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We study equilibrium conditions between a static, spherically symmetric black hole and classical matter

in terms of the radial pressure to density ratio pr=� ¼ wðuÞ, where u is the radial coordinate. It is shown

that such an equilibrium is possible in two cases: (i) the well-known case w ! �1 as u ! uh (the

horizon), i.e., ‘‘vacuum’’ matter, for which �ðuhÞ can be nonzero; (ii) w ! �1=ð1þ 2kÞ and �� ðu�
uhÞk as u ! uh, where k > 0 is a positive integer (w ¼ �1=3 in the generic case k ¼ 1). A noninteracting

mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not

depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot

live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic

fluid with w ¼ �1=3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is

presented.
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In real astrophysical conditions, black holes do not exist
in empty space but are rather surrounded by some kind of
matter which is either in equilibrium with the black hole or
is falling on it. In other words, real black holes are ‘‘dirty.’’
Meanwhile, the famous no-hair theorems (see, e.g., [1,2]
and references therein) are not directly applicable to such
situations of evident astrophysical interest. The main route
in generalizing the possible black hole ‘‘hair’’ in such
theorems consists in considering different (dilaton, gauge,
etc.) fields, whereas a much simpler but physically and
astrophysically more relevant environment, namely, mac-
roscopic matter with certain pressure and density, drops out
from consideration.

The aim of the present paper is to partly fill this gap and
to prove some statements of this kind in the framework of
general relativity. Strange as it may seem, to the best of our
knowledge, they were not found (or at least explicitly
formulated) before.

The conditions we will rely on are the horizon regularity,
the Einstein equations and the conservation law for matter.
For simplicity, we restrict ourselves to static, spherically
symmetric configurations. The manner of reasoning is
close to that of Ref. [3], where we have obtained some
model-independent restrictions on the kinds of matter able
to support regular cosmological Killing horizons in
Kantowski-Sachs geometries.

We begin with writing the general static, spherically
symmetric metric in the form

ds2 ¼ AðuÞdt2 � du2

AðuÞ � r2ðuÞðd�2 þ sin2�d�2Þ; (1)

where we have chosen the quasiglobal radial coordinate,
corresponding to the ‘‘gauge’’ condition g00g11 ¼ �1. It
has the following important properties [4,5]: it always
takes a finite value u ¼ uh at a Killing horizon where
AðuÞ ¼ 01; moreover, near a horizon, the increment u�
uh is a multiple (with a nonzero constant factor) of the
corresponding increments of manifestly well-behaved
Kruskal-type null coordinates, used for analytic continu-
ation of the metric across the horizon. Therefore, with this
coordinate, the geometry can be considered jointly on both
sides of a horizon in terms of a formally static metric
(hence the name ‘‘quasiglobal’’). On the other hand, both
AðuÞ and rðuÞ should be analytic (or smooth at least up to
derivatives of a certain order s � 2) functions of u at u ¼
uh. A regular horizon corresponds to a regular zero of AðuÞ,
i.e., AðuÞ � ðu� uhÞn, where n 2 N is the order of the
horizon. In the case of a black hole, the outermost zero of A
corresponds to the event horizon.
Consider the Einstein equations2 G�

� � R�
� � 1

2�
�
�R ¼

�8�T�
� for the metric (1), so that, due to the symmetry of

the problem, the stress-energy tensor (SET) for an arbitrary
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1In principle, u can take an infinite value at a candidate
horizon where A ! 0, but then, as one can check, the canonical
parameter of the geodesics also tends to infinity, so that the
space-time is already geodesically complete and no continuation
is required. Such cases, which can be termed ‘‘remote horizons’’,
can be found, e.g., in some solutions of the Brans-Dicke theory
[5]. We will not discuss them here.

2We use the units c ¼ @ ¼ G ¼ 1.
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kind of matter can be written as

T�
� ¼ diagð�;�pr;�p?;�p?Þ; (2)

where the density �, the radial pressure pr and the trans-
verse pressure p? are functions of u.

One of the Einstein equations reads

G0
0 �G1

1 � 2A
r00

r
¼ �8�ð�þ prÞ; (3)

where the prime stands for d=du. Equation (3) leads to a
regularity condition at u ¼ uh in terms of � and pr:

prðuhÞ þ �ðuhÞ ¼ 0; (4)

or, more precisely, pr þ � must have a zero of at least the
same order as AðuÞ since, by regularity, jr00j<1.

Regularity thus requires that, at a horizon, the null
energy condition (NEC)

T�
��

��� � 0; ���� ¼ 0: (5)

should be obeyed on the verge. Indeed, for the SET (2), the
NEC leads to

pr þ � � 0; p? þ � � 0: (6)

The condition (4) is often discussed in connection with
backreaction of quantum fields (see, e.g., [6]). Then, there
is no great sense to speak of an equation of state; we simply
have three different quantities in (2), obtained from quan-
tum mean values in a fixed background, as functions of the
radial coordinate. In what follows, we discuss relations
between them, mostly between pr and �, in quite a general
form, and our reasoning is equally applicable to quantum
mean values, classical fields and (which is astrophysically
more relevant) usual matter with certain equations of state
pr ¼ prð�Þ and p? ¼ p?ð�Þ.

We are interested in general properties of matter sur-
rounding a black hole horizon. A question of great impor-
tance for astrophysics is which kind of matter is consistent
with the existence of a horizon. Although the condition (4)
excludes pr and � being both positive, it can be satisfied if
both quantities tend smoothly to zero as one approaches the
horizon. This will be the subject of our study. Accordingly,
mostly bearing in mind small � and pr, we will use the
linear relation

pr ¼ w�; w ¼ const: (7)

We will assume � � 0. If, in addition, the NEC is
satisfied (so that the weak energy condition is satisfied as
well), we call the matter normal, otherwise it is said to be
phantom. One can note that the NEC is often violated due
to quantum effects [6]; phantom matter is also used in
many studies as possible dark energy responsible for the
accelerated expansion of the Universe.

Consequences of the conservation law. The only non-
trivial component of the conservation law r�T

�
� ¼ 0 can

be written in the form (the prime denotes d=du)

p0
r þ 2r0

r
ðpr � p?Þ þ A0

2A
ð�þ prÞ ¼ 0: (8)

Suppose the validity of Eq. (7), at least near the horizon. As
to the transverse pressure, we only assume that (at least, in
the limit � ! 0)

jp?j=� <1: (9)

It is a very weak restriction: indeed, for comparison, the
dominant energy condition would require jp?j=� � 1.
Then, near the horizon, the term with r0 in Eq. (8) can be

neglected as compared with the third one. In the leading
approximation (i.e., retaining terms of the order �=�u), we
obtain, as A ! 0,

�� A�ðwþ1Þ=ð2wÞ; w � 0: (10)

The value w ¼ 0 (dust) is naturally excluded since non-
interacting dust cannot be in equilibrium in a static gravi-
tational field. For different w, it follows from Eq. (10):
(i) w> 0 (normal matter with pr > 0) or w<�1

(phantom). The density diverges as A ! 0. Thus
such matter cannot exist near a horizon.

(ii) �1<w< 0 (normal matter with pr < 0), in this
case, both � and pr tend to zero at the horizon, and
the condition (4) holds.

(iii) w ¼ �1: this special case requires more attention.
First, (4) now may hold with pr ¼ �� � 0, which
corresponds to a ‘‘vacuum fluid’’ considered in the
next paragraph. Second, if we still assume � ! 0 as
A ! 0, one can check that such a solution to Eq. (8)
near u ¼ uh can exist, but it cannot conform to the
regularity requirements connected with the
Einstein equations to be discussed below. Indeed,
let us, going ahead, take � in the form (15) and also
assume a Taylor expansion of prð�Þ at small �,

pr ¼ ��þ b�2 þ . . . : (11)

Substituting all this into Eq. (8) and equating co-
efficients by equal powers of �u, we immediately
obtain �k ¼ 0, which means that �ðuÞ cannot be
represented by a Taylor series near u ¼ uh. It is a
general result which does not depend on k or on the
behavior of the function rð�Þ. One can find an
asymptotic solution to Eq. (8) for small A under
the assumption (11), having the form � �
�2=ðb lnAÞ, so that really � ! 0 as A ! 0; how-
ever, in accord with the above general result, this
solution does not have the form (15) and thus
should be rejected.

Inclusion of a vacuum fluid. Eqs. (4) and (8) for matter
under consideration do not change if we add a ‘‘vacuum
matter’’ with the SET [7]

T�
�ðvacÞ ¼ diagð�ðvacÞ; �rðvacÞ;�p?ðvacÞ; p?ðvacÞÞ; (12)

and if there is no interaction between T�
� and T�

�ðvacÞ, that is,
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the conservation law holds for each of them separately:
r�T

�
� ¼ 0 and r�T

�
�ðvacÞ ¼ 0.

The definitive property of vacuum matter is that the SET
(12) preserves its form under arbitrary radial boosts [7].
Examples of such matter are usual Maxwell radial electric
and magnetic fields for which p?ðvacÞ ¼ �ðvacÞ, their ana-
logs in nonlinear electrodynamics with Lagrangians of the
form Le ¼ LeðFÞ,F � F��F

�� [8], Yang-Mills fields with

a similar structure of the SET, and clouds of radially
directed cosmic strings [9]. Independently of a particular
realization of such vacuum matter, a number of important
properties follow from its algebraic structure, T0

0ðvacÞ ¼
Tu
uðvacÞ [7]; it can be used both for constructing globally

regular black hole models [7,8] and for describing dark
energy [7,10].

By definition, vacuum matter does not contribute to the
third term in (8). Therefore, the above conclusions are valid
for matter with the SET (2) independently of whether or
not there is a noninteracting admixture of a vacuum fluid
with the SET (12).

Consequences of the Einstein equations. There are two
independent components of the Einstein equations for the
metric (1), with the unknown functions AðuÞ and rðuÞ.
Assuming the total SET T�

�ðtotÞ ¼ T�
� þ T�

�ðvacÞ, we can

choose such two components as Eq. (3) and the equation
containing only first-order derivatives,

G1
1 �

1

r2
½�1þ A0rr0 þ Ar02� ¼ �8�ð�ðvacÞ � prÞ: (13)

Now, we require that the metric should be analytic, or at
least sufficiently smooth, in terms of the quasiglobal coor-
dinate u (whose distinguished nature is discussed above,
after Eq. (1)) and thus admit continuation through the
horizon. Therefore, we can write the Taylor expansions
in �u � u� uh:

AðuÞ ¼ An�u
n½1þ oð1Þ�;

rðuÞ ¼ rh þ r0h�uþ 1

2
r00u�u2 þ oð�u2Þ;

(14)

with finite constants An > 0, rh > 0, r0h, and r
00
h. Recall that

n 2 N is the order of the horizon.
The left-hand side of Eqs. (3) and (13) are also smooth at

the horizon. The same then applies to the right-hand side,
in other words, both � (hence pr) and �ðvacÞ are smooth

and, in particular, since we are interested in configurations
with � ! 0 as u ! uh, we can write in the same limit

� ¼ �k�u
k½1þ oð1Þ�; k 2 N; (15)

where �k ¼ const> 0 and k is the number of the first
nonvanishing term of the Taylor series. Combining this
with Eq. (10), we obtain:

k ¼ �n
wþ 1

2w
) w ¼ � n

nþ 2k
; (16)

a discrete set of values of w ¼ pr=�ju¼uh . This whole set

belongs to the range of interest, �1<w< 0.
Let us now substitute these quantities to the Einstein

equations. Equation (3) in the main approximation (with
the largest terms kept on each side) gives

2An

r00h
rh

�un ¼ �8�ðwþ 1Þ�k�u
k: (17)

Evidently, finiteness of r00h leads to the requirement

k � n; (18)

where k > n corresponds to r00h ¼ 0.
Equation (13), in turn, gives in its main approximation

[where the first terms on both sides are simply rewritten
while others are represented by their approximate expres-
sions according to (14) and (15)]

� 1þ nAnrhr
0
h�u

n�1 ¼ �8�r2h½�ðvacÞðuhÞ � w�k�u
k�;
(19)

This relation leads to different results depending on the
presence or absence of �ðvacÞ.
Indeed, if �ðvacÞ ¼ 0 at the horizon, the right-hand side

of (19) is zero at u ¼ uh, the only way to satisfy the
equation is to require n ¼ 1, and then A1rhr

0
h ¼ 1. The

horizon is simple, and Schwarzschild-like. Evidently, the
generic case in the expansion (15) is k ¼ 1, and Eq. (16)
leads to w ¼ �1=3 which, in case pr ¼ p?, corresponds
to a fluid of chaotically distributed cosmic strings (see [11]
and references therein).
In case �ðvacÞ � 0, any n � 1 is admissible; if n > 1,

Eq. (19) gives �ðvacÞðuhÞ ¼ 1=ð8�r2hÞ, while for n ¼ 1 we

have �ðvacÞðuhÞ ¼ ð1� A1rhr
0
hÞ=ð8�r2hÞ. Again, the generic

case is certainly n ¼ k ¼ 1 and w ¼ �1=3. One can also
note that if matter is everywhere nonphantom, Eq. (3) leads
to r00 < 0, and if, in addition, there is a spatial asymptotic
(not necessarily flat) r ! 1 as u ! 1, then r0 > 0 in the
whole space, and r0h > 0 in particular.

We have actually proved the following theorem:
Theorem 1. A static, spherically symmetric black hole

can be in equilibrium with a static matter distribution with
the SET (2) only if near the event horizon (u ! uh, where
u is the quasiglobal radial coordinate) either (i) w ! �1
(matter in this case has the form of a vacuum fluid) or
(ii)w ! �1=ð1þ 2kÞ, wherew � pr=� and k is a positive
integer. In case (i), the horizon can be of any order n, and
�ðuhÞ is nonzero. In case (ii), the horizon is simple, and
�� ðu� uhÞk.
The generic case of such a nonvacuum hairy black hole

is k ¼ 1, implying w ¼ �1=3. In the isotropic case, pr ¼
p?, it corresponds to a fluid of disordered cosmic strings
[11]. Since such strings are, in general, arbitrarily curved
and may be closed, one can express the meaning of the
theorem by the words ‘‘nonvacuum black holes can have
curly hair’’. Recall, however, that in general our w charac-

BLACK HOLES CAN HAVE CURLY HAIR PHYSICAL REVIEW D 78, 021501(R) (2008)

RAPID COMMUNICATIONS

021501-3



terizes the radial pressure, while the transverse one is only
restricted by the condition (9).

Other values of k (k ¼ 2, 3 etc.) represent special cases
obtainable by fine tuning of the parameter w.

In the presence of vacuum matter with the SET (12), the
following theorem holds:

Theorem 2. A static, spherically symmetric black hole
can be in equilibrium with a noninteracting mixture of
static nonvacuum matter with the SET (2) and vacuum
matter with the SET (12) only if, near the event horizon
(u ! uh),w � pr=� ! �n=ðnþ 2kÞ, where n 2 N is the
order of the horizon, n � k 2 N, and �� ðu� uhÞk.

Thus a horizon of a static black hole can in general be
surrounded by vacuum matter and matter with w ¼ �1=3,
which is true for any order of the horizon if n ¼ k. (There
also can be configurations with k > n and fine-tuned equa-
tions of state where w ¼ �n=ðnþ 2kÞ>�1=3.) An arbi-
trarily small amount of other kinds of matter, normal or
phantom, added to such a configuration, should break its
static character by simply falling onto the horizon or
maybe even by destroying the black hole. In other words,
black holes may be hairy, or dirty, but the possible kinds of
hair are rather special in the near-horizon region: normal
(with pr � 0) or phantom hair are completely excluded. In
an equilibrium configuration, all ‘‘dirt’’ is washed away
from the near-horizon region, leaving there only vacuum-
like or modestly exotic, probably ‘‘curly’’ hair.

In particular, a static black hole cannot live inside a star
of normal matter with nonnegative pressure unless there is
an accretion region around the horizon or a layer of
‘‘string’’ and/or vacuum matter.

We did not discuss the behavior of p? and p?ðvacÞ
(except for the restriction (9)). In fact, these quantities
are inessential for our reasoning but should be necessarily
specified for finding complete solutions in particular mod-
els. Our inferences are quite general and hold for all kinds
of hair: for instance, in all known examples of black holes
with scalar fields (see, e.g., [12] and references therein),
the SETs near the horizon must satisfy the above condi-
tions, which may be directly checked.

Also, our approach is relevant to semiclassical black
holes in equilibrium with their Hawking radiation (the
Hartle-Hawking state), whose SET essentially differs
from that of a perfect fluid. Since the density of quantum
fields is, in general, nonzero at the horizon (see Sec. 11 of
the textbook [1] for details), the regularity condition (4)
tells us that such quantum radiation should behave near the
horizon like a vacuum fluid. Our results show that a black
hole can be in equilibrium with a mixture of Hawking
radiation and some kinds of classical matter with �1<
w< 0 (including the important case of a Pascal perfect
fluid with pr ¼ p?). Possible effects of this circumstance
for semiclassical black holes need a further study.
Moreover, large enough black holes, for which the
Hawking radiation may be neglected, can be in equilibrium

with classical matter alone, also including the case of a
perfect fluid.
Our reasoning was entirely local, restricted to the neigh-

borhood of the horizon, and the results, which involve the
single parameter w ¼ pr=�, are in other respects model-
independent. Meanwhile, a full analysis of specific systems
would require the knowledge of the equation of state and
conditions on the metric in the whole space (e.g., the
asymptotic flatness condition). Such an analysis depends
on the model in an essential way and is beyond the scope of
this paper. One can add that the equations of state well-
behaved near the horizon are often incompatible with
reasonable conditions at infinity (see the example below);
it simply means that such matter does not extend to infinity
and can only occupy a finite region around the horizon.
It would be of interest to generalize our results to non-

spherical and rotating distributions of matter.
Example. In conclusion, let us present an exact solution

for a system of utmost interest described by the above
theorems. Consider a region of space with a noninteracting
mixture of a vacuum fluid specified by 8��ðvacÞ ¼ �ðuÞ
[p?ðvacÞ is then found from the conservation law for the

SET (12)] and an isotropic fluid of cosmic strings, such that
pr ¼ p? ¼ ��=3. Then Eq. (8) leads to � ¼ �0A, Eq. (3)
takes the form r00 þ 	2r ¼ 0, and, without loss of general-
ity, we have

rðuÞ ¼ r0 sin	u; (20)

where �0 > 0, r0 > 0 are arbitrary constants and 	 ¼
ð8��0=3Þ1=2. The remaining unknown function AðuÞ can
be found from Eq. (13), which turns out to be linear,

A0rr0 þ Aðr02 þ 	2r2Þ ¼ 1��ðuÞr2; (21)

hence easily integrable by quadratures for an arbitrary
dependence �ðuÞ (or �ðrÞ, as was used, e.g., in [7,10]).
(Let us stress that our solution is different from that in
Ref. [9], obtained for a cloud of unidirectional strings.) In
particular, for � ¼ const we find

AðuÞ ¼ 1

	2r20

�
1� C cot	u��r20ð1� 	u cot	uÞ

�
;

(22)

with C ¼ const. A horizon corresponds to A ¼ 0, e.g., in
case � ¼ 0 we obtain uh ¼ ð1=	Þ arctanC; the horizon is
simple: one can verify that A0ðuhÞ � 0. As follows from
(20), this solution has no large r asymptotic, but it can be
incorporated in an asymptotically flat model by matching it
at some u > uh to some intermediate layer (e.g., described
by an analytic solution like the one for an incompressible
fluid) admitting zero pressure at some surface, at which it
can be further matched to the Schwarzschild solution.
It seems instructive to trace the limiting transition from

Eqs. (20) and (22) to the vacuum Schwarzschild–(anti) de
Sitter metric. As the matter density vanishes, � ! 0, so
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that 	 ! 0, it is convenient to write r0 ¼ 
=	, C ¼
2m	=
, where 
 and m are new constants. Then, after
simple calculations, we obtain in the limit 	 ! 0

r ¼ 
u; AðuÞ ¼ 1


2

�
1� 2m

u

��

3

2u2

�
:

Rescaling t � ~t ¼ t=
 and using the coordinate r, we

obtain the metric (1) with AðrÞ ¼ 1� 2m=r��r2=3, as
required.
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