollary of this
will be a direct physical interpretation of the CKS con-
straints on Y-junction formation from the intersection of
strings.

A. Energy-momentum derivation of the CKS solution

In order to derive the CKS solution from energy and
momentum conservation, we must first consider the
energy-momentum tensor T

�
� of a Nambu-Goto string

with energy per invariant unit length �. Labelling space-
time coordinates as ðt; x; y; zÞ and considering the string to
lie along the z axis while travelling at speed v in the x
direction, then

T�� ¼ �

� �v� 0 0
v� v2� 0 0
0 0 0 0
0 0 0 1=�

0
BBB@

1
CCCA�ðxÞ�ðyÞ: (41)

That is, the x momentum per unit physical length is �v�
and so per unit invariant it is just �v. The term Tzz is the
tension of the string, and it is important to note that this is
reduced by a factor � for a moving string and is not in
general equal to the mass per unit invariant length.

Wewill allow some guiding input from the CKS solution
and assume that the system has the geometry shown in
Fig. 17, with straight strings except for kinks at K1 and K2.
We therefore write the equation for the line YK1 as

r ¼ wtþ 

�w
d; (42)

where w is the velocity of the string, d is a unit vector
pointing from Y to K1, and  is the invariant length
measured from the point wt. Note that we take w 	 d ¼
0, which is effectively a choice of gauge.
The Y-junction lies at position

r Y ¼ wtþ Y

�w
d ¼

u
_s3 sin�=�u
_s3 cos�=�u

0
@

1
At: (43)

If Y moves such that Y becomes positive, then the invari-
ant length is removed from string 1. Following the notation
of CKS we label the production rate of string 1 at the Y-
junction as _s1 and hence Y ¼ � _s1t. We also have that K1
travels at the speed of light and therefore its position is

r K1 ¼ wtþ K1

�w
d ¼

v
sin�=�
cos�=�

0
@

1
At: (44)

The value of K1 is given by the invariant string length
traversed by the kink per unit time and is simply K1 ¼ t.
Therefore, the invariant length of the line YK1 is just
ðK1 � YÞ ¼ ð1þ _s1Þt.
In principle, from these line endpoints, we can now find

expressions for _s1, w, and d in terms of _s3, u, and �; while
applying a corresponding procedure for the line YK2.
However, for the present discussion we only need to de-
termine the total zmomentum from these two lines. For the
first of them this is revealed by the addition of the last two
equations as �1ð43Þ þ�1 _s1ð44Þ, resulting in

pYK1
z ¼ �1ð1þ _s1Þtwz ¼ �1 _s3

cos�

�u
tþ�1 _s1

cos�

�
t:

(45)

Hence the total z momentum from both YK1 and YK2 is

pz ¼ ð�1 þ�2Þ _s3 cos��u
tþ ð�1 _s1 þ�2 _s2Þ cos�� t: (46)

This can be simplified by noting that conservation of
energy at Y implies that

�1 _s1 þ�2 _s2 þ�3 _s3 ¼ 0 (47)

in the Nambu-Goto case, since there is no radiative emis-
sion. Therefore, we can write the combination of _s1 and _s2
in terms of _s3, yielding the rate of change of z momentum
as

_p z ¼ _s3

�
ð�1 þ�2Þ cos��u ��3

cos�

�

�
: (48)

That is, the growth of the bridge necessarily leads to an
accumulation of z momentum along these two lines.
Since the incident strings in the regions beyond the kinks

simply continue with velocities �v in the x direction, and

y

zθ
u

v

v

Y

K1

K2

w

d

FIG. 17 (color online). The geometry involved in the tension-
based interpretation of Eq. (3). The Y-junction is at position Y
and the two kinks are at K1 and K2, while the region upon which
the tensions in question act is highlighted in gray. The dashed
(blue) lines indicate the consumption of the string 1 due to the
motion of Y. (Note that both the unit vector d along the line YK1
and the orthogonal velocity w have in general finite components
in the x direction; therefore, the projections of them onto the yz
plane would not normally be perpendicular, although we shown
them as orthogonal for illustrative purposes).
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symmetry requires the bridge to travel in the x direction
also, then the only z momentum in the highlighted region
of Fig. 17 is that due to the strings along YK1 and YK2.
This is provided by the z components of the tensions that
act externally on the highlighted region:

Fz ¼ ð�1 þ�2Þ cos�� ��3

cos�

�u
; (49)

and therefore we immediately have a physical condition for
bridge growth, simply:

Fz > 0: (50)

Note that this is not the sum of tensions at the Y-junction
itself, which might naively be expected to be the relevant
tensions for the growth condition. It is also not necessarily
true for the tension components along the direction in
which bridge growth actually occurs.

Of course, if we now set Fz equal to the rate of change of
momentum, then we trivially obtain Eq. (3). That is, we
may derive the expression for _s3 based upon the assump-
tions that the string energy and momentum are conserved,
straight strings join the Y-junction to the regions causally
disconnected from it, the bridge is straight,6 and that the
energy-momentum tensor is that of Eq. (41).

B. Explanation of the accuracy of the Nambu-Goto
approximation

The above assumptions will not be precisely met in the
field theory case, but now suppose that, even then, the
geometry of the system at a certain time t is approximately
as shown in Fig. 17. However, allow for differences relative
to the Nambu-Goto case including that the kinks at K1 and
K2 are smoothed on a scale close to the string width and
that also there are displacement waves in their vicinity,
which were left over from the initial bridge formation.
Suppose additionally that there will be a significant attrac-
tion between the strings in the region close to the Y-
junction and that their paths will gradually curve towards
each other rather than there being a sharp Y-shape.

So long as t� 	�1, these changes will have little effect
on the large-scale geometry. Therefore, we may start to
follow the above discussion. We must, however, now ask
ourselves whether energy-momentum conservation at Y
would take the same form as Eq. (47). Even with the
interaction region close to Y, if the shape of the strings
remains constant in time and simply translates with speed
dl3=dt, then the energy associated with the interaction
would not change. Additionally, if there is merely trans-

lation of this region, there is no excitation of radiation.
Hence it appears that the energy conservation equation
could be unchanged.
Therefore, while the z momentum in the shaded region

of Fig. 17 would not follow precisely Eq. (48), for late
times this difference might be negligible. Further, the
tensions external to the shaded region would be simply
the same as in the Nambu-Goto case (for a particular � and
u) and hence equating their z components with the rate of
change of z momentum, we then would obtain _s3 as being
very close to Eq. (3). Therefore, we expect that a plausible
late-time solution for the field theory case is one which
tends towards a CKS solution, despite the interaction near
Y. That is, of course, assuming that a physical CKS solu-
tion with _s3 > 0 exists for the given � and v.
However, these arguments do not guarantee that the

Nambu-Goto dynamics will be a good description of the
system and the initial distortion of the strings due to their
attraction and the associated oscillations mean that the
strings do not initially follow the above geometry all that
closely. There is also an initial burst of radiation, as well as
the finite width of the strings, both of which complicate the
field theoretic case. As we have seen, the CKS solution
appears to be only a reliable indicator of when Y-junction
formation is not possible, and of the late-time dynamics
when it is.

IX. CONCLUSIONS

Our results indicate that for the present field theory,
involving two coupled Abelian Higgs models, the CKS
solutions for Nambu-Goto strings give largely accurate
predictions as to whether or not Y-junctions will form
when two straight strings collide. Like the results found
in Ref. [32] for the Abelian Higgs model in the type I
regime, we find that they are not entirely accurate, how-
ever, for two of the three initial string pairings studied here
we see a noticeably poorer match than in that reference. We
believe that this difference is due to the fact that for our
third collision type, both incident strings had finite  wind-
ing and therefore an initial intercommutation interaction
was highly likely, even with the presence of the � half of
the model. This initial interaction appears to aid the align-
ment of the strings and the initial formation of the Y-
junction. This observation is further compounded by not-
ing that in the Abelian Higgs model studied by Ref. [32],
the bridge formation is also preceded by an intercommu-
tation event. Hence, we note that the applicability of the
CKS bridge formation predictions to field theory models is
likely to be sensitive to the model employed, and as we
have seen, to the exact nature of the strings involved.
However, in all three of our collision types we find that

when Y-junctions did form, the late-time dynamics of the
system was very accurately described by the corresponding
CKS solution. Further, given the discussion in the previous
section, we believe that the model dependence of the initial

6Note that if the bridge is straight for all time then it must have
a velocity that is uniform along its length and the velocity must
then be in the x direction by symmetry, hence this is not an
independent assumption.
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bridge formation is likely to be less significant for the late-
time dynamics. Therefore, despite the breakdown of the
Nambu-Goto approximation near the Y-junction, the CKS
approach appears to be a very powerful method for study-
ing Y-junctions in local string models. On the other hand,
global strings, with significant long-range interactions are
likely to be poorly represented by the Nambu-Goto
dynamics.

We find that in our model bridge formation is accom-
panied by a short period of weak radiative emission, but we
find little evidence of such emission at late times. Hence
this suggests that radiative decay due to bridge creation is
unlikely to be an effective means of dissipating the energy
in a cosmological string network. Our results therefore
offer little comfort to authors who fear that networks of
string capable of bridge formation might ‘‘freeze out’’ and,
in contradiction with observation, grow to dominate the
universe. While our radiative emission conclusions are
only relevant for the model studied here, our arguments
from the previous section also suggest that a local strings
model in general will mirror the results here.

A Nambu-Goto simulation using the CKS method might
well assist the simulation of bridge-forming models over
horizon scales, since in principle it would avail a greater
dynamic range than is possible in field theory simulations.
This is more relevant for these superstring-inspired models
than for traditional U(1) cosmic strings, since the computa-
tional outlay for the additional fields present is greater, but
also the complex network dynamics require study over a
longer time period. However, with any such simulations,
great care must be taken to note the differences in the
results between Nambu-Goto simulations for traditional
strings and the U(1) field theory counterparts, which auto-
matically include a greater depth of physics [15,16,21].
These differences are, however, largely at small scales and
do not preclude the usefulness of Nambu-Goto simulations
with Y-junctions. The long term aim must be, of course, to
link the string network properties to observations and to
assess the difference between the signatures of traditional
U(1) strings and cosmic superstrings.
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APPENDIX: SIMPLE SUBPLACKETTE
INTERPOLATION METHOD

Given a net winding of the phase of � around a lattice
plackette, there is no unique means of using the magni-
tudes and phases of the corresponding scalar field at the
four plackette corners in order to determine to location of
� ¼ 0 on the plackette surface. In principle one may use
the known string profile to perform a best-fit determination
of the position and orientation of the string center line as it
intersects the plackette, but for present purposes we do not
require such a complex procedure. Here we use a simple
and computationally rapid method that, importantly, is
guaranteed to yield �¼0 coordinates that lie within the
plackette grid square. That is, we estimate the coordinates
as

�x ¼ �4
i¼1xij�ij�1=m

�4
i¼1j�ij�1=m

; (A1)

where xi are the positions of the four plackette corners, �i

the field values at them, and 2�m is the net winding around
the plackette. The index �1=m is included in this expres-
sion because, close to its axis, an ideal static (m, n) string
has

j�ij / rm; (A2)

where r is the radial coordinate. This is exactly as in the
Abelian Higgs model, even though there is the additional
coupling in the present case. The �x expression above there-
fore involves an approximate r�1 weighting of the plack-
ette corners so that �x will be drawn towards to those which
appear to lie closer to the string center line.
A clear downside to this method is that, for a plackette

with sides in the x and y directions, the value of �x varies
with the true y coordinate of the� ¼ 0 point, however, it is
essentially a zero-cost means of improving the string paths
through the simulation volume. Unlike a smoothing opera-
tion, this process encapsulates greater information from the
fields in the simulation and, for the example of a straight
string of a constant x coordinate, improves our knowledge
of that x coordinate, which smoothing cannot achieve. It is
certainly sufficient for its application in the present article.
A by-eye assessment of its usefulness is afforded by

Fig. 12, in which a series of 90� (or 45�) steps is not
seen and instead the center line paths are relatively smooth.
It is of course the case, however, that some obtuse kinks are
visible.
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