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Several recent theories suggest that light moduli or particles in ‘‘large’’ extra dimensions could mediate

macroscopic forces exceeding gravitational strength at length scales below a millimeter. Such new forces

can be parameterized as a Yukawa-type correction to the Newtonian potential of strength � relative to

gravity and range �. To extend the search for such new physics we have improved our apparatus utilizing

cryogenic micro-cantilevers capable of measuring attonewton forces, which now includes a switchable

magnetic force for calibration. Our most recent experimental constraints on Yukawa-type deviations from

Newtonian gravity are more than 3 times as stringent as our previously published results and represent the

best bound in the range of 5–15 �m, with a 95% confidence exclusion of forces with j�j> 14; 000 at

� ¼ 10 �m.
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I. INTRODUCTION

A number of theories of physics beyond the standard
model suggest that new physics related to gravity may
appear at submillimeter length scales. For example, light
moduli from string theory [1,2] or exotic particles in
‘‘large’’ extra dimensions [3–5] can mediate forces exceed-
ing gravitational strength that can be observed in a tabletop
experiment. Such phenomena can be parameterized as a
Yukawa-type correction to the Newtonian potential of
strength relative to gravity � and range �. For two masses
m1 and m2 separated by distance r, the gravitational po-
tential is modified to

VðrÞ ¼ �GN

m1m2

r
ð1þ �e�r=�Þ: (1)

To search for such new forces, we have improved our
cryogenic apparatus utilizing silicon micro-cantilevers
with attonewton force sensitivity [6,7], which now includes
a magnetic method for force calibration. The cantilever is
loaded with a rectangular gold prism fabricated by
focused-ion-beam milling that serves as a test mass for
the experiment. The driving (source) mass is moved hori-
zontally beneath the cantilever at a nominal vertical face-
to-face separation of 25 �m. The force between the
masses is deduced from the displacement of the cantilever
as measured by a fiber-coupled laser interferometer. We
perform the measurement at the cantilever resonance fre-
quency, typically of order 300 Hz, while the mechanical

driving motion occurs at a subharmonic, typically one-
third. This is achieved by implementing a density modu-
lation in the drive mass, consisting of alternating gold and
silicon sections.
For the magnetic calibration, a Co/Pt multilayer film is

deposited on the test mass. The permanent magnetic mo-
ment couples to a magnetic field gradient produced by
current flowing across the meandering gold sections in
the drive mass device. The current is turned off for the
Yukawa-force search. A shield composed of high-mag-
netic-permeability material encloses the cryostat to prevent
the Earth’s field from magnetizing the drive mass. The
amplitude and phase of a magnetic or Yukawa signal will
change in a predictable way as we vary the equilibrium
position of the drive mass oscillation. We utilize this scan-
ning technique as an additional handle to distinguish a
signal from background forces. In this paper, the newest
data and error analysis are described, and the latest experi-
mental constraints on Yukawa-type deviations from
Newtonian gravity are presented. Finally, future directions
are discussed.

II. EXPERIMENTAL SETUP

Many of the details of the experimental probe and
vacuum cryostat are described in previous work [6–8].
The single-crystal silicon cantilevers are 250 �m long,
50 �m wide, 0:3 �m thick, and have a spring constant k
of approximately 0:0062 N=m. The thermal-noise-limited

force sensitivity at 10 K is approximately 200 aN=Hz1=2

for a typical low-temperature quality factor Q of 80 000.
The displacement of the cantilever beam is measured by
using a fiber-coupled laser interferometer where a Fabry-
Perot cavity is created between the end of the fiber optic
and the cantilever loaded with a test mass [9]. The force F
on the cantilever is deduced from the measured displace-
ment z, which is enhanced on-resonance by the large
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quality factor: z ¼ FQ=k. The 1:5 �g test masses measure
54� 54� 27 �m3 and are cut from the edge of a 27 �m
thick gold foil using a 20 nA gallium focused-ion-beam
(FIB). This technique produced masses with more regular
shapes than those used in previous versions of the experi-
ment [7]. A scanning electron microscope (SEM) image of
a FIB-cut mass attached to a cantilever is shown in the inset
of Fig. 1. The improvement allows a flatter surface to be
presented to the drive mass, allowing more force sensitiv-
ity, and results in an improved interferometer signal. The
driving (source) mass is mounted on a piezo-electric bi-
morph which actuates in the y direction (as shown in
Fig. 1) beneath the cantilever with an amplitude of
�120 �m about its equilibrium position. The drive mass
consists of alternating 100 �m-wide bars of gold and
silicon that are approximately 100 �m deep and 1 mm
long. As the bimorph oscillates with a sinusoidal motion, a
time-varying gravitational force is exerted on the cantilever
which can occur at the driving frequency of the bimorph as
well as at higher harmonics, depending on the drive am-
plitude and spatial orientation of the test and drive masses.
Simulation indicates a maximal gravitational coupling at
the third harmonic of the drive frequency for a bimorph
amplitude of 133 �m, with only a slight reduction
(� 10%) at 120 �m [10]. A gold-coated silicon nitride

shield membrane separates the cantilever from the drive
mass and provides attenuation of electrostatic and Casimir
background forces from the oscillating drive mass. The
drive mass is covered with a smooth 1 �m-thick plane of
silicon, followed by aluminum oxide and gold to further
suppress modulations in electrostatic or Casimir forces
associated with the sections of alternating density. A sche-
matic (not to scale) showing the cantilever, test and drive
masses, shield, and piezo-electric bimorph-actuator is
shown in Fig. 1. A piezo-electric stack actuator is also
included near the base of the cantilever to allow tests with
deliberate excitation and to facilitate interferometer offset
control and characterization. The voltage from the signal
photodiode in the interferometer and the voltage applied to
the bimorph-actuator are recorded at 10 kHz on a data
acquisition device connected to a PC. The cantilever signal
(at the third harmonic of the drive frequency) is averaged
with respect to the phase of the drive signal. A series of
time records is collected for each data point. A fast Fourier
transform of the interferometer data is performed to deter-
mine the amplitude and phase at the third harmonic of the
drive signal.
The amplitude and phase of either a magnetic or Yukawa

signal will change in a predictable way as we vary the
y-equilibrium position of the drive mass oscillation in situ.

FIG. 1 (color online). A schematic (not to scale) showing the cantilever, test and drive masses, shield, and piezo-electric bimorph
actuator. Figure is adapted from Ref. [16]. Not shown are the metallization of the shield and drive mass ground plane. A Fabry-Perot
cavity is formed between the bottom of the optical fiber and top of the test mass and is used to interferometrically measure the
cantilever displacement. The coordinate axes shown in the lower inset are used throughout the paper to describe the orientation of the
drive mass and test mass. Upper inset: SEM micrograph of FIB-fabricated test mass cut from 27 �m thick gold foil attached to
cantilever.

GERACI, SMULLIN, WELD, CHIAVERINI, AND KAPITULNIK PHYSICAL REVIEW D 78, 022002 (2008)

022002-2



The x, y, and z separation between the drive mass and test
mass is controlled by a partially ðy; zÞ motorized manipu-
lator stage at the top of the cryostat, and the tilt and x, y,
and z separation between the masses are detected by ca-
pacitive sensors [6,7]. The expected Yukawa signal for a
typical vertical mass separation and bimorph amplitude is
shown in Fig. 2. The vertical axis shows the calculated
amplitude and phase of a Yukawa (� ¼ 1000, � ¼
18 �m) force at the third harmonic of the drive (which
equals the resonance frequency of the cantilever). The
horizontal axis shows the y-equilibrium position of the
oscillation. Note that the third harmonic of the force (along
with other odd harmonics) vanishes when the equilibrium
position of the drive mass is such that a gold bar or silicon
bar is centered underneath the cantilever. Conversely, the
force is maximized when the interface of the bars is
centered beneath the cantilever. This results in a 100-�m
spatial periodicity for the amplitude of a Yukawa-type
signal.

III. MAGNETIC CALIBRATION

Having a magnetic force for calibration that is switch-
able in situ allows a great improvement in systematics by
providing additional information about the expected phase
structure of a Yukawa-type signal and by allowing multiple
days of data to be analyzed together, as explained in Sec. V.
When current is applied in the meandering pattern of gold

bars in the drive mass, the resulting magnetic field gradient
above the pattern couples to a magnetic moment on the
cantilever to provide a measurable force. This allows the
relative position of the test mass with respect to the drive
mass to be determined, as explained in the following sub-
section. When the current is turned off, for the Yukawa
measurement to have a clean background, it is necessary to
eliminate or suppress the force due to the differing mag-
netic susceptibility of the gold and silicon bars in the drive
mass when the drive mass becomes magnetized in an
ambient magnetic field such as the Earth’s (see Sec. III B).

A. Principle of the calibration

The vertical force on the cantilever with permanent

magnetic moment ~mc in a magnetic field ~B is given by

Fz ¼ ð ~mc � ~rÞBz: (2)

Also a torque on the cantilever ~� ¼ ~mc � ~B can result in an
effective force

F�
z ¼ �z=lc; (3)

where lc is the length of the cantilever. Simulations are
performed to model the magnetic field from current flow-
ing in the drive mass pattern, and the magnitude of the
magnetic moment can be deduced from Eqs. (2) and (3)
and the measured force on the cantilever, provided the
direction of the magnetic moment is known. If the direc-
tion of the net moment is uncertain, only an approximate
magnitude can be determined (see Fig. 3).
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FIG. 2 (color online). Calculated vertical component of the
Yukawa (� ¼ 1000, � ¼ 18 �m) force amplitude and phase at
the third harmonic of the drive frequency (3!), for 119 �m of
bimorph amplitude and 31:5 �m edge-to-edge z separation
between masses with 6 �m tilt across the drive mass in the
scanning (y) direction. The horizontal axis shows the
y-equilibrium position of the drive mass oscillation. For refer-
ence, the 100 �m-wide gold bars are centered in the calculation
at y ¼ �250 �m, y ¼ �50 �m, y ¼ 150 �m, and y ¼
350 �m, with silicon bars in between.
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FIG. 3 (color online). Calculated magnetic force at the third
harmonic of the drive frequency, per unit magnetic moment per
ampere of current through the meander for varying
y-equilibrium position of the drive mass oscillation. Results
are shown for 119 �m of bimorph amplitude and 30 �m
face-to-face z separation, for net magnetic moment in the z,
y, and x directions, respectively.
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As we scan the y-equilibrium position of the oscillation
in situ, the magnetic signal at the third harmonic of the
motion frequency varies with a periodicity of 200 �m,
corresponding to the spacing between the gold bars. In
particular, as the y-equilibrium position of the drive mass
oscillation is scanned, the amplitude of the force on the
cantilever goes through a series of maxima and minima
with a separation of 200 �m between adjacent maxima
and minima. Correspondingly, the phase of the force on the
cantilever experiences a shift of � across each magnetic
minimum. The particular locations of the maxima and
minima with respect to the position of the gold bars de-
pends on the direction of the net magnetic moment. This is
in contrast to the Yukawa signal, for which the maxima
occur when the equilibrium position of the drive mass
oscillation is such that the test mass is centered over the
interface between the gold and silicon bars. The calculated
magnetic force on the cantilever per ampere of current in
the drive mass per unit magnetic moment is shown in Fig. 3
for the cases of a net moment aligned in the x, y, or z
directions, respectively. The vertical separation between
the drive and test masses is taken to be 40 �m and the
bimorph amplitude is 119 �m. The horizontal axis shows
the y-equilibrium position of the bimorph oscillation.

To obtain a proof-of-principle measurement of the mag-
netic response, an early test was performed with a mag-
netic test mass consisting of a gold rectangular prism
coated with 100 nm of nickel [7]. The y-equilibrium posi-
tion of the drive mass oscillation was varied across the
entire drive mass pattern as the force on the cantilever was
studied with and without current running through the drive
mass meander. With current in the drive mass meander, the
force occurred with a 200 �m periodicity as expected,
corresponding to the spacing between the gold bars carry-
ing current. With no current flowing across the drive mass,
the force occurred with a 100 �m periodicity and is due to
the magnetization of the drive mass in the ambient earth’s
magnetic field. It is necessary to eliminate or suppress this
susceptibility-dependent force in order to detect a new non-
Newtonian signal.

The phase of the magnetic force both with and without
current flowing across the drive mass is identical modulo
�, as seen in earlier work [7] and verified in simulation.
Simulation indicates that the phase of any Yukawa signal
will also be identical to the phase of the magnetic force
modulo �. This is a useful handle in the identification of a
Yukawa force (see Sec. V).

B. Magnetic shield

In order to minimize the effect of the Earth’s field, we
employ a dual-layer magnetic shield assembly consisting
of 0.050’’ thick high-magnetic-permeability material pro-
vided by Amuneal Corporation. The shield is designed so it
can be placed in position surrounding the cryostat. For
data collection the cryostat is hung from the ceiling and

hangs freely within the inner diameter of the magnetic
shield. Numerical simulations performed by Amuneal
Corporation [11] indicated an expected transverse shield-
ing factor of 260 and longitudinal shielding factor of 160.
At Stanford, the Earth’s magnetic field is primarily vertical
with a z component of 45 �T, so the longitudinal figure is
relevant. The shield is degaussed prior to the experimental
runs.

C. Co/Pt multilayer films

The ideal magnetic moment would have a known mag-
nitude and direction. Cobalt/platinum multilayer films
have been shown to have out-of-plane anisotropy for lim-
ited ranges of cobalt and platinum thickness [12,13]. In
order to obtain out-of-plane anisotropy the cobalt film
thickness must be between 25 Å and 11.5 Å. The platinum

spacing layers must also be larger than �8 �A [12]. For the

test masses, 3 �A Co=15 �A Pt=3 �A Co=30 �A Pt is sput-
tered on a 3 mm square gold foil substrate, on top of a
seed layer of 100 Å Pt deposited at 350 C. Increasing the
platinum thickness from 11 to 15 Å resulted in improved
out-of-plane anisotropy. The foil is then inserted into a
superconducting quantum interference device (SQUID)
[14], and a hysteresis loop is studied for the film magne-
tized both out-of-plane and in-plane for fields of
�0:318 MA=m to 0:318 MA=m. The coercive field is
around 0:056 MA=m and full saturation occurs above
0:24 MA=m. The results shown in Fig. 4 indicate an out-
of-plane easy axis, although the in-plane magnetization
loop also shows significant hysteresis. We attribute this
to the imperfections on the foil surface as well as its
curvature and roughness. Because of the nonideality, the
data analysis of the experiment assumes that the direction
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FIG. 4 (color online). Magnetic moment measured by MPMS-
SQUID for deposition of 3 �A Co=15 �A Pt=3 �A Co=30 �A Pt on
gold foil substrate, including seed layer of 100 Å Pt deposited at
350 C, for in-plane and out-of-plane magnetization.
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of the magnetic moment is an unknown parameter.
However, the magnitude of the moment can be reasonably
well controlled as discussed in the following subsection.

D. Magnetic mass preparation

The force due to the differing magnetic susceptibility of
gold and silicon depends on the ambient field B0 which
magnetizes the drive mass. B0 gets a contribution from the
Earth’s field, but also may be enhanced by the local mag-
netic environment. In particular the magnetic field emanat-
ing from the ferromagnetic layer on the test mass
contributes to the drive mass magnetization. The differen-
tial volume-magnetic susceptibility of gold and silicon ��
is 3� 10�5, leading to a differential magnetization of
order �M ¼ 1

�0
��B0. The correction to the local mag-

netic field and its gradient near the drive mass surface can
be estimated by integrating the induced magnetic dipole
moment per unit volume over the volume of the drive mass.
Very roughly, the differential magnetic force experienced
when the magnetic test mass is above gold versus above
silicon can be approximated as

�F � mcVeff�0�M=r4; (4)

where r is the distance to the test mass magnetic film from
the center of the drive mass bar, mc is the magnetic mo-
ment on the cantilever, and Veff is the effective volume of
the drive mass within range to contribute to the signal. To
obtain a precise estimate of this force the net direction of
the magnetic moment on the cantilever must be known;
otherwise only order-of-magnitude estimates are possible.
The magnetic measurements described in Refs. [7,10] can
be explained by Eq. (4) to within uncertainties, and there-
fore Eq. (4) can be used to determine the target amount of
magnetic material on the test mass.

To obtain a large enough force signal for a reasonable
drive mass current (10 mA), while also having negligible
magnetic susceptibility force with the current off, it is
sufficient to have a magnetic shield attenuation factor
greater than 100 and a total moment m satisfying 5�
10�15 J=T<m< 5� 10�13 J=T. For two layers of

3 �A Co=15 �A Pt, measurements suggest an area of
ð25 �mÞ2 yields a moment of 5� 10�13 J=T. The foil is
inserted into the FIB and sections of the magnetic layer
near an edge of the foil are removed with a 100 pA ion
beam. 12 �m squares of magnetic material are left in the
locations that will become the centers of the test masses
and should result in a moment of approximately 1�
10�13 J=T. A high-current 20 nA ion beam is then used
to cut away the edge of the foil to produce a clean edge.
The test masses are defined using the high-current beam.
Care is taken to ensure that the high-current beam does not
directly etch any magnetic material, as it has a tendency to
deposit material as the beam cuts. A thin film of gold
covers the magnetic patches on the test mass due to this
effect. The masses are completely free except for a small

‘‘tail.’’ At this point the masses are reinserted into the
SQUID and remagnetized out-of-plane. This remagnetiza-
tion is performed to eliminate the effects of any demagne-
tization that may have occurred from heating while the
high-current beam cuts through the foil. The resolution of
the SQUID is insufficient to measure the magnetic moment
of a single test mass. However, the bulk foil can be seen to
attain the same value of magnetic moment as originally
measured. After remagnetization the masses are mechani-
cally extracted from the foil using nonmagnetic tungsten
probe tips. In this way subsequent heating from the ion
beam can be avoided. The masses are epoxied onto the
cantilever using Hysol-Loctite 1 C epoxy [15] and again
only handled with a tungsten probe tip to avoid magnetic
contamination.

IV. NOISE AND BACKGROUND SOURCES

Thermal noise.—The minimum detectable force due to
thermal noise at temperature T is

Fmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kBTBk

!0Q

s

; (5)

where B is the bandwidth of the measurement, k is the
cantilever spring constant, and f0 ¼ !0=ð2�Þ is its reso-
nance frequency. This represents a fundamental limit on
the sensitivity of the measurement technique.
Vibrational noise.—At the cantilever resonance fre-

quency, assuming a 4% nonlinearity in the bimorph and
Q of 105, we estimate the required internal vibration iso-
lation (between the bimorph and cantilever) to be 1:3�
105, employing a simple analytic model [10]. Two sets of
spring-mass stages isolate the platform on which the bi-
morph is mounted from the mount holding the cantilever,
providing a factor of 106 attenuation at 100 Hz and 108

attenuation at 300 Hz [7]. The mass stages are also con-
nected by thin wires in addition to the springs to operate the
various sensors and piezo-electric stack. If these wires
become too taut during the cooling of the probe, the
vibration isolation system can become compromised. A
direct measurement of the vibrational coupling at 300 Hz is
unfortunately not possible due to the operating frequency
range of the bimorph. The cryostat is hung from 1 Hz
springs from a thick concrete ceiling to attenuate unwanted
external vibration at 300 Hz.
Electrostatics.—The stainless steel frame which holds

the cantilever wafer is grounded to the main probe ground,
so that together with the metallized shield, a Faraday cage
surrounds the cantilever. Any voltage difference �V built
up between the cantilever and shield will result in attractive
force between them of magnitude F ¼ �0Að�VÞ2=2d2
where A is the area of the cantilever surface, and d is the
separation between the cantilever and shield. Any built up
charge on the cantilever can produce an electrostatic force.
In a measurement using a similar shield, the shield motion
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at 300 Hz was found to have an upper bound of approxi-
mately �d� 1 pm [8,16]. Therefore, voltage differences
of 100 mV can drive the cantilever above thermal noise.
Alternatively, if a spurious electrical voltage signal
V0 sin!0t with V0 > 100 �V leaks into the shield, the
cantilever can be driven above thermal noise. In either
case the signal could not be mistaken for a new Yukawa
force since it would not vary with the spatial periodicity of
the drive mass pattern.

Casimir force.—There is a relatively large (� 3�
10�16 N) Casimir force present at all times between the
cantilever and shield membrane. If constant, it does not
impede a force measurement at the cantilever resonance
frequency. There is also a Casimir interaction between the
shield membrane and drive mass ground plane. The oscil-
lating bimorph can drive the shield membrane into motion,
and due to piezo nonlinearity, can excite it at the cantilever
resonance frequency. The shield membrane is sufficiently
stiff so that the modulation of the Casimir force on reso-
nance does not excite the cantilever beyond the level of
thermal noise �10�18 N for our measurement bandwidth
[6,7]. Even if the shield were driven enough to excite the
cantilever on resonance above thermal noise, the signal
would not exhibit the y-equilibrium position dependence
that a Yukawa signal would have, and therefore could not
be erroneously interpreted as a new force.

One can also ask whether the shield membrane and drive
mass ground plane are sufficient to screen the direct
Casimir force between the drive mass and test mass, given
the finite conductivity, plasma frequency, and thickness of
the gold coating. In fact, the drive mass ground plane alone
is enough to prevent the differential Casimir force from the
gold and silicon drive mass sections from being transmitted
at a detectable level. Following Ref. [17] we employ a
reflection-based model for computing the Casimir force
between two metallic walls. We obtain a reduction factor
	F (defined precisely in Ref. [17]) which describes the
reduction of the Casimir force at small separations and for
finite conductivity. The parameter 	F is defined as FC ¼
	FFP where FP is the perfect conductor result. We take a
gold test mass of thickness 30 �m as one mirror, and
consider the differential Casimir force for the situations
of the other mirror being 25 �m away and composed
either of 0:1 �m thickness Au (corresponding to the drive
mass ground plane) or 100:1 �m thickness Au (corre-
sponding to the drive mass ground plane plus gold bar).
We find that the difference in 	F is 0.0028, corresponding
to a differential Casimir force of 2:4� 10�20 N, allowing
� ¼ 1 to be probed at � ¼ 20 �m, which is well below the
sensitivity of the experiment. The shield membrane attenu-
ates this Casimir interaction even further, rendering the
effect negligible.

Magnetic background.—Apart from those discussed in
Sec. III, there are other mechanisms for a magnetic cou-
pling that occur with the drive mass spatial periodicity.

These include the susceptibility-induced interaction be-
tween the drive mass and the gold part of the test mass
and eddy currents produced in the drive mass as it oscil-
lates in the remnant ambient field. Also, any charge built up
in the silicon sections of the drive mass can generate a
weak magnetic field as the drive mass moves. All of these
mechanisms are too weak to produce a measurable signal
in this experiment.
Interferometer noise.—Sources of electronic and optical

noise in the interferometer are discussed in Refs. [8,16].
Electronic noise consists of shot noise from the laser, and
to a lesser extent Johnson noise from the 10 M� feedback
resistor and fluctuations in the laser current supply, and

combines to produce typically a few �V=Hz1=2. Optical
noise can be produced by stray reflections in the interfer-
ometer as well as mechanical shaking of the fiber.
Modulation of the laser at frequencies over 100 MHz
serves to reduce stray reflections by reducing the coherence
length of the laser [18,19]. Mechanical shaking of the fiber
can mimic cantilever displacement, along with any elec-
trical coupling at harmonics of the bimorph drive signal.
The amplitude of these noise sources is assessed by mea-
suring with the drive frequency off resonance from a sub-
harmonic. However, this voltage noise is not expected to
vary periodically as the y-equilibrium position of the drive
mass oscillation is scanned and thus does not mimic a
Yukawa-like force.

V. DATA

The general cooling-down procedure and data acquis-
ition technique are discussed at length in Refs. [7,8]. The
resonance frequency f0 of the cantilever ranged from
324.082 to 324.136 Hz while near base temperature during
the course of the experimental run which is the central
subject of this paper. The base temperature of the probe
ranged from approximately 11–13 K. The quality factor as
measured using the ring-down technique (see, for example,
Ref. [8]) was approximately 85 000. The spring constant k
of 0:0062 N=m was inferred from the measured resonance
frequency and calculated mass of the test mass. The effec-
tive temperature of the cantilever is deduced from k and the
square of the amplitude spectrum near the cantilever ther-
mal peak through the equipartition theorem. This effective
noise temperature was typically measured to be 20–25 K at
low laser power, about 10 K above the base probe tem-
perature, as was typically seen in previous work [7]. The
quality factor and effective temperature of the cantilever
were both found to depend on the incident laser power. The
laser power was reduced below 1 �W before temperature
and quality factor stopped changing. The low-temperature
fringe height (as defined in Table I) was correspondingly
reduced to approximately 250 mV. The voltage noise on
the interferometer, as assessed by tuning the piezo driving
frequency 100 mHz off resonance, was at the level of
10�18 N for the working fringe height and quality factor.
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For the gravity force measurement, the quality factor of the
cantilever was adjusted with feedback [7] to 9500–10 000,
and the effective temperature with feedback was between
2–3 K. The thermal-noise-limited force sensitivity was

�200 aN=
ffiffiffiffiffiffi

Hz
p

.
Prior to collecting data in search of non-Newtonian

gravity (referred to hereafter as ‘‘gravity data’’), the ap-
proximate x and y position of the drive mass with respect to
the test mass is coarsely determined by using the magnetic
force signal, and it is verified that the test mass is posi-
tioned over the central meandering region of the drive
mass. Gravity data are then collected as a function of the
y-equilibrium position of the drive mass oscillation for a
given z separation. For each point of gravity data collected,
a magnetic force measurement is done at the same location
by applying current across the drive mass. Then the mag-
netic force is scanned in the y direction to determine the y
position of the closest magnetic minimum. In this way the
relative y position between gravity data points can be
determined even in the presence of drifts in the y -capaci-
tance sensor reading of a given y position that can occur
over the time scale of days, as demonstrated in earlier
experimental runs with a nickel magnetic layer on the
test mass [8]. Having the magnetic calibration (switchable
in situ) thus permits multiple days of data to be analyzed
together, a significant improvement over previous rendi-
tions of the experiment.

The data set is shown in Fig. 5. The magnitude and phase
of the magnetic (drive mass current on) and possible
Yukawa (drive mass current off) forces at the third har-
monic are studied as the y-equilibrium position of the drive
mass oscillation is varied. The 17 data records each consist
of 24–120 minutes of averaged data. The amount of aver-
aging time chosen varies considerably due to the limited
duty cycle in the experiment. Environmental noise and
possibly the internal (bimorph-related) vibrational noise
varied considerably over the course of the data run. By
‘‘environmental noise’’ we here refer to noise that is not

associated with the motion of the bimorph actuator. In
particular, environmental noise may have come from the
several nearby large scale construction projects that were
underway during various stages of the data run. As a test of
the environmental noise, measurements were taken with
the bimorph-actuator turned off. Internal vibrational noise
can in principle be caused by a short of the vibration
isolation springs due to taut probe wiring. Although con-
siderations are taken at room temperature when the system
is open to prevent taut wiring, it can be difficult to ensure
that no vibration isolation shorts develop after cooling. The
amount of internal (bimorph-related) vibration noise can
therefore vary based on the x, y, and z separation and tilts
of the bimorph stage with respect to the mass-stage holding
the cantilever. The effects of vibration due to internal
isolation shorts were examined with the test and drive
masses far (� 1 mm) withdrawn from each other and the
bimorph moving. These noise sources limited the amount
of useful averaging time over the experimental run. The
data in Fig. 5 were taken only at time periods when such
noise was minimal. Since we are not searching for rare-
event physics, it is legitimate to discard those other data for
which large disturbances were clearly present on the
system.
The phase of the magnetic force undergoes a change of

� at the magnetic force minimum at y ¼ 0. If a pure
Yukawa signal were present, one expects to see two phase
changes of � in the drive mass current-off (abbreviated
hereafter as ‘‘current-off’’) data for every phase change in

TABLE I. Uncertainty in measured values of forces. The volt-

age on the interferometer is given by VintfðdÞ ¼ Vc � Vpp

2 �
cosð4�d=�Þ, where d is the distance between test mass and the
end of the optical fiber, and � is the laser wavelength. The fringe
height Vpp ¼ ðVmax � VminÞ and the fringe center Vc is the mean

of Vmax and Vmin. The fringe position is the deviation from the
fringe center.

Parameter Value Error Units dF%

Fringe height 0:228–0:472 0:002–0:004 V 1

Fringe position 0 3 % 0.2

f0 324:082–324:136 .002 Hz 0.7

Q 9500–10100 400 � � � 4.1

k 0.0062 0.0003 N/m 4.5

Fiber alignment 0 22 �m 12

Total 13
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FIG. 5 (color online). Main data set showing statistical and
systematic uncertainties in the measured force. Diamonds show
signal with current off. Circles show signal with 10 mA current
in the drive mass. Lines are guides to the eye. Error determi-
nation is described in Sec. VI. The y coordinates shown for the
data set on the horizontal axis are the displacements relative to
one particular magnetic force minimum chosen as y ¼ 0. We
note that these coordinates vary by an unknown offset with
respect to those shown in the calculations in Figs. 2 and 3.
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the magnetic (current-on) signal, and two force minima for
every magnetic force minima. The y extent of the data set
should include three Yukawa phase changes, each sepa-
rated by 100 �m in the presence of such a force. The
current-off data therefore shows no clear Yukawa signal
in Fig. 5. In fact, the phase of the current-off data remains
relatively constant over the data set. In the presence of
thermal noise alone, the phase would be expected to be
distributed randomly. The bound on any Yukawa signal
associated with the data set is presented in Sec. VI. The
strength of the magnetic moment can be roughly estimated
from the current-on response. Simulation results indicate a
magnetic moment of approximately 1:3–3:7� 10�14 J=T,
depending on the direction of the moment.

The relatively constant phase of the current-off data
could have a number of possible origins. The driving signal
applied to the piezo actuator could have some small elec-
tronic leakage to the piezo near the cantilever. The internal
vibrational noise due to the bimorph oscillation can tend to
occur at a common phase given a common mechanism.
Bimorph nonlinearity is also responsible for some shield
motion at the cantilever resonance frequency. Although the
associated modulation of the Casimir force is too small to
be observed, excess charge on the cantilever could couple
to small displacements of the shield membrane driven by
the bimorph. The patch effect can produce local potential
variations in the gold coating on the shield membrane
which can vary with respect to the potential on the gold
test mass [20]. In any case, the expected 100 �m spatial
periodicity of a Yukawa-like signal can be distinguished
from a background force with a relatively constant phase.
Therefore, an accurate bound on a Yukawa-like interaction
can be determined even in the presence of such a back-
ground force, as discussed in Sec. VI.

VI. ERROR ANALYSIS

The experimental error in the determination of either a
bound on or discovery of a Yukawa-type correction to
Newtonian gravity can be sorted into two types. First there
are the statistical and systematic uncertainties in the mea-
surements of the force Fmeas. The second type is the
systematic error which enters the finite-element calculation
of the expected Yukawa force signal FY . We treat the
experimental uncertainties in a Monte Carlo fashion, based
on the method described in Ref. [7]. In order to obtain the
function �ð�Þ for a Yukawa force that best fits the mea-
sured data we consider a least-squares fit of the real and
imaginary parts of the data to a set of calculated forces in
the Monte Carlo simulation. The four fitting parameters, as
a function of �, are the result �, an offset variable y0 to
account for the lack of absolute y-position information
between the drive mass pattern and test mass due to the
unknown direction of the magnetic moment, and the real
and imaginary parts of a constant offset force (R0, I0). It is
reasonable to include a constant offset force to account for

vibrational or other type backgrounds that do not depend
periodically on the y-equilibrium position of the drive
mass.

A. Uncertainty in the measured force

Statistical errors.—The statistical error on each data
point comes primarily from thermal noise at the effective
cantilever temperature and is the most significant contri-
bution ð90%þÞ to the total 1
 error bars shown in Fig. 5.
The variation in the standard error reflects the amount of
averaging time for each data point, which varies from 24 to
120 minutes. The statistical error decreases with the square
root of the numbers of samples. There is a natural time
scale for the duration of statistically dependent samples
given by the ring-down time of the cantilever � ¼ �f0Q.
We divide the data records into subsections of length
30 seconds �3� and study the cross correlation between
these subsections to verify their statistical independence,
by the method discussed in Ref. [7].
Systematic errors in the measured force.—The system-

atic errors in the measured force are listed in Table I. The
error is dominated by the uncertainty in the exact position
of the fiber over the top surface of the test mass.
Considering the cantilever mode shape we estimate the
corresponding 1
 error in the measured force as 12%.
The uncertainty including other systematics in the force
measurement added in quadrature is approximately 13%.

B. Uncertainty in the calculated force

Uncertainty in vertical separation and tilt.—The calcu-
lated Yukawa force strongly depends on the vertical sepa-
ration between the drive and test masses due to its
exponential form. The tilt of the drive mass with respect
to the shield wafer will also effectively increase the z
separation, by an amount that depends on the x and y
position of the test mass with respect to the drive mass
edges. Table II indicates the experimental uncertainty in
the z separation and tilts. The tilts and z separation are

TABLE II. Uncertainty in tilt and z separation. Total tilts of
the drive mass relative to the shield plane are expressed in
vertical distance over the 1.8 mm length or 1.3 mm width of
the drive mass.

Parameter Value 1
 Error Units

z separation

Shield-to-drive mass 11–15 1 �m
Edge-edge between masses 27–31 3 �m
Mean edge-edge separation 29 3 �m
MC Input 29 3 �m
Relative to the shield plane

Total tilt in y-z plane 2 5 �m=length
Total tilt in x-z plane 3 5 �m=width
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determined using methods described in previous work [7].
From this table, inputs to the Monte Carlo simulation are
derived. The Monte Carlo input for z separation is the
mean edge-edge separation, adjusted to account for the
tilt in the drive mass silicon plane [10]. Variations in
z separation between data points are very similar to varia-
tions within a particular data point (1 �m) and typically
are less than the overall uncertainty in z separation (3 �m).
Also for the tilts, variation of tilts across data points are
much less than the overall uncertainty in the tilt. Therefore,
for the Monte Carlo simulation we can treat the z separa-
tion and tilts of the entire data set as their mean value and
add a Gaussian random error with their standard deviation.
This is a reasonable approximation since the standard
deviation in the measured tilt or z separation over the 17-
point data set is significantly less than the uncertainty in the
determination of the tilt or z separation at any one data
point. A more detailed accounting of the determination of
tilt and separation uncertainty appears in Ref. [10].

Uncertainty in bimorph amplitude.—The mean bimorph
amplitude recorded for the data set was 119 �m with a
standard deviation of 1:3 �m. The 1
 uncertainty due to
the motion calibration is 10 �m. The method for calibrat-
ing the bimorph and for determining the error in bimorph
amplitude is discussed at length in Ref. [8].

Uncertainty in geometry and density of masses.—The
uncertainty in the geometry of the drive mass is discussed
at length in Ref. [8]. The uncertainty in the test mass
geometry is determined by a combination of optical and
SEM imagery. Table III lists their relative contribution to
the uncertainty in �, which is included as a multiplicative
scaling error to the best-fit results, using the method dis-
cussed in Ref. [7]. The effective length, width, and height
shown in Table IV are determined by considering the
approximately 84� sloping profile of the test mass walls
measured by the SEM and accounting for the extra mass
present near the final-release corner. A SEM micrograph
showing the mass attached to the cantilever after being
used in the data set is shown in the inset of Fig. 1.

Uncertainty in relative y-position of data points.—For
the Monte-Carlo analysis to be optimally constraining, the
relative y separation of the data points must be known to
within a few microns. The y coordinate of each data point
has a 1
 uncertainty of 2:5 �m. This accounts for the
uncertainty in the y position of the magnetic minimum,
as well as the uncertainty in the y position at the data
collection point.

Uncertainty in the expected phase of a Yukawa-type
signal.—Simulation indicates that the phase of any
Yukawa signal will be identical to the phase of the mag-
netic force modulo �. The uncertainty in the expected
phase (modulo �) of a Yukawa signal is determined from
the uncertainty (0.1 rad) in the measured phase of the
magnetic calibration signal.

C. Summary of inputs to the Monte Carlo calculation

The set of geometrical inputs (z separation and tilts in
the y-z and x-z planes, respectively) for the Monte Carlo
calculation are summarized in Table II. For each of the
values of � considered (4, 6, 10, 18, 34, 66 �m), the
Yukawa force versus y displacement is calculated for 320
elements of a Gaussian distribution of these geometrical
parameters, with the means and standard deviations as
indicated. For the mean value of bimorph amplitude, the
corresponding 3! force versus y displacement is deter-
mined. For each of these curves, a least-squares fit to the
measured forces and y positions is performed, yielding the
best-fit �, y0, R0, and I0. The measured force, measured y
position of the data points, and expected phase of the
Yukawa-type signal are then ‘‘dithered’’ (with a Gaussian
random value added) 200 times according to the Gaussian
distribution of their statistical and systematic errors as
described in the previous subsections. For the uncertainty
in phase, an element from a Gaussian distribution is ran-
domly assigned to the expected phase (modulo �) of a
Yukawa-type signal, according to the uncertainty in the
phase of the measured magnetic signal. Each dithered set
of data is then fit to yield a new best-fit value of �. This
results in a set of 320� 201 ¼ 64 320 least-squares fits of
the data to the calculated curves, producing 64 320 best-fit
values of � for each �. Finally, these values of � are
appropriately scaled to account for the uncertainty in the
bimorph amplitude and the uncertainty in the volume of the
drive and test masses, by using 50 samples taken from
Gaussian distributions representing these uncertainties.
The treatment of these multiplicative errors is further dis-
cussed in Ref. [10]. The end result is a histogram of
3 216 000 best-fit � for each of the six values of � explic-
itly considered. The numbers of samples are chosen to be
sufficiently large so that the means and 95th percentiles of
the histograms do not vary significantly with the numbers
of samples.

TABLE III. Errors due to masses.

Parameter d�%

Volume of test mass 4.5

Voids in drive mass 2.5

Drive mass polished Au/Si boundary 1

TABLE IV. Uncertainty in Masses and Geometry

Parameter Value Error Units

Test Mass length 53 1 �m
Test Mass width 54 1 �m
Test Mass height 27 1 �m
Volume of Test Mass 77 000 3500 �m3

Density of gold 19 300 0 kg=m3

Total mass of test mass 1.50 0.07 �g
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VII. RESULTS

The histogram resulting from the Monte Carlo analysis
for � ¼ 10 �m is shown as an example in Fig. 6. To
illustrate a typical fit of the force calculation to the data
we consider an element near the mean of the histogram for
� of 10 �m, corresponding to � ¼ 4450. Figure 7 shows
the real and imaginary parts of the data along with statis-
tical and systematic error bars. Also shown is the best-fit
Monte Carlo result for comparison. Figure 8 shows the
amplitude and phase of the data along with statistical and
systematic error bars. The solid line shows the best-fit
Monte Carlo result to the data. We note that the actual fit
is performed on the real and imaginary parts of the data—

the amplitude and phase are plotted for illustration. For
reference, the dotted line indicates the best-fit result after
removing the constant offset force. The fit is performed
with the offset included and the offset is subtracted after-
wards. The data set is clearly best fit with a constant offset
force included, as evidenced by the concentration of phase
near 1 rad for the entire data set. The fact that the best-fit
phase does not vary much reflects the adding of the best-fit
Yukawa component (with an amplitude of 0.5 aN) to the
larger background best-fit offset rms force vector (2.1 aN,
3.1 aN).
The mean values of � and 95% confidence exclusion

bounds for Yukawa-type forces are derived from the set of
six histograms and listed in Table V. The ratio of the 95%
confidence limit to the mean value increases as � de-
creases, reflecting the increased significance of the uncer-
tainties in z separation and tilt. The means of each
histogram represent the most likely value of any Yukawa
force that may be present. Upcoming experiments will
exhaustively reexamine this parameter space. The results
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FIG. 6 (color online). Histogram of best-fit � results for � ¼
10 �m.
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FIG. 7 (color online). Real and imaginary parts of measured
force. A typical Monte Carlo fit result (best-fit Yukawa signal
plus offset) for � ¼ 10 �m, � ¼ 4450 is shown as a solid line.
Error bars (1
) on the measured forces are also shown.
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FIG. 8 (color online). Amplitude and phase of measured force.
A typical Monte Carlo fit result (best-fit Yukawa signal plus
offset) for � ¼ 10 �m, � ¼ 4450 is shown as a solid line.
Error bars (1
) on the measured forces are also shown. Dotted
line shows fit result with best-fit offset force subtracted. The
amplitude of the best-fit offset force is significantly larger than
the amplitude of the Yukawa component.

TABLE V. Experimental limits on Yukawa forces.

� (�m) Mean (MC) � 95% exclusion �

4 8:6� 106 3:1� 107

6 1:6� 105 4:6� 105

10 5:6� 103 1:4� 104

18 5:1� 102 1:1� 103

34 1:2� 102 2:5� 102

66 7:0� 101 1:5� 102
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represent an improvement of the constraints on Yukawa
forces by approximately half an order of magnitude over
our previously published work [7]. We also note that the
mean values of � from the histograms in Ref. [7] are now
excluded at better than the 95% level by the present work.
Our final results are shown in Fig. 9. We show only the 95%
confidence exclusion results from Table V.

VIII. FUTURE DIRECTIONS

One limiting factor of the experimental run had to do
with the duty cycle of the experiment. Improvements to the
duty cycle could be made by adding more automation to
the experiment or transferring the apparatus to a generally
less noisy environment. A substantial improvement could
involve the redesign of the cantilever to allow a larger area
test mass. Such an improvement is underway in a second-
generation rotary-drive experiment [21], expected to be 1
to 2 orders of magnitude more sensitive than the present

apparatus. A number of other improvements could be
implemented resulting in more marginal gains. A doubly
clamped cantilever beam loaded with a test mass in its
center could reduce the systematic error associated with
the transverse position of the fiber above the test mass. In
this configuration, any transverse displacement of the fiber
along the test mass length affects the measured vertical
displacement to a lesser degree, as the cantilever mode
shape is quadratic rather than linear at the mass-attachment
point. An additional piezo-electric transducer that, unlike
the bimorph, can be operated at the cantilever resonance
frequency could be installed near the bimorph to further
characterize the effectiveness of the vibration isolation.
Voltage noise on the interferometer could potentially be
reduced by improving the vibration isolation between the
optical fiber in the cryostat and the bimorph actuator. A
new set of shield wafers could be fabricated from a double-
polished silicon wafer to allow a sharper reflection of the
drive mass image during the room temperature alignment
procedure. This could potentially reduce uncertainty in the
tilt, resulting in decreased effective separation of the
masses.

IX. CONCLUSION

To date, the gravitational interaction remains as one of
the least-understood and least-tested aspects of fundamen-
tal physics. In this paper we have presented the latest
results from the first-generation Stanford micro-cantilever
experiment, which in sum has improved the limits on new
Yukawa-type forces at 20 �m by over 4 orders of magni-
tude since its conception. Our most recent experimental
constraints on Yukawa-type deviations from Newtonian
gravity represent the best bound in the range of
5–15 �m, with a 95% confidence exclusion of forces
with j�j> 14; 000 at � ¼ 10 �m.
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