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Chiral corrections to the delta axial charge are determined using heavy baryon chiral perturbation

theory. Knowledge of this axial coupling is necessary to assess virtual-delta contributions to nucleon and

delta observables. We give isospin relations useful for a lattice determination of the axial coupling.

Furthermore, we detail partially quenched chiral corrections, which are relevant to address partial

quenching and/or mixed action errors in lattice calculations of the delta axial charge.
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I. INTRODUCTION

Numerical simulations of QCD on spacetime lattices
provide a first principles method to study the nonperturba-
tive regime of QCD [1]. For the last decade, lattice QCD
has made dramatic progress due to enlarged computing
resources, and advances in numerical algorithms. Even
with considerable progress, lattice simulations are still
restricted to unphysically large quark masses, and lattice
sizes that are not much larger than typical hadronic length
scales. Fortunately, low-energy hadronic physics is domi-
nated by pion interactions which can be studied systemati-
cally using chiral perturbation theory (�PT). In the
foreseeable future, lattice data in conjunction with �PT
will enable first principles predictions, and in turn, the
investigation of the low-energy effective theory.

Properties of baryons can be addressed systematically
using �PT [2,3]. There are, however, notable complica-
tions to this proposal. The number of a priori unknown
low-energy constants for baryons is larger at next-to-
leading order compared to those of mesons. The chiral
expansion in powers of m2

�=�
2
�, where m� is the pion

mass and �� the chiral symmetry breaking scale, is ac-

companied by an expansion in m�=MN , where MN is the
nucleon mass in the chiral limit. Finally the nearby delta-
resonances can lead to important contributions. For a re-
cent review of delta physics, see [4]. The axial charge of
the nucleon, for example, receives important virtual con-
tributions from pion-delta intermediate states because the
delta-nucleon mass splitting is about the same size as the
pion mass, and the axial couplings G�N , and G�� are of
order one. We focus on the axial charge of the delta, G��.
The value of this parameter is largely unknown for two
reasons. First and obviously, the short mean lifetime of the
delta complicates experimental extraction of this coupling.
Second, the value of G�� has been inferred from one-loop
chiral computations of various baryon observables. These
computations are incomplete, however, as they only

roughly estimate or completely neglect local contributions
from unknown low-energy constants. There are too many
unknowns to extract reliable information about G�� from
chiral computations alone. Lattice QCD simulations can
remedy this.
Early work on the delta using lattice QCD centered on

electromagnetic moments and delta-to-nucleon electro-
magnetic transitions [5,6]. These calculations have been
refined recently [7–9], by including the effects of dynami-
cal quarks, and reaching much lower pion masses
�350 MeV. The axial nucleon-to-delta transition has
also been studied on the lattice for the first time [10,11].
The delta axial charge, G��, can also be determined using
lattice QCD. A necessarily component for this study is the
stability of the delta. Above the decay threshold, m� >�,
where � is the delta-nucleon mass splitting in the chiral
limit, the delta will be a stable particle on the lattice. Its
static properties can be calculated and the effective theory
is used, in turn, to extrapolate down to the physical point,
where the axial matrix element becomes complex valued.
Lighter pion masses too can be employed. The reason
being that the delta decays via p-wave pion emission,
and the available momentum modes are restrictive enough
to keep the delta lattice stabilized. Lattice study of the delta
at lighter pion masses requires more care, especially with
volume effects [12], but could better control the chiral
expansion of delta properties.
In this work, we relate various delta matrix elements to

the axial coupling G��. The connected �þþ matrix ele-
ment provides a convenient starting point for lattice simu-
lations. We compute the one-loop chiral corrections to the
delta axial charge, and investigate its pion mass depen-
dence. The modulus jG��j is shown to be relatively stable
with respect to chiral corrections. Finally, we perform the
partially quenched chiral computation.

II. DELTA AXIAL MATRIX ELEMENTS

There are various axial current matrix elements in the
quartet of �-resonances. Several of these can be used at
zero momentum transfer to define the axial charge, G��.
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The remaining choices are then completely determined as a
product of G�� and isospin Clebsch-Gordan coefficients.
To arrive at the conventional definition, we define the axial
charge through the relation

h�þþjJ3�5j�þþi � h��jJ3�5j��i ¼ G��M�; (1)

in which appears the axial current Ja�5 ¼ �Q���5T
aQ ,

where the isospin generators are given by Ta ¼ 1
2 �

a, with

�a as Pauli matrices. The factor M� encodes the spin

structure of the forward matrix element, namely M� ¼
�U�ðPÞ���5U�ðPÞ, where U�ðPÞ is a Rarita-Schwinger

spinor. The definition in Eq. (1) can be easily utilized to
calculate G�� on the lattice. Because differences of iso-
singlet matrix elements vanish, we can write Eq. (1) as

h�þþj �u���5uj�þþiconn ¼ G��M�; (2)

where the subscript denotes only connected quark
contractions.

For completeness, we specify the other matrix elements
from which the axial charge can be deduced. The isospin
changing matrix elements are related by theWigner-Eckart
theorem. We consider only �I ¼ þ1 for ease, and find

h�þþjJþ�5j�þi ¼ 1ffiffiffi
3

p CM�

h�þjJþ�5j�0i ¼ 2

3
CM�

h�0jJþ�5j��i ¼ 1ffiffiffi
3

p CM�;

(3)

where C is proportional to the common reduced matrix
element. Using isospin, one can relate the isospin transi-
tions to differences of �I ¼ 0 matrix elements and thus
leads to
1ffiffiffi
3

p h�þþjJþ�5j�þi ¼ h�þþjJ3�5j�þþi � h�þjJ3�5j�þi
1

2
h�þjJþ�5j�0i ¼ h�þjJ3�5j�þi � h�0jJ3�5j�0i

1ffiffiffi
3

p h�0jJþ�5j��i ¼ h�0jJ3�5j�0i � h��jJ3�5j��i:

(4)

Combining all three of these relations shows that C ¼
G��. One can then utilize the �I ¼ 1 relations in Eq. (3)
to determine the axial charge, or the matrix element dif-
ferences in Eq. (4). The former are directly tied to weak
interaction phenomenology, while the latter are straightfor-
ward to implement on the lattice, e.g., Eq. (2). As with the
other baryon axial couplings, there are no disconnected
diagrams to evaluate. When we generalize to partially
quenched theories (or additionally mixed lattice actions),
the above relations between matrix elements remain valid
because of the vector isospin symmetry in the valence
sector.

III. CHIRAL COMPUTATIONS

The SUð2ÞL � SUð2ÞR symmetry of two-flavor QCD is
spontaneously broken down to the vector subgroup. The

low-energy dynamics are described by pseudo-Goldstone
pions emerging from spontaneous chiral symmetry break-
ing. These modes, �, are nonlinearly realized in the coset
field � � �2 ¼ expð2i�=fÞ, where

� ¼ �0=
ffiffiffi
2

p
�þ

�� ��0=
ffiffiffi
2

p
 !

; (5)

and f ¼ 132 MeV is the pion decay constant. Pion dy-
namics are described at leading order1 by the effective
Lagrangian

L ¼ f2

8
trð@��y@��Þ þ f2m2

�

8
trð�y þ �Þ: (6)

The baryons are contained in SUð2ÞV multiplets: a dou-
blet N of spin-1=2 nucleons and a quartet T of spin-3=2
deltas. The Lagrangian up to NLO describing the nucleons,
deltas and their interactions with pions is given by

L ¼ i �Nv �DN � i �T�v �DT� þ � �T�T
�

þ 2gA �NS � AN þ g�Nð �T�A
�N þ �NA�T

�Þ
þ 2g�� �T�S � AT�; (7)

where v� is the baryon velocity, and S� the spin operator,

see [2,3] for further details. The leading order axial current
derived from Eq. (7) produces the result G�� ¼ g��.
Beyond this order there is a local contribution from the
NLO current (which only differs from the LO current by an
insertion of the quark mass) as well as loop contributions
depicted in Fig. 1. Evaluating these contributions, we find
the delta axial charge

G�� ¼ g��Z� � 1

ð4�fÞ2
�
2g��Lðm�;�Þ

�
1þ 121

324
g2��

�

þ g2�N

�
8

9
g��Kðm�;��; �Þ

� gAJ ðm�;��; �Þ
��

þ Am2
�: (8)

The nonanalytic functions appearing above, namely,
Lðm;�Þ, J ðm;�; �Þ, and Kðm;�; �Þ are given in [13].
The delta wave function renormalization Z� appears in
[14]. Lastly the constant A is the parameter appearing in
the NLO delta axial current. In Fig. 2, we plot the pion
mass dependence of the axial charge G��. The tree-level
axial couplings are fixed by their SUð4Þ relations: g�N ¼
6
5gA, g�� ¼ � 9

5gA, with gA ¼ 5
3 . But we have chosen to

normalize gA ¼ 1:25 which is the physical nucleon axial
charge. We further renormalize the loop graphs so that
ReðG��Þ ¼ g�� in the chiral limit. To qualitatively under-
stand the contributions from the NLO coupling A, we vary
the renormalization scale � from 800 to 1200 MeV and
further plot the real and imaginary parts of G�� along with
(minus) the modulus. The figure shows that the modulus is

1Here we adopt the standard power counting: @�m� � ",
where " is a small parameter.
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governed by perturbative chiral corrections for m� &
300 MeV, not the real or imaginary parts.

IV. PARTIALLY QUENCHED CHIRAL
COMPUTATIONS

The partially quenched generalization of the Lagrangian
in Eq. (6) reads [15]

L ¼ f2

8
strð@��y@��Þ þ 	f2

4
str½mQð�y þ�Þ� ��2

0�
2
0;

(9)

where the mass matrix has been generalized to

mQ ¼ diagðm;m;mj;mj; m;mÞ; (10)

in the isospin limit of the valence and sea sectors. The
valence pion mass m� is given by m2

� ¼ 2	m, while the
sea pion mass m2

jj ¼ 2	mj. Finally, the valence-sea pion

mass m2
ju is given by the average of the two.2 The flavor

singlet field �0 appearing in Eq. (9) is �0 ¼ str�=
ffiffiffi
2

p
and

has been retained as a device. The axial anomaly allows the
singlet mass parameter �0 to be on the order of the chiral
symmetry breaking scale. Subsequently integrating out the
singlet yields the correct interactions in the flavor neutral
sector of the theory. These are described by the so-called
hairpin vertex, see [15].
Baryons fields are described in terms of the

70-dimensional supermultiplet Bijk containing spin-1=2

baryons, and the 44-dimensional supermultiplet T �
ijk con-

taining the spin-3=2 baryons. For the embedding of the
familiar nucleons and delta into these supermultiplets, as
well as their free and interaction Lagrangian, see [19–22].
At leading order, the PQ�PT delta axial current is given by
[22]

Ja�5 ¼ 2H ð �T �
S� ��a�þT �Þ; (11)

where ��a�þ ¼ 1
2 ð� ��a�y þ �y ��a�Þ, and ��a are partially

quenched extensions of the isospin generators. Because
the axial charge G�� can be determined from connected
quark contractions, Eq. (2), we follow [23] and choose the
upper 2� 2 block of ��a to be the ordinary isospin gener-
ators and zeros elsewhere. The constant H can be deter-
mined from matching, i.e. H ¼ g��.
Since we work to next-to-leading order (NLO) in the

chiral expansion, we further require contributions from the
NLO axial current. These involve one insertion of the
quark mass matrix mQ


Ja�5 ¼
16	

f2

�
t1

�T kji
� f ��a�þ;Mþgni S�T �

njk

þ t2ð�Þ�lð�jþ�nÞ �T kji
� ð ��a�þÞliðMþÞnj S�T �

lnk

þ t3
�T kji
� ð ��a�þÞliS�T �

ljk strðMþÞ

þ t4
�T kji
� S�T

�
ijk strð ��a�þMþÞ

�
; (12)

FIG. 2 (color online). Dependence of the delta axial charge
G�� on the pion mass. The plotted bands account for uncertainty
arising from the unknown NLO coupling.

FIG. 1 (color online). One-loop diagrams which contribute
nonanalytic terms to the axial charge of the delta. Mesons are
represented by a dashed line, while the single and double lines
are the symbols for nucleons and deltas, respectively. The solid
circle is an insertion of the axial current operator. The wave
function renormalization diagrams are shown at the bottom.

2These statements may be modified in the case of a mixed
lattice action. It is straightforward to take this into account given
partially quenched expressions for observables, see [16–18]. For
example, the valence-sea meson mass receives an additive re-
normalization because no symmetry relates the valence and sea
sectors.
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where the mass operator Mþ is defined by: Mþ ¼ 1
2 �ð�ymQ�

y þ �mQ�Þ. When working to tree-level, there are

only two independent contributions from the NLO current:
one is proportional to the valence pion mass squared and
the other is proportional to the sea pion mass squared.
Compared to SUð2Þ �PT there is thus one additional
parameter to be determined. At NLO, there are additionally
nonanalytic contributions arising from the loop diagrams
in Figs. 1 and 3. Evaluating these contributions, we find the
partially quenched delta axial charge

G�� ¼ g��Z� � 1

ð4�fÞ2
�
2g��Lðmju;�Þ

þ 11

9
g3��

�
2

3
Lðm�;�Þ þ 4

9
Lðmju;�Þ

þRð�u; �u;�Þ
�

þ g2�N

�
8

9
g��Kðmju;��; �Þ

þ ðgA þ g1ÞJ ðm�;��; �Þ
� ð2gA þ g1ÞJ ðmju;��; �Þ

��
þAm2

� þBm2
jj:

(13)

The partially quenched wave function renormalization Z�

appears in [14], and the functionRð�;�0; �Þ which arises
from hairpins is given in [13]. The constants A and B are
shorthands for linear combinations of coefficients from the
NLO partially quenched delta axial current, Eq. (12). With
Eq. (13), one can extrapolate G�� in both valence and sea
quark masses. Finally, with trivial modifications, the mixed
action extrapolation can be performed.
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