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Search for fermion actions on hyperdiamond lattices
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Fermions moving in a two-dimensional honeycomb lattice (graphene) have, at low energies, chiral
symmetry. Generalizing this construction to four dimensions potentially provides fermions with chiral
symmetry and only the minimal fermion doubling demanded by the Nielsen-Ninomiya no-go theorem.
The practical usefulness of such fermions hinges on whether the action has a necessary set of discrete
symmetries of the lattice. If this is the case, one avoids the generation of dimension three operators which
require fine-tuning. We construct hyperdiamond lattice actions with enough symmetries to exclude such
fine-tuning; however, they produce multiple doublings. Constraining the actions to exhibit minimal

doubling breaks the requisite symmetry.
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L. INTRODUCTION

When naive, chirally symmetric discretizations of spin-
half fermions are used, doubling arises: even though only
one Dirac fermion is attached to each lattice node, the
continuum limit describes several fermions. This is a prob-
lem for most applications, like QCD, where only a small
number of light quarks exist. For the naive fermion action
in four space-time dimensions, doubling leads to 24 =16
fermions. More complicated discretizations can reduce the
number of doublings but not eliminate them completely, at
least not while preserving exact chiral invariance. This is
essentially the content of the celebrated Nielsen-Ninomiya
“no-go”’ theorem [1].

In the past, Karsten [2] and Wilczek [3] proposed fer-
mion actions with good chiral symmetry and the minimal
fermion doubling allowed by the no-go theorem. These
actions were not successful in practice because they fail to
have the correct continuum limit. The cuplrit of the prob-
lem is the lack of enough symmetry to forbid the existence
of dimension three and four operators in the low-energy
effective theory describing the lattice artifacts. Thus, these
actions require additional terms with coefficients fine tuned
in order for the correct continuum limit to arise as the
lattice spacing goes to zero. Usually fine-tunings of this
kind are very difficult to implement.

Recently, Creutz [4] and, shortly after, Bori¢i [5] sug-
gested a two-parameter class of actions with minimal
doubling that generalized graphene to four space-time
dimensions. Their action can be interpreted as being de-
fined on a four-dimensional generalization of the two-
dimensional honeycomb lattice (which we refer to as a
hyperdiamond lattice). It was subsequently pointed out [6]
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that this action lacks enough symmetry to prevent dimen-
sion three and four operators from being generated. The
hyperdiamond lattice, however, has a symmetry under the
permutation of any two out of five distinct axes. This S5
symmetry (or a large enough subgroup, such as the group
of cyclic permutations Z5), if possessed also by the action,
would eliminate all dimension three operators that cause
the fine-tuning problem.! A natural question then is
whether the Z5; symmetry can be recovered for special
values of parameters, as suggested in [4], or whether, fail-
ing that, a modified Z5 symmetric action can be engi-
neered. In order to clarify this issue, we construct a Zs
symmetric action on a hyperdiamond lattice. This action
exhibits multiple doublings, and attempts to eliminate
these doublings lead to other undesirable features.

II. HYPERDIAMOND LATTICE ACTION
A. Hyperdiamond lattice

We start the construction of the four-dimensional hyper-
diamond lattice by defining a set of five distinct vectors
{e*} satisfying

1 for a = B
a. B =
e e {0050 fora # B° 0

Straightforward linear algebra shows that the mutual angle
between these vectors is given by cosf = —1/4.
Consequently we have the relation 3'>_, e* = 0. We can
take the vectors e® to be

el =15551), e =155 -5,

e =15 —5V5 1, et =1L—V5+5 -5,
e’ =—(0,0,0,1). 2)

'This does not necessarily rule out marginal operators which

additionally require tuning.

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.78.017502

BRIEF REPORTS

The first four elements of this set form a basis whose dual
basis {e,} is given, up to normalization, by

e, =e! —e, e, =e

3)
e;=¢e — e, e, =e 3
The hyperdiamond lattice is formed by two sublattices.
One (the ““ L-nodes”) are generated by integer combina-
tions of e,, that is, the points x; = Z‘/‘L:] x*e,, with
integer x*. The second sublattice (the ““ R-nodes”) is
obtained from the first by translating it by e>, so that it is
formed by the points xz = Z;‘Fl xte, + ¢’. Notice that
the four coordinates x* do not specify a node uniquely: we
need to specify, in addition, whether the point is an L-node
or an R-node.
The five nearest neighbors of an L-node with coordi-
nates x* are the R-nodes with coordinates

(! + 1, x2, 23, x%),

(xh, x% X3 + 1, x%),

(!, x> + 1,23, x%),
(xh 2% 3 x4+ 1), and
(x!, X2, X3, x%),
as is easily verified. Similarly, the nearest neighbors of an

R-node with coordinates (x!, x2, x3, x*) are the L-nodes
with coordinates

(! — 1, x2, 13, x%),
(x!, 2%, x3 = 1,x%),

(x!, x%, x3, x%).

(o, x2 = 1,23, xY,

(", 2% 3, x*— 1), and

The separation between one node and its nearest neighbors
are the five vectors e“. The symmetric distribution of these
vectors means that the nearest neighbors are also distrib-
uted symmetrically around each node. In fact, not only the
nearest neighbors but the whole hyperdiamond lattice is
symmetrical under any permutation of the five e® axes.
Hence the hyperdiamond lattice has an S5 symmetry. These
permutations are of crucial importance, and so we examine
them carefully. The permutations involving only the first
four axes are described in the coordinate system used here
by the same permutation of the x* coordinates. For in-
stance, exchange of the e! and e? axes is the mapping

(!, 2% 23, 4% — 5= (% 2!, 23, 1Y), 4)

for both L-nodes and R-nodes. An exchange involving the
fifth axis is slightly more complex. The e' and e’ ex-
change, for instance, takes the L-node

(L2 x3 x> 5= (=0 + 22+ 23+ 2, 2% 3 5,
)]
but takes the R-node
L2 B3 ) —=d=(—C"+ 2+ 23 +x*) + 1,22 23, xY).

(6)
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B. Hyperdiamond action

We can build a free fermion action on the hyperdiamond
lattice by attaching a two-component left-handed spinor ¢
and right-handed spinor ¢ to each L-node, and a right-
handed spinor y and left-handed spinor y to every R-node.
The action

4
S = ZI: 71(¢x—,uo- : e'uXx - /?xﬁ-p,a_- : eﬂd)x)

x tp

+do-ex, — X" e5¢x], (7)

with & = (7, —i), o = (&, i), describes fermions hopping
to nearest-neighbor sites with equal probability in all five
directions. Since ¢, and j, live on L- and R-nodes,
respectively, the last two terms describe the hopping along
the e’ direction even though the coordinate x is the same
for both fields.”

The action in Eq. (7) is not invariant under the full S5
symmetry group of the lattice. However, it is invariant
under the subgroup of transformations which can be built
by an even number of elementary permutations of two
axes, known as the alternating group, As. Under an As
transformation, the fields transform as

(rbx - PaBPyS(ﬁ}’ Xx— X/}Pyﬁpaﬁr

_ - ; , (®)
Xx ™ PaﬁpyﬁX):c’ d)x - d)):cpyﬁpozﬁ’
where the permutation operators are
e* —ef _ e* —ef
Pog=i—7="0, Pypg=i———F-0 (9
aB le® — | apB le® — €A ©)

and the coordinates transform as in Egs. (4)—(6). For
example, under a transformation involving a permutation
of the axes e! and e?, as well as a permutation of e! and e,
the field ¢, transforms as

d)x - P12P13¢x3,x1,x2,x4' (10)

The transformation of the action in Eq. (7) under permu-
tations of the five axes follows from

’In momentum space with p, conjugate to x*, this action
reads

S = /;pr[lz sin(p,, et -y — (Z cos(p,)et + e5> ) 775]1/%
m M
with

lﬂp:(f:j)’ Uy = (b Xp). and ),M:(&O# 0;)#).
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PG €*Pog=0-eP,

PQBO' . eapaﬁ =g ef (11)
P,gd - €e"P,g = 0" ¢7, a, B Fy
Popo-e'Pg=0-¢, aB#y

which, in turn, follows from
2a-bb-o=(a-ob-d+b-cga-a)b-o
=a-0o+b-oga-adb- o, (12)

valid for any unit vectors a and b. One can verify that the
action, Eq. (7), is invariant under the subgroup of even
permutations of Ss, the alternating group, As.

There are only two chirally symmetric relevant opera-
tors” in the continuum that are A5 symmetric: i3, J/(x)e? -
yi(x) and ¥, (x)e® - yysis(x). Both of these operators,
however, identically vanish because the five basis vectors
sum to zero.* In fact, we need not require invariance under
the full A5 symmetry to exclude such operators, the cyclic
permutation subgroup Zs C As is the minimal subgroup of
S5 that excludes relevant operators. While the action ex-
hibits enough symmetry for a good continuum limit, it does
not, however, have minimal doubling. Near p, = 0, the
action reduces to the Dirac form: ip e* - y = ik, where
k, is identified as the Cartesian momentum. The action
has, in fact, several others poles at finite values of p,,, e.g.
there are six additional poles where each component of p,
has the same magnitude with two components positive,
such as p; = —p, = —p3 = ps = cos ' (—=2/3). We
have not been able to find the general solution to the
nonlinear transcendental equation that determines the
pole locations. Suffices to say, the A5 symmetric action
has undesirable features. Let us now consider actions with
minimal doubling and argue that, unfortunately, they seem
to lack the crucial Z5 symmetry.

III. COMPARISON WITH OTHER ACTIONS

Creutz [4], and later Borigi [5], suggested minimally
doubled fermion actions based on similar considerations
to the ones discussed above. In fact, the Bori¢i-Creutz
action can be written in the form

1 - -
Suc = 5 | St T et T
xbou

+ 'wzxes : rlva - lr/_/xes : F-r'wbx:l’ (13)

where I', = (7,iy4) and the vectors e® are defined in

3A11alogous operzttzc))rs for the Bori¢i-Creutz action are (f)gl) =
iy, Uyupand O =3 &y, ysi[6].

*Further analysis is needed to determine whether there are
additional marginal operators in the continuum limit.
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terms of two parameters B and C as

el =(1,1,1,B), e2=(1,—-1,—1,B),
e =(—1,-1,1,B), et=(-1,1,—-1,B), (14
e> = —(0,0,0,4BC).

In order to compare this action to Eq. (7), let us write it in
terms of the left- and right-handed components of the Dirac
spinor i:

1 -
SBC = EZ[Z(¢X*ME ' e'uXx - A_/er,u,E ' e#qsx)
x M

+ ¢?x2 : es)(x - A_/JCE : e5¢x
+ z(/?x—,ui ' e'ud)x - Q{-)er,u,i ' e'u/\/x)
%

F S eh - 8.5 esxx], (15)

with 3 = (¢, —1) and 3 = (&, 1).

FIG. 1 (color online). The two-dimensional analogue of the
hyperdiamond lattice. The long (blue) lines denote the dual
basis, {ej, e,}, as defined in Eq. (3). In both figures, the (black)
circle sits on an L-node, and denots the field ¢ (. The (red)
squares denote various y fields sitting on R-nodes. Top figure:
the three nearest-neighbor fields, 0, ¥1,0,and X, connected
by thick (black) links. Lower figure: the three (non)-nearest-
neighbor fields, g0, X-10 and o -, connected by thick
(black) links, present in the Spc action.
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Despite the similarity between S in Eq. (7) and Spc in
Eq. (15), there are important differences. First of all, for
generic B and C, the vectors e® are not symmetrically
arranged and thus break the Z5 symmetry of the lattice.
Only the case B = 1/+/5 and C = 1 satisfies Eq. (1), up to
the overall normalization.” A further difference is that
there is an extra factor of i in the fourth components of
3, s, compared to o, . The reason both actions are able to
reproduce the Dirac propagator despite differing phases
and spin factors is that while S generates a pole at p,, = 0,
the poles of Spc are at finite p,, where it duly reduces to
the Dirac action. Finally, Sgc contains twice as many terms
as §: the additional terms comprise the last two lines of
Eq. (15). These extra terms can be visualized as non-
nearest-neighbor interactions in the hyperdiamond lattice.
To see this, take the case where x = (0, 0, 0, 0). As shown
in Fig. 1, the term ¥, > - e'¢,, for instance, describes a
hopping from the point x = 0 to —e; + e>. Most impor-
tantly, the additional terms in the last two lines of Eq. (15)
break the 75 symmetry under coordinate transformations.
Without the additional symmetry, relevant and marginal
operators will be generated by gauge interactions [6].

IV. MODIFIED ACTIONS

Guided by our construction of an A5 symmetric action
on the hyperdiamond lattice, we can try to answer the
question: is there a way of combining the good features
of the Bori¢i-Creutz action (minimal doubling and chiral
symmetry) while avoiding its pitfall (lack of Z5 symme-
try)? We have been unable to find such an action which
answers this question. For instance, one possibility is to
demand invariance under Z5 and hence drop the terms in
the last two lines of Eq. (15). This corresponds to including
chiral projection operators in Eq. (13). We must further
choose B = 1/+/5 and C = 1. The resulting action is As
symmetric with a pole at p,, = 0, and several other values
of p,.. The pole at p,, = 0, due to the phase and spin factor

*When C =1, ¥ ,e% = 0 regardless of the value of B. This
is not enough to rule out relevant operators, however, because the
action possesses no additional symmetry unless B = 1/ NG
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differences relative to Eq. (7), has the wrong form. The
action around p, =~ 0 behaves like (7 - k + ysyiky) i,
for suitably defined physical particle momenta k, =
k,(p,). This form fails to reproduce the Dirac equation
in the naive continuum limit. Fermion poles of this form,
sometimes called mutilated fermions, also appear in other
attempts at formulating fermions on nonhypercubic lattices
[7-9]. There is no guarantee, moreover, that the action is a
linear function of each component of p, near the zeros.

V. CONCLUSION

By analogy with fermions on a honeycomb lattice, we
construct a hyperdiamond lattice action. This action pos-
sesses a large subgroup (As) of the S5 symmetry of the
hyperdiamond lattice, and consequently enough symmetry
to avoid fine-tuning relevant operators in taking the con-
tinuum limit. The hyperdiamond action has, however, more
than the minimal amount of fermion doubling.

We investigate the Borici-Creutz action, and find that,
while similar to the hyperdiamond construction, this action
does not have at least a Z5 symmetry. Hence the continuum
limit will require fine-tuning (unless there is some over-
looked additional discrete symmetry). Modification of
these actions to enforce Z5 symmetry from the outset leads
to undesirable effects: additional poles, and a Lorentz
nonsymmetric continuum limit.

The goal of our search is to produce a minimally
doubled action with a good continuum limit. We find,
however, an intricate balance needed to break hypercubic,
parity, and time-reversal symmetry in order to obtain mini-
mal doubling, while, at the same time, preserve or invent
additional symmetries necessary to avoid fine-tunings.
Similar observations were made some time ago in the
context of doubling on nonhypercubic lattices [10]. The
requirement of Zs symmetry on a hyperdiamond appears
incommensurate with minimal doubling.
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