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Realistic calculations of nuclear disappearance lifetimes induced by n �n oscillations are reported for

oxygen and iron, using �n nuclear potentials derived from a recent comprehensive analysis of �p atomic

X-ray and radiochemical data. A lower limit �n �n > 3:3� 108 s on the n �n oscillation time is derived from

the Super-Kamiokande I new lower limit TdðOÞ> 1:77� 1032 yr on the neutron lifetime in oxygen.

Antineutron scattering lengths in carbon and nickel, needed in trap experiments using ultracold neutrons,

are calculated from updated �N optical potentials at threshold, with results shown to be largely model

independent.
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I. INTRODUCTION AND OVERVIEW

The stability of nuclei, as determined by looking for
proton decay [1–3], sets a lower limit also on the lifetime of
other processes such as neutron-antineutron (n �n) oscilla-
tions in free space. This �B ¼ 2 baryon-violating n �n
oscillation process was pointed out long ago in the pioneer-
ing papers by Kuzmin [4], by Glashow [5], and by
Mohaptra and Marshak [6]. Several quantitative calcula-
tions relating the nuclear disappearance lifetime Td to the
n �n oscillation time �n �n have been reported [7–9]. In these
calculations a pointlike n �n coupling �m ¼ @��1

n �n is as-
sumed. In free space, �m splits the n� �n degenerate
massm into mass eigenstatesm� �m. The n �n oscillations
between these two mass eigenstates are suppressed in
nuclear matter, giving place to decay of neutrons in a stable
nucleus. Instead of two mass eigenstates one encounters
two distinct widths, one which is the nuclear �n annihilation
width of order ��n � 320 MeV for central nuclear densities
[10], the other one associated with the lifetime of a bound
neutron:

�d �
�
4�m

��n

�
�m; (1)

where �d ¼ @T�1
d is the nuclear disappearance width per

neutron. These statements follow, more rigorously, from a
discussion of the temporal evolution of nuclear disappear-
ance owing to n �n oscillations [11]. Equation (1) demon-
strates that n �n oscillations are suppressed in nuclei by 31
orders of magnitude, which is the ratio between the time
scales 10�23 s for the strong-interaction �n annihilation
time � �n ¼ @��1

�n and 108 s presumed below for the free-
space oscillation time �n �n ¼ @ð�mÞ�1. In addition to �n
annihilation, neutrons and antineutrons also experience
different nuclear potentials Un and U �n, leading within a
closure approximation [12] to a refinement of Eq. (1):

�closure
d � ��n

ð�mÞ2
hW �ni2 þ hðU �n �UnÞi2

; (2)

where hW �ni ¼ ��n=2 is some appropriately chosen average
of (minus) the imaginary part of the �n nuclear potential.
To leading order, from Eq. (1), the relationship between

�n �n and Td is given roughly by

�n �n � 2ð@Td=��nÞ1=2: (3)

The values reported for Td in the literature, by convention,
are normalized per neutron and take into account second-
ary and absorption processes. Thus, Td essentially stands
for the lifetime of a neutron in a stable nucleus. Using the
best value TdðFeÞ> 7:2� 1031 yr published by the
Soudan 2 Collaboration [3], Eq. (3) gives a lower limit
estimate of �n �n > 1:4� 108 s. This estimate is to be com-
pared with the lower limit �n �n > 1:3� 108 s stated by the
Soudan 2 Collaboration using the calculations made long
ago by Dover-Gal-Richard [8]. However, this apparent
agreement might be fortuitous. We comment that the lower
limit on �n �n derived from nuclear disappearance consider-
ations is higher than that determined using nuclear-reactor
neutrons directly in searches for n �n oscillations. The lower
limit given by the Grenoble reactor experiment [13] is
�n �n > 0:86� 108 s.
Recently, the Super-Kamiokande (SK) collaboration re-

leased an improved value for Td in oxygen, TdðOÞ>
1:77� 1032 yr [14]. In the present work we report an
accurate calculation of the lower limit on �n �n implied by
this value of TdðOÞ, using the latest detailed analysis by our
group which derived antinucleon nuclear potentials from
antiprotonic atom data and radiochemical data [10]. These
potentials are essentially isoscalar and apply to antineu-
trons as well as to antiprotons. For completeness, in this
study we also calculate the reduced lifetime (see below) in
iron which will provide the necessary link between a future
measurement of TdðFeÞ and a derivation of a lower limit on
�n �n.
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Another experimental method of looking for n �n oscil-
lations is to use ultracold neutrons in a trap, first suggested
by Chetyrkin et al. [12] and discussed since then by several
other groups, e.g. in Refs. [15,16]. A necessary input for
interpreting such experiments are the nuclear �n scattering
lengths for ultracold antineutrons in matter. We report here
on calculations of �n scattering lengths for several chosen
materials, again based on the analysis of antiprotonic
atoms. The calculated values of these scattering lengths
turn out to be largely model independent owing to the
strong absorption of low energy antinucleons.

II. METHODOLOGY

A. Wave equations, widths and lifetime

A pointlike coupling �m ¼ @��1
n �n , representing n �n os-

cillations in free space, connects each of the stationary
bound single-particle (sp) neutron states to the correspond-
ing �n stationary sp state. The sp energies assume complex
values E�‘j ¼ �B�‘j � i��‘j=2, where the imaginary part

of the energy in the sp state labeled �‘j gives the disap-
pearance width ��‘j for this state. The coupled n- �n radial

wave equations for the neutron sp wave function u�‘jðrÞ
and the antineutron sp wave function w�‘jðrÞ are given by

� @
2

2�
u00�‘jðrÞ þ

@
2‘ð‘þ 1Þ
2�r2

u�‘jðrÞ �UnðrÞu�‘jðrÞ

� E�‘ju�‘jðrÞ þ �mw�‘jðrÞ ¼ 0; (4)

� @
2

2�
w00

�‘jðrÞ þ
@
2‘ð‘þ 1Þ
2�r2

w�‘jðrÞ

� ½U �nðrÞ þ iW �nðrÞ�w�‘jðrÞ � E�‘jw�‘jðrÞ
þ �mu�‘jðrÞ ¼ 0; (5)

where �UnðrÞ and �ðU �nðrÞ þ iW �nðrÞÞ are the nuclear
potentials exerted by the nuclear core on the neutrons
and antineutrons, respectively, and � is the reduced
mass. The radial wave functions u�‘jðrÞ and w�‘jðrÞ are
regular at the origin and decay with r outside of the
nucleus. A useful expression for the width ��‘j is obtained

by multiplying Eq. (4) by u��‘jðrÞ, and the complex con-

jugate of Eq. (4) by u�‘jðrÞ, subtracting the resulting ex-

pressions from each other and integrating from zero to
infinity. The result is

��‘j ¼ � 2�m
R
Imðw�‘jðrÞu��‘jðrÞÞdrR ju�‘jðrÞj2dr

: (6)

The initial-time boundary condition of no antineutrons
implies that jw=uj ¼ Oð�m=BÞ, where the binding energy
B represents any of the strong-interaction entities, such as
��n [11]. It follows then from Eq. (6) that the width � is of
order ð�mÞ2=��n, in agreement with Eq. (1). The terms with
� and �m in Eq. (4) are negligible, of order ð�m=BÞ2 with

respect to the rest of the terms which coincide with those
constituting a stable bound-neutron radial wave equation in

which B�‘j ¼ BðnÞ
�‘j stands for the neutron sp binding en-

ergy. Thus, the solutions u�‘j are essentially real functions.

Equation (6) expresses a relationship between these two
minute terms which are neglected below. Turning to
Eq. (5), all terms there are of the same order, except for
the � term which is of order ð�m=BÞ2 with respect to the
other terms and, hence, may be dropped off.
Dropping off the terms of order ð�m=BÞ2 in Eqs. (4) and

(5), we obtain the radial equations satisfied (i) by a bound-
neutron wave function,

� @
2

2�
u00�‘jðrÞ þ

@
2‘ð‘þ 1Þ
2�r2

u�‘jðrÞ �UnðrÞu�‘jðrÞ

þ BðnÞ
�‘ju�‘jðrÞ ¼ 0; (7)

and (ii) by a quasibound antineutron reduced wave func-
tion v�‘jðrÞ ¼ w�‘jðrÞ=�m,

� @
2

2�
v00
�‘jðrÞþ

@
2‘ð‘þ 1Þ
2�r2

v�‘jðrÞ

� ½U �nðrÞþ iW �nðrÞ�v�‘jðrÞþBðnÞ
�‘jv�‘jðrÞþu�‘jðrÞ ¼ 0:

(8)

Operating on Eq. (8) similarly to the way in which Eq. (6)

was derived from Eq. (4), recalling that BðnÞ
�‘j and u�‘jðrÞ are

real, and multiplying the result by ð�mÞ2 in order to make
connection with Eq. (6), we obtain

� 2ð�mÞ2
Z

Imðv�‘jðrÞu��‘jðrÞÞdr

¼ 2ð�mÞ2
Z

W �nðrÞjv�‘jðrÞj2dr; (9)

so that the disappearance width from the �‘j sp state,
Eq. (6), is given by

��‘j ¼
2ð�mÞ2 RW �nðrÞjv�‘jðrÞj2drR

u2�‘jðrÞdr

¼ � 2ð�mÞ2 R u�‘jðrÞ Imv�‘jðrÞdrR
u2�‘jðrÞdr

(10)

in terms of the solutions u�‘j and v�‘j of Eqs. (7) and (8),

respectively. The averaged disappearance width per neu-
tron is then given by

�d ¼ 1

N

X
n�‘j��‘j; (11)

where n�‘j is the appropriate number of neutrons in the sp

state �‘j, N ¼ P
n�‘j is the number of neutrons in the

decaying nucleus and summation is over the occupied
neutron sp states. Since �d scales as ð�mÞ2, hence inversely
proportional to �2n �n, it is customary to define a reduced
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lifetime TR given by

TR ¼ @

�d�
2
n �n

; (12)

which has dimension of inverse time (s�1). The nuclear
disappearance lifetime Td is then given by

Td ¼ @

�d

¼ TR�
2
n �n: (13)

We solve numerically both Eqs. (7) and (8) for neutron
and antineutron sp states, respectively. Equation (7) is
identical with that used in nuclear bound state problems
for occupied sp neutron states. Equation (8) is solved for
each one of the antineutron sp states with reduced wave
functions v�‘j that are generated by the corresponding

occupied sp neutron wave functions u�‘j acting as an

inhomogeneous source. The solutions u�‘j and v�‘j serve

as input in the integrals Eq. (10) for the widths ��‘j. For

completeness we note the precise expression for ��‘j,

without neglecting contributions of order ð�m=BÞ2:

��‘j ¼
2
R
W �nðrÞjw�‘jðrÞj2drRðju�‘jðrÞj2 þ jw�‘jðrÞj2Þdr

; (14)

where u�‘j and w�‘j solve Eqs. (4) and (5).

B. Nuclear structure issues

The standard shell-model (SM) description of neutron sp
states in nuclei introduces spurious excitations of the cen-
ter of mass degree of freedom. It is important, particularly
in as light a nucleus as 16O, to eliminate this spuriosity and
thus avoid its unphysical effects on the equations solved for
the neutron sp states and on the neutron disappearance
widths subsequently derived. A general construction of
translationally invariant (TI) nuclear wave functions and
densities, in the harmonic-oscillator basis, was given by
Navrátil [17]. Here we follow the earlier discussion by
Millener et al. [18] which is specifically suited to the p
shell. Solving radial equations in the relative coordinate
between a neutron and its nuclear core in a p-shell nucleus,
the number of neutrons in the s shell and p shell has to be
modified from the SM values nSM1s ¼ 2 and nSM1p ¼ ðN � 2Þ
to

nTI1s ¼ 2� N � 2

A� 1
; nTI1p ¼ A

A� 1
ðN � 2Þ; (15)

where for N ¼ 8 appropriate to 16Owe have nTI1s ¼ 1:6 and
nTI1p ¼ 6:4. To reproduce a given value of the mean-square

(ms) radius of the point-neutron distribution hr2in, the ms
radii of the neutron-core 1s and 1p wave functions have to
satisfy

hr2in ¼ 1

N

�
A� 1

A

�
2ðnTI1shr2i1s þ nTI1phr2i1pÞ; (16)

where it was assumed that the s-hole and p-hole strengths

are not fragmented. In practice we used a spin-orbit poten-
tial to split the p-hole strength according to the observed
p1=2 � p3=2 energy difference. Equation (16) is to be con-

trasted with the SM version in which center of mass
spuriosities are disregarded:

hr2in ¼ 1

N
ðnSM1s hr2i1s þ nSM1p hr2i1pÞ: (17)

C. Numerical solution

The real wave function u�‘j for the bound neutron is

obtained by solving numerically Eq. (7) using a standard
method. Here we describe briefly the method used to solve
the inhomogenous Eq. (8) for the quasibound antineutron
reduced wave function in the potential taken from fits to
antiprotonic atom data [10].
The inhomogeneous radial equation (8) is integrated

numerically from r ¼ 0 outward using the Numerov
method, requiring the usual regular boundary condition
v�‘j � r‘þ1 at the origin. In parallel, the corresponding

homogeneous radial equation

� @
2

2�
vð0Þ00
�‘j ðrÞ þ

@
2‘ð‘þ 1Þ
2�r2

vð0Þ
�‘jðrÞ

� ½U �nðrÞ þ iW �nðrÞ�vð0Þ
�‘jðrÞ þ BðnÞ

�‘jv
ð0Þ
�‘jðrÞ ¼ 0; (18)

obtained from Eq. (8) by omitting the last term, is also
integrated using the regular boundary condition at r ¼ 0.
Integration is carried out to a matching radius R where the
nuclear �n potentials may safely be neglected. Both inte-
grations lead to exponentially increasing functions toward
R, as expected. The most general, regular at r ¼ 0 solution
of Eq. (8) is given by the linear combination

v<
�‘j ¼ a�‘jv

ð0Þ
�‘j þ v�‘j; (19)

where the (complex) constant a�‘j is chosen such that v
<
�‘j

is regular also at infinity.
We note that outside the matching radius R the homoge-

neous equation (18) is satisfied by the neutron bound-state
wave function u�‘j. The most general, regular at r ! 1
solution of Eq. (8) is then given by the linear combination

v>
�‘j ¼ b�‘ju�‘j þ ~v�‘j; (20)

where ~v�‘j is a special, regular at r ! 1 solution of the

inhomogeneous equation (8), and b�‘j is an arbitrary (com-

plex) constant.
The constants a�‘j and b�‘j above are determined by

requiring that the ‘‘inside’’ and ‘‘outside’’ solutions, v<
�‘j

and v>
�‘j respectively, as well as their first derivatives,

agree with each other at the matching point r ¼ R. We
note that for the purpose of evaluating the disappearance
widths ��‘j, only the knowledge of the constants a�‘j is

required. A straightforward algebra gives
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a�‘j ¼
½u0�‘jðRÞ~v�‘jðRÞ � u�‘jðRÞ~v0

�‘jðRÞ� � ½u0�‘jðRÞv�‘jðRÞ � u�‘jðRÞv0
�‘jðRÞ�

u0�‘jðRÞvð0Þ
�‘jðRÞ � u�‘jðRÞvð0Þ0

�‘jðRÞ
: (21)

Since both u�‘j and ~v�‘j fall off exponentially, whereas
v�‘j increases exponentially at R, the terms in the first
square bracket in the numerator of Eq. (21) are of order
expð�2��‘jRÞ with respect to the terms in the second
square bracket, and may be safely neglected. Here ��‘j ¼
½2�BðnÞ

�‘j�1=2=@, and expð�2��‘jRÞ< 10�4 for a wide
range of realistic nuclear applications. Hence, to such
high accuracy

a�‘j � �u0�‘jðRÞv�‘jðRÞ � u�‘jðRÞv0
�‘jðRÞ

u0�‘jðRÞvð0Þ
�‘jðRÞ � u�‘jðRÞvð0Þ0

�‘jðRÞ
; (22)

and no specific knowledge of the special solutions ~v�‘j is
required. [Special solutions ~v�‘j in terms of neutron wave
functions u�‘j are given in the appendix.] A further sim-
plification of Eq. (22) occurs by noting that v�‘j in the
numerator and vð0Þ

�‘j in the denominator, for any given ‘
value, share the same asymptotic behavior at R, which
leads to the final result

a�‘j � �v�‘jðRÞ
vð0Þ
�‘jðRÞ

: (23)

These expressions are useful only when their dependence
on the matching radius R is negligible. In practice we used
Eq. (22) with radial integration steps of 0.04 fm and R
between 10 and 13 fm. The coefficients a�‘j which deter-
mine the required decaying �n radial wave functions in the
region r < R were found to vary by less than 10�5 of their
values, with the resulting widths stable to better than 10�4.
Both forms of Eq. (10) gave identical results to this order.
The same accuracy is also obtained using Eq. (23). For

comparison with previous calculations, we calculated the
widths for 16O, using the input parameters given by Dover
et al. [8]. The results agreed with those listed in Table I of
that reference to within 1%.
Figure 1 shows, as an example, the reduced antineutron

1p1=2 wave function v in 16O. Note that the longer tail of

the real part is of no consequence for the disappearance
width because in the jv�‘jðrÞj2 version of the integral,

Eq. (10), the imaginary potential W is of a shorter range.
The other version of the width contains only the imaginary
part of the antineutron wave function, which is of a shorter
range as is seen in the figure. Figure 2 shows the integrands
in the numerator for the two versions of the width, for 1s1=2
and 1p1=2 neutrons in

16O. It is remarkable that the relative

differences between the integrals are less than 10�5,
although the two integrands are not identical both near
the maxima and in the tail region.

III. RESULTS

A. Neutron disappearance widths

Neutron disappearance widths for the various subshells
�‘j were calculated for 16O and 56Fe with the two forms
given by Eq. (10). The bound neutron wave functions u�‘j

were calculated in a Woods-Saxon potential �UðnÞ
0 =½1þ

expððr� R1=2Þ=aÞ� whose depth UðnÞ
0 was adjusted in each

nucleus to fit the experimental separation energy of the
least-bound neutron. A spin-orbit term was added to re-
produce the observed p1=2 � p3=2 splitting. The half-

density radius parameters R1=2 ¼ r0ðA� 1Þ1=3 were ad-
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FIG. 1. Antineutron 1p1=2 reduced radial wave function v in
16O.
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FIG. 2 (color online). Integrands in the numerators for the two
versions of the neutron disappearance width Eq. (10).
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justed such that the root-mean-square (rms) radius of the
whole neutron distributions was 2.57 fm for 16O and
3.71 fm for 56Fe. For 16O it corresponds to the known
rms radius for the point-proton distribution and for 56Fe
it is 0.09 fm larger than the known value for the point-
proton distribution [19]. The diffusivity parameter a was
fixed at a ¼ 0:60 fm for 16O and a ¼ 0:55 fm for 56Fe.
Using Eq. (17) for 16O and its straightforward extension for
56Fe, values of r0 ¼ 1:325 fm and r0 ¼ 1:304 fm were
found for the SM calculations in 16O and 56Fe, respectively,
whereas using Eq. (16) a value of r0 ¼ 1:442 fm was
found for the TI calculation in 16O. The depths of the
SM potential were 53.8 MeV for 16O and 51.1 MeV for
56Fe, and the depth of the TI potential in 16O was
48.8 MeV. For the antineutrons we used the most recent
phenomenological isoscalar potential obtained from large-
scale (‘‘global’’) fits to 90 data points of strong-interaction
shifts and widths in antiprotonic atoms across the periodic
table [10]. The effective amplitude for that potential is
b0 ¼ 1:3þ i1:9 fm, used with a finite-range Gaussian
folded with a range parameter 0.9 fm into the nuclear

matter density; see Ref. [10] for more details. These po-
tentials are shown in Figs. 3 and 4 for �n� 15O and �n�
55Fe, respectively.
The neutron disappearance widths as given by Eq. (10)

scale with ð�mÞ2. Therefore in Table I we list the calculated
reduced neutron disappearance widths ��‘j=ð�mÞ2 for the
various subshells in 16O and in 56Fe. These calculated
widths increase by as much as 50% in 16O and by over
100% in 56Fe going outward from the inner 1s1=2 sp

neutron state to the least-bound sp neutron state, in agree-
ment with the trend found in earlier calculations [8]. The
values of �d=ð�mÞ2 calculated using the closure expression
Eq. (2) give excellent approximation to the exact weighted
averages, provided values of the nuclear potentials Un, U �n,
W �n at the nuclear surface, here approximated by half of the
corresponding values at the center of the nucleus, are
adopted. We comment that for the strongly absorptive �n
potential used by us, the effect of the real potentialsUn and
U �n is secondary to that of the imaginary potential W �n. A
more elaborate averaging with the nuclear density should
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FIG. 3 (color online). The antineutron optical potential in 16O.
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FIG. 4 (color online). The antineutron optical potential in
56Fe.

TABLE I. Calculated reduced neutron disappearance widths ��‘j=ð�mÞ2 (in MeV�1).

state �‘j nSM�‘j nTI�‘j (16O) 16OðSMÞ 16OðTIÞ 56FeðSMÞ
1s1=2 2 1.6000 0.0207 0.0220 0.0144

1p3=2 4 4.2667 0.0296 0.0296 0.0177

1p1=2 2 2.1333 0.0321 0.0343 0.0177

1d5=2 6 — — — 0.0217

2s1=2 2 — — — 0.0238

1d3=2 4 — — — 0.0219

1f7=2 8 — — — 0.0268

2p3=2 2 — — — 0.0343

�d=ð�mÞ2-average [Eq. (11)] 0.0280 0.0294 0.0228

�d=ð�mÞ2-closure [Eq. (2)] 0.0271 0.0265 0.0220

TR [Eq. (12)] (s�1) 0:543� 1023 0:517� 1023 0:666� 1023
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give similar results for strongly absorptive �n potentials, as
found by Dover et al. [8]. As for using the TI or the SM
schemes for 16O, the difference between the averaged
widths, or between the reduced lifetimes, amounts to
merely 5% which affects the limit placed on �n �n to only
2.5%. Our calculated values of the reduced lifetimes TR are
smaller than those calculated in Ref. [8]. This difference
reflects partly the difference in the �n potentials used and
partly the more precise treatment of the nuclear geometry
in our calculations. The half-density radius parameter of
the WS potential used by Dover et al. in the SM calculation
for 16O was taken as R1=2 ¼ 2:545 fm, whereas it assumes

the value R1=2 ¼ 3:268 fm in the present SM calculation

for 16O. The values of R1=2 used for 56Fe are very close to

each other in these works. Finally, for the recently reported
SK result, TdðOÞ> 1:77� 1032 yr [14] in oxygen, our
calculated value for the reduced neutron disappearance
width, using the TI version, implies a lower limit of �n �n >
3:3� 108 s.

B. Antineutron scattering lengths

For ultracold neutron experiments searching for n �n os-
cillations, the knowledge of their scattering lengths in a
given material is essential for constructing the relevant
Fermi pseudopotentials. The neutron scattering lengths
are known from thermal neutron reactions. Here we discuss
the extraction of antineutron scattering lengths from the �p
optical potentials determined from a comprehensive analy-
sis of �p atomic data. We note that for the best-fit �p
potentials, the isovector component came out negligible
[10], so the �n and �p potentials are identical. Antinucleon
scattering lengths were discussed extensively in Ref. [20].
It was found there that a simple global parametrization was
possible, in the form

Rea ¼ ð1:54� 0:03ÞA0:311�0:005 fm;

Ima ¼ �1:00� 0:04 fm;
(24)

for A > 10. The approximate A1=3 dependence of the real
part, and the constancy of imaginary part, are to be ex-
pected on the basis of a simple model based on a strongly
absorptive square well potential, although the actual mag-
nitude of Ima is considerably larger than expected for a
sharp-edge potential, resulting mainly from the diffuseness
of the potential [21].

In our latest work [10] the data base has been extended
to include the numerous CERN PS209 Collaboration �p

atomic data. The values of a due to the isoscalar �N poten-
tials fitted to this extended set of data are listed for 12C and
58Ni in Table II, together with values obtained using
Eq. (24), and also from the earlier work by Wong et al.
[22]. Here, FR and ZR stand for values of a derived from
best global-fit finite-range and zero-range potentials, re-
spectively, with FR giving the lowest �2 [10]. The nota-
tions S (shallow) and D (deep) stand for values of a
calculated in Ref. [15] from potentials with a relatively
weak absorptivity W or a strong one, respectively, derived
from limited fits in Ref. [22]. The resulting scattering
lengths a exhibit a remarkable independence of the model
used, provided it fits the �p atomic data. This stability
follows from the strong absorptivity of the �p potential
which suppresses the associated 1s atomic radial wave
function in the nuclear interior where the main model
dependence arises [23].

IV. SUMMARY

We have reported results of precise calculations of the
reduced lifetimes of representative nuclei, 16O and 56Fe,
against neutron-antineutron oscillations, thus providing
revised and updated lower limits on the free-space n �n
oscillation time �n �n. The best lower limit is now provided
by the very recent SK measurement [14] in 16O which
yields according to our calculation a limit of �n �n > 3:3�
108 s. We have used the latest (isoscalar) antinucleon
potentials derived from the analysis of a large-scale set
of �p atomic data near threshold [10]. Having solved accu-
rately the sp equations for neutrons and (coupled) antineu-
trons, it became possible to test the usefulness of rough
approximations such as Eq. (2) in terms of mean nuclear
potentials for neutrons and antineutrons. We found that
using surface values for these mean potentials, taken as
half the corresponding values in the center of the nucleus,
provided an excellent approximation to the exact calcula-
tion. This points out to a considerably mild model depen-
dence of the calculated reduced widths that are sensitive
foremost to �n potentials at the nuclear surface where their
determination from �p atomic data involves only little
extrapolation.
An educated estimate of the theoretical uncertainty in-

volved in the derivation of the lower bound deduced in the
present work on the n �n oscillation time �n �n can be made as
follows.
(i) For a given nucleus like 16O and a given �n-nuclear

potential, but considering alternative ways of treat-

TABLE II. �n scattering lengths a (in fm) from fits to �p atomic data.

Nucleus FR [10] ZR [10] Equation (24) S [22] D [22]

12C 3:26� i0:97 3:21� i0:84 ð3:34� 0:07Þ � ið1:00� 0:04Þ 3:16� i0:87 3:11� i1:10
58Ni 5:41� i1:12 5:43� i1:14 ð5:44� 0:11Þ � ið1:00� 0:04Þ
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ing the nuclear size, the calculated nuclear widths
vary by 5% (columns 4 and 5 of Table I), so the
uncertainty in the derived �n �n is about 2.5%.

(ii) The uncertainty arising from using different nuclei
(columns 4 and 6 of Table I) comes mostly from the
uncertainty in the strength of the absorptive (imagi-
nary) �n-nuclear potential. That shows about 20%
uncertainty for the averaged disappearance width
�d, and hence 10% for �n �n.

Thus, the overall theoretical uncertainty involved in the
present one-nucleon n �n oscillation calculations is about
10%–15%. It should be viewed as a model-dependence
uncertainty that is considerably lower than the 50%–100%
uncertainty range evident in many of the calculations from
the 1980s and 1990s, e.g. Ref. [8], before the information
from �p atoms became as abundant and precise as it is
available to date [10]. Other past calculations [7,9] which
avoided using �n phenomenological optical potentials faced
a tougher task of having to renormalize the �nN strong
interaction within the nucleus, a formidable job that was
bypassed by Dover et al. [8] and in the present work using a
well-constrained phenomenological �n-nuclear potential.

Another source of uncertainty involves two-nucleon
processes which inside the nucleus might compete with
the leading one-nucleon process considered here. In their
1985 paper, making contact with beta-decay and EMC
calculations, Dover et al. [8] estimated these additional
modes of neutron disappearance to be about 15%–30%,
and largely incoherent with the one-nucleon mode. This
provides a systematical uncertainty which may be used to
increase the stated lower bound on �n �n.
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APPENDIX: ASYMPTOTIC �n RADIAL
WAVEFUNCTIONS

Here we record special, regular at r ! 1 solutions of
the �n inhomogeneous radial Eq. (8) in terms of similar
solutions of the n homogeneous radial Eq. (7). At r > R,
where the �n and n nuclear potentials are negligible, these
equations are written in standard form as

�v00
�‘jð�Þþ

‘ð‘þ 1Þ
�2

v�‘jð�Þþv�‘jð�Þþ 1

BðnÞ
�‘j

u�‘jð�Þ ¼ 0;

(A1)

� u00�‘jð�Þ þ
‘ð‘þ 1Þ

�2
u�‘jð�Þ þ u�‘jð�Þ ¼ 0; (A2)

for �n and n, respectively, where � ¼ ��‘jr is dimension-

less. The n bound-state, regular at � ! 1 solutions are
given by

u�‘jð�Þ ¼ A�‘jP ‘ð�Þ expð��Þ

¼ A�‘jð�1Þ‘�‘þ1

�
1

�

d

d�

�
‘ expð��Þ

�
; (A3)

where A�‘j are normalization constants ensuring that

asymptotically P ‘ð� ! 1Þ ! 1. P ‘ð�Þ are polynomials
in 1=�, related to the outgoing spherical Hankel functions
[24], satisfying the differential equation

P 00
‘ ð�Þ � 2P 0

‘ð�Þ �
‘ð‘þ 1Þ

�2
P ‘ð�Þ ¼ 0: (A4)

The lowest-order P ‘s relevant to the present work are

P 0ð�Þ ¼ 1;

P 1ð�Þ ¼
�
1þ 1

�

�
;

P 2ð�Þ ¼
�
1þ 3

�
þ 3

�2

�
;

P 3ð�Þ ¼
�
1þ 6

�
þ 15

�2
þ 15

�3

�
:

(A5)

A useful recursion relation satisfied by the P ‘s is

P ‘ð�Þ ¼
�
1þ ‘

�

�
P ‘�1ð�Þ � P 0

‘�1ð�Þ ðP�1ð�Þ � 1Þ;
(A6)

easily derived from the explicit form of P ‘ given in
Eq. (A3).
It can be shown that regular at � ! 1 solutions of the �n

inhomogeneous radial Eq. (A1) are given by

v�‘jð�Þ ¼ � A�‘j

2BðnÞ
�‘j

�Q‘ð�Þ expð��Þ; (A7)

where Q‘ð�Þ ¼ P ‘�1ð�Þ. For a proof, one forms the in-
homogeneous second-order differential equation satisfied
by the Q‘s, making use of Eqs. (A4) and (A6). The latter
equation allows us then to construct the Q‘s recursively:

Q ‘þ1ð�Þ ¼
�
1þ ‘

�

�
Q‘ð�Þ �Q0

‘ð�Þ ðQ0ð�Þ ¼ 1Þ:
(A8)
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