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We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited

by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a

cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of

temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave

detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times

smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and

Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large

showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the

probability of exotic-particle detection with interferometers.
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I. INTRODUCTION

Recent improvements of the sensitivity and operational
stability of gravitational wave detectors is remarkable.
Observation runs have already been performed in several
interferometer (LIGO [1], VIRGO [2], GEO [3], TAMA
[4], CLIO [5]) and resonator (ALLEGRO [6], EXPLORER
[7], NAUTILUS [8], AURIGA [9], NIOBE [10], MARIO
SCHENBERG [11]) projects. In order of gravitational
wave detection, the reduction of noise and fake triggers
is crucial, since the gravitational wave amplitude and
number of events are expected to be small and rare. In
1969, it was pointed out that cosmic-ray particles could
cause fake triggers in resonators [12]. The interpretation of
excitations of resonators by cosmic-ray particles is as
follows. The heat energy deposited by cosmic-ray particle
passages induces temperature gradients around their
tracks, and thermal stress excites internal vibrations of
the resonator. These phenomena have been investigated,
for example, observations of excited resonator vibrations
by beams from accelerators [13,14], simultaneous detec-
tion of resonator excitation and cosmic-ray particles [15],
and studies of exotic events in superconductive resonators
[16–18]. In some research, resonators were also operated
and treated as exotic-particle detectors [19–22]. These
studies suggest that cosmic-ray heating is a possible noise
source in interferometric detectors [23–26] (other effects

on interferometers, the momentum and electrical charge
brought by cosmic-ray particles, are discussed in
Refs. [23–25,27]).
We investigated details of this effect by cosmic-ray

energy deposition in interferometers. A formula that de-
scribes the response of a mirror against a cosmic-ray
passage was derived. This formula reveals differences
between the cosmic-ray responses of interferometers and
resonators. We used it to evaluate the amplitude of vibra-
tions caused by cosmic-ray particles in typical cases of
interferometers and examined the effect in gravitational
wave detection. We also considered the probability of
exotic-particle detection with interferometers.

II. FORMULA OF EXCITED MOTION BYA
COSMIC-RAY PARTICLE

A. Outline of derivation of the formula

In order to simplify the discussion, the mirror vibration
excited by a cosmic-ray particle is investigated. Avibration
excited by many particles, like a shower, is a superposition
of that by one particle. The excitation by a particle is
considered under the following assumptions. The particle
goes straight and never stops in the mirror. Its speed is
faster than that of sound in the mirror. A long and narrow
heated volume appears at the instant of particle passage.
The heat-conduction equation is solved in order to cal-

culate the time evolution of the temperature gradient. The
vibration of the mirror is examined using the equation of
motion of an elastic body with thermal stress, which is
proportional to the thermal gradient.
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B. Formula

Since the heated volume is smaller than that of the
mirror, itself [28,29], the mirror and the initial heated
volume are treated as an infinite body and a line, respec-
tively. The direction of the cosmic-ray track is taken as the
z axis. The heat-conduction equation is described as [30]

@

@t
�T � �

�C
�ð�TÞ ¼ 1

�C

dE

dl
�ðxÞ�ðyÞ�ðtÞ; (1)

where �T is the temperature difference caused by a
cosmic-ray particle. The quantities �, �, C, and dE=dl
are the thermal conductivity, density, specific heat per
unit mass, and energy loss of a particle per unit length,
respectively. The solution is described as [31]

�T ¼ 1

4��t

dE

dl
exp

�
� �C

4�t
ðx2 þ y2Þ

�
: (2)

The radius of the heated volume increases with time due to
conduction. The time when the heated area radius becomes
a is

�a ¼ �Ca2

4�
: (3)

The equation of motion of an elastic body with thermal
stress is described as [30]

�
@2u

@t2
� Y

2ð1þ �Þ�u� Y

2ð1þ �Þð1� 2�Þ grad divu

¼ � Y�

1� 2�
div�T; (4)

where u represents the displacement of a volume element
in the elastic body. The quantities Y, �, and � are Young’s
modulus, the Poisson ratio, and the linear thermal-
expansion coefficient, respectively. By substituting
Eq. (2) for Eq. (4), we obtain the output of a interferometer
X,

X ¼
Z
surface

uoptðrÞPðrÞdS; (5)

where uopt is the optical axis component of u and P is the

intensity profile of the laser beam,

PðrÞ ¼ 2

�r20
exp

�
� 2r2

r20

�
: (6)

The quantities r and r0 are the distance from the optical
axis and the beam radius. We employ the modal expansion
method [32–34] to calculate u and X. In this method, u and
X are represented by a superposition of the resonant mode
displacement,

u ðr; tÞ ¼ X
n

wnðrÞqnðtÞ; (7)

XðtÞ ¼ X
n

qnðtÞ; (8)

where wn and qn represent the displacement and time
development of the nth resonant mode, respectively.
These basis functions are normalized to satisfy a condition
[33,34], Z

surface
wn;optðrÞPðrÞdS ¼ 1; (9)

where wn;opt is the optical axis component of wn. The

equation of motion of each mode is the same as that of a
harmonic oscillator,

�mn!
2~qnð!Þ þmn!

2
n½1þ i�nð!Þ�~qnð!Þ ¼ ~Fnð!Þ;

(10)

in the frequency domain. The quantity�n is the loss angle,
which represents dissipation of the nth mode [32]. The
force Fn applied on the nth mode is related to the thermal
stress. The quantitiesmn and!n are the effective mass and
the resonant angular frequency [33,34]. The effective mass
is defined as

mn ¼
Z
volume

�wnðrÞ � wnðrÞdV: (11)

The quantities ~qnð!Þ and ~Fnð!Þ are the Fourier compo-
nents of qn and Fn, respectively,

~Xð!Þ ¼ 1

2�

Z 1

�1
XðtÞ expð�i!tÞdt; (12)

XðtÞ ¼
Z 1

�1
~Xð!Þ expði!tÞd!: (13)

The force Fn is obtained from the modal decomposition
of the thermal stress on the right-hand side of Eq. (4). The
decomposition procedure [33,34] is as follows. The
thermal-stress term is multiplied by wn. The integral of
this inner product over all the volume is Fn. This force Fn

decreases after the heated volume scale, a, becomes larger
than the nth mode wavelength. In order to simplify the
discussion, it is assumed that the time evolution of Fn

[19,35] is expressed as

FnðtÞ ¼
�
Fnð0Þ expð� t

�n
Þ ðt > 0Þ

0 ðt < 0Þ: (14)

The quantities Fnð0Þ and �n are the initial value and the
decay time of the force, respectively. The initial value
Fnð0Þ is written as [20,36]

Fnð0Þ ¼ Y�

1–2�

1

�C

�Z
divwndl

�
dE

dl
: (15)

The integral along the cosmic-ray track represents the
coupling between the thermal stress and the nth mode.
The coefficient 1=ð�CÞ is a factor used to transform the
heat energy into the temperature gradient. The force Fn is
described as a product of the temperature gradient and
Y�=ð1–2�Þ. From Eq. (3), the time �n when the heated
volume radius becomes comparable to the wavelength of
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the nth mode is expressed as

�n ¼ �C	2
n

4�
¼ �2�Cv2

�!2
n

� �2YC

�!2
n

: (16)

The quantities 	n and v are the wavelength and sound
velocity:

	n ¼ 2�v

!n

; (17)

v�
ffiffiffiffi
Y

�

s
: (18)

The Fourier component of Fn in Eq. (14) is written in the
form

~F nð!Þ ¼ Fnð0Þ
2�

�n
1þ i!�n

: (19)

We now write down the formula of the mirror vibration
excited by a cosmic-ray particle using Eqs. (8), (10), (15),
and (19):

~Xð!Þ ¼ X
n

~qnð!Þ

¼ X
n

~Fnð!Þ
�mn!

2 þmn!
2
nð1þ i�nÞ

¼ 1

2�

Y�

1–2�

1

�C

dE

dl

�X
n

1

�mn!
2 þmn!

2
nð1þ i�nÞ

�n
1þ i!�n

�
�Z

divwndl

�
: (20)

C. Frequency dependence of the formula

A schematic view of the frequency dependence of the
modes ~qnð!Þ in Eq. (20) is shown in Fig. 1. Here, we
discuss the frequency dependence below the resonant fre-
quencies of the mirrors, because the observation band of
interferometers (around 100 Hz) is below the fundamental
mode (the order of 10 kHz). The cut-off frequency
1=ð2��nÞ is extremely smaller than the resonant frequency
!n=ð2�Þ, as shown in Fig. 1, because sound is generally
faster than heat conduction. The absolute value j~qnð!Þj is
inversely proportional to the frequency between 1=ð2��nÞ
and !n=ð2�Þ. Below the cut-off frequency, 1=ð2��nÞ,
j~qnð!Þj is constant.

The frequency dependence of ~Xð!Þ ¼ P
~qnð!Þ is as

follows. The ‘‘highest’’ mode in Fig. 1 is that with a
wavelength comparable to the beam radius r0 and contri-
butions of higher modes are negligible in the summation of
Eq. (20) [37,38]. The thermal relaxation time �r0 for this

highest mode is described as

�r0 ¼
�Cr20
4�

(21)

from Eq. (16). The cut-off frequency of the highest mode
1=ð2��r0Þ is smaller than the fundamental mode resonant

frequency!1=ð2�Þ in general, as shown in Fig. 1. The cut-
off frequency 1=ð2��nÞ of the lower mode is smaller from
Eq. (16). In the range between 1=ð2��r0Þ and!1=ð2�Þ (the
‘‘high’’ frequency region in Fig. 1), j ~Xð!Þj ¼ jP ~qnð!Þj is
inversely proportional to the frequency. Below the cut-off
frequency of the fundamental mode, 1=ð2��1Þ (the ‘‘low’’
frequency region in Fig. 1), j ~Xð!Þj is independent of the
frequency. From Eq. (16), the relaxation time �1 is de-
scribed as

�1 ¼ �C	2
1

4�
¼ �CR2

�
; (22)

because the wavelength of the fundamental mode 	1 is
comparable to the mirror diameter 2R.
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FIG. 1 (color online). A schematic view of the frequency
dependence of the Fourier components of mode motion excited
by a cosmic-ray particle ~qnð!Þ in Eq. (20). The absolute value
j~qnð!Þj is inversely proportional to the frequency between
1=ð2��nÞ and !n=ð2�Þ. Below the cut-off frequency
1=ð2��nÞ, it is constant. The highest mode is that with a
wavelength comparable to the beam radius r0 and contributions
of higher modes are negligible in the summation of Eq. (20)
[37,38]. The cut-off frequency of the highest mode 1=ð2��r0 Þ is
smaller than the fundamental mode resonant frequency !1=ð2�Þ
in general. The cut-off frequency 1=ð2��nÞ of the lower mode is
smaller. In the range between 1=ð2��r0 Þ and !1=ð2�Þ (the

high-frequency region in this graph), j ~Xð!Þj ¼ jP ~qnð!Þj is
inversely proportional to the frequency. Below the cut-off fre-
quency of the fundamental mode 1=ð2��1Þ (the low-frequency
region in this graph), j ~Xð!Þj is independent of the frequency.
The approximation formulas in the high and low frequency
regions, Eqs. (30) and (34), are derived using Eq. (20).
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The typical values of j ~Xð!Þj in the high and low fre-
quency regions of Fig. 1 are evaluated using Eq. (20). In the
high frequency region 1=ð2��r0Þ< f <!1=ð2�Þ it is ap-
proximated as (j�nj � 1 in usual cases)

j ~Xð!Þj � 1

2�

Y�

1� 2�

1

�C

dE

dl

1

!

��������
X
n

1

mn!
2
n

Z
divwndl

��������;
1=ð2��r0Þ< f <!1=ð2�Þ: (23)

The sign of the integral in Eq. (23) depends on the modes.
The typical absolute value of the summation in Eq. (23) is
evaluated as the square root of a summation of squares of
the terms. Equation (23) is rewritten as

j ~Xð!Þj � 1

2�

Y�

1� 2�

1

�C

dE

dl

1

!

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

1

m2
n!

4
n

�Z
divwndl

�
2

s
;

1=ð2��r0Þ< f <!1=ð2�Þ:

(24)

The integral along the cosmic-ray track in Eq. (24) is
evaluated as follows. The average of the length of the
cosmic-ray track is comparable to the radius of the mirror
R. The average of jwnj2, hjwnj2i, is related to Eq. (11),

mn ¼
Z

�jwnj2dV ¼ Mhjwnj2i; (25)

where M is the mass of the mirror. This equation gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjwnj2i

q
¼

ffiffiffiffiffiffiffi
mn

M

r
: (26)

The divergence of wn in Eq. (24) can be represented by the
product of wn and the wave number !n=v, because wn is
the basis of the solution of the wave equation.
Consequently, Eq. (24) is described as

j ~Xð!Þj � 1

2�

Y�

1� 2�

1

�C

dE

dl

R

v
ffiffiffiffiffi
M

p 1

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

1

mn!
2
n

s
;

1=ð2��r0Þ< f <!1=ð2�Þ:
(27)

The summation in Eq. (27) is the same as the response of a
mirror against a static force [39,40],

X
n

1

mn!
2
n

¼ 1� �2ffiffiffiffi
�

p
Yr0

: (28)

In order to simplify the discussion, the relation

M ¼ ��R3 (29)

is assumed. The radius of the mirror R is nearly equal to its
thickness H in usual cases of interferometric gravitational
wave detectors. Using Eqs. (18), (28), and (29), Eq. (27) is
written in the form

j ~Xð!Þj � 1

2�7=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

1� 2�

1

�C

dE

dl

1ffiffiffiffiffiffiffiffi
Rr0

p 1

!
;

1=ð2��r0Þ< f <!1=ð2�Þ:
(30)

Equation (20) in the low frequency band of Fig. 1 is
evaluated in the same manner as in the previous paragraph.
Using Eq. (16), the result is written as

j ~Xð!Þj � 1

2�

Y�

1� 2�

1

�C

dE

dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

�2n
m2

n!
4
n

�Z
divwndl

�
2

vuut

�
ffiffiffiffi
�

p
2

Y3=2�

1� 2�

1

��

dE

dl

1ffiffiffiffi
R

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

1

mn!
6
n

s
;

f < 1=ð2��1Þ: (31)

It can be seen that only the fundamental mode is dominant,
because of the frequency dependence of !n

6. The quanti-
ties of this mode are as follows [20,37]:

m1 �M

2
� ��R3

2
; (32)

!1 � �

H

ffiffiffiffi
Y

�

s
� �

R

ffiffiffiffi
Y

�

s
: (33)

Equation (31) is expressed as

j ~Xð!Þj � 1ffiffiffi
2

p
�3

�

1–2�

1

�

dE

dl
R; f < 1=ð2��1Þ: (34)

D. Formula in time domain

Here, we discuss the excitation formula Eq. (20) in the
time domain. Only a contribution of the nth mode is
considered in order to simplify the discussion. If the
Qvalue, Qn ¼ 1=�nð!nÞ, is larger than unity and 1=�n is
smaller than!n, qn in the time domain (t > 0) is written in
a form

qnðtÞ � Fnð0Þ
mn!

2
n

exp

�
� t

�n

�
� Fnð0Þ

mn!
2
n

cosð!ntÞ exp
�
� !nt

2Qn

�
:

(35)

Figure 2 shows the fundamental mode q1 in the time
domain.
The second term in Eq. (35) is dominated by ~Xð!Þ near

the resonant frequency. This is the excited resonant vibra-
tion and its decay. The outputs of resonant detectors are
described with this term. The first term in Eq. (35) repre-
sents the drift of the center of the resonant vibration caused
by the relaxation of thermal stress. This is dominated by
~Xð!Þ below the fundamental mode. The outputs of inter-
ferometric detectors are described with this term.
The initial amplitude of

P
n2Fnð0Þ=ðmn!

2
nÞ is evaluated

as Eq. (30),
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X
n

2Fnð0Þ
mn!

2
n

¼ 2

�3=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

1� 2�

1

�C

dE

dl

1ffiffiffiffiffiffiffiffi
Rr0

p

¼ 6:4� 10�21 m

�
�

5� 10�6=K

��
1

2:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

1–2�

�

�
�
7:9� 102 J=kg=K

C

�

�
�

1

2 MeV=ðg cm�2Þ
1

�

dE

dl

��
25 cm

2R

�
1=2

�
�
3 cm

r0

�
1=2

: (36)

Here, we consider a sapphire mirror at room temperature.

III. DISCUSSION ABOUT THE FORMULA

A. Effect on low-temperature interferometers

In some future projects using interferometric detectors
as LCGT (Large-scale Cryogenic Gravitational wave
Telescope) [41] and ET (Einstein Telescope) [42], mirrors
will be cooled in order to reduce the thermal noise (for
example, LCGT mirrors at 20 K). In quantities of the force
Fn, which is related to the thermal stress, �, C, and � in
Eqs. (15) and (16) strongly depend on the temperature [43].
The initial value of the force, Fnð0Þ in Eq. (15), is propor-
tional to �=C. The decay time of the force, �n in Eq. (16),
is proportional to C=�. The Grüneisen relation [44] pre-
dicts that the ratio �=C is independent of the temperature.
The initial force Fnð0Þ and the initial amplitude of
the excited vibration do not depend on temperature. On
the contrary, in the case of crystals, the decay time, �n

( / C=�), of the first term in Eq. (35) is extremely short at
the cryogenic temperature, because of the small C and
large �. The cut-off frequency 1=ð2��nÞ in the low-
temperature region is higher than that at room temperature
(see e.g. Ref. [26]). For example, the cut-off frequencies of
sapphire at room temperature, obtained from Eqs. (21) and
(22), are

1

2��1
¼ 0:13 mHz

�
4 g=cm3

�

��
7:9� 102 J=kg=K

C

�

�
�
25 cm

2R

�
2
�

�

40 W=m=K

�
; (37)

1

2��r0
¼ 9:0 mHz

�
4 g=cm3

�

��
7:9� 102 J=kg=K

C

�

�
�
3 cm

r0

�
2
�

�

40 W=m=K

�
: (38)

The values at 20 K are

1

2��1
¼ 58 Hz

�
4 g=cm3

�

��
0:69 J=kg=K

C

��
25 cm

2R

�
2

�
�

�

1:6� 104 W=m=K

�
; (39)

1

2��r0
¼ 4:0 kHz

�
4 g=cm3

�

��
0:69 J=kg=K

C

��
3 cm

r0

�
2

�
�

�

1:6� 104 W=m=K

�
: (40)

At low temperature, the cut-off frequencies are near the
observation band of gravitational wave detectors (around
100 Hz). The high frequency approximation of j ~Xð!Þj in
Eq. (30) is only appropriate for room-temperature interfer-
ometers and not valid for cryogenic interferometers. In
order to show the effect of the cooling mirrors, j~q1ð!Þj
of a sapphire mirror at 300 K and 20 K are plotted in Fig. 3.
In the low frequency region, ~Xð!Þ becomes much smaller
due to cooling. The low frequency approximation of
j ~Xð!Þj in Eq. (34) is proportional to �=� ¼ �=C� C=� /
C=�, which is small in the low-temperature region. Since
the decay time of the force Fn becomes shorter, it is
difficult to excite the low frequency component. The
Fourier components j~q1ð!Þj in the high frequency region
of Fig. 3 are comparable in the cases of 20 K and 300 K.
The high frequency approximation of j ~Xð!Þj in Eq. (30) is
independent of temperature because it is proportional to
�=C and related to the first term of Eq. (35) at t� 0. From
the cut-off frequencies in Eqs. (39) and (40) and a com-
parison between Eq. (34) at 20 K and Eq. (30), it can be
seen that the vibration of a cooled sapphire mirror excited
by a cosmic-ray particle in the observation band (around
100 Hz) is a few times smaller than that at room tempera-
ture. This is an advantage of cryogenic interferometers in
addition to the suppression of the thermal noise [45–47],
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FIG. 2 (color online). Vibration of the fundamental mode
caused by a low-energy cosmic-ray muon in the time domain
q1 in Eq. (35). In the calculation, the material values of sapphire
at room temperature are used. Since the Q value is extremely
high, i.e. the decay time is longer than the period of the resonant
motion, we are not able to see the resonant motion of the one
period in this graph.
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thermal lensing effect [48], and parametric instability [49].
It must be noted that motions excited by cosmic-ray par-
ticles in resonant detectors are independent of temperature
[16–18]. This is because the initial amplitude, the second
term of Eq. (35) at t� 0, does not depend on temperature.

B. Cosmic-ray track position dependence

In the calculation of Eq. (20), the signs of the integral
terms in the summation are important. The sign depends on
the positions of a cosmic-ray track and the laser beam spot,
because the displacement of the mode wn is normalized to
satisfy Eq. (9) [50]. If the particle track is near the beam
spot, the signs of the integrals of many modes are the same,
because the basis functions, wn, on the track are similar. If
the track is far from the spot, wn on the track and the
integral signs are different for various modes. Since the
sign of qn in Eq. (20) below the fundamental mode is the
same as that of the integral, j ~Xð!Þj below the first mode is
larger and smaller if the cosmic-ray track is near and far
from the beam spot, respectively. Another explanation
about the cosmic-ray track position dependence is as fol-
lows. The heated volume on the particle track pushes
around them. Since the center of the mirror does not
move because of the conservation of momentum, a larger
motion is observed if the track is near the beam spot. The
track position dependence of the cosmic-ray heating effect
in interferometers is different from that in bar resonators,
as shown in Fig. 4. In the outputs of bars, the vibration

caused by a particle that goes along track A in Fig. 4 is the
same as that along track B, because the displacement of the
resonant modes is symmetric or antisymmetric with re-
spect to the center of the bar (the dashed line in Fig. 4
shows the fundamental mode deformation). The difference
between interferometers and the bar resonators is related to
the number of modes to be considered. In the case of bars,
only the fundamental mode is taken into account. On the
other hand, in the case of interferometers, many modes
contribute to the response of a mirror. The signs of these
modes have an important role. The discussion above is the
same as that about thermal noise below the fundamental
mode caused by inhomogeneously distributed loss
[33,34,51].

IV. APPLICATION I—LOW-ENERGY COSMIC-
RAY PARTICLES

A. Low-energy cosmic-ray particles and interaction
with matter

Primary cosmic rays generate extensive air showers in
the atmosphere. Cosmic-ray particles on the ground are
secondaries from air showers. Three quarters of secondary
particles at sea level are muons. The remainder are almost
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FIG. 3 (color online). Fourier components of the fundamental
mode motion j~q1ð!Þj of a sapphire mirror excited by a low-
energy cosmic-ray muon at 300 K (solid line) and 20 K (dashed
line). The cut-off frequency 1=ð2��1Þ at 20 K is higher than that
at 300 K. The mirror cooling reduces the low frequency compo-
nent because the decay time of F1, which is related to the
thermal stress, is shorter. The higher frequency component is
independent of temperature because of the Grüneisen relation
[44].

Interferometer

Bar resonator

A

BA

B

Laser beam
A>B

A=B

Transducer

FIG. 4. Track position dependence of the cosmic-ray heating
effect of interferometers and bar resonators. In the outputs of
interferometers, the vibration caused by a particle that goes
along track A near the beam spot is larger than that along
track B far from the beam spot. On the contrary, in the case of
bars, the vibration by track A is the same as that by track B
because the displacement of the resonant modes is symmetric or
antisymmetric with respect to the center of the bar. The dashed
line shows the fundamental mode deformation.
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electrons [52]. Muons with small energy (less than about
0.22 GeV) and electrons can be neglected because it is
difficult to penetrate matter around the mirrors, for ex-
ample, walls of buildings, vacuum chambers [52]. The
speed of muons that arrive at the mirrors is comparable
to that of light. The flux of these cosmic-ray muons at sea
level is about 2� 10�2=cm2= sec [52,53].

Since the number of higher energy muons is smaller
[54], the energy of most of the cosmic-ray muons is below
100 GeV. In this low-energy region, the dissipation process
in material is dominated by ionization [54,55], which is
Coulomb scattering with electrons in atoms of matter [55].
The ionization loss is about

1

�

dE

dl
¼ 2 MeV=ðg cm�2Þ; (41)

and almost independent of the particle energies [54,55].
The typical loss per unit length, dE=dl, is several MeV/cm.

The effect of mirror excitation by cosmic-ray particles
depends on the arrival frequency of particles and the decay
time of the vibrations. If the decay time is longer than the
interval of the particle arrivals, the mirror vibration is
maintained. If the next muon comes after the vibration
has disappeared, the vibration can be treated as a burst
event. The number of muons N that hit a mirror at sea level
per unit time is expressed as

N ¼ 2� 10�2=cm2= sec�2R�H

¼ 8= sec

�
2R

25 cm

��
H

15 cm

�
: (42)

The average arrival interval of muons 1=N is

1

N
¼ 0:13 sec

�
25 cm

2R

��
15 cm

H

�
: (43)

The decay time of the fundamental resonant vibration is
described as

Q1

�f1
¼ 8� 102 sec

�
40 kHz

f1

��
Q1

108

�
: (44)

Since the Q values of mirrors used for gravitational wave
detectors are at least 106, the decay time is extremely larger
than the expected arrival interval of cosmic-ray particles.

B. Power spectral density

The power spectral density GcosðfÞ of vibrations caused
by low-energy cosmic-ray particles has been calculated
(see e.g. Refs. [23,26]). It is assumed that arrival time of
particles and track position in a mirror are at random. Since
there are four mirrors in an interferometer, the one-side
power spectral density of the noise of an interferometer
output is written in the form [56]

GcosðfÞ ¼ 4

L2
� 8�2Nhj ~Xð!Þj2i ¼ 32�2N

L2
hj ~Xð!Þj2i;

(45)

where L is the length of the interferometer arms. The
quantity hj ~Xð!Þj2i is the ensemble average of j ~Xð!Þj2,
which is the vibration caused by a muon. To evaluate the
power spectrum of room-temperature interferometers, the
square of Eq. (30) is used as the ensemble average, because
this formula is appropriate to calculate the typical j ~Xð!Þj at
300 K and around 100 Hz, as shown in Sec. III A. From
Eqs. (41), (42), and (45), the power spectrum of room-
temperature sapphire at sea level is written as [57]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcosðfÞ

q
¼ 1:3� 10�26=

ffiffiffiffiffiffi
Hz

p �
3 km

L

��
�

5� 10�6=K

�

�
�
1

2:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

1–2�

��
7:9� 102 J=kg=K

C

�

�
�

2R

25 cm

�
1=2

�
3 cm

r0

�
1=2

�
100 Hz

f

�
: (46)

The sensitivity of future second-generation interferometer
projects, such as LCGT [41] and Advanced LIGO [58], is

on the order of 10�24=
ffiffiffiffiffiffi
Hz

p
at 100 Hz. Therefore, the effect

of low-energy cosmic-ray particles is not a serious prob-
lem, even in these future projects.

V. APPLICATION II—SHOWER

High-energy cosmic-ray particles often generate many
particles (showers). From Eqs. (41) and (63), if 1000
shower particles pass in a mirror at the same time, the
excited vibration is large enough to be detected by future
second-generation interferometers, such as LCGT [41] and
Advanced LIGO [58] (see e.g. Refs. [23–25]). Such ex-
citations caused by cosmic-ray showers have been ob-
served in a resonator [15].
We investigated the effect of a shower generated by a

high-energy muon inside a mirror with a Monte Carlo
technique [59]. It was assumed that the material was sap-
phire. We evaluated the probability that a high-energy
muon that runs in a 30 cm thickness sapphire generates
more than 1000 electrons. In this simulation, the flux of
muons at sea level was expressed as [60]

I
ð>EÞ ¼ 1:1� 10�6=cm2= sec

�
E

1 TeV

��2:7
; (47)

if E is more than 1 TeV. Our simulation showed that the
number per unit time and per a mirror of muons that
generate more than 1000 electrons Nð>1000eÞ is (the
typical energy of such muons is about 10 TeV [61])

Nð>1000eÞ ¼ 1:0� 10�11= sec

�
2R

25 cm

��
H

15 cm

�
: (48)

It must be noted that this average arrival number
Nð>1000eÞ was overestimated, because only a part of
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muons has more than a 30-cm length track in a sapphire
mirror. Since there are four mirrors in an interferometer,
the average arrival interval is

1

4Nð>1000eÞ ¼ 7:8� 102 year

�
25 cm

2R

��
15 cm

H

�
: (49)

The effect of showers generated by high-energy muons
inside mirrors is not a serious problem.

In the case of a shower that occurs near a mirror, the
energy of an original particle that generates 1000 particles
is about 1 TeV [25]. Since the spread of particles in a TeV
energy shower is quite large, the typical size mirror of
interferometers cannot contain all of the energy of a thou-
sand particles. In order to know how often more than 1000
particles go into a mirror, accurate simulations about
shower generation in apparatus around mirrors (for ex-
ample, vacuum chambers and vibration isolation systems)
and the response of a mirror are necessary as resonators
[62–64]. This is our future work.

VI. APPLICATION III—EXOTIC-PARTICLE
SEARCH

The effect of cosmic-ray particles on gravitational wave
detectors suggests that the detectors are useful to search for
exotic particles that dissipate a large amount of energy in
material. Ideas that resonators can be used as magnetic
monopole [19] or mirror dust particle [22] detectors were
proposed. The upper limits of the flux of nuclearite [65,66]
from the operation of resonators were reported [20,21].
Here, we discuss interferometers as exotic-particle detec-
tors in comparison with resonators (bars [6–10]).

In order to detect exotic particles or other rare events, a
larger aperture and higher sensitivity are required for de-
tectors. The cross section of a bar resonator is 10 times
larger than that of an interferometer [67]. The area of a bar
is about 1:8 m2 (diameter, 0.6 m; length, 3 m) [21]. The
cross section of four mirrors of an interferometer is about
0:15 m2 (diameter, 0.25 m; thickness, 0.15 m). We discuss
the sensitivity of interferometers and bars for an exotic
particle passage.

A. Signal-to-noise ratio of interferometers

Since the time evolution of an excited motion by an
exotic particle is predicted from Eq. (20), the matched
filtering method can be applied to the outputs of detectors.
The output of a matched filter, the signal-to-noise ratio (S/
N), is defined as [68]

S =N ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

j~Sð!Þj2
GdetðfÞ df

s
; (50)

where ~Sð!Þ and GdetðfÞ are the Fourier components of the
signal and the one-side power spectral density of the noise
of gravitational wave detectors, respectively.

In the case of interferometers, GdetðfÞ and ~Sð!Þ of
Eq. (50) are the strain noise, GintðfÞ, and the ratio of the
Fourier component of the motion excited by an exotic
particle, ~Xð!Þ, to the arm length, L, respectively. It is
supposed that the temperature is 300 K. Here, we recall
Eq. (30) in the form

j ~Xð!Þj � A

�3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

Y
ffiffiffiffiffiffiffiffi
Rr0

p 1

f
; (51)

A ¼ 1

4�2

Y�

1–2�

1

�C

dE

dl
: (52)

S/N is expressed by using Eqs. (50) and (51):

S=N int ¼ 4�1=4A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

Y
ffiffiffiffiffiffiffiffi
Rr0

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ df

f2GintðfÞ

s
: (53)

B. S/N of bar resonators

In the case of bar detectors, ~Sð!Þ and GdetðfÞ of Eq. (50)
are the force applied by an exotic particle to the nth mode
~Fnð!Þ in Eq. (19), and the tidal force, which corresponds to
the strain noise, GbarðfÞ, respectively. Equation (19) is
rewritten as

j~Sð!Þj ¼ j ~Fnð!Þj ¼ A
1

f

�Z
divwndl

�
; (54)

because the cut-off frequency 1=ð2��nÞ is lower than the
resonant frequency. Here, we take the fundamental mode
of bars into account. Under the same approximation in the

derivation of Eqs. (30) and (34), ~Sð!Þ is expressed as

j~Sð!Þj ¼ j ~F1ð!Þj � A
�ffiffiffi
2

p 1

f
: (55)

The tidal force that corresponds to the strain noise GbarðfÞ
is obtained from Refs. [20,69,70],

GdetðfÞ ¼
�
Mb!

2
1ðbÞ

l

�2

�
2
GbarðfÞ; (56)

where Mb, !1ðbÞ, and l are the mass, angular resonant

frequency of the fundamental mode, and length of a bar.
S/N is given by Eqs. (50), (55), and (56):

S=N bar ¼ 2
ffiffiffi
2

p
�4A

Mb!
2
1ðbÞl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ df

f2GbarðfÞ

s
: (57)

C. Comparison between interferometers
and bar resonators

Here, we discuss the effects of an exotic particle on
interferometers and bar detectors by using Eqs. (53) and
(57). The integral term only depends on the sensitivity of
gravitational wave detectors. It must be noted that the
weight 1=f2 originates from the frequency dependence of
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~Sð!Þ, i.e. Eqs. (51) and (54). The integral term in Eq. (53)
for future second-generation interferometers, e.g. the
LCGT project [41], is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ df

f2GintðfÞ

s
¼ 3:0� 1022: (58)

The typical goal sensitivity of bar resonators [71] isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GbarðfÞ

p � 3� 10�22=
ffiffiffiffiffiffi
Hz

p
in the frequency range be-

tween 850 Hz and 950 Hz. The integral term in Eq. (57) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ df

f2GbarðfÞ

s
� 3:7� 1019: (59)

The integral term of interferometers is 1000 times larger,
because interferometers have higher sensitivity and a wider
observation band. Since the observation band of interfer-
ometers is lower than that of resonators, the weighting
function 1=f2 increases the integral term of
interferometers.

The factors, except for the integral term and A in
Eqs. (53) and (57), are the ratios of the responses to an
exotic particle to that to the gravitational wave. If this
factor is large, the detector is more suitable for exotic-
particle searches. This factor of interferometers is [72]

4�1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p

Y
ffiffiffiffiffiffiffiffi
Rr0

p
L

¼ 4:9� 10�14=N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p

0:96

��
4� 1011 Pa

Y

�

�
�
25 cm

2R

�
1=2

�
6 cm

r0

�
1=2

�
3 km

L

�
: (60)

In the case of bar resonators, this factor is

2
ffiffiffi
2

p
�4

Mb!
2
1ðbÞl

¼ 1:2� 10�9=N

�
2300 kg

Mb

�

�
�
900� 2� rad=Hz

!1ðbÞ

�
2
�
3 m

l

�
: (61)

The factor of bars is extremely larger. The main reason for
this difference comes from the sizes of the detectors, L and
l. An exotic-particle detector must be a good displacement
sensor. A smaller size detector is a better displacement
sensor, if the strain (gravitational wave) sensitivity is the
same. The better strain sensitivity of interferometers shown
by Eqs. (58) and (59) is canceled by their larger size. The
factors in Eqs. (60) and (61), except for L and l, represent
the mechanical responses of a mirror and a bar. The re-
sponse of a bar is typically about 10 times larger.

The amplitude of the force Fn in Eq. (54) is proportional
to A. This quantity depends on only the energy loss process
of exotic particles and the material of the mirrors and the
bar resonators. This is evaluated as

A ¼ 7:3� 10�9 N

�
Y

4� 1011 Pa

��
�

5� 10�6=K

��
0:42

1–2�

�

�
�
7:9� 102 J=kg=K

C

��
1

3 GeV=ðg cm�2Þ
1

�

dE

dl

�
:

(62)

In the quantities of Eq. (62), only the linear thermal-
expansion coefficient � strongly depends on the material
[73]. The values of the coefficient � for fused silica and
sapphire at 300 K are 5:5� 10�7=K and 5:0� 10�6=K,
respectively. The coefficient � of the alloy Al5056 [74],
which is the most popular material of bar resonators [6–9],
is 2:3� 10�5=K.
From the above discussion, the advantages of interfer-

ometers, the higher strain sensitivity and wider observation
band, are canceled by their larger detector size, because
exotic-particle detectors must have good displacement
sensitivity, not strain sensitivity. The larger mechanical
response (about 10 times) and linear thermal-expansion
coefficient (several or several tens times) of bar resonators
enhance the sensitivity. The typical S/N of interferometers
is obtained from Eqs. (53), (58), (60), and (62):

S=N int ¼ 101
�

�

5:0� 10�6=K

��
1

3 GeV=ðg cm�2Þ
1

�

dE

dl

�
:

(63)

The S/N of bar resonators is evaluated from Eqs. (57), (59),
(61), and (62):

S=Nbar ¼ 3� 102
�

�

2:3� 10�5=K

�

�
�

1

3 GeV=ðg cm�2Þ
1

�

dE

dl

�
: (64)

The sensitivity for an exotic particle of bars is a few tens or
a few hundreds times better than that of interferometers
[75]. The sensitivity of bars in the above discussion,
Eq. (59), is based on the goal sensitivity. The current
sensitivity is 10 times worse than it [71]. The current bar
resonators are the better exotic-particle detectors than the
future second-generation interferometers as LCGT [41]
and Advanced LIGO [58].
It is difficult to improve the sensitivity of interferometers

for exotic particles. One reason is that in order to enhance
the signal, the mechanical response and the coefficient of
thermal expansion of a mirror must be larger. Equation (60)
implies that a smaller mirror and beam yield a larger
mechanical response. However, this strategy enhances the
amplitude of the displacement noise, and the S/N does not
increase. A smaller mirror increases the radiation-pressure
noise ( / R�3). A smaller beam and a larger coefficient of
thermal expansion increase the amplitude of the thermal
noise caused by thermoelastic damping in the mirror sub-

strate ( / �=r3=20 ) [76]. Although mirror cooling reduces

the thermal noise [45–47], S/N does not become larger,
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because the excitation by an exotic particle becomes
smaller than that at room temperature, as shown in
Sec. III A.

VII. CONCLUSIONS

We obtained a general formula for a mirror vibration
caused by a cosmic-ray particle and studied the effects in
typical cases of interferometric experiments. This formula
reveals differences in the responses of resonators and
interferometers against cosmic-ray particles. In the case
of resonators, the contribution of the resonant vibration is
dominant. On the contrary, in the case of interferometers,
the motion of the centers of resonant vibrations must be
taken into account. Although the effect of cosmic-ray
particles of resonators is independent of the temperature,
in the case of interferometers, vibrations caused by cosmic-
ray particles can be reduced by using cooling mirrors. In
the case of bar resonators, the particle track position de-
pendence of the vibration by a cosmic-ray particle is
symmetric with respect to the center of a resonator, as
shown in Fig. 4. On the other hand, in interferometers,
larger motion is observed if the track is near the laser beam
spot on the surface of a mirror.

The typical vibration amplitude of interferometers
caused by cosmic-ray particles was evaluated. The power
spectrum of vibrations by low-energy cosmic-ray muons
(less than 100 GeV) is about 100 times smaller than the
goal sensitivity of the future second-generation projects,
such as LCGT and Advanced LIGO. The arrival frequency
of high-energy cosmic-ray muons that generate enough
large showers inside the mirrors of LCGT and Advanced
LIGO is one per a millennium. If a shower that occurs near
a mirror brings more than a thousand particles to the mirror
(an original particle of the shower has an energy that is
more than 1 TeV), the vibration will be observed in LCGT
and Advanced LIGO interferometers. A detailed study on
such shower events is our future work. We also discussed
the possibility of the use of gravitational wave detectors for
exotic-particle searches. Interferometers and bar resona-
tors were compared as detectors for such an exotic-particle
search. The cross section of bars is 10 times larger than
that of interferometers. The sensitivity of bars for an
exotic particle is ð30� 300Þ times better than that of
interferometers.
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