
Faraday rotation, stochastic magnetic fields, and CMB maps

Massimo Giovannini1,2,* and Kerstin E. Kunze3,+

1Section of Milan-Bicocca, INFN, 20126 Milan, Italy
2Department of Physics, Theory Division, CERN, 1211 Geneva 23, Switzerland

3Departamento de Fı́sica Fundamental, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain
(Received 21 April 2008; published 11 July 2008)

The high- and low-frequency descriptions of the predecoupling plasma are deduced from the Vlasov-

Landau treatment generalized to curved space-times and in the presence of the relativistic fluctuations of

the geometry. It is demonstrated that the interplay between one-fluid and two-fluid treatments is

mandatory for a complete and reliable calculation of the polarization observables. The Einstein-

Boltzmann hierarchy is generalized to handle the dispersive propagation of the electromagnetic dis-

turbances in the predecoupling plasma. Given the improved physical and numerical framework, the

polarization observables are computed within the magnetized �CDM paradigm (m�CDM). In particular,

the Faraday-induced B-mode is consistently estimated by taking into account the effects of the magnetic

fields on the initial conditions of the Boltzmann hierarchy, on the dynamical equations, and on the

dispersion relations. The complete calculations of the angular power spectra constitute the first step for the

derivation of magnetized maps of the CMB temperature and polarization which are here obtained for the

first time and within the minimal m�CDM model. The obtained results set the ground for direct

experimental scrutiny of large-scale magnetism via the low- and high-frequency instruments of the

Planck explorer satellite.
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I. PLASMA HIERARCHIES AND PLASMA
DESCRIPTIONS

Prior to matter-radiation equality and throughout decou-
pling the number of charge carriers present within the
Debye sphere is, overall, inversely proportional to the
baryonic concentration. The corresponding (dimension-
less) plasma parameter [1–3] is Oð10�7Þ and, more spe-
cifically1
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where xe is the ionization fraction and
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is the ratio between the baryonic concentration and the
photon concentration. Equations (1.1) and (1.2) assume the
values of the cosmological parameters implied by the 5-yr

Wilkinson Microwave Anisotropy Probe (WMAP) data
alone [4–8] and analyzed in the light of the conventional
�CDM (cold dark matter plus a cosmological constant)
paradigm.2 Since the plasma is globally neutral (i.e. ne ¼
ni ¼ n0 ¼ �b0n�0), the concentration of charge carriers

entering Eq. (1.1) will be 1010 times smaller than the
photon concentration: this is the ultimate rationale for the
hierarchy provided by Eq. (1.1) and for the intrinsic valid-
ity of the plasma approximation.
The minuteness of gplasma determines various hierarchies

between the physical quantities characterizing the prede-
coupling plasma. Every time a hierarchy arises, a poten-
tially interesting (approximate) physical description is at
our disposal. For instance, the hierarchy between the
Hubble rate and the collision frequencies of the
Thompson and Coulomb scattering permits one, before
equality, to treat the baryon-lepton-photon system as a
unique dynamical entity. The latter approximation is al-
ways implemented, in standard Boltzmann solvers, to
avoid the stiffness of the numerical system prior to equal-
ity. In the present paper it will be argued that effective (i.e.
one-fluid) descriptions of the baryon-lepton system are not
adequate for the calculation of the polarization observables
when large-scale magnetic fields3 intervene in the physics
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1Typical plasma parameters in glow discharges are of the order

of 10�2. The units used in the present investigation will be such
that @ ¼ c ¼ kB ¼ 1. To facilitate the comparison with experi-
mental data, the angular power spectra will be however assigned
in units of ð�KÞ2 as it will be explicitly pointed out.

2For the explicit estimates, the 5-yr WMAP data alone will be
consistently adopted. In the numerical study, however, different
data sets will also be discussed.

3By large scales we shall mean here typical length scales L at
least of order of the Hubble radius at equality, i.e. rHð�eqÞ ¼
H�1

eq .
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of the predecoupling plasma. In different words, when the
large-scale magnetic fields are present it is certainly al-
lowed to solve numerically the system by making use of
the hierarchy of different physical scales. These hierarchies
are, however, less conventional from the ones arising in the
standard case (i.e. when magnetic fields are absent). The
calculation must then treat appropriately the specific hier-
archies of the problem to avoid the fact that hugely differ-
ent physical scales appear simultaneously in the same
numerical integration. In this Introduction we first intend
to make the various hierarchies explicit. In the second
place the main strategy of the present calculation will be
summarized and contrasted with previous attempts.

To introduce the aspects of the problem in physical
terms, it is appropriate to show how the main hierarchies
of the predecoupling plasma are all controlled, directly or
indirectly, by gplasma. This exercise will pin down, implic-

itly, the different plasma descriptions emerging in the
analysis. In short the different hierarchies determined by
gplasma are as follows:

(i) the hierarchy between the Debye length (i.e. �D) and
the Coulomb mean free path (i.e. �Coul);

(ii) the hierarchy between the plasma frequency (of the
electrons) and the collision frequency;

(iii) the largeness of the conductivity in units of the
plasma frequency.

To appreciate the validity of this statement, it suffices to
write the aforementioned quantities in the form of dimen-
sionless ratios depending solely upon gplasma. By doing this

it can be concluded, for instance, that �Coul, is not the
shortest scale of the problem:
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where ln�C is the Coulomb logarithm [2,3]. With similar
manipulations, the plasma frequency of the electrons, i.e.
!pe, turns out to be much larger than the collision fre-

quency (related to the Coulomb rate of interactions), i.e.4
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Equation (1.4) implies that the electrons will oscillate
many times before undergoing a collision. The third of
the aforementioned hierarchies stipulates that the conduc-
tivity (denoted by�) is parametrically larger than 1 in units
of the plasma frequency:
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Recalling Eq. (1.1), Eq. (1.5) implies, indeed, �=!pe � 1

and also that �=T � 1.
According to Eq. (1.1), the Debye length around equal-

ity is of the order of 10 to 100 cm in comparison with rH ¼
H�1 which is, around equality, 20 orders of magnitude
larger. Large-scale electric (rather than magnetic) fields are
highly suppressed by powers of ��1 in the baryon rest
frame. At the same reference time, magnetic fields can be
present over typical length scales L > L� where L�
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[see also Eq. (1.5)] is called magnetic diffusivity length.
For typical values of the cosmological parameters, around
equality, L� ’ 10�17rH. Magnetic fields over typical
length scales L ’ OðrHÞ (and possibly larger) can be
present without suffering appreciable diffusion. Since the
magnetic fields touched by the present discussion will
have, at most, nG strength at the onset of galaxy formation,
the Larmor radius around equality will be much smaller
than the range of variation of the magnetic field, i.e.

rBe � L ’ rH; rBe ¼ v?
!Be

; v? ’ vth; (1.7)

where vth ’
ffiffiffiffiffiffiffiffiffiffiffiffi
T=me

p
and !Be is the Larmor frequency. As

pointed out after Eq. (1.6) L> L� and it is always much
larger than rBe.
The plasma hierarchies introduced in Eqs. (1.1), (1.3),

(1.4), (1.5), (1.6), and (1.7) imply different descriptions
valid for complementary branches of the spectrum of
plasma excitations. More specifically:
(i) for typical length scales much larger than the Debye

length and for typical times exceeding the inverse of
the plasma frequency, a single-fluid theory naturally
emerges and it is often dubbed magnetohydrody-
namics (MHD in what follows);

(ii) in the opposite limits the two-fluid nature of the
system cannot be ignored and, unlike in the MHD
description, the electromagnetic disturbances
propagate in a dispersive medium which has, in
our case, a finite concentration of charge carriers
and a large-scale magnetic field.

The MHD limit possesses various sublimits which make
the whole dynamics rather rich (see, for instance, [9]). The
stochastic magnetic field evolving according to MHD and
coupled to the fluctuations of the geometry affects, by its
presence, the propagation of electromagnetic disturbances
in the plasma: electromagnetic waves with positive (or
negative) helicities will propagate with different phase
(and group) velocities. The latter effect cannot be treated
within a one-fluid approximation where the displacement

4In this Introduction we shall not dwell on the distinction
between comoving and physical frequencies. In curved space-
times of Friedmann-Robertson-Walker type, the electron and
proton masses break the conformal invariance and, therefore,
the plasma and Larmor frequencies will also depend upon the
scale factor, as it will be explicitly shown.

MASSIMO GIOVANNINI AND KERSTIN E. KUNZE PHYSICAL REVIEW D 78, 023010 (2008)

023010-2



current is consistently neglected and the Ohmic current is
solenoidal [2]. This is the strategy followed in the present
paper and it corresponds to the logic used in the analysis of
laboratory plasmas. The physical and technical challenges
of the problem reside in the occurrence that, prior to photon
decoupling, the metric is a dynamical quantity and that it
can fluctuate. It is easily imaginable that, in spite of the
initial physical analogy with laboratory plasmas, the actual
problem will be technically more difficult than in
Minkowskian space-time.

Accurate calculations of magnetized CMB anisotropies
are an essential tool for the scrutiny of the origin and
evolution of large-scale magnetism which is observed in
the largest gravitationally bound systems such as clusters
[10,11], galaxies [12,13], and even in some superclusters.
For the interplay between CMB physics and large-scale
magnetic fields see, for instance, [14,15]. More general
reviews on the problems and challenges of large-scale
magnetism can be found in [16–18]. In simple words, we
want to embark on these calculations because we want to
give reasonable predictions of the potential effects of large-
scale magnetic fields on the CMB anisotropies.

Large-scale magnetic fields present prior to equality
affect the evolution of the fluctuations of the scalar modes
of the geometry. The evolution equations of the Boltzmann
hierarchy (as well as the initial conditions) must be appro-
priately modified. This theoretical problem has been scruti-
nized in a number of recent papers [19–21] (see also [22]).
In [19] the estimate of the Sachs-Wolfe plateau has been
carried on by employing the technique of the transfer
matrices. In [20] the temperature autocorrelations and the
polarization cross correlations have been computed nu-
merically in the tight-coupling approximation. In [21] a
semianalytical evaluation of the TT angular power spectra
has been carried out.5

A dedicated numerical approach for the calculation of
magnetized temperature and polarization observables has
been devised in a series of recent papers [23–25]. Such a
numerical approach is constructed from one of the standard
Boltzmann solvers, i.e., CMBFAST [26,27] which is, in turn,
based on the COSMICS package by Bertschinger [28,29]. In
[23] the minimal framework for the analysis of the effects
of large-scale magnetic fields on the CMB anisotropies has
been spelled out and dubbed a magnetized �CDM model
(m�CDM model in what follows). In the minimal realiza-
tion of the m�CDM scenario the inclusion of large-scale

magnetic fields amounts to the addition of two extra pa-
rameters. In [24] it has been shown that the numerical
analysis leads to shapes of the TT angular power spectra
which are exactly the ones computed in [21]. The numeri-
cal approach is intrinsically more accurate especially at
high multipoles. In [25] all the possible (nonadiabatic)
initial conditions of the magnetized Einstein-Boltzmann
hierarchy have been worked out analytically and scruti-
nized numerically. The results reported in [19–21] and in
[23–25] bring the treatment of magnetized CMB anisotro-
pies to the same standards employed in the case when
large-scale magnetic fields are absent from the very
beginning.
The problem left out from previous analyses, as stressed

in [24], has to do with a more consistent calculation of the
polarization observables. The problem is, in short, the
following. The large-scale description of temperature an-
isotropies demands a coarse-grained (one-fluid) approach
for the electron-ion system: this is the so-called baryon
fluid which is treated (with no exceptions) as a single fluid
in popular Boltzmann solvers such as COSMICS, CMBFAST,
and their descendants. On the other hand, the dispersive
propagation of electromagnetic disturbances demands that
one treat separately electrons and ions, at least at high
frequencies. Faraday rotation is one of the situations where
the inadequacy of the one-fluid approximation (for the
baryon-lepton fluid) is manifest. The positive and negative
helicities composing the (linear) CMB polarization expe-
rience, in a background magnetic field, two different phase
velocities, two different dielectric constants, and, ulti-
mately, two different refractive indices. The mismatch
between the refractive index of the positive and negative
helicities induces, effectively, a rotation of the CMB po-
larization and, hence, a B-mode. The inclusion of the
Faraday effect in the treatment implies, physically, that
the proton-electron fluid (sometimes dubbed as baryon
fluid) should be treated as effectively composed by two
different species, i.e. the electrons and the ions.
Various studies were concerned, in the past, with the

estimate of Faraday rotation effects in the framework of
CMB physics. None of the previous studies, however,
could profit from a dedicated numerical approach where
the effects of the magnetic fields could be included at the
level of the initial conditions and at the level of the dy-
namical equations. Before outlining the analytical and
numerical strategies used in the present paper the main
results obtained so far will be summarized.
In [30–32] it has been noted, within slightly different

perspectives, that the (linear) CMB polarization can be
Faraday rotated. A common aspect of the attempts of
[30–32] was that the magnetic field was assumed to be
uniform (i.e. homogeneous in space) and described within
a simplified magnetohydrodynamical description which
consisted, effectively, of enforcing the conservation of
the magnetic flux. In [32], on the basis of an explicit model,

5Following the current terminology we will denote by TT the
angular power spectrum of the temperature autocorrelation. By
TE and TB we shall denote the power spectrum of the cross
correlation between temperature and the E-mode of polarization
and between temperature and the B-mode of polarization, re-
spectively. Finally, EE and BB denote the angular power spec-
trum of the autocorrelation of the E-mode and the B-mode of
polarization, respectively. The precise definition of the various
power spectra is discussed in Sec. V.
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it was argued that the magnetic fields should be treated, in
fact, as stochastically distributed if we do not want to break
(explicitly) the spatial isotropy of the background geome-
try: the large-scale magnetic fields arise typically from the
parametric amplification of vacuum fluctuations or from
some phase transition (see, e.g. [16]) and in both cases the
produced fields are not uniform but rather stochastically
distributed.

The first convincing measurements of CMB polarization
[33–35] (see also [36,37]) clearly suggested the adiabatic-
ity of the initial conditions (because of the location of the
first anticorrelation peak in the TE power spectra). In [38]
the TB correlations have been computed from the initial
TE correlations provided by the adiabatic mode. The main
assumption of [38] has been that the magnetic field is, once
more, uniform and that it does not affect, in any way, the
initial TE angular power spectra. In [39,40] it was recog-
nized that the uniform field case is not realistic. The inter-
play between stochastic magnetic fields and Faraday
rotation has been more directly scrutinized. The work of
Ref. [40] suggested treating the effect by applying a
Faraday screen to the CMB polarization. Also in [40] the
main assumption has been to neglect any possible effect of
the magnetic fields on the TE and EE angular power
spectra.

In the present paper, it will not be assumed that the large-
scale magnetic fields are uniform. Hence, the direct effects
of the magnetic fields on the TE and EE angular power
spectra will not be neglected. The line of reasoning pursued
in the present paper is based on the plasma hierarchies
outlined in Eqs. (1.1) and in (1.3), (1.4), and (1.5). The
strategy will be to generalize, around matter-radiation
equality and throughout decoupling, the standard treatment
of weakly coupled plasmas in the different branches of the
spectrum of plasma excitations. The smallness of gplasma

(together with the smallness of the electron and ion kinetic
temperatures in comparison with the corresponding
masses) allows one to enforce the (cold) plasma approxi-
mation to an excellent degree. The flat space equations
cannot be simply employed around decoupling or even
equality since space-time is not flat. Furthermore, the
fluctuations of the geometry must be properly taken into
account since they are still relativistic at the time when the
initial conditions of the temperature and polarization an-
isotropies are customarily set [19–21]. The physical ration-
ale for the strategy employed here is rooted in the simple
observation of Eq. (1.7), which stipulates that the Larmor
radius is always smaller than the typical inhomogeneity
scale of the magnetic field. The approximation which will
be adopted here is called, in plasma physics, the guiding
center approximation and it is due to the pioneering work
of Alfvén [41,42].

A relevant class of results of the present investigation
concerns the problem of simulating maps of magnetized
CMB anisotropies. Magnetized maps of the temperature
and polarization observables will be reported to illustrate

the viability of our numerical approach.6 In light of the
Planck explorer mission [43] it will be particularly impor-
tant to have magnetized maps both for the temperature
autocorrelations and maps for the polarization observables.
This step is mandatory once the corresponding angular
power spectra can be numerically computed. With our
numerical code, appropriately extended to include the
Faraday mixing term and the two-fluid effects, we are
able to compute accurately all the required power spectra.
Armed with all these necessary theoretical tools, magne-
tized CMB maps can be obtained.
In the present paper we often mention the WMAP

experiment. To avoid confusion it is relevant to stress
that the large-scale magnetic fields discussed here directly
affect the CMB polarization. In the past the Faraday effect
has been used to obtain a galactic template which plays an
interesting role in the problem of foreground extraction
[44]. The construction of all-sky maps of the Faraday
rotation produced by the galactic magnetic field is not
the primary objective of the present investigation whose
main purpose is to produce maps for the temperature and
polarization when large-scale magnetic fields take part in
the predecoupling dynamics. In other words, while the
effects discussed in [44] are related to the foregrounds,
the effects computed here address, for the first time, a
complete calculation of the magnetized polarization ob-
servables. Some of the main results reported here have
been also partially described in [45] where the attention
has been focused on the general method. In the present
paper, on the one hand, the technical details will be more
thoroughly described; on the other hand, the theoretical
and numerical parts contain important additions, as the
reader can appreciate.
The present paper is organized as follows. In Sec. II the

generalized two-fluid description for the charged species
(electrons and ions) is introduced. In Sec. III the two-fluid
treatment is shown to be equivalent to a single-fluid de-
scription at large scales. In Secs. IV and V the high-
frequency branch of the spectrum of plasma excitations
is discussed. Sections VI and VII are devoted to the calcu-
lation of the TE, EE, and BB angular power spectra.
Illustrative examples of magnetized CMB maps are col-
lected in Sec. VIII. Section IX contains our concluding
remarks. To avoid excessive technicalities, relevant results
and derivations have been included in the Appendixes.

II. ELECTRONS AND IONS

There is the custom, in CMB studies, to treat ions and
electrons as a single dynamical entity (see, for instance,
[29] and also [46–48]). This is certainly justified for typical

6Even if temperature autocorrelations are not central to the
present discussion (which is focused on magnetized polarization
observables) we will also report maps of the temperature anisot-
ropies, mainly for completeness.
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scales L � �D [see also Eq. (1.1)] and for frequencies
parametrically smaller than the plasma frequency. Owing
to the largeness of the Coulomb rate, ions and electrons are
tightly coupled and the effective degree of freedom which
should be studied is the so-called baryon velocity, i.e. the
center-of-mass velocity of the electron-ion system.
Furthermore, owing to the largeness of Thompson scatter-
ing, baryons and photons are also tightly coupled (but just
well before equality). This observation is the basis of the
tight-coupling expansion which was pioneered in [46]
(see also [49]) and since then widely used for semi-
analytical estimates of the CMB temperature
autocorrelations.

If large-scale magnetic fields are included in the game
some of the considerations of the previous paragraph apply
[19–21] (see also [23,24]). However, if we ought to treat
phenomena related to the propagation of electromagnetic
disturbances in a plasma, the one-fluid description is
known to be insufficient [3]. The insufficiency of the
one-fluid description is already apparent in the calculation
of the magnetized polarization observables. This caveat
has been made explicit in [24].

In what follows the predecoupling plasma will be treated
as a laboratory plasma7 with the following notable differ-
ences:

(i) around radiation-matter equality and thought photon
decoupling space-time is curved;

(ii) since electrons and ions are nonrelativistic confor-
mal invariance is explicitly broken and this fact has
various physical implications, as we shall see;

(iii) relativistic fluctuations of the geometry, immaterial
for plasmas in the laboratory, have to be included in
our discussion.

The conformally flat line element characterizing the space-
time around equality and decoupling will be written as

ds2 ¼ g�	dx
�dx	 ¼ a2ð�Þ½d�2 � d~x2�;

g�	 ¼ a2ð�Þ��	;
(2.1)

where � is the conformal time coordinate to distinguish it
from the cosmic time t [of course dt ¼ að�Þd�]. The
perturbed metric will be parametrized, without loss of

generality, in the synchronous coordinate system where8


sgijð ~x; �Þ ¼ a2ð�Þhijð ~x; �Þ: (2.2)

Equation (2.2) holds in real space. It is often useful to
separate the fluctuation of the geometry in a trace part
supplemented by a traceless contribution. For practical
reasons this is done in Fourier space where the perturbed
metric becomes


sgijðk; �Þ ¼ a2ð�Þ
�
k̂ik̂jhðk; �Þ þ 6�ðk; �Þ

�
k̂ik̂j �


ij

3

��
;

(2.3)

which makes clear the fact that the hijð ~x; �Þ of Eq. (2.2)
carries, effectively, only two (scalar) degrees of freedom. If
a fully inhomogeneous magnetic field is present, the evo-
lution equations of the scalar inhomogeneities will be
necessarily affected. The homogeneous evolution of the
background geometry [see Eq. (2.1)] is dictated by the
Friedmann-Lemaı̂tre equations:

3H 2 ¼ 8�Ga2�t; H 2 �H 0 ¼ 4�Ga2ðpt þ �tÞ;
�0
t þ 3H ðpt þ �tÞ ¼ 0; (2.4)

where the prime denotes a derivation with respect to the
conformal time coordinate and where H ¼ a0=a. The
quantities �t and pt denote the total energy density and
the total pressure of the plasma which consists, in the
present situation, of two charged species (electrons and
ions) and of three neutral species (neutrinos, photons, and
CDM particles). The dark-energy component will be sim-
ply parametrized, as in the case of the �CDM scenario, by
a cosmological constant.
The evolution equations of the problem will now be

introduced with particular attention to the electromagnetic
part. There is the custom of treating dispersive phenomena
within a single-fluid plasma description. This habit is,
strictly speaking, misleading as already pointed out in
[51]. The logic followed in the present treatment can be
summarized as follows:
(i) start with a bona fide two-fluid description in curved

space taking into account all the relevant degrees of
freedom and, in particular, the electrons and the ions
as separated components;

7It is amusing to notice that the plasma parameter of the
decoupling plasma [i.e. Oð10�7Þ, see Eq. (1.1)] is of the same
order of magnitude of the plasma parameter of a tokamak. Of
course, in a tokamak, the density of charge carries will be much
larger. However, the Debye length will be comparatively much
smaller. For instance, in a tokamak the concentration of charge
carriers will be typically 1014 cm�3; the typical temperature will
be of the order of 10 keV. Consequently, the Debye scale is, in
this situation, 7� 10�5 m; the corresponding plasma parameter
[defined in Eq. (1.1)] will then be Oð10�8Þ. This, as anticipated,
is the same figure one obtains around equality.

8For practical purposes the pivotal description will be taken to
be the one of the synchronous gauge [23–25]. Different descrip-
tions (in complementary gauges) can be straightforwardly de-
duced using the fully gauge-invariant approaches of [19,20,50].
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(ii) derive the one-fluid description which will allow
one to follow the evolution of the inhomogeneous
magnetic field;

(iii) derive the relevant dispersion relations.

A reasonably general description of the electron-ion sys-
tem can be achieved from the evolution equation of the
one-body distribution functions which have the character-
istic Vlasov form (see also Appendix A for a derivation):

@fi
@�

þ ~v � ~r ~xfi þ eð ~Eþ ~v� ~BÞ � ~r ~qfi ¼
�
@fi
@�

�
coll

;

(2.5)

@fe
@�

þ ~v � ~r ~xfe � eð ~Eþ ~v� ~BÞ � ~r ~qfe ¼
�
@fe
@�

�
coll

;

(2.6)

where the collision terms are provided by Coulomb scat-
tering and where the electric and magnetic fields are re-
scaled as

~B ¼ a2 ~B; ~E ¼ a2 ~E; ~v ¼ ~qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~qj2 þm2a2
p :

(2.7)

In Eqs. (2.5) and (2.6), ~q is the comoving three-momentum
which is customarily defined in the curved-space
Boltzmann treatment, i.e. ~q ¼ a ~p. For a massive particle,
such as the electron or the proton, the conjugate momenta
satisfy g�P

P� ¼ m2. By identifying gijP
iPj ¼

�
ijp
ipj, the comoving three-momentum is introduced.9

If wewould be in the ultrarelativistic limit (where electrons
and protons are effectively massless) Eqs. (2.5) and (2.6)
[written in terms of the conformal time coordinate � and in
terms of the appropriately rescaled fields of Eq. (2.7)]
would be exactly the same equations we would have in
flat space-time. This is a consequence of the conformally
flat nature of the background [see Eq. (2.1)]. Prior to
equality, i.e. when the calculation of the CMB anisotropies
is initialized, the electrons and ions are nonrelativistic and
the presence of a mass term will break (explicitly) confor-
mal invariance. This observation is clear by noticing that,
in the nonrelativistic limit, Eq. (2.7) implies that ~v ¼
~q=ðmaÞ.
It is useful, for immediate convenience, to introduce

here the distinction between cold and warm plasmas.10

The preequality plasma is cold in the sense that the kinetic
temperatures of the charged species are much smaller than
the corresponding masses. In the opposite case the plasma
is warm. If the initial conditions of the Boltzmann hier-

archy are set at a temperature which is say one-tenth of the
temperature of neutrino decoupling, the plasma will al-
ready be cold to a good approximation. In can be shown
that, in a warm plasma approach, the corrections to the
Faraday rate will be suppressed, to leading order, by
powers of Te=me [51,52].
The (approximate) equilibrium solution of the

Boltzmann equation will be a Maxwellian velocity distri-
bution and, from this observation, the Boltzmann equations
can be perturbed to obtain the evolution equations of the
various moments of the distribution functions such as the
evolution of the charge concentrations (from the zeroth-
order moment), the evolution equations for the velocities
(i.e. the first-order moment), and so on. While more de-
tailed considerations can be found in Appendix A, the
same two-fluid equations obtainable from the Vlasov de-
scription can be recovered from the charge and four-
momentum conservation in curved space-time, as will be
discussed in a moment.
The evolution equations of the gauge fields will be

given, in the present context, by the appropriate Maxwell
equations which can be written as11

r�F
�	 ¼ 4�ðj	i þ j	e Þ; r�

~F�	 ¼ 0; (2.8)

r�j
	
i ¼ 0; r�j

	
e ¼ 0; (2.9)

where r� denotes the covariant derivative. The electron

and ion currents are given, respectively, by

j�e ¼ �e~neu
�
e ; j�i ¼ e~niu

�
i ; (2.10)

where ~ni and ~ne are, respectively, the ion and electron
concentrations. The velocity fields satisfy the conditions

g�u

i u

�
i ¼ 1; g�u


e u

�
e ¼ 1; (2.11)

which imply, in the nonrelativistic limit, that u0e ¼ u0i ¼
1=a. TheMaxwell field strengths and their duals are simply

F0i ¼ a2Ei; Fij ¼ �a2�ijkBk;

~F0i ¼ �Bi

a2
; ~Fij ¼ �ijk

a2
Bk:

(2.12)

Using Eqs. (2.10), (2.11), and (2.12) inside Eq. (2.8), the
following set of equations can be obtained:

~r � ~E ¼ 4�eðni � neÞ; (2.13)

~r � ~B ¼ 0; (2.14)

~r� ~Eþ ~B0 ¼ 0; (2.15)

9See Appendix A for further details on the geodesics of
massive particles endowed with an electric charge.
10This distinction is customarily employed in plasma literature
(see, e.g. [2,3]).

11The covariant and controvariant indices of the various vectors
and tensors must not be confused with the subscripts (always in
roman style) which denote the corresponding species.
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~r� ~B ¼ 4�eðni ~vi � ne ~veÞ þ ~E0; (2.16)

where ~E ¼ a2 ~E and ~B ¼ a2 ~B are the rescaled electric and
magnetic fields. The concentrations and velocities appear-
ing in the four-currents [see Eq. (2.10)] have been rescaled
as

ni ¼ a3~ni; ne ¼ a3~ne; ~vi ¼ a ~ui; ~ve ¼ a ~ue;

(2.17)

where ~vi and ~ve are the comoving three-velocities.12 In
terms of the comoving concentrations defined in Eq. (2.17),
the charge conservation equation, i.e. Eq. (2.9) will imply,
for electrons and ions,

@ni
@�

þ �ini þ ~vi � ~rni ¼ 0; (2.18)

@ne
@�

þ �ene þ ~ve � ~rne ¼ 0; (2.19)

where �i ¼ ~r � ~vi and �e ¼ ~r � ~ve are the three-
divergences of the comoving three-velocities. Since the
plasma is globally neutral, the electron and ion concen-
trations are equal and are approximately 1010 times smaller
than the photon concentration, i.e. ne ¼ ni ¼ n0 ¼ �b0n�0
where �b0 has been given by Eq. (1.2). Owing to this figure
the metric fluctuations can be neglected in Eqs. (2.18) and
(2.19) [see, however, Eqs. (A13) and (A14) for their ex-
plicit inclusion].

Equations (2.18) and (2.19) [derived from Eq. (2.9)] can
be obtained directly by taking the zeroth-order moment of
the evolution equations for the one-body distribution func-
tions. In particular, defining

neð ~x; �Þ ¼ n0
Z

d3vfeð ~x; ~v; �Þ;

nið ~x; �Þ ¼ n0
Z

d3vfið ~x; ~v; �Þ;
(2.20)

~veð ~x; �Þ ¼ n0
Z

d3v ~vfeð ~x; ~v; �Þ;

~við ~x; �Þ ¼ n0
Z

d3v ~vfið ~x; ~v; �Þ;
(2.21)

we indeed obtain, from Eqs. (2.5) and (2.6),

@ni
@�

þ ~r � ðni ~viÞ ¼ 0;
@ne
@�

þ ~r � ðne ~veÞ ¼ 0;

(2.22)

which are equivalent to Eqs. (2.18) and (2.19).
The evolution equations for the velocity fields and the

density contrasts can also be derived by perturbing, to first

order and in the synchronous gauge [see Eq. (2.3)], the
covariant momentum conservation:

@�
sT
�	
ðiÞ þ 
s�

�
� �T	

ðiÞ þ ��
�
�
sT

	
ðiÞ þ 
s�

	
�

�T�
ðiÞ

þ ��	
�
sT

�
ðiÞ ¼ F	jðiÞ ; (2.23)

@�
sT
�	
ðeÞ þ 
s�

�
� �T	

ðeÞ þ ��
�
�
sT

	
ðeÞ þ 
s�

	
�

�T�

þ ��	
�
sT

�
ðeÞ ¼ F	jðeÞ ; (2.24)

where the barred symbols denote the background values of
the corresponding quantity and where 
s represents the
scalar fluctuation of a given tensor or connection.
Recalling that the electrons and ions are both nonrelativ-
istic, the corresponding energy-momentum tensors will be
given as13

�T 00
ðeÞ ¼

�e

a2
; �T00

ðiÞ ¼
�i

a2
; (2.25)


sT
00
ðeÞ ¼

�e
e

a2
; 
sT

00
ðiÞ ¼

�i
i

a2
; (2.26)


sT
0i
ðeÞ ¼

�e

a2
vi
e; 
sT

0i
ðiÞ ¼

�i

a2
vi
i; (2.27)

where

�e ¼ me~ne; �i ¼ mi ~ni;


e ¼ 
s�e

�e

; 
i ¼ 
s�i

�i

:
(2.28)

The masses of the electrons and ions are given, respec-
tively, by me ¼ 0:511 MeV and mi ’ mp ¼ 0:938 GeV.

The binary collisions between electrons and protons are
rather efficient in bringing the whole system to an approxi-
mate common temperature which will coincide with the
photon temperature because of the strength of Thompson
scattering (see also [24]).
Within the same conventions of Eqs. (2.25), (2.26), and

(2.27), the timelike and spacelike components of
Eqs. (2.23) and (2.24) lead, respectively, to the following
equations:


0
e ¼ ��e þ h0

2
� ene

�ea
4
~E � ~ve; (2.29)


0
i ¼ ��i þ h0

2
þ eni

�ia
4
~E � ~vi; (2.30)

~v e
0 þH ~ve ¼ � ene

�ea
4
½ ~Eþ ~ve � ~B� þ Cep; (2.31)

12These variables emerge naturally from the geodesics of
charged particles in the gravitational field. They are relevant
for a correct derivation of the Vlasov-Landau equation in the
configuration-velocity space.

13Since the electron and ion pressures are given by pe ¼ ~neTe

and by pi ¼ ~niTi they are suppressed as T=me;p and shall be
neglected.
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~v i
0 þH ~vi ¼ eni

�ia
4
½ ~Eþ ~vi � ~B� þ Cpe; (2.32)

where Cep and Cpe follow from the collision terms provided

by Coulomb scattering. Needless to say, Eqs. (2.29), (2.30),
(2.31), and (2.32) can also be directly obtained from the
moments of the Vlasov equation (written in the synchro-
nous gauge) as discussed in Appendix A.

For typical length scales much larger than the Debye
length and for angular frequencies ! � !pe, Eqs. (2.29),

(2.30), (2.31), and (2.32) reduce to an effective one-fluid
theory. In the one-fluid limit, by definition, the propagation
of the electromagnetic (i.e. high-frequency) disturbances is
negligible and the displacement current vanishes. The
Ohmic electric fields are then vanishing in the baryon
rest frame and the (fully inhomogeneous) magnetic fields
affect the Boltzmann hierarchy through the magnetic pres-
sure, the magnetic energy density, the anisotropic stress,
and the Lorentz force.

In the opposite limit (i.e. angular frequencies larger than
the plasma frequency), the two-fluid nature of the problem
becomes physically relevant: the one-fluid approximation
breaks down and electromagnetic waves will not simply
travel at the speed of light (i.e. 1 in our units). Their group
velocity will be affected both by the plasma and the
Larmor frequencies of electrons and ions. Finally, since
the motion of electrons and ions is nonrelativistic (i.e. T �
me;p) we also have, in general terms, that �D!pe ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ð2meÞ

p � 1. In the following two sections the one-fluid
and two-fluid treatments will be physically compared in
light of the numerical results which will be later reported.

III. LARGE-SCALE MAGNETIC FIELD AND
ONE-FLUID TREATMENT

Defining, respectively, the center of mass velocity of the

electron and ion system ~vb, the total current ~J and the total
density contrast 
b

~v b ¼
me ~ve þmp ~vi

me þmp

; ~J ¼ eðni ~vi � ne ~veÞ;


b ¼ �e
e þ �i
i

�e þ �i

;

(3.1)

the generalized MHD reduction can be also implemented
in curved space-times. In Eq. (3.1) ~vb is, effectively, the
bulk velocity of the plasma: ~vb (and its three-divergence
�b) is exactly what it is normally employed to describe, in
standard Boltzmann solvers [26–29], the baryon velocity.
Conversely 
b denotes the total density contrast of the
electron-ion system and it is often naively identified with
the baryon density contrast. The evolution equation for �b
can be derived by taking the three-divergence of the evo-
lution equation of the electrons and of the ions. From

Eq. (2.32), since ~r � ~E ¼ 0 we obtain

�0e þH�e ¼ � ene
�ea

4
~r � ð ~ve � ~BÞ; �e ¼ ~r � ~ve;

(3.2)

�0i þH�i ¼ eni
�ia

4
~r � ð ~vi � ~BÞ; �i ¼ ~r � ~vi: (3.3)

Summing up Eq. (3.2) (multiplied by me) and Eq. (3.3)
(multiplied by mp) the evolution equation for �b immedi-

ately follows. Similarly, the evolution equation for the total
density contrast of the electron-ion system can be derived.
The resulting equations for �b and 
b are finally given by

�0b þH�b ¼
~r � ½ ~J � ~B�

�ba
4ð1þ me

mp
Þ þ

4

3

��

�b

�0ð�� � �bÞ; (3.4)


0
b ¼ ��b þ h0

2
þ ~E � ~J

�ba
4ð1þ me

mp
Þ ; (3.5)

where the Thompson drag term has been included as

�0 ¼ ~nexe�Tha; �Th ¼ 8

3
�

�
e2

m2
e

�
2
; (3.6)

where �0 is the differential optical depth (xe is the ioniza-
tion fraction). Note that �0 has been correctly written in
terms of ~ne (and not in terms of our comoving concentra-
tion ne ¼ a3~ne). The Thompson drag is dominated by the
electron-photon cross section since the photon-proton
cross section is, roughly, 6 orders of magnitude smaller.
In Eq. (3.4), �� is the three-divergence of the photon

velocity. The photons are neutral species and, therefore,
they will be described, in the first approximation, by the
perturbed covariant conservation equation which leads to

�0� ¼ � 1

4
r2
� þ �0ð�b � ��Þ; 
0

� ¼ � 4

3
�� þ h0

2
:

(3.7)

Well before photon decoupling the photon and baryon
velocity fields can be further combined. Indeed, during
the radiation epoch, the efficiency of the Thompson drag
synchronizes the baryon and photon velocities almost ex-
actly, i.e. �� ’ �b ¼ ��b. Indeed, by subtracting Eqs. (3.4)

and (3.7), the evolution equation for (�� � �b) can be

obtained and it has the form:

ð�b � ��Þ0 þ �0
�
Rb þ 1

Rb

�
ð�b � ��Þ

¼
~r � ½ ~J � ~B�

a4�b

þr2
�

4
�H�b; (3.8)

where theme=mp � 1 has been consistently neglected and

where

Rb ¼ 3

4

�b

��

¼
�
690:18

1þ z

��
!b0

0:02273

�
(3.9)
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is the baryon to photon ratio. The ratio me=mp is custom-

arily used as an expansion parameter in the standard MHD
approximation scheme [2]. Equation (3.8) shows that, in
spite of the preequality differences in �� and �b the two

velocities will be inevitably driven toward a common
value, i.e. ��b which follows from the sum of Eqs. (3.4)

and (3.7):

�0�b þH
Rb

Rb þ 1
��b ¼ 3

4 ���ð1þ RbÞ
~r � ½ ~J � ~B�

� r2
�

4ð1þ RbÞ ; (3.10)

where ��� ¼ a4��. While the sum of the momentum con-

servation for the ions and for the electrons led to the bulk
velocity of the plasma, another linear combination of the
same set of equations leads to Ohm’s law, i.e.

�
e2n0
mea

�
½ ~Eþ ~vb � ~B� � �Coul

~J ¼ 0; (3.11)

where the Hall terms (proportional to ~J � ~B) have been
neglected and where the collision terms have been esti-
mated in the linear approximation around a Maxwellian
distribution of velocities. The neglect of the Hall term is
perfectly consistent since we will keep only terms which
are quadratic in the magnetic field intensities. This term
would lead in the Einstein equations to terms that are cubic
in the magnetic field intensities and shall then be negli-
gible. Equation (3.11) leads then to the canonical form of
the Ohmic current14:

~J ¼ �ð ~Eþ ~vb � ~BÞ; � ¼ e2n0
mea�Coul

¼ T

e2

ffiffiffiffiffiffiffiffiffi
T

mea

s
:

(3.12)

It can be easily checked that the expression of the con-
ductivity of Eq. (3.12) is exactly the one anticipated in
Eq. (1.5). In this one-fluid limit the displacement current
vanishes and, therefore,

~J ¼ 1

4�
~r� ~B; ~Eþ ~vb � ~B ¼

~r� ~B

4��
; (3.13)

which demonstrates that large-scale electric fields are sup-
pressed in the baryon rest frame by one power of the
conductivity. Furthermore, collisions are sufficiently fre-
quent to keep the isotropy and this fit with the stochastic
nature of the predecoupling magnetic field. Equation (3.13)
can be used to simplify the evolution equations of the
photon-baryon velocity. In particular, using simple vector

identities it can easily be shown that the following relations
are satisfied by the large-scale magnetic fields:

3

4 ���

~r � ½ ~J � ~B� ¼ r2�B �r2�B

4
; (3.14)

where �B and �B are two dimensionless quantities which
are related, respectively, to the magnetic energy density
and to the anisotropic stress. Because of the large value of
the conductivity, the electric components of the MHD
energy-momentum tensor are suppressed by two powers
of the conductivity:


sT 0
0 ¼ 
s�B; 
sT

j
i ¼ �
spB


j
i þ ~�j

i ;


sT i
0 ¼

ð ~E� ~BÞi
4�a4

;
(3.15)


s�B ¼ B2

8�a4
; 
spB ¼ 
s�B

3
;

~�j
i ¼

1

4�a4

�
BiB

j � 1

3

j
iB

2

�
;

(3.16)

where B2 ¼ BiB
i. Defining then

�B ¼ 
s�B

��

; @j@
i ~�j

i ¼ ðp� þ ��Þr2�B: (3.17)

Equation (3.14) can be recovered by repeated use of known
vector identities. Note that the Poynting vector of
Eq. (3.15) is only suppressed by one power of the con-
ductivity since it contains the Ohmic electric field which
vanishes as ��1 in the baryon rest frame.
The MHD description allows one then to reduce the

problem of the evolution of large-scale magnetic fields to
a rather well-defined system where the plasma is globally
neutral and the Ohmic current is solenoidal. This descrip-
tion is ideal in order to study the large-scale effects of the
magnetic fields, i.e. exactly when gravity is important.
Indeed the MHD energy-momentum tensor must be con-
sistently included in the perturbed Einstein equations
which take the form:

2r2�þHh0 ¼ �8�Ga2½
s�t þ 
s�B�; (3.18)

r2�0 ¼ 4�a2ðpt þ �tÞ�t; (3.19)

h00 þ 2Hh0 þ 2r2� ¼ 24�Ga2½
spt þ 
pB�; (3.20)

ðhþ 6�Þ00 þ 2H ðhþ 6�Þ0 þ 2r2�

¼ 24�Ga2½ðp	 þ �	Þ�	 þ ðp� þ ��Þ�B�; (3.21)

where Eqs. (3.18) and (3.19) are, respectively, the Hamil-
tonian and the momentum constraints. Equations (3.20)
and (3.21) follow, respectively, from the (i ¼ j) and (i �
j) components of the perturbed Einstein equations. The
term containing �	 is simply related to the neutrino aniso-

14For some applications it is useful to recall that � ¼ a �� where
�� is the physical conductivity and � is the comoving conduc-
tivity. The expression of �� is obtained from � by writing T ¼
a �T, i.e. by going back from the comoving to the physical
temperatures.
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tropic stress as @i@
j�i

j ¼ ðp	 þ �	Þr2�	. In Eqs. (3.18),

(3.19), (3.20), and (3.21) 
s�t and �t denote the total
density fluctuation and the total velocity field:


s�t ¼ 
s�� þ 
s�	 þ 
s�i þ 
�e þ 
�c; (3.22)

ðpt þ �tÞ�t ¼ 4

3
���� þ 4

3
�	�	 þ �e�e þ �i�i þ �c�c:

(3.23)

In Eqs. (3.22) and (3.23) the various subscripts refer, with
obvious notation, to the various species of the plasma, and
the different numerical weights in Eq. (3.23) are a simple
reflection of the difference of the various pressures. The
only species not introduced so far are the CDM particles
and the neutrinos. The CDM component obeys, in the
synchronous gauge, the following pair of equations:


0
c ¼ ��c þ h0

2
; �0c þH�c ¼ 0: (3.24)

The neutrino component decouples at temperatures of the
order of the MeV and it is therefore described by the
appropriate Boltzmann equation which reads, in the syn-
chronous gauge (see the last part of Appendix A),

F 0
	 þ ik�F 	 ¼ �4�0 þ 2�2ðh0 þ 6�0Þ: (3.25)

The evolution equations of lowest moments of the
Boltzmann equation can be obtained with standard tech-
niques and they are


0
	 ¼ �4

3�	 þ 2
3h

0; (3.26)

�0	 ¼ k2

4

	 � k2�	; (3.27)

�0
	 ¼ 4

15
�	 � 3k

10
F 	3 � 2

15
ðh0 þ 6�0Þ; (3.28)

where �	 ¼ F 	2=2, i.e. the neutrino anisotropic stress
appearing in Eq. (3.21) is simply related by a numerical
factor to the quadrupole moment of the neutrino phase
space distribution.

Most of the considerations related to the presence of the
magnetic fields before equality can be conducted in rather
general terms. For instance, the analytical form of the
initial conditions (reported for completeness in
Appendix B) can be deduced without specifying the mag-
netic field configuration. Prior to equality magnetic fields
can certainly be present even if they are physically con-
strained by the isotropy of the background geometry: the
magnetic field cannot be uniform. If the magnetic field is
stochastically distributed, its two-point function in Fourier
space must be divergenceless and it is given by

hBið ~kÞBjð ~pÞi ¼ 2�2

k3
PijðkÞP BðkÞ
ð3Þð ~kþ ~pÞ;

PijðkÞ ¼
�

ij �

kikj

k2

�
;

(3.29)

where P BðkÞ denotes the magnetic power spectrum. In
principle there could be a second contribution to the two-
point function of Eq. (3.29). Such a contribution would
lead to a nonvanishing magnetic helicity. Configurations of
this type might arise at the electroweak epoch and have
been named hypermagnetic knots [53,54] (see also
[55,56]). As far as the scalar modes are concerned the
helical part of the field plays no role. The same conclusion
holds in the case of the Faraday effect by a stochastic
magnetic field, as it has been explicitly discussed in [39]
(see also [40]).
It is useful to mention, at this point, that large-scale

(tangled) magnetic fields might also have specific effects
related to the vector and tensor modes of the geometry
(which are minute at large scales). These effects have been
analyzed in [57–59]. The analysis of large-scale magnetic
fields can also be conducted within fully covariant ap-
proaches [60,61] which are, when appropriately handled,
equivalent to the one devised in this paper and based on
earlier analyses [19,22].

IV. HIGH-FREQUENCY WAVES AND TWO-FLUID
EFFECTS

As already noticed in [24], the tight Thompson coupling,
well verified prior to equality, effectively breaks down, by
definition, around photon decoupling so the baryon and
photon velocities (i.e. �b � ��) will have to be numerically

followed, as in [24], by means of a generalized slip equa-
tion. In similar terms, when the frequency of the polarized
CMB photons greatly exceeds the plasma frequency, we
can expect that the two-fluid nature of the baryon-lepton
system will be somehow resolved. By resolved we mean
that it will actually make a difference that instead of one
(globally neutral) fluid the plasma is formed by two (in-
trinsically charged) fluids (i.e. �i � �e and ~ve � ~vi).
Dispersive phenomena in the predecoupling plasma

arise exactly in this limit where the angular frequencies
of the propagating electromagnetic waves are larger than
the plasma frequency. Faraday rotation (as well as other
dispersive phenomena at high frequencies) can be derived
by studying the evolution of electromagnetic disturbances
when the electromagnetic background contains a finite
concentration of charges and a stochastic magnetic field.
This analysis mirrors what is customarily done in the

case of magnetized plasmas in the laboratory: MHD is used
to describe the large-scale magnetic field while the two-
fluid treatment is enforced to scrutinize the propagation of
electromagnetic disturbances. In this sense, the large-scale
magnetic field effectively plays the role of a background
field. This terminology is a bit ambiguous in the sense that
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the magnetic field is not part of the geometric background
(i.e. it does not determine the expansion rate at equality or
decoupling), but it is rather part of the electromagnetic
background determining the dispersion relations for the
waves propagating in the plasma.

Equations (2.18) and (2.19) together with Eqs. (2.13),
(2.14), (2.15), (2.16), and (2.32) can be linearized in the

presence of the magnetic field ~Bð ~xÞ, i.e.
ne;ið�; ~xÞ ¼ n0 þ 
ne;ið�; ~xÞ; ~Bð�; ~xÞ ¼ ~Bð ~xÞ þ ~bð�; ~xÞ;

~ve;ið�; ~xÞ ¼ 
 ~ve;ið�; ~xÞ; ~Eð�; ~xÞ ¼ ~eð�; ~xÞ: (4.1)

where ~Bð ~xÞ is the large-scale magnetic obeying the MHD
equations discussed in the previous section and character-
ized by the two-point function given in Eq. (3.29). The field

variables ~e and ~b denote, respectively, the electric and
magnetic fields of the wave. The absence of a background
electric field is a reflection of the largeness of the Coulomb
conductivity in units of the plasma frequency [see Eq. (1.5)
and also Sec. III]. Using the notations of Eq. (4.1),
Eqs. (2.18), (2.19), and (2.32) lead, respectively, to the
following set of equations:


n0e þ n0
~r � 
 ~ve ¼ 0; 
n0i þ n0

~r � 
 ~vi ¼ 0; (4.2)


 ~v0
e þH
 ~ve ¼ � e

mea
½ ~eþ 
 ~ve � ~B�;


 ~v0
i þH
 ~vi ¼ e

mia
½ ~eþ 
 ~vi � ~B�;

(4.3)

~r� ~e ¼ � ~b0; ~r � ~e ¼ 0; (4.4)

~r� ~b ¼ ~e0 þ 4�en0ð
 ~vi � 
 ~veÞ: (4.5)

As the structure of the system shows, the waves parallel

(i.e. k) and orthogonal (i.e.? ) to the magnetic field ~B will
then obey different dispersion relations. The important
proviso is that the magnetic field is inhomogeneous over
typical scales that are much larger than the Larmor radius.
This observation, already mentioned in Eq. (1.7), will now
be made more explicit. Let us consider, for instance, the
decoupling time which takes place, according to the
WMAP 5-yr data, for zdec ¼ 1089:9. At this epoch Tdec ’
0:25 eV and rHð�decÞ ¼ 286 Mpc. The typical scale of
variation of the magnetic field at decoupling, i.e., Lð�decÞ,
will be of the order of the Hubble radius and certainly
larger than the magnetic diffusivity length defined in
Eq. (1.6):

rBeð�decÞ ¼ vth

!Beð�decÞ ’ 1:19� 1010
� ~B � n̂
nG

��1
cm;

L�ð�decÞ ¼ ð4��decHdecÞ�1=2 ’ 1:4� 1011 cm:

(4.6)

These figures imply that, indeed, Lð�decÞ> rBeð�decÞ since
Lð�decÞ � L�ð�decÞ. The magnetic field, inhomogeneous

over scales much larger than the Larmor radius, can there-
fore be considered uniform for the purpose of deriving the
dispersion relations. What has been introduced here in
terms of the typical scales of our problem is indeed one
of the most useful approximations of the physics of cold
plasmas and it has been pioneered by Alfvén [41,42].
In general the background magnetic fields will be, as in

our case, a solution of the Maxwell equations and will
therefore be both space and time dependent. Let us restrict
ourselves, for the present, to spatially inhomogeneous

magnetic fields15 ~Bð ~xÞ. If the inhomogeneity is small, it
is possible to determine the trajectory of the charged
species as a perturbation around the center of the particle
orbit:

~Bð ~xÞ ¼ ~Bð ~x0Þ þ ð
~x � ~rÞ ~Bj ~x¼ ~x0 ; 
 ~x ¼ ~x� ~x0;

(4.7)

where ~x0 is the instantaneous position of the guiding center.

Equation (4.7) holds provided 
 ~B (i.e. the change in the
magnetic field over a typical distance of the order of the

Larmor radius rBe) is such that j
 ~Bj ¼ jð
~x � ~rÞ ~Bj � ~B.
But this implies exactly Eq. (4.6), i.e., rBe � L, where L is
the distance over which the magnetic field changes signifi-
cantly. As already mentioned this perturbative approach
was extensively applied by Alfvén and it is often dubbed as
the guiding center approximation in the plasma literature.
This point is rather important and it is precisely where our
treatment diverges from the studies reported in Refs. [30–
32,38]. In those treatments the magnetic fields have been
considered just globally uniform. This would break spatial
isotropy and it is not true for a stochastic magnetic field.
The correct physical statement is that the magnetic field is
uniform over the typical scale of the particle orbit, i.e. the
field experienced by the electron in traversing a Larmor
orbit is almost constant. It is then practical to Fourier
transform with respect to the conformal time variable16

~bð ~x; �Þ ¼ ~b �!ð ~xÞe�i
R

�!d�; ~eð ~x; �Þ ¼ ~e �!ð ~xÞe�i
R

�!d�:

(4.8)

The solution of Eq. (4.3) is trivial along the direction of ~B
and the total current can be written as

~j k; �!ð ~xÞ ¼ i

4�

�!2
pi þ �!2

pe

�!ð1þ Þ ~ek; �!ð ~xÞ; (4.9)

where  ¼ iH = �! ¼ H=! � 1 accounts for the curved-

15This is the physical situation for ~Bð ~xÞ if the magnetic flux is
strictly conserved. In other words, it can be shown that ~Bð ~xÞ is a
solution of the MHD equations in the limit of infinite conduc-
tivity. In the opposite case a power series in 1=� will arise in the
background solution.
16In the present and in the following sections �! and k denote,
respectively, the comoving angular frequency and the comoving
wave number.
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space corrections and where

�! pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n0xee

2

mpa

vuut � !pia; !pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�~nixee

2

mp

vuut ;

(4.10)

�! pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n0xee

2

mea

s
� !pea; !pe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�~nexee

2

me

s
:

(4.11)

In Eqs. (4.10) and (4.11) the comoving (angular) frequen-
cies �!pe and �!Be have been related to the corresponding

physical frequencies !pe and !Be by recalling that n0 ¼
a3~ne ¼ a3~ni. It is relevant to mention, once more, that the
presence of the scale factor in �!pi and �!pe is a direct

consequence of the breaking of conformal invariance in-
duced by the masses of the electrons and ions. In the

direction orthogonal to ~B, the evolution equations of the
electromagnetic waves can be recast in the following
handy form:

ð ~r� ~bÞ �! ¼ �i �!�ð �!;Þ ~e �!; ð ~r� ~eÞ �! � i �! ~b �! ¼ 0;

(4.12)

where the dielectric tensor �ð �!;Þ can be written in a
generalized matrix notation as

�ð �!;Þ ¼
�?1ð �!;Þ i�?2ð �!;Þ 0

�i�?2ð �!;Þ �?1ð �!;Þ 0
0 0 �kð �!;Þ

0
@

1
A;
(4.13)

having defined the corresponding components as

�kð �!;Þ ¼ 1� �!2
pi

�!2ð1þ Þ �
�!2
pe

�!2ð1þ Þ ; (4.14)

�?1ð �!;Þ ¼ 1� �!2
piðþ 1Þ

�!2ðþ 1Þ2 � �!2
Bi

� �!2
peðþ 1Þ

�!2ðþ 1Þ2 � �!2
Be

; (4.15)

�?2ð!;Þ ¼ �!Be

�!

�!2
pe

�!2ðþ 1Þ2 � �!2
Be

� �!Bi

�!

� �!2
pi

�!2ðþ 1Þ2 � �!2
Bi

: (4.16)

In Eqs. (4.15) and (4.16), on top of the comoving plasma
frequencies introduced in Eqs. (4.10) and (4.11), there
appear also the comoving Larmor frequencies for the
electrons and for the ions:

�! Be ¼ e ~B � n̂
mea

¼ !Bea; !Be ¼ e ~B � n̂
me

; (4.17)

�! Bi ¼ e ~B � n̂
mia

¼ !Bia; !Bi ¼ e ~B � n̂
mp

; (4.18)

where the relation between the comoving and the physical

magnetic fields, i.e. ~B ¼ a2 ~B, has been exploited.
Equations (4.12) and (4.13) can finally be combined lead-
ing to the compact relation

k2 ~e ~k; �! � ð ~k � ~e ~k; �!Þ ~k ¼ �ð �!;Þ �!2 ~e ~k; �!: (4.19)

Defining

~k k ¼ kðk̂ � n̂Þ ¼ k cos#; ~k? ¼ k sin#; (4.20)

the dispersion relations can be read off from Eq. (4.19), in
matrix form17:

½1� �?1

n2
� �i �?2

n2
0

i �?2

n2
½cos2#� �?1

n2
� � sin# cos#

0 � sin# cos# ½sin2#� �k
n2
�

0
BBB@

1
CCCA

ek;!;?1

ek;!;?2

ek;!;k

0
BB@

1
CCA¼ 0:

(4.21)

Requiring that the determinant of the matrix (4.21) van-
ishes we get what is sometimes called the Appleton-
Hartree dispersion relation [3]:

2�kcos2�½ðn2 � ��Þðn2 � �þÞ�
¼ sin2�ð�k � n2Þ½n2ð�þ þ ��Þ � 2�þ���; (4.22)

where

�þð!;Þ ¼ �?1ð!;Þ þ �?2ð!;Þ;
��ð!;Þ ¼ �?1ð!;Þ � �?2ð!;Þ: (4.23)

If � ¼ 0 in Eq. (4.22) (i.e. the wave propagates along the
magnetic field) the waves with positive helicity (i.e. êþ)
and negative helicity (i.e. ê�) experience two different
phase velocities given, respectively, by

v�ð!;Þ ¼ 1

n�ð �!;Þ ; n�ð �!;Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð �!;Þ

q
:

(4.24)

If the propagation of the wave is orthogonal to the mag-
netic field direction, there are two possible modes known
as the ordinary and the extraordinary wave with dispersion
relations given, respectively, by

n2ð �!;Þ ¼ �kð �!;Þ;

n2ð �!;Þ ¼ 2�þð �!;Þ��ð �!;Þ
�þð �!;Þ þ ��ð �!;Þ :

(4.25)

The dispersion relations of Eq. (4.25) are simply �!2 ¼ k2

17As usual the refractive index is defined as �!=k ¼ 1=n. The
refractive index n should not be confused, of course, with the
unit vector n̂.
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in the physical range of parameters. The reason for this
conclusion is that, in the physical system under study,

(i) the plasma and ion frequencies of the electrons are
always much larger than the corresponding frequen-
cies of the ions;

(ii) and the CMB angular frequency is, in turn, much
larger than both the Larmor and plasma frequencies
of the electrons.

The comoving Larmor and plasma frequencies for elec-
trons and ions are, respectively,

�!Be ¼ 0:01759

�
n̂ � ~B

nG

�
Hz;

�!Bi ¼ 9:578� 10�6

�
n̂ � ~B

nG

�
Hz;

(4.26)

�!pe ¼ 0:285
ffiffiffiffiffi
xe

p �
h20�b0

0:02773

�
1=2

MHz;

�!pi ¼ 6:652
ffiffiffiffiffi
xe

p �
h20�b0

0:02273

�
1=2

kHz:

(4.27)

Since in our code the present value of the scale factor is
normalized to 1, the present value of the physical fre-
quency coincides, by definition, with the comoving fre-
quencies. The figures of Eqs. (4.26) and (4.27) should be
compared to the typical frequency of CMB photons which
is clearly much larger: the maximum of the CMB emission
is located for a comoving angular frequency �!max ¼
2� �	max where �	max ¼ 222:617 GHz. We are therefore in
the physical regime specified by the following hierarchies
between frequencies

�!pe

�!Be

� 1;
�!pi

�!Bi

� 1;
�!pe

�!pi

� 1;
�!

�!pe

� 1;

(4.28)

where �! denotes a typical CMB angular frequency. Under
the conditions expressed by Eq. (4.28) the expression of
��ð �!;Þ greatly simplifies and the result is, quite straight-
forwardly,

�þð �!;Þ ¼ 1� �!2
pe

�!½ �!ðþ 1Þ þ �!Be� ; (4.29)

��ð �!;Þ ¼ 1� �!2
pe

�!½ �!ðþ 1Þ � �!Be� : (4.30)

Equations (4.29) and (4.30) imply, together with the hier-
archies deduced in Eq. (4.28), that the dispersion relations
of the ordinary and extraordinary wave are �!2 ¼ k2.
Indeed, the relation between the comoving wave number
and the comoving angular frequency for the ordinary (i.e.
kO) and for the extraordinary (i.e. kE) waves):

kO ¼ �!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �!2

pe

�!2ð1þ Þ

s
; (4.31)

kE ¼ �!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!½ �!2ðþ 1Þ2 � �!2

Be� � 2 �!2
pe �!

2ðþ 1Þ þ �!4
pe

�!2½ �!2ðþ 1Þ2 � �!2
Be � �!2

peðþ 1Þ�

vuut :

(4.32)

It is clear that Eq. (4.31) leads immediately to kO ¼ �!
since, according to Eqs. (4.27) and (4.28), ð �!2

pe= �!2Þ ’
Oð10�12Þ. A similar conclusion can be drawn, after some
algebra, for the extraordinary wave. Equations (4.30) and
(4.32) do not seem to forbid the existence of resonances.
The resonance of Eq. (4.30) is the well-known cyclotron
resonance which is avoided here since the typical CMB
frequencies are much larger than �!Be. For the same reason
also the resonance arising in Eq. (4.32) is avoided for the
physical range of frequencies.

V. CMB POLARIZATION AND FARADAY
SCREENING

The different dispersive behavior of the positive and
negative helicities implies a rotation of the components
of the electric (or magnetic) field of the wave. Thus, also
the related Stokes parameters will be rotated. Within the
adopted set of conventions, the Faraday-rotated Stokes
parameters are the same ones we would obtain by the
appropriate rotation of the coordinate system. Consider,
for sake of concreteness, a monochromatic wave propagat-
ing along the magnetic field direction and linearly polar-
ized along ê1 at � ¼ 0 and z ¼ 0:

~eðz; �Þ ¼ E0ê1e
�ið �!��kzÞ: (5.1)

Since the positive and negative helicities are defined as

êþ ¼ ê1 þ iê2ffiffiffi
2

p ; ê� ¼ ê1 � iê2ffiffiffi
2

p ; (5.2)

the linear polarization is simply composed of two circu-
larly polarized waves, one with positive helicity (propagat-

ing with wave number kþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þð �!;Þp

�!), and the other
with negative helicity (propagating with wave number

k� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð �!;Þp

�!). Equation (5.1) can be rephrased in
terms of the two propagating helicities:

~eðz; �Þ ¼ E0ffiffiffi
2

p ½êþe�ið �!��kþzÞ þ ê�e�ið �!��kþzÞ�

¼ E0

2
½ê1ðeikþz þ eik�zÞ þ iê2ðeikþz � eik�zÞ�e�i �!�;

(5.3)

where the second equality follows from the definitions of

ê�; the refractive indices n�ð �!;Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð �!;Þp

have
been introduced in Eq. (4.24) [see also Eqs. (4.29) and
(4.30)]. Since the polarization plane of the incoming wave
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is rotated, two out of four Stokes parameters

I ¼ j ~e � ê1j2 þ j ~e � ê2j2; (5.4)

Q ¼ j ~e � ê1j2 � j ~e � ê2j2; (5.5)

U ¼ 2Re½ð ~e � ê1Þ	ð ~e � ê2Þ�; (5.6)

V ¼ 2Im½ð ~e � ê1Þ	ð ~e � ê2Þ�; (5.7)

will be rotated: while I and V will be left invariant, Q and
U are rotated. Suppose then the initial wave is linearly

polarized along ê1 and QðinÞ ¼ E2
0. Inserting Eq. (5.3) into

Eqs. (5.5) and (5.6) the Faraday-rotated Stokes parameters
are

QðFÞ ¼ QðinÞ cosð2�’FÞ; UðFÞ ¼ �QðinÞ sinð2�’FÞ;
(5.8)

where

�’ðFÞ ¼ �!

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þð �!;Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð �!;Þ

q
��z: (5.9)

Equation (5.8) implies also that QðFÞ=UðFÞ ¼
� cotð2�’ðFÞÞ. In more general terms, if the initial wave
is not polarized along a specific Cartesian direction,
Eq. (5.8) becomes

QðFÞ ¼ QðinÞ cosð2�’ðFÞÞ þUðinÞ sinð2�’ðFÞÞ;
UðFÞ ¼ �QðinÞ sinð2�’ðFÞÞ þUðinÞ cosð2�’ðFÞÞ:

(5.10)

In similar terms, while I and V are invariant under rotations
of the polarization plane, Q and U do rotate if ê1 and ê2
rotate. In fact, defining ’ ¼ �’ðFÞ, the rotation of the two
unit vectors ê1 and ê2 by ’

ê1
0 ¼ ê1 cos’þ ê2 sin’;

ê2
0 ¼ �ê1 sin’þ ê2 cos’;

(5.11)

leads to the same rotated Stokes parameters which have
been computed in Eq. (5.10).

The rate of rotation per unit time is called Faraday
rotation rate and it is given by

F ðn̂Þ ¼ d’ðFÞ

d�
¼ �!

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þð �!;Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð �!;Þ

q
�; (5.12)

where we used, in our units, dz ¼ d�. To compute the
difference of the two refraction indices appearing in
Eq. (5.12) we can expand ��ð �!;Þ given in Eqs. (4.29)
and (4.30) for j �!= �!pej � 1 and for j �!= �!Bej � 1. As

already discussed [see Eqs. (4.26), (4.27), and (4.28)] this
is fully justified by the physical values of the aforemen-
tioned angular frequencies. The Faraday rotation rate then
becomes

F ðn̂Þ ¼ �!Be

2

�
�!pe

�!

�
2 � e3

2�m2
e

a~nexe
~B � n̂
�	2

; (5.13)

where we used that n0 ¼ a3~ne and that �! ¼ 2� �	.
Equation (5.13) can be simplified even further by taking
into account Eq. (3.6) and the definition of the differential
optical depth, i.e. �0 ¼ a~nexe�Th:

F ðn̂Þ ¼ �0Fðn̂Þ; Fðn̂Þ ¼ 3

16�2e

n̂ � ~B

�	2
: (5.14)

The numerical code used for the calculation is the extended
version of the code used in [23–25] and it will be dubbed,
in the following two sections, as MAGCMB. As already
acknowledged in the introduction, MAGCMB is based on
CMBFAST [26,27] (which is, in turn, based on COSMICS). We

shall not dwell here on the problem of the initial conditions
of the Einstein-Boltzmann hierarchy which has been thor-
oughly discussed in Refs. [19,20] (see also [22]) and in
[24,25]. By initial conditions of the Einstein-Boltzmann
hierarchy we simply mean a consistent solution of the
Einstein equations [see Eqs. (3.18), (3.19), (3.20), and
(3.21)] and of the lowest multipoles of the evolution equa-
tions of neutrinos, photons, baryons, and CDM particles in
the approximation of tight Coulomb and Thompson scat-
tering. Initial conditions are set well before matter-
radiation equality. To avoid possible confusion and to
make the present script self-consistent, the analytic form
of the magnetized adiabatic mode has been reported in
Appendix B [see Eqs. (B1)–(B10)]. Of course, other initial
conditions are, in principle, at our disposal: they include
the magnetized version of all the nonadiabatic modes
which have been introduced in [20–22] and discussed,
within different perspectives, in [25,50]. For purposes of
illustration we stick to the minimal m�CDMmodel where
the initial conditions are given in terms of a single magne-
tized adiabatic mode.
The polarization is only generated very near the surface

of last scattering as the photons begin to decouple from the
electrons and generate a quadrupole moment through free-
streaming. The effects of the magnetic field on the genera-
tion of the linear polarization will first be computed
according to the following set of equations derived in
[20,24]:

�0
I þ ik��I ¼ �

�
�0 ��2

2
ðh0 þ 6�0Þ

�

þ �0
�
��I þ �I0 þ�vb � 1

2
P2ð�ÞSQ

�
;

(5.15)

�0
Q þ ik��Q ¼ �0½��Q þ 1

2ð1� P2ð�ÞÞSQ�; (5.16)

�0
U þ ik��U ¼ ��0�U; (5.17)

v0
b þHvb þ �0

Rb

ð3i�I1 þ vbÞ þ ik
�B � 4�B

4Rb

¼ 0;

(5.18)
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where Rb has been defined previously and where we de-
fined vb ¼ �b=ðikÞ. Moreover, in Eqs. (5.15) and (5.16):

SQ ¼ �I2 þ�Q0 þ �Q2: (5.19)

The notations �I‘ and �Q‘ denote the ‘th multipole of �I

and �Q. In Eqs. (5.15) and (5.16) P2ð�Þ ¼ ð3�2 � 1Þ=2 is

the second Legendre polynomial.
From Eqs. (5.10) and (5.12) we can take the total time

derivative supposing that the initial polarization is inde-
pendent of time. From the Faraday rotation rate we then get

�0
Q þ ni@i�Q ¼ 2�0Fðn̂Þ�U; (5.20)

�0
U þ ni@i�U ¼ �2�0Fðn̂Þ�Q: (5.21)

Equations (5.20) and (5.21) describe the Faraday rotation
mixing. Previous approaches to Faraday rotation consisted
of neglecting the effects of the magnetic fields both on the
initial conditions of the Einstein-Boltzmann hierarchy and
on the dynamical equations. The calculation of the Faraday
rotation assumed then, as an initial condition, just the
conventional adiabatic initial condition of the �CDM
mode. The EE polarization correlations then had no trace
of the magnetized contribution. It will be shown that the
present numerical results, as already suggested in [24], do
not support the latter conclusion.

Before plunging into the presentation of the numerical
results obtained within the improved version of MAGCMB,
two comments are in order. The first comment is merely
technical and it has to do with the fact that, as is well
known, the transport equations including Faraday terms as
well as other dispersive effects have been extensively
studied in the second half of the past century (see, for
instance, [62–65] and references therein). These studies
were motivated by highly relativistic astrophysical plasmas
leading to synchrotron emission which could be influ-
enced, under some circumstances, by the Faraday effect.
Consequently, the magnetoactive plasma of [62,63] is rela-
tivistic. Furthermore, the transport equations do not in-
clude the effect of the metric inhomogeneities and are
always defined in flat space-times, as in the case of the
conventional (polarized) heat transfer equations. Finally,
with few exceptions, the magnetic field is always taken to
be uniform or, at most, nonuniform along a specific
Cartesian direction [see [63](b)].

The second issue we want to discuss has to do with the
recent 5-yr data release of the WMAP Collaboration [7].
The WMAP 5-yr data have been analyzed to look for
possible birefringent effects in the polarization observ-
ables. We will here scrutinize the parametrization of bi-
refringent effects employed in [7] and we will contrast it
with the birefringent effects typical of Faraday rotation by
a stochastic magnetic field. This discussion will also be
useful to set up precisely the relation of the fluctuations of
brightness perturbations in terms of the well known E-
modes and B-modes. Two linear combinations of the

brightness perturbations can be usefully introduced,
namely:

~M�ðn̂Þ ¼ �Qðn̂Þ � i�Uðn̂Þ: (5.22)

Under a rotation of the coordinate system such as the one
introduced in Eq. (5.11) we clearly have that

~M�ðn̂Þ ¼ e
2i’M�ðn̂Þ; (5.23)

where the tilded quantity denotes the transformed combi-
nation. Since M� transforms as a spin-2 field, we can
expand it in spin-2 spherical harmonics [66,67], i.e.

M�ðn̂Þ ¼
X
‘m

a�2;‘m�2Y‘mðn̂Þ; (5.24)

where�2Y‘mðn̂Þ are the spin-2 spherical harmonics which
can be introduced, formally, as Wigner matrix elements
[68]. A typical quantum mechanical problem is to look for
the representations of the operator specifying three-

dimensional rotations, i.e. R̂; this problem is usually ap-
proached within the so-called Wigner matrix elements, i.e.

DðjÞ
mm0 ðRÞ ¼ hj; m0jR̂jj; mi where j denotes the eigenvalue

of J2 and m denotes the eigenvalue of Jz. Now, if we
replace m0 ! �s, j ! ‘, we have the definition of spin-s

spherical harmonics in terms of the Dð‘Þ�s;mð;�; 0Þ, i.e.

sY‘mð;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4�

s
Dð‘Þ�s;mð;�; 0Þ; (5.25)

where , � and � (set to zero in the above
definition) are the Euler angles defined as in [69]. If

s ¼ 0, Dð‘Þ
0;mð;�; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2‘þ 1Þ=4�p
Y‘mð;�Þ where

Y‘mð;�Þ are the ordinary spherical harmonics. As dis-
cussed in [68] the spin-s spherical harmonics can be ob-
tained from the spin-0 spherical harmonics thanks to the
action of certain ladder operators. These ladder operators
can be connected to the ladder operators of a putative Oð4Þ
group [68]. The reason for the appearance of Oð4Þ stems
from the fact that we are here composing two rotations: the
rotations in the three-dimensional space and the rotations
around a given point on the tangent plane of the celestial
sphere. A rather productive approach to obtain explicit
expressions for the spin-2 spherical harmonics consists of
directly studying the polarization on the 2-sphere [70].
Either with the ladder operator of [68] or with the more
intrinsic approach of [70] it is possible to obtain more
explicit expressions of the spin-2 spherical harmonics in
terms of the spin-0 spherical harmonics and the result is

�2Y‘mð#;�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘� 2Þ!
ð‘þ 2Þ!

s �
@2# þ ‘ð‘þ 1Þ


 2m

sin#
ð@# � cot#Þ

�
Y‘mð#;�Þ: (5.26)

The ‘‘electric’’ and ‘‘magnetic’’ components of polariza-
tion are eigenstates of parity and may be defined, from
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a�;‘m of Eq. (5.24), as

aðEÞ‘m ¼ � 1

2
ða2;‘m þ a�2;‘mÞ;

aðBÞ‘m ¼ i

2
ða2;‘m � a�2;‘mÞ:

(5.27)

Under parity inversion, the components appearing in
Eqs. (5.27) and

aE‘m ! ð�1Þ‘aE‘m; aB‘m ! ð�1Þ‘þ1aB‘m: (5.28)

Therefore, the E-modes have the same parity of the tem-
perature correlations which have, in turn, the same parity
of conventional spherical harmonics, i.e. ð�1Þ‘. On the
contrary, the B-modes have ð�1Þ‘þ1 parity. The existence
of linear polarization allows for six different cross-power
spectra to be determined, in principle, from data that
measure the full temperature and polarization anisotropy
information. The cross-power spectra can be defined in

terms of the spectral functions CðXYÞ
‘ where X and Y stand

for E, B or T depending on the cross correlation one is
interested in:

CðXYÞ
‘ ¼ 1

2�2

Z
k2dk

X‘
m¼�‘

ðaX‘mÞ	aY‘m
ð2‘þ 1Þ : (5.29)

Therefore, if we are interested in the TT correlations we
just have to set X ¼ T and Y ¼ T and use the relevant
expansions given above. In the present paper, following a
consolidated convention, the correlations will be denoted,
with shorthand notation, as TT, EE, BB, TB and so on.
Suppose we are interested in the TT correlations, i.e. the
usual and well-known temperature correlations. From
Eq. (5.29) we will have

CðTTÞ
‘ ¼ 1

2�2

Z
k2dk

X‘
m¼�‘

½aT‘mðkÞ�	aT‘mðkÞ
ð2‘þ 1Þ : (5.30)

Now, using the orthogonality of spherical harmonics, we
have that

aT‘mðkÞ ¼
Z

dn̂Y	
‘mðn̂Þ�Ið ~k; n̂Þ: (5.31)

Inserting Eq. (5.31) into Eq. (5.30) and recalling the
Rayleigh expansion of the fluctuations of the intensity:

�Ið ~k; n̂; �Þ ¼
X
‘

ð�iÞ‘ð2‘þ 1Þ�I‘ðk; �ÞP‘ð�Þ (5.32)

we obtain

CðTTÞ
‘ ¼ 2

�

Z
dkk2j�I‘j2: (5.33)

To get to Eq. (5.33) the following two identities have been
used, i.e.

Z
dn̂P‘0 ðk̂ � n̂ÞY	

‘mðn̂Þ ¼
4�

ð2‘þ 1ÞY
	
‘mðk̂Þ
‘‘0 ;

X‘
m¼�‘

Y	
‘mðk̂ÞY‘mðn̂Þ ¼ 2‘þ 1

4�
P‘ðk̂ � n̂Þ:

(5.34)

It will now be shown how the angular power spectrum of
the B-mode can be related, with semianalytical methods, to
the spectrum of the Faraday rotation rate. At the same time
it is rather relevant to mention that the birefringence in-
duced by stochastic magnetic fields differs from a particu-
lar kind of birefringence which has been considered in [7].
When a pseudoscalar field is coupled to ~F�F� birefrin-

gent effects are expected (see, for instance, [51]).
Furthermore, the presence of pseudoscalar interactions
was invoked in [53,54] (see also [55,56]) as a mechanism
for the generation of magnetic helicity from a stochastic
background of hypercharge fields with vanishing helicity.
Suppose, therefore, a coupling in the Lagrangian density of
the form �� ~F�F�=M where M is a typical mass scale,

� is a dimensionless coupling and � is the dynamical
pseudoscalar field. Let us suppose also, for simplicity,
that the background magnetic field is absent. This is, in
fact, the situation contemplated in [7]. In this setup the
evolution equation for the magnetic field of the wave is
given by

~b 00 � r2 ~bþ �

M
�0 ~r� ~b ¼ 0: (5.35)

Recalling that the prime denotes a derivation with respect
to the conformal time coordinate, the shift in the polariza-
tion plane will be �� ¼ ���=ð2MÞ where we denoted by
� the angle to avoid confusion with the other angular
variables previously introduced. Now, it is clear that while

�� is frequency independent, �’ðFÞ depends upon the
frequency. Furthermore, the inhomogeneity scale of the

magnetic field plays enters directly �’ðFÞ. On the contrary
�� ¼ ���=ð2MÞ is a fully homogeneous quantity. Now,
in [7] �� is observationally constrained by adding one
single parameter to the �CDM model.

The rotation by �� implies, at the level of aðEÞ‘m and of

aðBÞ‘m

~a ðEÞ
‘m ¼ cosð2��ÞaðEÞ‘m þ sinð2��ÞaðBÞ‘m; (5.36)

~a ðBÞ
‘m ¼ � sinð2��ÞaðEÞ‘m þ cosð2��ÞaðBÞ‘m; (5.37)

where the tilded quantity denotes, as in Eq. (5.23), the
rotated variable. Using now Eq. (5.29) and assuming that
�� does not depend upon the Fourier wave number, the
transformed EE and BB autocorrelations can be swiftly
obtained

~C ðEEÞ
‘ ¼ cos2ð2��ÞCðEEÞ

‘ þ sin2ð2��ÞCðBBÞ
‘ ; (5.38)
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~C ðBBÞ
‘ ¼ cos2ð2��ÞCðEEÞ

‘ þ sin2ð2��ÞCðBBÞ
‘ ; (5.39)

~C ðEBÞ
‘ ¼ 1

2ðCðEEÞ
‘ � CðBBÞ

‘ Þ sinð4��Þ: (5.40)

According to the analysis of [7] the tilded quantities denote
the observed power spectra. In deriving Eqs. (5.38), (5.39),

and (5.40), the initial CðEBÞ
‘ is assumed to be vanishing for

consistency with [7]. Furthermore, if we would take liter-

ally the �CDM model with no tensors, then CðBBÞ
‘ ¼ 0 (as

also assumed in [7]). In the latter case the induced BB
angular power spectrum will be simply given by Eq. (5.39)

with CðBBÞ
‘ ¼ 0.

In the case of birefringence induced by a stochastic
magnetic field the calculation is more involved and it is
reported, in full detail, in Appendix C. Using the shorthand

notation Fðn̂Þ ¼ A ~B � n̂, Fðn̂Þ can be expanded in a series
of (scalar) spherical harmonics. Thus, since the magnetic
field does not break spatial isotropy, the angular power
spectrum of Faraday rotation can be written as

hFðn̂1ÞFðn̂2Þi ¼ 1

4�

X
‘

ð2‘þ 1ÞCðFÞ
‘ P‘ðn̂1 � n̂2Þ; (5.41)

where

CðFÞ
‘ ¼ 4�A2‘ð‘þ 1Þ

Z dk

k
P BðkÞ

j2‘ðk�0Þ
k2�20

: (5.42)

As will be shown in a moment, the magnetic field affects
directly the EE angular power spectra and, therefore, the
equation for the BB angular power spectrum which follows
from Eq. (C13) can be written, formally, as

C BB
‘ ¼ X

‘1;‘2

Gð‘; ‘1; ‘2ÞCðEEÞ
‘2

CðFÞ
‘1
; (5.43)

where Gð‘; ‘1; ‘2Þ is a rather cumbersome function of the
multipole moments which contains also a Clebsch-Gordon
coefficient. The expression for Gð‘; ‘1; ‘2Þ is reported in
Appendix C and has been derived in [40].

Even if the cases described by Eqs. (5.38), (5.39), (5.40),
(5.42), and (5.43) are conceptually very different, it is
tempting to interpret the bounds on �� as constraints on
the averaged rotation angle, i.e.

hj�’ðFÞj2i ¼ X
‘

2‘þ 1

4�
CðFÞ
‘ ’

Z ‘ð‘þ 1Þ
2�

CðFÞ
‘

d‘

‘
:

(5.44)

In spite of the fact that this identification is rather gross
and, as a consequence, the derived bounds are not so
significant and inherently ambiguous, one of the sources

of ambiguity stems from the frequency dependence of CðFÞ
‘

which scales, according to our conventions, as ð	max=	Þ4

where 	max ¼ 222:617 GHz is the maximum of the CMB
blackbody.18

The WMAP experiment observes the microwave sky in
five frequency channels ranging from [37] 23 to 94 GHz.
The bandwidth, correspondingly, increases from small to
high frequencies signaling that probably the best sensitiv-
ity to polarization comes from the high-frequency chan-
nels.19 On the contrary, the Faraday rotation signal is larger
at low frequencies and, therefore, a possibility would be to
compare the bounds on �� derived in [7] with the Faraday
rotation signal evaluated at the lowest frequency of obser-
vation. The lowest frequency of observation [37] is, how-
ever, used as a foreground template. Therefore the lowest
available effective frequency would be indeed around
30 GHz which is, approximately, the lowest frequency
channel of the Planck experiment [43] (see also later, in
the first part of Sec. VII). The results reported in [7] do not
allow one to determine how the various frequency channels
have been combined in the analysis. The authors of [7]
simply assumed that the rotation angle was frequency
independent, which is not our case, as will also be dis-
cussed later on.

VI. MAGNETIZED TE AND EE ANGULAR POWER
SPECTRA

Three fiducial sets of parameters will be used for the
illustration of the numerical results. The first set of pa-
rameters is obtained from the WMAP 5-yr data alone [4–8]
analyzed in the light of the conventional �CDM model20:

ð�b0;�c0;��; h0; ns; �Þ
¼ ð0:0441; 0:214; 0:742; 0:719; 0:963; 0:087Þ: (6.1)

If compared to the best-fit parameters of the WMAP 3-yr
data alone [36,37], we can notice a slight increase of the
scalar spectral index (from 0.958 to 0.963), a slight in-
crease of �b0, a slight increase of �c0, and a consequent
decrease of��. The features discussed with one set of data
have a corresponding qualitative counterpart within differ-
ent data sets. The WMAP 5-yr data have been also com-
bined with the ACBAR21 data set [71]. In the latter case,
the derived values of the cosmological parameters are

18It is practical to refer the frequency dependence to 	max

defined as in Eqs. (C20) and (C21). Consequently, the power
spectrum of Faraday rotation will scale as ð	max=	Þ4 [see also
Eqs. (C24) and (C25) of Appendix C].
19More precisely the five frequency channels of the WMAP
experiment are centered at 23, 33, 41, 61 and 94 in units of GHz.
20In the present script the differential optical depth has been
denoted by �0 while a more standard notation is �0. Here the
variable � denotes instead the conformal time coordinate. To
avoid possible confusion in the identifications of the m�CDM
parameters the conventional notation will be here restored.
21The Arcminute Cosmology Bolometer Array Receiver
(ACBAR) operates at three frequencies, i.e. 150, 219, and
274 GHz.
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ð�b0;�c0;��; h0; ns; �Þ
¼ ð0:0441; 0:215; 0:741; 0:720; 0:964; 0:088Þ: (6.2)

Finally, a third set of cosmological parameters will be the
one suggested by the analysis of the WMAP 5-yr data in
combination with the large-scale structure data (in particu-
lar, 2dFGRS and SDDS data) [72], in turn combined with
all the available supernova data22 [73,74]:

ð�b0;�c0;��; h0; ns; �Þ
¼ ð0:0462; 0:233; 0:721; 0:701; 0:960; 0:084Þ: (6.3)

In Fig. 1 the results of the numerical integration of
Eqs. (5.15), (5.16), (5.17), and (5.18) are reported for the
choice of parameters given in Eq. (6.1). The magnetic
spectral index has been fixed, in both plots, to nB ¼ 1:5.
The purpose of Fig. 1 is twofold. In the first place we point
out, as already discussed in [24], that we are sensitive to nG
magnetic fields. The dot-dashed curves in Fig. 1 indeed
correspond to a magnetic field23 of 10 nG while the dashed
curves correspond to a magnetic field of 5 nG.

The second occurrence which is evident from Fig. 1 is
that the large-scale magnetic fields do affect the TE and EE
angular power spectra. This cannot happen, by construc-
tion, if the magnetic field is uniform as in the cases
discussed, for instance, in [30,32,38]. Furthermore, for a
stochastic magnetic field the TB and EB correlations will
be vanishing. The same situation illustrated in Fig. 1 is also
illustrated in Figs. 2 and 3 but with two different sets of
parameters. In Fig. 2 the WMAP data are combined with
the ACBAR data and the solid line is then the best fit with
parameters fixed as in Eq. (6.2). The range of them�CDM
parameters illustrated in Figs. 2 and 3 is narrower than in
the case of Fig. 1. Indeed, as it can be argued by comparing
the legends of the three figures, in Fig. 1 a magnetic field of
10 nG has been allowed. On the contrary in Figs. 2 and 3 a
sizably smaller magnetic field has been assumed (i.e. BL ¼
5 nG) but the magnetic spectral index nB has been illus-
trated for two different values. Different sets of parameters
have been studied within the m�CDM model and the
qualitative conclusions are the same. Contrary to what
was normally assumed large-scale magnetic fields do af-
fect both the TE and EE angular power spectra and nG
magnetic fields lead to clearly observable features.
To conclude the present section it is relevant to point out,

very swiftly, that the TT angular power spectra have been
studied, both analytically and numerically in [20,21] and in
[23,24]. The typical patterns of correlated distortions of the
acoustic peaks have been thoroughly investigated (in light
of the minimal m�CDM model) in [23,24]. In Fig. 4 the
plots for the TT angular power spectra are reported. In the
plot on the left the diamonds are the WMAP 3-yr data,
while the boxes are the WMAP 5-yr data. With the dashed
line the best fit to the WMAP 3-yr data alone is illustrated.
With the solid line the magnetic filed is included with the
other parameters fixed to the 5-yr best fit. In the plot on the
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FIG. 1 (color online). The TE and EE angular power spectra in the m�CDM model. The solid lines correspond to the best fit of the
WMAP 5-yr alone data analyzed in the light of the conventional �CDM paradigm.

22In the plots we will denote this class of data by
WMAP 5-yrþ BAOþ SNall. The acronym BAO refers to the
baryon acoustic oscillations which could be deduced from the
large-scale structure data.
23The regularized amplitude of the magnetic field, BL, is
defined as in [24]. For blue magnetic spectral index (i.e. nB >
1) the window function is taken to be Gaussian. For red spectral
index (i.e. nB < 1) the window function is a step with smooth
edges. The magnetic pivot scale, denoted by kL, is always taken,
for illustrative purposes, to be 1 Mpc�1. In Appendix C the
precise definition of BL is reviewed since it is needed for a
consistent evaluation of the Faraday rotation power spectrum.
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right the TTand EE angular power spectra are reported in a
double logarithmic scale to show the relative magnitude of
the two angular power spectra.

The various figures reported in this section are the basis
for the morphological illustrations of the distortions pat-
terns induced by large-scale magnetic fields. For practi-
tioners of the field it is sometimes more eloquent to plot the
normalized difference of a given power spectrum with
respect to some pivot value of the same observable. For
instance, one could take, as pivot observable, the 5-yr best
fit to theWMAP alone. In Fig. 5 the normalized differences
are reported for the temperature and polarization autocor-

relations. More precisely, the quantitiesDðTTÞ
B;0 andDðEEÞ

B;0 are

defined, respectively, as

DðEEÞ
B;0 ¼ j �CðEEÞ

‘ � CðEEÞ
‘ j

�CðEEÞ
‘

; DðTTÞ
B;0 ¼ j �CðTTÞ

‘ � CðTTÞ
‘ j

�CðTTÞ
‘

;

(6.4)

where �CðTTÞ
‘ and �CðEEÞ

‘ are computed without any magne-

tized contribution and for the best fit to the 5-yr WMAP
data supplemented by the ACBAR data.

VII. FARADAY SCREENED BB ANGULAR POWER
SPECTRA

The CðBBÞ
‘ depend not only upon the parameters of the

magnetized background but also upon the comoving fre-
quency. This important occurrence, as explained in the
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FIG. 3 (color online). The same as in Fig. 2 but with the �CDM parameters reported in Eq. (6.3).
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FIG. 2 (color online). As in Fig. 1 the TE and EE angular power spectra for a different choice of magnetic field parameters. With the
solid line the best fit to the conventional �CDM paradigm is illustrated and it corresponds to the parameters reported in Eq. (6.2).
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previous sections, is a direct consequence of the dispersion
relations. The Planck experiment [43] will observe the
microwave sky in nine frequency channels: three fre-
quency channels (i.e. 	 ¼ 30, 44, 70 GHz) belong to the
low-frequency instrument; six channels (i.e. 	 ¼ 100, 143,
217, 353, 545, 857 GHz) belong to the high-frequency
instrument. The BB power spectra are calculated for all
the relevant frequency channels. There are reasons to ex-
pect that the sensitivity to polarization will be larger at high
frequency [43]. At the same time the expected signal will
be larger at small frequencies. Since our source of infor-
mation is primarily the Planck bluebook,24 we will illus-

trate our results for a putative frequency of 100 GHz.
Needless to say, all of the relevant magnetized polarization
observables can be computed, with MAGCMB, for any rele-
vant frequency and explicit examples will be given in what
follows. In Fig. 6 the BB angular power spectrum is
reported for the parameters listed in the title of the figure.
The difference between the left and the right plot is just the
scale which is linear (on the left) and which is logarithmic
(on the right). While the linear scale is rather good in
capturing the region of the peaks, the logarithmic scale
accounts better for the low multipoles. In Fig. 6, with the
solid lines, the BB angular power spectrum is reported in
the case when the EE and the TE spectra are computed
taking into account the magnetized contribution. The
dashed lines, on the contrary, are obtained when the EE
power spectrum is just taken to be the one implied by the 5-
yr WMAP data analyzed in light of the conventional
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FIG. 5 (color online). The normalized differences of the temperature and polarization autocorrelations.
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24We are aware of larger sensitivities possibly achievable in the
context of the low-frequency instrument. However, since these
results have not been published, we will stick to the information
contained in the bluebook.

MASSIMO GIOVANNINI AND KERSTIN E. KUNZE PHYSICAL REVIEW D 78, 023010 (2008)

023010-20



�CDMmodel. Figure 6 demonstrates that if the E-mode is
computed consistently, the resulting B-mode is not the
Faraday screened E-mode produced by the conventional
adiabatic mode.

By increasing the magnetic spectral index nB the peaks
become less pronounced while the corresponding ampli-
tude of the BB angular power spectrum decreases. This
aspect is captured by Fig. 7. On the left the region of the
peaks is illustrated for BL ¼ 5 nG and nB ¼ 1:5. On the
right, for the same value of the regularized amplitude, the
spectral index is increased from 1.5 to 2. This trend is even
sharper in Fig. 8. In the plot on the left, with the solid line,
the case of BL ¼ 1 nG is illustrated. The other three curves
(i.e. dot-dashed, dashed, and dotted) all refer to the case of
BL ¼ 5 nG but with progressively increasing spectral in-
dices. Always in Fig. 8 (plot on the right) the relative
amplitude of the EE and BB power spectra is illustrated.

By looking at the relative amplitude of the EE and BB
angular power spectra (see, for instance, the right plot in
Fig. 8), it could be argued that, in principle, the solid line
(i.e. the BB angular power spectrum) and the dashed line
(i.e. the EE angular power spectrum) might intersect for
frequencies 	 < 	max. Indeed, while the EE spectrum does
not depend upon the frequency, the BB spectrum increases
as the frequency decreases well below 	max. The analytical
and numerical considerations pursued so far hold under the
assumption of sufficiently small Faraday rotation rate, i.e.
Fðn̂Þ< 1. This is not a severe limitation and does not help
to exclude the mutual crossover of the EE and BB power
spectra. Indeed, the requirement Fðn̂Þ< 1 implies a con-
dition on Eq. (5.44). In particular, to keep the estimate
semianalytical, we can observe that the integrand appear-
ing on the right-hand side always increases (as a function
of ‘) if we consider, just for illustrative purposes, the case
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FIG. 7 (color online). The effect of the increase in the spectral index in the region of the peaks.
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nB > 1. Thus the integral will be dominated, in the first
approximation, by ‘ ’ ‘max and this observation leads to a
(not so constraining) bound which is reported in Fig. 9
(plot on the left). In the ðBL; nBÞ plane the constraints will
be different depending upon the specific frequency.
Always in Fig. 9 (see the plot on the right) the mean square

rotation angle [i.e. j��j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj�’ðFÞj2i

q
, see also

Eq. (5.44)] is reported for different values of the regular-
ized magnetic field intensity BL and for different frequen-
cies. The maximal frequency will be taken to correspond to
the frequency of the CMB maximum (i.e. 	max ¼
222:617). The minimal frequency will be taken to be
	min ¼ 30 GHz. Now, the WMAP 5-yr data give a series

of bounds on the rotation angle due to the birefringent
nature of the primeval plasma. As already discussed, the
analysis of [7] does not apply to the present case for, at
least, two reasons. In the case studied in the present paper
the rotation angle has a well-defined power spectrum (i.e.
an explicit ‘ dependence). Secondly, the rotation angle
also depends upon the frequency. In Fig. 9 with the
solid thick line we report the bound j��j< 1, as implied

by the internal consistency of the calculation. With the
dashed (thick) line the bound j��j< 0:04 is reported.

The latter figure would read, in degrees, j��j< 2:4 deg

and it is one of the most constraining bounds reported
in [7].
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The WMAP 5-yr data (see, in particular, [8]) imply that,

when averaged over ‘ ¼ 2� 6, ‘ð‘þ 1ÞCðBBÞ
‘ =ð2�Þ<

0:15ð�KÞ2 (95% confidence level). Slightly less stringent
bounds were obtained by using the 3-yr data [37]. As
already mentioned the putative constraint of [8] does not
make reference to a specific frequency. So we have to
assume that it holds for all the frequencies. Then, in our
case it should be imposed at the lowest frequency which is
the most constraining one. The lowest available frequency
for this purpose would be for 27 GHz. The preceding
frequency (i.e. 23 GHz) has been used as a foreground
template [37] and, consequently, the EE and BB power
spectra have not been freed from the foreground contami-
nation. We therefore choose to set the bound for a minimal
frequency of 30 GHz since this is not only intermediate
between the KKa and KQ bands of the WMAP experiment
but it is also the putative (lowest) frequency of the Planck
experiment. As expected, the direct bound on the BB
angular power spectrum is not so constraining. This aspect

is visible in Fig. 10 where, for illustration, the case of the
blue spectrum has been considered. The different bounds
(horizontal lines) refer to different fiducial frequencies.
The solid, dashed, and dot-dashed lines refer, respectively,
to the cases of 	 ¼ 30 GHz, 	 ¼ 100 GHz, and 	 ¼ 	max.
In [23,24] it was argued that an idea on the range of

variation of the parameters of the magnetized background
can be obtained by monitoring the height and the position
of the acoustic peaks. In particular, the WMAP
Collaboration measures to see that the Doppler multipole
is given by [7]

‘ð‘þ 1Þ
2�

CðTTÞ
Doppler ¼ 5756� 42 ð�KÞ2: (7.1)

In Fig. 11 the Doppler multipole is computed for different
values of the parameters of the magnetized background.
The solid (thick) lines give the region allowed by the error
bar quoted in Eq. (7.1).
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It is finally useful to recall that in [24] it has been
suggested that the highest peaks in the acoustic oscillations
might be sensitive to large-scale magnetic fields. Since the
5-yr WMAP data have been combined with ACBAR data
we might suspect that the bounds stemming from the
acoustic peaks of higher order (i.e. compatible with the
ACBAR range) would add more severe constraints. This is
certainly a perspective which should be investigated. From
our preliminary investigation it seems that the height of the
first acoustic peak is still one of the best indicators of the
typical patterns of correlated distortions induced by a
large-scale magnetic field. This conclusion can be drawn
by comparing, for instance, the values of the parameters in
Fig. 11 with the plot on the left in Fig. 12. A magnetic field
of 5 nG and relatively high spectral index is barely toler-
able by the ACBAR data but it is definitely ruled out by the
accuracy on the first peak. Already with a magnetic field of
1 nG the situation is much less constrained. This also
shows that our calculation is sensitive to magnetic fields
of nG strength and smaller. This was never achieved in the
past. Needless to say, the high-‘ region is expected to be
accurately measured by the Planck explorer satellite [43]
and this was also one of the motivations of our analysis. We
want to stress that it would be very interesting to achieve a
reasonable accuracy also on the EE power spectra at high

multipoles. In Fig. 12 (plot on the right) we report DðEEÞ
‘ ¼

j �CðEEÞ
‘ � CðEEÞ

‘ j= �CðEEÞ
‘ , where �CðEEÞ

‘ is computed without

any magnetized contribution and for the best fit to the 5-
yr WMAP data supplemented by the ACBAR data. On the

contrary CðEEÞ
‘ is computed in the presence of a magnetized

background with parameters specified in the title of the
figure. This gives an idea of the required accuracy of the
observations at high multipoles.

Up to now it has been shown how the magnetized
polarization observables can be accurately computed.

This analysis concludes the first part of the program com-
menced in [23] and further developed in [24,25]. The
results obtained in the present paper allow to compute
not only the TT but also the TE, the EE, and the BB power
spectra which are the ones expected in the case of a fully
inhomogeneous magnetic field.25 The next step is to feed
MAGCMB in one of the standard strategies of parameter

estimation and this analysis is already in progress.
In the case of birefringent effects due to pseudoscalar

interactions the strategy adopted in [7] has been to check
for a potential reparametrization of the BB and EE angular
power spectra. Such a reparametrization would be directly
induced by birefringent effects and has been also discussed
in Eqs. (5.38) and (5.39). The advantage of such a strategy
is that, of course, only one extra parameter is introduced on
top of the parameter content of the conventional �CDM
paradigm.
In what follows we would like to suggest a complemen-

tary strategy which would allow, in principle, to determine
if the birefringent effects are really due to pseudoscalar
particles or rather to stochastically distributed large-scale
magnetic fields. The key observation, in this respect, is the
following. In spite of the fact that the magnetic field
intensity enters, in a rather simple way, the Faraday rota-
tion rate, the BB angular power spectrum does not have a
simple scaling property as a function of BL. The reason is
that, as explicitly demonstrated, the magnetic field modi-
fies also the EE and TE spectra which are needed, in turn,
to compute the BB power spectrum. Conversely, a simple
scaling law of the signal can be deduced by looking at the
frequency dependence. In short the logic is that while the
EE and the TT autocorrelations do not depend upon the
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FIG. 12 (color online). Angular power spectra at high ‘.

25As already stressed in the Introduction, the uniform field case,
breaking explicitly spatial isotropy, can only be considered as a
useful toy model, which is, however, unrealistic to begin with.
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frequency, the BB autocorrelations do depend upon 	 as a
consequence of the dispersion relations. Denoting by

GðTÞ
‘ ¼ ‘ð‘þ 1Þ

2�
CðTTÞ
‘ ; GðEÞ

‘ ¼ ‘ð‘þ 1Þ
2�

CðEEÞ
‘ ;

GðBÞ
‘ ¼ ‘ð‘þ 1Þ

2�
CðBBÞ
‘ ;

(7.2)

the results obtained in the present paper suggest that when
the frequency is rescaled as 	 ! ~	, the three relevant
autocorrelations of Eq. (7.2) change as

G ðTÞ
‘ ð	Þ ¼ ~GðTÞ

‘ ð~	Þ; GðEÞ
‘ ð	Þ ¼ ~GðEÞ

‘ ð~	Þ;
	4GðBÞ

‘ ð	Þ ¼ ~	4 ~GðBÞ
‘ ð~	Þ:

(7.3)

There are two possible objections to this argument. The
first one is that the frequency channels should be suffi-
ciently numerous. The second objection is instead that the
scaling law expressed by Eq. (7.3) could be contaminated
by spurious scalings induced by the known (and yet un-
known) foregrounds.

It seems that nine frequency channels (such as the ones
of the Planck satellite) are sufficient for testing the scaling
law of Eq. (7.3). There is, however, a proviso. It seems that
for an effective determination of the scaling law (7.3) the
polarization sensitivity of the three low-frequency chan-
nels is an essential requirement.

Usually, in CMB studies, the frequency dependence is
not used, as we suggest, to deduce the nature of the signal
but rather in order to disentangle the possible foreground
contaminations. Indeed both the synchrotron and the free-
free emissions lead to specific frequency slopes.26 So the
question becomes, are the known foregrounds able to
simulate the scaling law of Eq. (7.3)? The answer to the
question is negative.

To demonstrate the previous statement let us adopt the
parametrization of the foregrounds adopted in [37],
namely, in the notations of Eq. (7.2)

�G ðEEÞ
‘ ¼

�
QsE

�
	

65 GHz

�
2�sE þQdE

�
	

65 GHz

�
2�dE

�
‘m;

(7.4)

�G ðBBÞ
l ¼

�
QsB

�
	

65 GHz

�
2�sB þQdB

�
	

65 GHz

�
2�dB

�
‘m:

(7.5)

Equation (7.4) is a simplified parametrization of the EE
foreground while Eq. (7.5) is a parametrization of the BB
foreground. Both parametrizations hold outside the galac-
tic mask (conventionally called P06). In Eqs. (7.4) and (7.5)
the two components of the foreground are given, respec-
tively, by the dust (characterized by the subscript d) and by

the synchrotron (characterized by the subscript s). The
values of the various parameters appearing in Eqs. (7.4)
and (7.5) are

QsE ¼ 0:36ð�KÞ2; �sE ¼ �3:0;

QdE ¼ 1:0ð�KÞ2; �dE ¼ 1:5;
(7.6)

QsB ¼ 0:30ð�KÞ2; �sB ¼ �2:8;

QdE ¼ 1:0ð�KÞ2; �dB ¼ 1:5:
(7.7)

In both cases m ¼ �0:6. Already from this rather naive
argument (which can be applied, stricto sensu, only for
sufficiently low multipoles, i.e. ‘ < 100), interesting con-
clusions can be drawn. Consider, indeed, the ratio of the
foregrounds:

�GðBBÞ
l

�GðEEÞ
l

’ 0:83

�
	

65 GHz

�
0:4
; 	 � 65 GHz;

�GðBBÞ
l

�GðEEÞ
l

’ 0:5; 	 � 65 GHz:

(7.8)

The frequency dependence of Eq. (7.8) (i.e. of the fore-
grounds) is much more shallow than the one expressed by
Eq. (7.3) which would imply, in terms of the same ratio of
Eq. (7.8)

GðBBÞ
‘

GðEEÞ
‘

/
�
	

	p

��4
; (7.9)

where 	p is an appropriate pivot frequency which can be

chosen either to coincide with 	max or to be fixed experi-
mentally on the basis of the specific features of the analy-
sis. For instance, it could be useful to fix 	p to the value of

the lowest (or the highest) frequency channel sensitive to
polarization.

VIII. MAGNETIZED CMB MAPS

Satellite experiments like WMAP observe the cosmic
microwave background in several frequency channels. The
observations are encoded in temperature and polarization
maps. These have to be cleaned from foreground emis-
sions, mainly coming from our own galaxy but also from
extra-galactic sources. The resulting maps are used to

deduce the angular power spectra CðXYÞ
‘ introduced in

Eq. (5.29).
Some strategies of parameter estimation are based on the

comparison between the observed and the computed CðXYÞ
‘ .

In a complementary perspective, the temperature maps
already contain valuable information which can be used
to distinguish between different cosmological paradigms
such as the one suggested by the m�CDM model. The
local extrema in the temperature maps provide an interest-
ing diagnostic that can be used to constrain the underlying
cosmological scenario. Heeding observations, local ex-

26The frequency slopes, directly known in limited regions of
the spectrum, are often extrapolated over the whole physical
range.
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trema (i.e. hot and cold spots in the cosmic microwave
background), have a large signal-to-noise ratio and are
therefore easily detectable. On the theoretical side the
statistics of local extrema assuming Gaussian fluctuations
have already been studied in detail [75–79].

To simulate CMB maps it is mandatory to have an
efficient way of estimating power spectra in terms of a
finite number of cosmological parameters. This step can be
achieved via a Boltzmann solver such as COSMICS,
CMBFAST and, among their descendants, MAGCMB. The

calculated CðXYÞ
‘ can be fed back into the HEALPIX package

[80,81] which provides a pixelization scheme for the data
on the sphere. This is essential in order to pass from the

angular power spectra CðXYÞ
‘ to a full sky map of the

temperature fluctuations and polarization as observed by
different satellite experiments.

Examples of sky maps will now be provided for different
values of the predecopuling magnetic field and its spectral
index.27 In particular, the attention will be focused on three
particular choices of parameters as follows:

(i) the best fit of the WMAP 5-yr data alone [see
Eq. (6.1)];

(ii) the best fit of the WMAP 5-yr data alone supple-
mented by a magnetic field with BL ¼ 5 nG and
spectral index nB ¼ 1:5;

(iii) the best fit to the WMAP 5-yr data alone supple-
mented by a magnetic field BL ¼ 20 nG and spec-
tral index nB ¼ 2:49.

The last choice of parameters is already ruled out by the
observational bounds on the first acoustic peak, as dis-
cussed in Sec. VI. Nonetheless, it is instructive to consider
also the last (extreme) model to emphasize a trend which is
still there also for lower values of the magnetized back-
ground but which would be more difficult to visualize. The
sky maps are simulated using the improved version of
MAGCMB which has been described and illustrated in the

previous sections. The magnetized angular power spectra
have been calculated for a maximal multipole ‘max ¼ 2500
and at a frequency 217 GHz. This frequency is the lowest
Planck frequency with the highest sensitivity, at least ac-
cording to the Planck bluebook [43]. Again, if lower
frequency channels will be more sensitive than what is
claimed at the moment, this will be very interesting for
our study, as the skilled reader can appreciate.

For the simulations the value Nside ¼ 1024 has been
adopted. This figure corresponds to a resolution parameter
10 used by the WMAP team. Furthermore, the first simu-
lation was done using a Gaussian beam with beam size of
5 arcmin, corresponding to the Planck channel at 217 GHz.
In a second step the resulting maps were smoothed to a
Gaussian beam size �FWHM ¼ 1� i.e. of the order of the

resolution of the five frequency channels of WMAP, which
are between 0.22� in the highest frequency channel at
94 GHz and 0.88� in the lowest frequency channel at
23 GHz. In Fig. 13 examples of temperature maps at
Planck resolution are shown. The effect of the presence
of the magnetic field is an augmentation of the hot spots as
well as a general rise of their mean temperature as will be
discussed below in more detail. The number of cold spots
is increasing with increasing magnetic field strength and
spectral index while their average temperature is decreas-
ing. It can then be argued that the local extrema are
becoming more pronounced as the magnetic field becomes
more intense. A relatively strong magnetic field of BL ¼
20 nG does change the appearance of the simulated tem-
perature map. Conversely, a magnetic field of 5 nG does
not have an effect simply visible in the temperature maps.
The latter statement can be corroborated by looking at a
20� � 20� patch of the sky. Indeed, Fig. 14 shows, visu-
ally, that it is difficult to distinguish the imprint of a
magnetic field strength BL ¼ 5 nG. By comparison, a
20 nG field can instead be distinguished (see Fig. 14, plot
on the far right). The effects of a magnetic field can also be
seen in the simulated polarization maps. In Fig. 15 the U
polarization map is reported, just for purposes of illustra-
tion. The general visual result is that the U (and to a lesser
extent the Q) maps are modified only for sufficiently
intense values of the magnetic fields. What has been re-
ported in Figs. 13–15 represents clearly a feasibility proof
of the strategy pursued in this paper. It also represents a
novelty since, to the best of our knowledge, magnetized
CMB maps have never been computed before within a
well-defined numerical approach, such as the one de-
scribed here and initiated in [23–25].
In spite of the fact that CMB maps contain a lot of

precious information, they cannot be just analyzed with
‘‘visual’’ methods. Here we are going to point out less
anthropic ways of looking at magnetized CMB maps. A
primordial magnetic field increases the number of extrema
in the temperature map. Furthermore, it increases the mean
temperature of the hot spots and lowers the mean tempera-
ture of the cold spots. To make this statement more precise
the HOTSPOT routine which is part of the HEALPIX pack-
age has been used to find the extrema in the three cases at
hand. These values of the local extrema and their localiza-
tion can then be obtained. Suppose, for simplicity, we are
only interested in the one-point statistics (hence the local-
ization of the extrema is not taken into account). A similar
approach has been taken, for instance, in [79]. The statis-
tics of the temperature values (number, mean, variance,
skewness and kurtosis) of the minima and maxima are
illustrated in Table I. For comparison, the simulations
were done for Nside ¼ 1024 which results in Npix ¼
12N2

side given by Npix ¼ 12 582 912. This means that about

4% of the total data points are local extrema. There are
further quantities characterizing the statistics of the local

27For the calculations reported in this section the use of the
HEALPIX package [80,81] is warmly acknowledged.
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FIG. 14 (color online). 20� � 20� fields of the temperature maps (in �K) in gnomonic projection for the best-fit WMAP 5-yr model
without a magnetic field (left panel), with a magnetic field BL ¼ 5 nG and nB ¼ 1:5 (center panel) and with a magnetic field
BL ¼ 20 nG and nB ¼ 2:49 (right panel) simulated assuming a Gaussian beam size �FWHM ¼ 50.

FIG. 15 (color online). U polarization maps (in �K) for the best-fit WMAP 5-yr model without a magnetic field (left panel) and with
a magnetic field BL ¼ 20 nG and nB ¼ 2:49 (right panel) simulated assuming a Gaussian beam size �FWHM ¼ 50.

FIG. 13 (color online). Temperature maps (in �K) for the best-fit WMAP 5-yr model without a magnetic field (left panel) and with a
magnetic field BL ¼ 20 nG and nB ¼ 2:49 (right panel) simulated assuming a Gaussian beam size �FWHM ¼ 50.
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extrema of the temperature map, like, for example, the
two-point correlation function. This has been used to in-
vestigate the detectability of weak lensing in the distribu-
tion of hot spots [78]. We leave this as well as other
developments to forthcoming studies [82].

Smoothing the maps with a Gaussian beam of size
�FWHM ¼ 1� results in maps of lower resolution. This is
equivalent to going from the resolution of the Planck
experiment to WMAP. The resulting temperature maps
are shown in Fig. 16. As can be appreciated from Fig. 16,
this resolution of the effect of even a considerably strong
magnetic field is hardly visible.

Applying the HOTSPOT routine to the smoothed maps
results in a considerably smaller number of local extrema.
The trend of the magnetic field increasing the number of
extrema is still observable. In this case, however, the
increase is less pronounced, as can be argued from
Table II. For comparison the statistics of the temperature
values of the local extrema of the 5-yr Internal Linear
Combination (ILC) map provided by the WMAP
Collaboration have been included. This was obtained ap-

plying the HOTSPOT routine to the data file provided at
the LAMBDA web site [83]. The ILC map is a weighted
linear combination over the smoothed temperature maps
obtained from each of the five frequency channels. It has
minimal galactic foreground contribution and is assumed
to give a reliable signal of the cosmic microwave back-
ground at angular scales greater than 10�. Its resolution
parameter is 9, which is equivalent to Nside ¼ 512 and it
has a resolution of 1�. The number of local extrema in the
simulated maps and the ILC map are of the same order.
Comparing naively the mean temperature of the hot spots
of the simulated maps with the ILC map seems to indicate
that actually models with a nonvanishing magnetic field are
a better fit to the data. Likewise the models with a non-
vanishing magnetic field have a lower mean temperature of
the cold spots which is in better accordance with ILC data
then the WMAP 5-yr best-fit model without a magnetic
field. To draw such conclusions one should use the WMAP
5-yr temperature maps in the different frequency channels
and perform a more thorough exploration of the parameter
space of the models using Monte Carlo simulations [79].

TABLE I. Statistics of the temperature values (number, mean, variance, skewness and kurtosis) of the local extrema (maxima/
minima) of the simulated temperature maps at �FWHM ¼ 50 for the WMAP 5-yr best-fit model alone (i.e. BL ¼ 0) and for the WMAP
5-yr best-fit model supplemented by a magnetic field with strength BL and spectral index nB.

Model Type No. Mean (�K) Var ð�KÞ2 Skew Kurt

BL ¼ 0 max 202 174 76.951 5909.1 �0:9012 �0:0329
BL ¼ 5 nG, nB ¼ 1:5 max 203 083 77.778 6000.0 �0:9032 �0:0340
BL ¼ 20 nG, nB ¼ 2:49 max 303 089 96.355 7542.7 �0:9728 �0:0507

BL ¼ 0 min 201 601 �76:175 5776.5 0.9305 �0:1108
BL ¼ 5 nG, nB ¼ 1:5 min 202 495 �76:915 5829.3 0.9360 �0:1093
BL ¼ 20 nG, nB ¼ 2:49 min 302 607 �92:029 6951.7 1.0603 �0:0949

FIG. 16 (color online). 20� � 20� fields of the temperature maps (in �K) in gnomonic projection for the best-fit WMAP 5-yr model
without a magnetic field (left panel), with a magnetic field BL ¼ 5 nG and nB ¼ 1:5 (center panel) and with a magnetic field
BL ¼ 20 nG and nB ¼ 2:49 (right panel) smoothed assuming a Gaussian beam size �FWHM ¼ 1�.
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This is beyond the scope of the current article [82]. The
comparison with the ILC map was used for illustrative
purposes showing that the local extrema of the simulated
maps are good indicators of the one-point statistics of the
observed temperature map. In connection with the problem
of possible foreground contamination, it should be pointed
out that the possible Faraday rotation produced by the
galactic magnetic field should also be taken into account
(see, e.g. [44]). It is nonetheless clear that the Faraday of
the galactic magnetic field cannot be used to rotate the
CMB polarization: the galactic magnetic field is coherent,
in the first approximation, over the physical size of the
galaxy. Thus, the only wavelengths affected by (galactic)
Faraday rotation will be of the order of the meter.

Thus in conclusion, we see that primordial magnetic
fields do have an effect on the structure of the temperature
and polarization maps of the cosmic microwave back-
ground. These effects are clearly visible for rather large
values of the primordial magnetic field at high resolution as
expected to be provided by the Planck experiment. To
quantify the effect of a magnetic field on the temperature
map the statistics of the local extrema have been used. On
the basis of the reported results, the Planck experiment
provides an interesting perspective of constraining magne-
tized models using temperature maps.

Before closing this section it is appropriate to avoid
possible confusion. When dealing, for instance, with non-
adiabatic modes, the CMB maps can be derived by adding
together different contributions which can be obtained, in
turn, from independent runs of the same code with different
initial conditions. This procedure is clearly not applicable
in our case for a number of rather simple reasons. As could
be appreciated from the first five sections of the present
paper and from the theoretical framework developed in
[19–22] (see also [23–25]), the large-scale magnetic fields
do modify not only the initial conditions but also the
dynamical equations. To run (independently) the code
with and without magnetic fields is a shortcut that, if
applied, leads to inconsistencies. As an example, consider

Faraday rotation. Without magnetic fields the initial con-
ditions just admit an adiabatic mode and a linear polariza-
tion. Since the magnetic field is absent, however, the linear
polarization cannot be rotated. Let us now do the opposite
and run the code without the adiabatic mode. This choice,
already inconsistent for other reasons [23,24], would not
produce any B-mode since, in the absence of curvature
perturbations, there is in practice, no E-mode to rotate.
Therefore, the correct initial conditions (reported in
Appendix B) are just one part of the problem. The other
part concerns the evolution equations.

IX. CONCLUDING CONSIDERATIONS

In the present paper a viable strategy for the complete
calculation of the magnetized polarization observables has
been presented. To achieve this goal it was mandatory to
employ, within the different branches of the spectrum of
plasma excitations, the appropriate description. In previous
studies this aspect was never discussed in detail and never
applied. The reported results are a necessary physical step
for any consistent calculation of the magnetized polariza-
tion observables either at the semianalytical or at the fully
numerical level.
At a more operational level, the accurate calculation of

the TE, EE and BB angular power spectra beyond the
MHD approximation will be of upmost importance for
our program of parameter estimation which is already
under way. In front of difficult problems, such as the one
we are scrutinizing, there could be the tendency of sub-
stituting words for actions. Even if this tendency could be
potentially rewarding in the short run, it will be the bane for
future comparisons with observational data. Our primary
objective, in this respect, is very modest: we want to
develop a sound approach where all the relevant physical
effects (i.e. dispersive and not dispersive) are realistically
modeled. Absent this necessary step, any parameter esti-
mation would be forlorn and theoretically biased.
The second line of developments of the present consid-

erations implies a strategy for deducing the typical signa-

TABLE II. Statistics of the temperature values (number, mean, variance, skewness and kurtosis) of the local extrema (maxima/
minima) of the simulated temperature maps smoothed with a Gaussian beam with �FWHM ¼ 1� for the WMAP 5-yr best-fit model
with and without a magnetic field with field strength BL and spectral index nB. For comparison the results of the ILC map of the
WMAP 5-yr model have been included.

Model Type No. Mean (�K) Var ð�KÞ2 Skew Kurt

BL ¼ 0 max 7274 63.005 2715.5 �1:0426 �0:1742
BL ¼ 5 nG, nB ¼ 1:5 max 7298 63.555 2731.2 �1:0484 �0:1676
BL ¼ 20 nG, nB ¼ 2:49 max 7606 66.198 2868.1 �0:1051 �0:1843
WMAP 5-yr ILC max 8066 65.597 2691.1 �1:1370 �1:1617

BL ¼ 0 min 7252 �63:482 2778.3 0.9763 �0:3041
BL ¼ 5 nG, nB ¼ 1:5 min 7277 �63:809 2796.3 0.9770 �0:3039
BL ¼ 20 nG, nB ¼ 2:49 min 7600 �66:509 2913.2 0.9955 �0:2846
WMAP 5-yr ILC min 8120 �64:903 2647.6 1.1306 �1:6289
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tures of a Faraday-induced B-mode. The reported results
suggests that an unambiguous way of pinning down the
Faraday-induced B-mode is to look at the scaling proper-
ties of the measured BB angular power spectrum as a
function of the frequency and to compare both with com-
puted BB power spectrum as well as with the other power
spectra of the cross correlations (i.e. EE and TT angular
power spectra).

Realistic simulations of maps including the effects of
large-scale magnetic fields have been derived and pre-
sented for the first time. For experiments with high (nomi-
nal) resolution (such as the one of the forthcoming Planck
explorer mission) the effect of a primordial magnetic field
on the temperature and polarization maps is distinguish-
able. Lowering the resolution a bit changes the structure of
the temperature maps but, according to our preliminary
results, does not totally jeopardize the possibility of read-
ing off the effects of (sufficiently strong) predecoupling
magnetic fields. Polarization maps have also been studied
for different magnetic field parameters. For purposes of
presentation, only a few examples have been illustrated. As
a general rule of thumb, a magnetic field increases the
number of hot and cold spots in the simulated temperature
maps. This has been quantified in the determination of
local extrema and their one-point statistics. There is a
potential correlation between the number of local extrema
and their corresponding temperatures. The differences be-
tween the mean temperatures for the hot and cold spots,
respectively, for different values of the magnetic field
strength and its spectral index are larger at a higher reso-
lution of the experiment, or in other words for a smaller
beam size. Our results open interesting perspectives for the
Planck explorer mission: the m�CDM scenario (as well as
any of its nonminimal extensions) can be analyzed by
studying the one- and two-point statistics of the tempera-
ture maps.

The original spirit of our endeavors has been, also in the
past, to bring the treatment of magnetized CMB anisotro-
pies to the same standards typical of the conventional case.
At the moment, a number of preparatory tasks for the
forthcoming Planck experiment has been completed. The
fulfilled tasks permit, at the moment, explicit and accurate
calculations of the effects of predecoupling magnetic fields
on the various CMB observables within a faithful dynami-
cal framework.

There are other intriguing physical problems which are
linked to the ones we discussed in this paper. An example
along this line is already apparent from the scaling prop-
erties (with frequency) of the temperature and polarization
autocorrelations which has been suggested, in this paper, as
a model-independent diagnostic of magnetized birefrin-
gence. It is here important to stress that the experimenters
will have to apply a mask selecting those regions with low
contamination of Faraday rotation due not to the predecou-
pling magnetic field but rather to the galactic magnetic

field. It seems that here there will be, in the months to
come, a rather interesting interplay between the latter
problem and the recent findings of cosmic ray experi-
ments28 as far as the properties of the large-scale magnetic
fields in the local Universe are concerned. This problem,
for the reasons mentioned above, is also rather interesting
to us [82].
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APPENDIX A: VLASOV-LANDAU EQUATION IN
CURVED SPACE-TIME

The Vlasov-Landau equation for charged species is
rarely written in the presence of relativistic fluctuations
of the geometry. In this Appendix the Vlasov-Landau
approach [86,87] (see also [88]) will be derived in curved
space-time29 for a generic species which we will take to be
positively charged. The extension to negatively charged
species is trivial.
In a curved background, the best pivot variables for the

Vlasov-Landau approach are the comoving three-momenta
(very much as it happens in the case of the conventional
Boltzmann equation which is implemented in standard
Boltzmann solvers). In the present case the main difference
is that the geodesic of a charged species is affected by the
electromagnetic fields. Consider, to begin with, the con-
jugate momenta P and their mass-shell condition for a
generic (massive) species:

P ¼ mu ¼ m
dx

d�
; g�P

P� ¼ m2; (A1)

where u is the four-velocity of the generic species and
where � denotes, throughout this Appendix, the affine
parameter. The mass-shell condition of Eq. (A1) implies,

28The latest analyses of the AUGER experiment demonstrated a
correlation between the arrival directions of cosmic rays with
energy above 6� 1019 eV and the positions of active galactic
nuclei within 75 Mpc [84]. At smaller energies it has been
convincingly demonstrated [85] that overdensities on windows
of 5 deg radius (and for energies 1017:9 eV<E< 1018:5 eV) are
compatible with an isotropic distribution. Thus, in the highest
energy domain (i.e. energies larger than 60 EeV), cosmic rays
are not appreciably deflected: within a cocoon of 70 Mpc the
intensity of the (uniform) component of the putative magnetic
field should be smaller than the nG. On a theoretical ground, the
existence of much larger magnetic fields (i.e. Oð�GÞ) cannot be
justified already if the correlation scale is of the order of 20 Mpc.
29Even dedicated discussions of kinetic theory in curved space-
times [89] do not address the problem of the Vlasov-Landau
description in curved backgrounds when curvature inhomogene-
ities are simultaneously present. This is one of the aims of the
present Appendix.
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as it has to, g�u
u� ¼ 1. From the second relation of

Eq. (A1) the three-momentum pi can be introduced in
terms of the conjugate momenta as gijP

iPj ¼ �
ijp
ipj.

The comoving three-momentum is then, by definition,
qi ¼ api. According to Eq. (A1) the components of the
conjugate momenta and the components of the comoving
three-momenta are related as

P0 ¼ 1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ q2

q
; P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ q2

q
; (A2)

qi ¼ a2
�

i
j �

hij
2

�
Pj; (A3)

where hij is the metric fluctuation defined in Eq. (2.2). It is

useful to relate the comoving three-momentum related to
the comoving three-velocity ~v which has been used in the
bulk of the paper and which arises naturally in the kinetic
treatment. The relation between ~v and ~u is given by

ui ¼ dxi

d�
¼ u0vi; u0 ¼ d�

d�
¼ �ðvÞ

a
;

�ðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p :

(A4)

Since, by definition, vi ¼ Pi=P0, we shall also have

~v ¼ ~qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2a2

p ; ~q ¼ ma�ðvÞ ~v: (A5)

Having introduced all the relevant variables we can write
the geodesic for charged particles, namely30:

du�

d�
þ ��

�u
u� ¼ e

m
F�u; (A6)

which becomes

d ~v

d�
þH

~v

�2
¼ e

ma�3
ð ~Eþ ~v� ~BÞ; (A7)

du0

d�
þHu0ð1þ v2Þ ¼ e

ma2
~E � ~v; (A8)

where ~E ¼ a2 ~E and ~B ¼ a2 ~B. Concerning Eqs. (A7) and
(A8) two comments are in order:

(i) even if we used rescaled electromagnetic fields, the
evolution equations are not the ones we would have
in flat space-time;

(ii) Eq. (A8) is implied by Eq. (A7) once we recall that,
by definition, u0 ¼ �ðvÞ=a.

The rationale for the first comment is that, of course, the
particles are massive in our case, and the very presence of
the mass breaks Weyl invariance. Notice, however, that by
using the definition of the comoving three-momentum ~q in

terms of the comoving three-velocity ~v [i.e. Eqs. (A5) and
(A7)], can be written as

d ~q

d�
¼ eð ~Eþ ~v� ~BÞ: (A9)

Now, in the ultrarelativistic limit ~v ¼ ~q=j ~qj (and the evo-
lution equations would have the same flat-space-time
form). In the nonrelativistic limit ~v ¼ ~q=ðmaÞ (and con-
formal invariance is now broken). Clearly, in the problem
addressed in the present paper the electrons and the ions
are always nonrelativistic throughout all the stages of
calculation. Recalling that, to first order in the synchronous
fluctuations of the geometry,

�0
ij ¼ H
ij � 1

2ðh0ij þ 2HhijÞ; �j
i0 ¼ H
j

i � 1
2h

j0
i ;

(A10)

Equation (A9) gets modified as

dqi

d�
¼ eðEi þ �kjivkBjÞ þ qj

2
hi0j ;

qi ¼ mavj�ðvÞ
�

i
j �

hij
2

�
:

(A11)

The Vlasov-Landau equation can then be written as

@f

@�
þ vi @f

@xi
þ

�hi0j
2
qj þ eðEi þ �kjivkBjÞ

�
@f

@qi
¼ Ccoll:

(A12)

By taking the integrals of the right-hand and of the left-
hand sides of Eq. (A12) we do obtain the canonical form of
the continuity equation

@n

@�
þ ~r � ðn ~vÞ � h0

2
n ¼ 0; (A13)

where we assumed that the massive species are nonrelativ-
istic. The result of Eq. (A13) can easily be obtained using
integration by parts exactly as in the flat-space analog [1].
Notice, indeed, that the integral of the collision term over
the velocity vanishes and that the derivative of the Lorentz
force upon the velocity also vanishes. Equation (A13) can
be obtained directly from the covariant conservation of the
current, i.e.

r�j
� ¼ 0; j� ¼ e~nu� (A14)

by recalling that r�j
� ¼ @�j

� þ ��
�j and that n ¼

a3~n. Neglecting hij Eq. (A12) can be written, in the non-

relativistic limit, as

@f

@�
þ ~v

@f

@~x
þ e

ma
ð ~Eþ ~v� ~BÞ @f

@ ~v
¼ Ccoll: (A15)

Equation (A15) describes, for instance, the evolution of the
electrons and ions prior to equality and throughout decou-
pling. In this case the equilibrium distribution will be
Maxwellian. At the same time Eq. (A12) has been deduced

30We will consider, for sake of concreteness, the case of a
particle with charge þe and mass m.
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without specifying the equilibrium distribution and it can
then be applied in more general terms. Consider, indeed,
the situation of massless neutrinos. From Eq. (A12) setting
~E ¼ 0 and ~B ¼ 0 we get

@f

@�
þ dxi

d�

@f

@xi
þ h0ij

qiqj

2q

@f

@q
¼ 0: (A16)

For a massless particle g�P
P� ¼ 0, xi ¼ �ni, and qi ¼

niq. Thus, Eq. (A16) can be written as

@f

@�
þ ni

@f

@xi
þ 1

2
h0ijninj

@f

@ lnq
¼ 0: (A17)

By perturbing Eq. (A17) to first order in the metric inho-

mogeneities [around a Fermi-Dirac distribution fð0ÞðqÞ] we
obtain

@fð1Þ

@�
þ ik�fð1Þ þ

�
�2

2
ðh0 þ 6�0Þ � �0

�
@fð0Þ

@ lnq
¼ 0;

(A18)

where � ¼ k̂ � n̂ and the fluctuation of f has been defined

as fðq; k;�; �Þ ¼ fð0ÞðqÞ½1þ fð1Þðk;�; �Þ�. By now defin-
ing the reduced phase space distribution for the neutrinos,
i.e.

F 	ðk;�; �Þ ¼
R
q3dqfð0ÞðqÞfð1Þðk;�; �ÞR

q3fð0ÞðqÞdq ; (A19)

we can easily obtain the result reported in Eq. (3.25). The
quantity F 	ðk;�; �Þ is the one usually expanded in the
Rayleigh series,

F 	ðk;�; �Þ ¼ X
‘

ð�iÞ‘F 	‘ðk; �ÞP‘ð�Þ; (A20)

where F 	‘ are the multipole moments. In the present
discussion, the initial conditions of the neutrino hierarchy
are set by solving for the lowest multipoles, i.e. monopole,
dipole, and quadrupole [24].

APPENDIX B: MAGNETIZED ADIABATIC MODE

As discussed in the bulk of the paper, the initial con-
ditions for the full Boltzmann hierarchy are given well
before equality, i.e. in a regime where the ions, the elec-
trons, and the photons are all coupled together for different
physical reasons. Given the largeness of the Coulomb and
Thompson rates in Hubble units, it is practical to set initial
conditions for the MHD fluid (i.e. the baryon fluid in the
conventional terminology). The structure of the magne-
tized adiabatic mode has been derived, in the synchronous
gauge, in Ref. [24]. Previous analyses in different gauges
can be found in [19–21] and also in [50] (also in the
synchronous gauge). The magnetized adiabatic mode is
here reported for completeness:

�ðk; �Þ ¼ �2CðkÞ þ
�

4R	 þ 5

6ð4R	 þ 15ÞCðkÞ

þ R�ð4�BðkÞ � R	�BðkÞÞ
6ð4R	 þ 15Þ

�
k2�2; (B1)

hðk; �Þ ¼ �CðkÞk2�2 � 1

36

�
8R2

	 � 14R	 � 75

ð2R	 þ 25Þð4R	 þ 15ÞCðkÞ

þ R�ð15� 20R	Þ
10ð4R	 þ 15Þð2R	 þ 25Þ ðR	�BðkÞ

� 4�BðkÞÞ
�
k4�4; (B2)


�ðk; �Þ ¼ �R��BðkÞ � 2

3

�
CðkÞ � �BðkÞ

þ R	

4
�BðkÞ

�
k2�2; (B3)


	ðk; �Þ ¼ �R��BðkÞ � 2

3

�
CðkÞ þ R�

4R	

ð4�BðkÞ

� R	�BðkÞÞ
�
k2�2; (B4)


cðk; �Þ ¼ � 3

4
R��BðkÞ � CðkÞ

2
k2�2; (B5)


bðk; �Þ ¼ � 3

4
R��BðkÞ � 1

2

�
CðkÞ � �BðkÞ

þ R	

4
�BðkÞ

�
k2�2; (B6)

��bðk; �Þ ¼
�
R	

4
�BðkÞ � �B

�
k2�� 1

36

�
2CðkÞ

þ R	�BðkÞ � 4�BðkÞ
2

�
k4�3; (B7)

�	ðk; �Þ ¼
�
R�

R	

�BðkÞ �
R�

4
�BðkÞ

�
k2�

� 1

36

�
2ð4R	 þ 23Þ
4R	 þ 15

CðkÞ þ R�ð4R	 þ 27Þ
2R	ð4R	 þ 15Þ

� ð4�BðkÞ � R	�BðkÞÞ
�
k4�3; (B8)

�cðk; �Þ ¼ 0; (B9)

�	ðk; �Þ ¼ �R�

R	

�BðkÞ þ
�

4CðkÞ
3ð4R	 þ 15Þ

þ R�ð4�BðkÞ � R	�BÞ
2R	ð4R	 þ 15Þ

�
k2�2: (B10)

Note that, as thoroughly discussed in [24,25] the curvature
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fluctuations on comoving orthogonal hypersurfaces can be
simply expressed in terms of � as

R ¼ �þ H�0

H 2 �H 0 : (B11)

The power spectra of curvature inhomogeneities will be
assigned as

hRð ~kÞRð ~pÞi ¼ 2�2

k3
PRðkÞ
ð3Þð ~k� ~pÞ; (B12)

i.e. in full agreement with the way the magnetic power
spectra have been assigned in Eq. (3.29). The two-point
function of Eq. (3.29) is completely specified only if the
magnetic power spectrum is given in explicit terms. We
will choose both for the power spectrum of curvature
perturbations and for the magnetic power spectrum the
following power-law parametrization:

P RðkÞ ¼ AR

�
k

kp

�
ns�1

; PBðkÞ ¼ AB

�
k

kL

�
nB�1

;

(B13)

where kp and kL are the two pivot scales, ns and nB are the

two spectral indices. In the conventional �CDM scenario
the amplitude of curvature perturbations is customarily
given in terms of AR which is, by definition, the ampli-
tude of the power spectrum evaluated at the pivot scale kp.

In the case of the magnetic fields we will assign not the
amplitude of the magnetic power spectrum but rather the
regularized field. This technical aspect will be recalled in
the following Appendix since it is required in the estimate
of the angular power spectrum of Faraday rotation.

APPENDIX C: POWER SPECTRA OF FARADAY
ROTATION

If the magnetic field is not homogeneous, the Faraday
rotation rate will be, itself, not a homogenous quantity [16].
Here the power spectrum will be computed. This calcula-
tion was also discussed before in the literature (see, in
particular, [39] and also [40]). The notations employed in
the present paper are slightly different due to the fact that
we are presenting here a full calculation of the magnetized
polarization observables. The Faraday rotation rate can be
usefully expanded in ordinary (i.e. scalar) spherical har-
monics:

F ðn̂Þ ¼ X
‘m

f‘mY‘mðn̂Þ: (C1)

Since the geometry is isotropic the ensemble average of the
f‘m must not depend upon m but only upon ‘ and, con-
sequently, on symmetry ground we can expect that

hf	‘mf‘0m0 i ¼ CðFÞ
‘ 
‘‘0
mm0 : (C2)

By using the addition theorem of ordinary spherical har-
monics the two-point function of the Faraday rotation rate

can be written as

hFðn̂ÞFðm̂Þi ¼ X
‘

ð2‘þ 1Þ
4�

CðFÞ
‘ P‘ðn̂ � m̂Þ: (C3)

Equations (C2) and (C3) are only meaningful if CF
‘ is

computed in terms of the magnetic power spectrum. To
achieve this goal it is practical to expand the magnetic field
not in scalar spherical harmonics but rather in vector
spherical harmonics [90,91]. In the latter framework it is
possible to find the vector analog of the well-known
Rayleigh expansion. As thoroughly discussed in [90] this
technique is rather well established both in the study of
electromagnetic processes [90] as well as in nuclear phys-
ics [92]. The vector analog of the Rayleigh expansion can
be written, in the present case, as

~Bð ~kÞe�ik��0 ¼ X
‘m

X


gðÞ‘m ðk; �Þ ~YðÞ
‘m ðn̂Þ; (C4)

where, as usual� ¼ k̂ � n̂. In Eq. (C4)  is the polarization

and ~YðÞ
‘m are the vector spherical harmonics or, for short,

vector harmonics in what follows. They can be written as
[90,91]

~Yð1Þ
‘mðn̂Þ ¼

~rn̂Y‘mðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp ;

~Yð0Þ
‘mðn̂Þ ¼ � iðn̂� ~rn̂ÞY‘mðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð‘þ 1Þp ; ~Yð�1Þ
‘m ¼ n̂Y‘mðn̂Þ;

(C5)

where Y‘mðn̂Þ are the usual spherical harmonics.

Sometimes ~Yð1Þ
‘mðn̂Þ and ~Yð0Þ

‘mðn̂Þ are called, respectively,

the electric and the magnetic multipoles. We shall avoid
this terminology which could be potentially confusing.
Equation (C4) holds for a generic vector, and so we do

know that the magnetic field is transverse and, therefore,
the expansion coefficients are more than needed.
Furthermore, it should be borne in mind that, in the
Faraday rotation rate Fðn̂Þ the magnetic field appears to
be projected over the direction n̂. The two previous obser-
vations immediately demand that

n̂ � ~Yð1Þ
‘mðn̂Þ ¼ n̂ � ~Yð0Þ

‘mðn̂Þ ¼ 0; k̂ � ~Bð ~kÞ ¼ 0: (C6)

As a consequence of Eq. (C6), the multipolar expansion of
Eq. (C4) simplifies as

n̂ � ~Bð ~kÞe�ik��0 ¼ X
‘m

g‘mðk;�Þn̂ � ~Yð�1Þ
‘m ðn̂Þ; (C7)

where g‘mðk;�Þ in Eq. (C7) is the only nonvanishing
coefficient of the multipolar expansion and it is given by
[91]
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g‘mðk;�Þ ¼ 4�ð�iÞ‘�1

2‘þ 1
f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp ½j‘þ1ðk�0Þþ j‘�1ðk�0Þ�

� ~Bð ~kÞ � ~Yð1Þ	
‘m ðk̂Þ� ½ð‘þ 1Þj‘þ1ðk�0Þ

� ‘j‘�1ðk�0Þ� ~Bð ~kÞ � ~Yð�1Þ	
‘m ðk̂Þg: (C8)

Once more, the magnetic field is transverse [see, e.g.,

Eq. (C6)]. Thus, since ~Yð�1Þ	
‘m ðk̂Þ is proportional to k̂, the

last term in Eq. (C8) is identically zero. Recalling the well-
known recurrence relations of (spherical) Bessel functions
[93,94],

j‘þ1ðk�0Þ þ j‘�1ðk�0Þ ¼ 2‘þ 1

k�0
j‘ðk�0Þ; (C9)

Eq. (C7) becomes

n̂ � ~Bð ~kÞe�ik��0 ¼ 4�
X
‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp j‘ðk�0Þ

k�0
~Bð ~kÞ � ~Yð1Þ	

‘m ðk̂Þ:

(C10)

From the result of Eq. (C10) the f‘m of Eqs. (C1) and (C2)
can be swiftly determined and they are

f‘m ¼ 4�ð�iÞ‘�1

ð2�Þ3=2 A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p Z
d3k

j‘ðk�0Þ
k�0

� ~Bð ~kÞ � ~Yð1Þ
‘mðk̂Þ: (C11)

Using Eq. (3.29) together with the orthonormality condi-
tion of vector harmonics, i.e.

Z
d�k̂

~Yð1Þ
‘mðk̂Þ ~Yð1Þ	

‘0m0 ðk̂Þ ¼ 
‘‘0
mm0 ; (C12)

the angular power spectrum of Faraday rotation can be
simply expressed as

CðFÞ
‘ ¼ 4�A2‘ð‘þ 1Þ

Z dk

k
P BðkÞ j

2
‘ðk�0Þ
k2�20

: (C13)

Since, by definition,

j‘ðk�0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
�

2k�0

s
J‘þ1=2ðk�0Þ; P BðkÞ ¼ AB

�
k

kL

�
nB�1

;

(C14)

Eq. (C13) can also be written as

CðFÞ
‘ ¼ 2�2‘ð‘þ 1ÞA2AB

�
k0
kL

�
nB�1

IðnB; ‘Þ; (C15)

I ðnB; ‘Þ ¼
Z 1

0
xnB�5
0 J2‘þ1=2ðx0Þ

¼ 1

2
ffiffiffiffi
�

p �ð5�nB
2 Þ�ð‘þ nB

2 � 3
2Þ

�ð6�nB
2 Þ�ð72 þ ‘� nB

2 Þ
; (C16)

where we used that x0 ¼ k�0 and that k0 ¼ ��1
0 . Note that

the integral of Eq. (C16) converges for �1< nB < 5 so
there is no need of an ultraviolet cutoff.31 To make the
expressions even more explicit we will adopt the following
strategy:
(i) first we will trade AB for the regularized magnetic

field intensity BL;
(ii) and second we will refer the frequency of the chan-

nel 	 to the frequency of the maximum of the CMB
emission.

Complying with the first step we have that

AB ¼ ð2�ÞnB�1

�ðnB�1
2 Þ B2

L; nB > 1; (C17)

AB ¼ 1� nB
2

�
k0
kL

�
1�nB

B2
L; nB < 1: (C18)

Equation (C17) adopts a Gaussian window function, while
Eq. (C18) is derived by using a step function regularization
cutting, effectively, all the modes with k < k0 [24].
The maximum of the CMB emission can be easily

derived by maximizing the energy spectrum of the CMB,
i.e.

��ðxÞ ¼ 1

�c

d��

d lnk
¼ 15

�4
��0

x4

ex � 1
;

��0 ¼ 2:47� 10�5;
(C19)

where x ¼ k=T�0. By taking the derivative of ��ðxÞ we
can find the maximum:

d��

dx
¼ � 15

�4
��0

x3½4exðx� 4Þ�
ðex � 1Þ ¼ 0; xmax ¼ 3:920:

(C20)

From Eq. (C20) we do have that

	max ¼ xmax

2�
T�0 ¼ 222:617 GHz: (C21)

Consequently, the final formulas for CðFÞ
‘ can be expressed

as

CðFÞ
‘ ¼ �CZðFÞ

‘ ðnBÞ; nB > 1; (C22)

31This is also what happens, for instance, in the case of the
explicit calculation of the Sachs-Wolfe plateau where a cutoff is
not usually imposed because the integral is convergent in the
physical range of spectral indices.
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CðFÞ
‘ ¼ �C �ZðFÞ

‘ ðnBÞ; nB < 1; (C23)

where �C, ZðFÞ
‘ ðnBÞ and �ZðFÞ

‘ ðnBÞ turn out to be

�C ¼ 3�9=2

10e2
x�4
max

��BL

�
	

	max

��4 ¼ 30:03 ��BL

�
	

	max

��4
;

��BL ¼ B2
L

8� ���

; (C24)

Z ðFÞ
‘ ðnBÞ ¼

�
k0
kL

�
nB�1 ‘ð‘þ 1Þð2�ÞnB�1

�ðnB�1
2 Þ

� �ð5�nB
2 Þ�ð‘þ nB

2 � 3
2Þ

�ð6�nB
2 Þ�ð72 þ ‘� nB

2 Þ
; (C25)

�Z ðFÞ
‘ ðnBÞ ¼

�
1� nB

2

�
‘ð‘þ 1Þ�ð5�nB

2 Þ�ð‘þ nB
2 � 3

2Þ
�ð6�nB

2 Þ�ð72 þ ‘� nB
2 Þ

;

(C26)

CðBBÞ
‘ ¼ N2

‘

X
‘1;‘2

N2
‘2
Kð‘; ‘1; ‘2Þ2

� ð2‘1 þ 1Þð2‘2 þ 1Þ
4�ð2‘þ 1Þ CðEEÞ

‘2
CðFÞ
‘1
½C‘0‘10‘20�2; (C27)

where

Kð‘; ‘1; ‘2Þ ¼ �1
2½L2 þ L2

1 þ L2
2 � 2L1L2 � 2L1L

þ 2L1 � 2L2 � 2L�; (C28)

L¼ ð‘þ 1Þ‘; L1 ¼ ð‘1 þ 1Þ‘1; L2 ¼ ð‘2 þ 1Þ‘2;
(C29)

N‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘� 2Þ!
ð‘þ 2Þ!

s
; N‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘2 � 2Þ!
ð‘2 þ 2Þ!

s
: (C30)

In Eq. (C28) C‘0‘10‘20 is given by

C‘0‘10‘20 ¼ 0; ‘þ ‘1 þ ‘2 ¼ 2nþ 1;

C‘0‘10‘20 ¼
ð�1Þn�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

p
n!

ðn� ‘1Þ!ðn� ‘2Þ!ðn� ‘Þ!

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n� 2‘1Þ!ð2n� 2‘2Þ!ð2n� 2‘Þ!

ð2nþ 1Þ!

s
;

‘þ ‘1 þ ‘2 ¼ 2n;

where n is a positive integer. This form of the relevant
Clebsch-Gordon coefficient is given by [91] (see, in par-
ticular, p. 251) and it has also been used in [40] where
Eq. (C27) has been first derived. The Clebsch-Gordon
coefficient of the previous equation then vanishes unless
j‘1 � ‘2j � ‘ < ‘1 þ ‘2 (triangle inequality) and unless
‘1 þ ‘2 þ ‘ is an even integer. In the two degenerate cases
(i.e. ‘ ¼ ‘1 þ ‘2 and ‘ ¼ ‘1 � ‘2) the expressions be-
come, respectively,

C‘1þ‘20
‘10‘20

¼ ð‘1 þ ‘2Þ!
‘1!‘2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1Þ!ð2‘2Þ!
ð2‘1 þ 2‘2Þ!

s
;

C‘1�‘20
‘10‘20

¼ ð�1Þ‘2 ‘1!

‘2!ð‘1 � ‘2Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1Þ!ð2‘1 � 2‘2 þ 1Þ

ð2‘1 þ 1Þ!

s
:

It should be borne in mind that, for some applications, it
useful to deal directly with the amplitude of the magnetic
power spectrum AB. Following the conventions expressed
by Eq. (3.29), AB has dimensions of an energy density. In
terms of AB we shall then have

CF
‘ ¼ �C0‘ð‘þ 1Þ�ð

5�nB
2 Þ�ð‘þ nB

2 � 3
2Þ

�ð6�nB
2 Þ�ð72 þ ‘� nB

2 Þ
�
k0
kL

�
nB�1

;

�C0 ¼ 2:863� 10�6

� ffiffiffiffiffiffi
AB

p
nG

�
2
�
	max

�	

�
4
:

(C31)

In terms of the parametrization introduced in Eqs. (3.29)
and (B13) it is clear that AB has exactly the dimensions of a
magnetic energy density.
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