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Fermions moving in a two-dimensional honeycomb lattice (graphene) have, at low energies, chiral

symmetry. Generalizing this construction to four dimensions potentially provides fermions with chiral

symmetry and only the minimal fermion doubling demanded by the Nielsen-Ninomiya no-go theorem.

The practical usefulness of such fermions hinges on whether the action has a necessary set of discrete

symmetries of the lattice. If this is the case, one avoids the generation of dimension three operators which

require fine-tuning. We construct hyperdiamond lattice actions with enough symmetries to exclude such

fine-tuning; however, they produce multiple doublings. Constraining the actions to exhibit minimal

doubling breaks the requisite symmetry.
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I. INTRODUCTION

When naive, chirally symmetric discretizations of spin-
half fermions are used, doubling arises: even though only
one Dirac fermion is attached to each lattice node, the
continuum limit describes several fermions. This is a prob-
lem for most applications, like QCD, where only a small
number of light quarks exist. For the naive fermion action
in four space-time dimensions, doubling leads to 24 ¼ 16
fermions. More complicated discretizations can reduce the
number of doublings but not eliminate them completely, at
least not while preserving exact chiral invariance. This is
essentially the content of the celebrated Nielsen-Ninomiya
‘‘no-go’’ theorem [1].

In the past, Karsten [2] and Wilczek [3] proposed fer-
mion actions with good chiral symmetry and the minimal
fermion doubling allowed by the no-go theorem. These
actions were not successful in practice because they fail to
have the correct continuum limit. The cuplrit of the prob-
lem is the lack of enough symmetry to forbid the existence
of dimension three and four operators in the low-energy
effective theory describing the lattice artifacts. Thus, these
actions require additional terms with coefficients fine tuned
in order for the correct continuum limit to arise as the
lattice spacing goes to zero. Usually fine-tunings of this
kind are very difficult to implement.

Recently, Creutz [4] and, shortly after, Boriçi [5] sug-
gested a two-parameter class of actions with minimal
doubling that generalized graphene to four space-time
dimensions. Their action can be interpreted as being de-
fined on a four-dimensional generalization of the two-
dimensional honeycomb lattice (which we refer to as a
hyperdiamond lattice). It was subsequently pointed out [6]

that this action lacks enough symmetry to prevent dimen-
sion three and four operators from being generated. The
hyperdiamond lattice, however, has a symmetry under the
permutation of any two out of five distinct axes. This S5
symmetry (or a large enough subgroup, such as the group
of cyclic permutations Z5), if possessed also by the action,
would eliminate all dimension three operators that cause
the fine-tuning problem.1 A natural question then is
whether the Z5 symmetry can be recovered for special
values of parameters, as suggested in [4], or whether, fail-
ing that, a modified Z5 symmetric action can be engi-
neered. In order to clarify this issue, we construct a Z5

symmetric action on a hyperdiamond lattice. This action
exhibits multiple doublings, and attempts to eliminate
these doublings lead to other undesirable features.

II. HYPERDIAMOND LATTICE ACTION

A. Hyperdiamond lattice

We start the construction of the four-dimensional hyper-
diamond lattice by defining a set of five distinct vectors
fe�g satisfying

e � � e� ¼
�
1 for � ¼ �
cos� for � � �

: (1)

Straightforward linear algebra shows that the mutual angle
between these vectors is given by cos� ¼ �1=4.
Consequently we have the relation

P5
�¼1 e
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e5 ¼ �ð0; 0; 0; 1Þ: (2)
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1This does not necessarily rule out marginal operators which
additionally require tuning.
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The first four elements of this set form a basis whose dual
basis fe�g is given, up to normalization, by

e1 ¼ e1 � e5; e2 ¼ e2 � e5;

e3 ¼ e3 � e5; e4 ¼ e4 � e5:
(3)

The hyperdiamond lattice is formed by two sublattices.
One (the ‘‘ L-nodes’’) are generated by integer combina-
tions of e�, that is, the points xL ¼ P

4
�¼1 x

�e�, with

integer x�. The second sublattice (the ‘‘ R-nodes’’) is
obtained from the first by translating it by e5, so that it is
formed by the points xR ¼ P

4
�¼1 x

�e� þ e5. Notice that

the four coordinates x� do not specify a node uniquely: we
need to specify, in addition, whether the point is an L-node
or an R-node.

The five nearest neighbors of an L-node with coordi-
nates x� are the R-nodes with coordinates

ðx1 þ 1; x2; x3; x4Þ; ðx1; x2 þ 1; x3; x4Þ;
ðx1; x2; x3 þ 1; x4Þ; ðx1; x2; x3; x4 þ 1Þ; and

ðx1; x2; x3; x4Þ;
as is easily verified. Similarly, the nearest neighbors of an
R-node with coordinates ðx1; x2; x3; x4Þ are the L-nodes
with coordinates

ðx1 � 1; x2; x3; x4Þ; ðx1; x2 � 1; x3; x4Þ;
ðx1; x2; x3 � 1; x4Þ; ðx1; x2; x3; x4 � 1Þ; and

ðx1; x2; x3; x4Þ:
The separation between one node and its nearest neighbors
are the five vectors e�. The symmetric distribution of these
vectors means that the nearest neighbors are also distrib-
uted symmetrically around each node. In fact, not only the
nearest neighbors but the whole hyperdiamond lattice is
symmetrical under any permutation of the five e� axes.
Hence the hyperdiamond lattice has an S5 symmetry. These
permutations are of crucial importance, and so we examine
them carefully. The permutations involving only the first
four axes are described in the coordinate system used here
by the same permutation of the x� coordinates. For in-
stance, exchange of the e1 and e2 axes is the mapping

ðx1; x2; x3; x4Þ ! ~x ¼ ðx2; x1; x3; x4Þ; (4)

for both L-nodes and R-nodes. An exchange involving the
fifth axis is slightly more complex. The e1 and e5 ex-
change, for instance, takes the L-node

ðx1; x2; x3; x4Þ ! ~x ¼ ð�ðx1 þ x2 þ x3 þ x4Þ; x2; x3; x4Þ;
(5)

but takes the R-node

ðx1; x2; x3; x4Þ ! ~x¼ ð�ðx1 þ x2 þ x3 þ x4Þþ 1; x2; x3; x4Þ:
(6)

B. Hyperdiamond action

We can build a free fermion action on the hyperdiamond
lattice by attaching a two-component left-handed spinor �
and right-handed spinor �� to each L-node, and a right-
handed spinor � and left-handed spinor �� to every R-node.
The action

S ¼ X
x

�X4
�¼1

ð ��x��� � e��x � ��xþ� �� � e��xÞ

þ ��x� � e5�x � ��x �� � e5�x

�
; (7)

with �� ¼ ð ~�;�iÞ, � ¼ ð ~�; iÞ, describes fermions hopping
to nearest-neighbor sites with equal probability in all five
directions. Since �x and ��x live on L- and R-nodes,
respectively, the last two terms describe the hopping along
the e5 direction even though the coordinate x is the same
for both fields.2

The action in Eq. (7) is not invariant under the full S5
symmetry group of the lattice. However, it is invariant
under the subgroup of transformations which can be built
by an even number of elementary permutations of two
axes, known as the alternating group, A5. Under an A5

transformation, the fields transform as

�x ! P�� �P�	�~~x; ��x ! ��~~x
�P�	P��;

�x ! �P��P�	�~~x;
��x ! ��~~xP�	 �P��;

(8)

where the permutation operators are

P�� ¼ i
e� � e�

je� � e�j � �;
�P�� ¼ i

e� � e�

je� � e�j � ��; (9)

and the coordinates transform as in Eqs. (4)–(6). For
example, under a transformation involving a permutation
of the axes e1 and e2, as well as a permutation of e1 and e3,
the field �x transforms as

�x ! P12
�P13�x3;x1;x2;x4 : (10)

The transformation of the action in Eq. (7) under permu-
tations of the five axes follows from

2In momentum space with p� conjugate to x�, this action
reads

S¼
Z
p

� p

�
i
X
�

sinðp�Þe� ���
�X
�

cosðp�Þe�þ e5
�
���5

�
 p;

with

 p ¼ �p

�p

� �
; � p ¼ ð ��p; ��pÞ; and �� ¼ 0 ��

��� 0

� �
:
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P�� �� � e�P�� ¼ � � e�;
�P��� � e� �P�� ¼ �� � e�;
P�� �� � e�P�� ¼ � � e�; �;� � �

�P��� � e� �P�� ¼ �� � e�; �;� � �

(11)

which, in turn, follows from

2a � bb � � ¼ ða � �b � ��þ b � �a � ��Þb � �
¼ a � �þ b � �a � ��b � �; (12)

valid for any unit vectors a and b. One can verify that the
action, Eq. (7), is invariant under the subgroup of even
permutations of S5, the alternating group, A5.

There are only two chirally symmetric relevant opera-
tors3 in the continuum that are A5 symmetric: i

P
�
� ðxÞe� �

� ðxÞ and P
�
� ðxÞe� � ��5 ðxÞ. Both of these operators,

however, identically vanish because the five basis vectors
sum to zero.4 In fact, we need not require invariance under
the full A5 symmetry to exclude such operators, the cyclic
permutation subgroup Z5 � A5 is the minimal subgroup of
S5 that excludes relevant operators. While the action ex-
hibits enough symmetry for a good continuum limit, it does
not, however, have minimal doubling. Near p� ¼ 0, the

action reduces to the Dirac form: ip�e
� � � � ik6 , where

k� is identified as the Cartesian momentum. The action

has, in fact, several others poles at finite values of p�, e.g.

there are six additional poles where each component of p�
has the same magnitude with two components positive,
such as p1 ¼ �p2 ¼ �p3 ¼ p4 ¼ cos�1ð�2=3Þ. We
have not been able to find the general solution to the
nonlinear transcendental equation that determines the
pole locations. Suffices to say, the A5 symmetric action
has undesirable features. Let us now consider actions with
minimal doubling and argue that, unfortunately, they seem
to lack the crucial Z5 symmetry.

III. COMPARISON WITH OTHER ACTIONS

Creutz [4], and later Boriçi [5], suggested minimally
doubled fermion actions based on similar considerations
to the ones discussed above. In fact, the Boriçi-Creutz
action can be written in the form

SBC ¼ 1

2

X
x

�X
�

ð � x��e� � � x � � xþ�e� � �y xÞ

þ � xe
5 � � x � � xe

5 � �y x
�
; (13)

where �� ¼ ð ~�; i�4Þ and the vectors e� are defined in

terms of two parameters B and C as

e1 ¼ ð1; 1; 1; BÞ; e2 ¼ ð1;�1;�1; BÞ;
e3 ¼ ð�1;�1; 1; BÞ; e4 ¼ ð�1; 1;�1; BÞ;

e5 ¼ �ð0; 0; 0; 4BCÞ:
(14)

In order to compare this action to Eq. (7), let us write it in
terms of the left- and right-handed components of the Dirac
spinor  :

SBC ¼ 1

2

X
x

�X
�

ð ��x��� � e��x � ��xþ�� � e��xÞ

þ ��x� � e5�x � ��x� � e5�x

þX
�

ð ��x�� �� � e��x � ��xþ� �� � e��xÞ

þ ��x
�� � e5�x � ��x

�� � e5�x
�
; (15)

with � ¼ ð ~�;�1Þ and �� ¼ ð ~�; 1Þ.

FIG. 1 (color online). The two-dimensional analogue of the
hyperdiamond lattice. The long (blue) lines denote the dual
basis, fe1; e2g, as defined in Eq. (3). In both figures, the (black)
circle sits on an L-node, and denots the field �0;0. The (red)

squares denote various �� fields sitting on R-nodes. Top figure:
the three nearest-neighbor fields, ��0;0, ��1;0, and ��0;1, connected

by thick (black) links. Lower figure: the three (non)-nearest-
neighbor fields, ��0;0, ���1;0 and ��0;�1, connected by thick

(black) links, present in the SBC action.

3Analogous operators for the Boriçi-Creutz action are Oð1Þ
3 ¼

i
P
�

� �0
� and Oð2Þ

3 ¼ P
�

� �0
��5 [6].

4Further analysis is needed to determine whether there are
additional marginal operators in the continuum limit.
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Despite the similarity between S in Eq. (7) and SBC in
Eq. (15), there are important differences. First of all, for
generic B and C, the vectors e� are not symmetrically
arranged and thus break the Z5 symmetry of the lattice.

Only the case B ¼ 1=
ffiffiffi
5

p
and C ¼ 1 satisfies Eq. (1), up to

the overall normalization.5 A further difference is that
there is an extra factor of i in the fourth components of

�, �� compared to�, ��. The reason both actions are able to
reproduce the Dirac propagator despite differing phases
and spin factors is that while S generates a pole at p� ¼ 0,

the poles of SBC are at finite p�, where it duly reduces to

the Dirac action. Finally, SBC contains twice as many terms
as S: the additional terms comprise the last two lines of
Eq. (15). These extra terms can be visualized as non-
nearest-neighbor interactions in the hyperdiamond lattice.
To see this, take the case where x ¼ ð0; 0; 0; 0Þ. As shown
in Fig. 1, the term ��x�1

�� � e1�x, for instance, describes a
hopping from the point x ¼ 0 to �e1 þ e5. Most impor-
tantly, the additional terms in the last two lines of Eq. (15)
break the Z5 symmetry under coordinate transformations.
Without the additional symmetry, relevant and marginal
operators will be generated by gauge interactions [6].

IV. MODIFIED ACTIONS

Guided by our construction of an A5 symmetric action
on the hyperdiamond lattice, we can try to answer the
question: is there a way of combining the good features
of the Boriçi-Creutz action (minimal doubling and chiral
symmetry) while avoiding its pitfall (lack of Z5 symme-
try)? We have been unable to find such an action which
answers this question. For instance, one possibility is to
demand invariance under Z5 and hence drop the terms in
the last two lines of Eq. (15). This corresponds to including
chiral projection operators in Eq. (13). We must further

choose B ¼ 1=
ffiffiffi
5

p
and C ¼ 1. The resulting action is A5

symmetric with a pole at p� ¼ 0, and several other values

of p�. The pole at p� ¼ 0, due to the phase and spin factor

differences relative to Eq. (7), has the wrong form. The

action around p� ’ 0 behaves like � kði ~� � ~kþ �5�4k4Þ k,
for suitably defined physical particle momenta k� ¼
k�ðp
Þ. This form fails to reproduce the Dirac equation

in the naive continuum limit. Fermion poles of this form,
sometimes called mutilated fermions, also appear in other
attempts at formulating fermions on nonhypercubic lattices
[7–9]. There is no guarantee, moreover, that the action is a
linear function of each component of p� near the zeros.

V. CONCLUSION

By analogy with fermions on a honeycomb lattice, we
construct a hyperdiamond lattice action. This action pos-
sesses a large subgroup (A5) of the S5 symmetry of the
hyperdiamond lattice, and consequently enough symmetry
to avoid fine-tuning relevant operators in taking the con-
tinuum limit. The hyperdiamond action has, however, more
than the minimal amount of fermion doubling.
We investigate the Boriçi-Creutz action, and find that,

while similar to the hyperdiamond construction, this action
does not have at least a Z5 symmetry. Hence the continuum
limit will require fine-tuning (unless there is some over-
looked additional discrete symmetry). Modification of
these actions to enforce Z5 symmetry from the outset leads
to undesirable effects: additional poles, and a Lorentz
nonsymmetric continuum limit.
The goal of our search is to produce a minimally

doubled action with a good continuum limit. We find,
however, an intricate balance needed to break hypercubic,
parity, and time-reversal symmetry in order to obtain mini-
mal doubling, while, at the same time, preserve or invent
additional symmetries necessary to avoid fine-tunings.
Similar observations were made some time ago in the
context of doubling on nonhypercubic lattices [10]. The
requirement of Z5 symmetry on a hyperdiamond appears
incommensurate with minimal doubling.
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