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Recently a new bosonization method has been used to derive, at zero fermion density, an effective

action for relativistic field theories whose partition function is dominated by fermionic composites, chiral

mesons in the case of QCD. This approach shares two important features with variational methods: the

restriction to the subspace of the composites, and the determination of their structure functions by a

variational calculation. But unlike standard variational methods it treats excited states on the same footing

as the ground state. I show that this bosonization method is an approximation of an exact procedure in

which composites are introduced in the presence of fermionic states with the quantum numbers of the

constituents (quasiparticles). This procedure consists of an independent Bogoliubov transformation at

each time slice. The time-dependent parameters of the transformation are then associated with composite

fields. In this way states of nonvanishing fermion (baryon) number (neglected in the bosonization

approach) are retained. By the exact procedure I derive an effective action for QCD at finite temperature

and baryon density. I test the result on a four-fermion interaction model.

DOI: 10.1103/PhysRevD.78.014514 PACS numbers: 11.15.Ha, 11.15.Tk

I. INTRODUCTION

Increasing temperature and baryon density hadronic
matter is expected to undergo one or more crossovers
and/or phase transitions. Increasing temperature at zero
baryon number one might/should meet a phase in which
quarks cohexist with hadronic (possibly colored) states [1].
By increasing baryon density at fixed temperature, one
should meet a similar phase and possibly a color super-
conducting phase [2] due to a weak attractive channel
between quarks of different colors. These new states of
matter should be at least partially accessible to experimen-
tal investigation in heavy ion collision experiments.

Understanding the behavior of hadronic matter at high
temperature and baryon density is relevant for the study of
early universe and neutron stars. But its theoretical prop-
erties can be studied only nonperturbatively and the lattice
approach, the most powerful tool for first principles, non-
perturbative studies, is affected in the case of finite density
QCD by the well-known sign problem.

Some progress was achieved recently [3,4] by simula-
tions at imaginary chemical potential. Other interesting
results were obtained [5] within a modified version of the
Glasgow reweighting technique and by an approach which
makes use of a Taylor expansion in the chemical potential
in the small �=T region [6].

At last a new approach to simulate QCD at finite tem-
perature and baryon density was developed [7], which
resembles in some aspects that of the imaginary chemical
potential, but seems to have a wider range of applicability
[8].

The magnitude of quark masses has large effects in
numerical simulations. Several arguments lead to the ex-

pectation that the evaluation of the fermion determinant is
more stable the larger the fermion masses are [9]. These
arguments are relevant to the present work, as explained at
the end of Sec. VII.
To tackle the problem of QCD at finite temperature and

baryon density I extend a new method of bosonization of
fermionic systems whose partition function is dominated
by fermionic composites. This is certainly the case of QCD
at low temperature and baryon density, in which the rele-
vant degrees of freedom are mesons and nucleons, and also
at high temperature and baryon density according to the
expectations reported above. This method was first devel-
oped in the framework of many-body nonrelativistic theo-
ries [10] and then applied to relativistic field theories [11]
at finite temperature and zero fermion density. Its heuristic
motivation is that reformulation of a theory in terms of
fields related to physical degrees of freedom should make it
simpler. The starting point of this approach is the partition
function in operator form, namely, the trace of the transfer
matrix in the Fock space of the fermions. The physical
assumption of composite dominance is then implemented
by restricting the trace to fermion composites. This re-
quires an approximation of a projection operator on the
subspace of the composites, the approximation being the
better, the higher the number of fermion states (called
index of nilpotency) in the composites. The approximate
projection operator is constructed in terms of coherent
states of composites, and evaluation of the trace, which is
done exactly, generates a bosonic action in terms of the
holomorphic variables appearing in the coherent states.
The structure functions of the composites are deter-

mined by a variational procedure. So this approach shares
two important features with variational methods: The re-
striction to a subspace of the Fock space of fermions, the
space of chiral mesons in the case of QCD, and the deter-*Fabrizio.Palumbo@lnf.infn.it
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mination of their structure functions by a variational cal-
culation. But unlike standard variational methods in the
present one, excited states are treated on the same footing
as the ground state.

The utility of variational methods and bosonization has
been widely appreciated in the theory of many-body sys-
tems. But their potentiality has also been considered in the
framework of relativistic field theories, in particular, gauge
theories, for example, by Feynman [12] who, however, was
skeptical about their practical applicability, and recently in
connection with QCD at high baryon density [13].

The approach just outlined is compatible with any regu-
larization. But in gauge theories the effective action of the
composites will involve vacuum expectation values of
invariant functions of gauge fields which cannot be eval-
uated within the present framework. Therefore a lattice
formulation was adopted in order to be able to extract such
expectation values from numerical simulations. One is then
confronted with the well-known difficulty with chiral in-
variance, which can only in part be overcome by using
Kogut-Susskind fermions. However the method can, at
least in principle, be used with any other lattice regulari-
zation [14] for which a transfer matrix has been explicitly
constructed.

The formalism of the transfer matrix does not treat time
and space in a symmetric way, and therefore Euclidean
invariance of the bosonic action must be checked a poste-
riori. All other symmetries are instead respected.

Before outlining the extension of this approach I will
review what has been already done. The validity of the
method was tested on a model with a four-fermion inter-
action in 3þ 1 dimensions: Euclidean invariance was
recovered in the continuum limit and all the known results
in the boson sector were exactly reproduced, namely, con-
densation of a composite boson with the right mass, which
breaks the discrete chiral invariance of the model. In
addition, the structure function of the composite was de-
termined, and its radial factor, in a polar representation,
turned out to be identical with that of the Cooper pairs of
the BCS model of superconductivity.

In the present work I show that the bosonization method
developed in Refs. [10,11] is an approximation to an exact
procedure in which composites are introduced in the pres-
ence of fermionic states with the quantum numbers of the
constituents, to be called quasiparticles. This procedure
consists of an independent Bogoliubov transformation at
each time slice. The time-dependent parameters of the
transformation are then associated with composite fields.
This is part of an old problem: given a Lagrangian which
generates bound states, how to replace it by a physically
equivalent Lagrangian in which bound states and constit-
uents are treated on equal footing [15]. I solve my problem
defining quasiquark states in such a way that quasiquark-
quasiantiquark states are orthogonal to meson states. This
constraint corresponds to the condition on the wave func-

tion renormalization of composite particles in the Lehman
spectral representation of composite operators [15].
The bosonization method is obtained by neglecting qua-

siparticles. To study QCD at finite temperature and baryon
density I must use the exact procedure and retain quasi-
particles. As a first step I must introduce fermionic states
with quark quantum numbers in the presence of mesons,
namely, I must construct a Fock space containing compo-
sites and their constituents avoiding double counting.
The next step, the explicit introduction of baryons and

antibaryons constructed in terms of quasiquarks and qua-
siantiquarks, is desirable but not necessary in a variational
calculation, because a space of mesons, quasiquarks, and
quasiantiquarks obviously contains baryons and antibary-
ons. Therefore in the present paper I will not explicitly
include in the partition function baryonic states. For a
further simplification I will exclude antiquarks, so that
my variational space contains mesons and baryons. This
amounts to neglect virtual baryons-antibaryons pairs, and it
is justified for not too high values of temperature and
baryon density. In the resulting effective action the expec-
tation value of the chiral sigma field provides a mass to the
quasiquarks. On the ground of the arguments concerning
the effects of quark masses on numerical simulations
quoted above [9], numerical simulations with such effec-
tive action will be more stable, and it should be possible to
investigate the limit of zero quark bare mass. I will also
investigate in a separate work the possibility of analytical
expansions.
The inclusion of quasiantiquark states will be presented

in a separate paper [16].
I again test the method on a four-fermion interaction

model, reproducing the known results in the fermion sec-
tor, namely, existence of a free fermion whose mass is half
that of the composite boson, and chiral symmetry restora-
tion with increasing fermion density. The mechanism of
this restoration is that quasifermions occupy the lowest
energy states, from zero energy up to a maximum energy
increasing with density, progressively depleting the con-
densate. The test on the model in the presence of quasian-
tiquarks will be presented in Ref. [16] where a study of the
dependence on temperature is also performed.
The paper is organized in the following way. In Sec. II I

report the general formalism and in Sec. III its application
at zero baryon density. In Sec. IV I define quasiquark states
and the approximate projection operator in the subspace of
mesons and quasiquarks. In Sec. V I derive a first form of
their effective action. In Sec. VI I apply this action to the
study of the four-fermion interaction model, getting the
results described above. In Sec. VII I derive a second form
of the effective action, which has a more transparent inter-
pretation, and allows a cross-check of the accuracy of the
approximation for the projection operator by comparison
of the results for the four-fermion interaction model, which
coincide with those obtained by the first effective action.
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Moreover I show how one can use this action to investigate
the chiral phase transition in QCD assuming a local struc-
ture function for the sigma field. In Sec. VIII I summarize
my results with an outlook to possible applications.

II. GENERAL FORMALISM

The starting point of our formalism is the standard
expression of the partition function of QCD in terms of
the transfer matrix

Z¼
Z
½dU�exp½�SGðUÞ�TrF

�YL0�1

t¼0

ðT̂y
t V̂t expð�n̂BÞT̂tþ1Þ

�
:

(1)

L0 is the number of links in the temporal direction, SG the
gluon action, and

T̂t ¼ exp½�ûyMtû� v̂yMT
t v̂� exp½v̂Ntû�;

V̂t ¼ exp½ûy lnU0;t ûþ v̂yU�
0;tv̂�: (2)

The U�;t are matrices whose matrix elements are the link

variables at Euclidean time t

ðU�;tÞx1;x2
¼ �x1;x2

U�;tðx1Þ: (3)

Because the formalism asymmetrically treats time and
space, I use boldface letters, as x, to denote spatial coor-
dinates, and italic letters to denote space-time coordinates:

x ¼ ðt;xÞ. ûyi and v̂yi are, respectively, creation operators
of quarks and antiquarks in state i, obeying canonical
anticommutation relations. TrF is the trace over the Fock
space of quarks, � the chemical potential, and n̂B the
baryon number operator. The matrices Mt (M

T
t being the

transposed of Mt) and Nt are functions of the spatial link
variables at time t and possibly of other bosonic fields.
They depend on the regularization adopted for the fermi-
ons, but what follows is not affected by their explicit
expressions, which are reported in Appendix B for
Wilson and Kogut-Susskind fermions in the flavor basis.

I include in the gluon action the term

�SG ¼ �X
t

4tr�Mt (4)

which comes from transformations on the fermion fields
going from the functional form to this operator form of the
transfer matrix. I introduced the notation, which I will use
for any matrix �

tr�� ¼ trðPð�Þ
0 �Þ: (5)

The operators Pð�Þ
0 , which project on the quark-antiquark

components of the quark field are defined in Appendix B.
tr� is the trace over quarks or antiquarks intrinsic quantum
numbers and spatial coordinates (but not over time).

The expression (1) for the partition function was given
by Lüscher [17] in the gauge U0 � 1, in which Vt ¼ 1 (but
one has to impose the Gauss constraint).
Now I perform at each time slice an independent, gen-

eralized Bogoliubov transformation [18]

�̂i ¼ ½R1=2ðû�F yv̂yÞ�i;
�̂i ¼ ½ðv̂þ ûyF yÞðR�Þ1=2�i;

(6)

�̂y
i ¼ ½ðûy � v̂F ÞR1=2�i;

�̂y
i ¼ ½ðR�Þ1=2ðv̂y þF ûÞ�i;

(7)

where

R ¼ ð1þF yF Þ�1;

R
� ¼ ð1þFF yÞ�1:

(8)

The quasiparticle operators �̂, �̂ and their Hermitian con-
jugates satisfy canonical commutation relations for any
choice of the matrix F . The quasiparticle vacuum is

jF i ¼ expF̂ yj0i; (9)

where

F̂ ¼ v̂F û: (10)

The standard way to get the functional form of the partition
function is to evaluate the trace over the fermion Fock
space using coherent states of fermions

j�;�i ¼ expð�ûy þ �v̂yÞj0i; (11)

where �, � are Grassmann variables and

�û ¼ X
i

�iûi: (12)

I will instead use the quasiparticle coherent states obtained
by a Bogoliubov transformation

j�;�;F i ¼ expð���̂y � ��̂yÞ expF̂ yj0i: (13)

To this end I introduce a realization of the identity in terms
of these states

I ¼
Z
½d�d��h�;�;F j�;�;F i�1j�;�;F ih�;�;F j

(14)

and insert it at each time slice in the partition function

Z ¼
Z
dUexp½�SGðUÞ�TrF

�YL0�1

t¼0

ðI T̂y
t V̂t expð�n̂BÞT̂tþ1Þ

�
:

(15)

The explicit expression of the trace is

SEMIVARIATIONAL APPROACH TO QCD AT FINITE . . . PHYSICAL REVIEW D 78, 014514 (2008)

014514-3



Tr F
� YN0�1

t¼0

ðI T̂y
t V̂t expð�n̂BÞT̂tþ1Þ

�

¼
Z YL0�1

t¼0

½d�td��
t d�td�

�
t �h�t; �t;F tj�t; �t;F ti�1

�h�t; �t;F tjT̂y
t V̂t expð�n̂BÞT̂tþ1j�tþ1; �tþ1;F tþ1i:

(16)

The last step is to notice that since nothing depends on the
matrix F I can integrate over it with an arbitrary measure

Z ¼
Z
dU exp½�SGðUÞ�

Z YL0�1

t¼0

d�ðF yF Þ

� ½d�td��
t d�td�

�
t �h�t; �t;F tj�t; �t;F ti�1

�h�t; �t;F tjT̂y
t V̂t expð�n̂BÞT̂tþ1j�tþ1; �tþ1;F tþ1i:

(17)

For a physical interpretation I expand the matrix F t in a
basis of time independent matrices �xK

F t ¼
X
xK

�Kðt;xÞ��xK ¼ ��
t ��: (18)

The time-dependent coefficients of the expansion �Kðt;xÞ
will become dynamical fields associated with mesonic
composites at position x with quantum numbers K such
as radial excitations, spin, flavor, and so on. K includes
color for colored mesons, which will be important at high
temperature and/or baryon density. The choice of the basis
matrices �K selects which mesons one wants to include in
the calculation in a variational spirit.

I will replace everywhere F by �, because the basis
matrices � are chosen once and for all (but will be deter-
mined at the end by a variational calculation). From the
mathematical point of view the new expression of the
partition function is exactly equivalent to the original
one. From the physical point of view there is no double
counting because the property of quasiparticles of annihi-
lating the vacuum

�̂ ij�i ¼ �̂ij�i ¼ 0 (19)

can be interpreted as a compositeness condition: Mesonic
states are orthogonal to quasiquark-quasiantiquark states.
This constraint has the physical meaning of the condition
Z ¼ 0 for bound states in the Lehmann spectral represen-
tation of composite operators [15], namely, the condition
required to introduce a bound state on the same footing as
the constituents in a Lagrangian.

III. THE MESONIC ACTION

For the convenience of the reader I report the effective
action which results from the above construction when the
contribution of quasiparticles can be neglected. This hap-
pens at low energy, when the partition function is domi-

nated by chiral mesons. In this approximation all the
coherent states coincide with the quasiparticle vacuum,
and we can check a posteriori that we get sensible results
setting the measure of integration over the chiral fields
equal to 1

Z 	
Z
dU exp½�SGðUÞ�ZmesonsðUÞ; (20)

where

Z mesonsðUÞ ¼ TrF
�YL0�1

t¼0

ðPmT̂
y
t V̂t expð�n̂BÞT̂tþ1Þ

�
; (21)

with

P m ¼
Z �

d�d��

2�i

�
h�j�i�1j�ih�j; (22)

and �
d�d��

2�i

�
¼ Y

x;K

�
d�xKd�

�
xK

2�i

�
: (23)

Pm is an approximate projection operator on the subspace
of the composites

�̂ y
x;K ¼ ûy�y

xKv̂
y ¼ X

ij

ûyi ð�y
xKÞijv̂yj : (24)

Since fermion creation operators are nilpotent, compos-

ite creation operators �̂y
x;K can be classified according to

their index of nilpotency, which is the highest integer
exponent � such that

ð�̂yÞ� � 0: (25)

� counts the number of fermion states in the composite.
By analogy with systems of elementary bosons the state

j�i ¼ exp

�X
x;K

�xK�̂
y
xK

�
j0i (26)

might be considered a coherent state of composites. But
since composite operators do not obey canonical commu-
tation relations, the properties of their coherent states differ
from those of canonical bosonic coherent states. For in-
stance the basic property of coherent states cannot be
exactly satisfied

�̂ xKj�i � �xKj�i: (27)

However, if the index of nilpotency of the composites is
large enough, the composites system resembles a canonical
bosonic system, and the properties of canonical boson
coherent states will approximately hold for the composite
coherent states, as shown in detail in Refs. [10,11].
Hence, under the assumption that the composite opera-

tors which dominate the partition function have a large
index of nilpotency, an approximate projection operator in
the Fock space of the fermions can be defined. It is im-
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portant to observe that the space selected by this operator
includes two physically equivalent states obtained for� ¼
0, 1. They correspond to a completely empty or filled
lattice.

The scalar product of coherent states appearing in the
definition of the projection operator is

h�j�0i ¼ detþ½1þ ð� ��yÞð�0� ��Þ� (28)

and for any matrix �

det�� ¼ detðP�
0 �Þ: (29)

By a little abuse of notation I often write ‘‘1’’ instead of the
identity in the space of the matrices �.
Following the general procedure outlined in the previous

section, I write the meson partition function in the form

ZmesonsðUÞ ¼ TrFfPmT̂
y
0 V̂0T̂1PmT̂

y
1 V̂1 � � �PmT̂

y
L0�1V̂L0�1T̂0g

¼
Z YL0�1

t¼0

�
d�td�

�
t

2�i

�
1

h�tj�ti h�tjT̂y
t V̂tT̂tþ1j�tþ1i; (30)

where a copy of the Fock space of the mesons has been
introduced at each time slice. The chemical potential has
disappeared because it is not active in a space of only
mesons. Explicitly

j�ti ¼ exp

�X
x;K

�Kðt;xÞ�̂y
xK½Ui;t�

�
j0i: (31)

I remind one that the structure functions �x;K do not
depend explicitly on time, but as they are functions of
gauge fields, time will enter as a label of these fields.

In the evaluation of the trace on the fermionic Fock
space the only difference with respect to [11] is the pres-

ence of the operator V̂t. But I notice that the product of

operators V̂tT̂tþ1 has an expression similar to that of T̂tþ1

V̂tT̂tþ1 ¼ exp½�ûy lnðeMtþ1Uy
0;tÞû� v̂y lnðeMT

tþ1UT
0;tÞv̂�

� exp½v̂Ntû�: (32)

Then evaluation of the trace over the Fock space proceeds
exactly as in [11] with the result

Z mesonsðUÞ ¼
Z Y

t

�
d�td�

�
t

2�i

�
exp½�Smesonsð��; �;UÞ�;

(33)

where

Y
t

�
d�td�

�
t

2�i

�
¼ Y

x;K

�
d�Kðx; tÞd��

Kðx; tÞ
2�i

�
; (34)

and

Smesons ¼
X
t

tr�½� lnRt þ lnRt þMy
t �: (35)

In the last equation

Rt ¼ ð1þF yF Þ�1
t ;

Rt ¼ ½ð1þF yNÞtþ1e
Mtþ1Uy

0;te
My
t ð1þ NyF Þt

þF y
tþ1e

�Mtþ1Uy
0;te

�M�
tF t��1eMtþ1Uy

0;t:
(36)

Notice that the matrix Rt involves gauge fields at time t

and tþ 1. The notation is somewhat different from that of
[11].
It is remarkable that Smesons has been evaluated exactly,

so that the only approximations in the partition function are
the physical assumption of boson dominance and the form
of the projector over the meson subspace. Since the pro-
jector depends on the structure functions �x;K, the effec-

tive action is a functional of these functions which are
determined by a variational calculation on the quantities
of interest. In simple cases, such as the four-fermion inter-
action model, the variational calculation provides the exact
form of the structure function. In QCD, unless some ana-
lytic progress is made along a way similar to that of the
four-fermion interaction model, one has to adopt a trial
expression.
In Ref. [11] an alternative, equivalent form of the effec-

tive action was derived, which has a more transparent
interpretation. I will also derive two forms of the effective
action at finite baryon density, but for the second one I will
follow a somewhat different procedure.

IV. COHERENT STATES OF MESONS PLUS
QUASIPARTICLES (WITHOUT

QUASIANTIPARTICLES)

In order to extend the formalism to QCD at finite baryon
density, I must introduce in the partition function states
with nonvanishing baryon number. In the spirit of compo-
sites dominance, I should construct baryonic composites
and define a projection operator on the subspace of mesons
and baryons. In the present framework it is only possible to
include, in addition to mesons, quasiparticles states with
quark-antiquark quantum numbers, which I will call qua-
siquarks and quasiantiquarks. Such a space obviously con-
tains the space of mesons and baryons. As anticipated in
the Introduction in the present paper I include only mesons
and quasiquarks in my variational space, but not quasian-
tiquarks. My variational space does not contain antibary-
ons, which are not expected to be important for not too high
temperature and baryon density. Inclusion of quasianti-
quarks will be presented separately [16].
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’’Coherent’’ states of quasiquarks and mesons are

j�;�i ¼ expð�� � �̂yÞ expð� � �̂yÞj0i: (37)

These states can be recast in the form

j�;�i ¼ expðûyR�ð1=2Þ�þ� � �̂yÞj0i (38)

which is more convenient for calculations. The operator
which approximately projects on such states is

Pm�q ¼
Z
½d��d��

�
d��d�
2�i

�
h�;�j�;�i�1j�;�ih�;�j;

(39)

where the measure is

h�;�j�;�i�1 ¼ h�j�i�1h�j�i�1

¼ expftr� lnR� �� � �g: (40)

If Pm�q is an approximate projector it must satisfy the

equations

h0j�̂m1�̂n1Pm�qð�̂yÞn2ð�̂yÞm2 j0i
’ h0j�̂m1�̂n1ð�̂yÞn2ð�̂yÞm2 j0i / �m1;m2

�n1;n2 : (41)

These equations are generated by the following ones:

h�1�1jPm�qj�2�2i ’ h�1�1j�2�2i; (42)

by taking derivatives with respect to the variables �i, �i

and setting them equal to zero. The left-hand side of (42) is

h�1; �1jPm�qj�2; �2i

¼
Z
½d��d��

�
d��d�
2�i

�

� expftr�½lnRþ lnð1þF yF 1Þ þ lnð1þF y
2F Þ�

þ ��
1R

�ð1=2Þ
1 ð1þF yF 1Þ�1ð1þF y

2F Þ�1R�ð1=2Þ
2 �2g:

(43)

This shows by inspection that the first member of (41)
vanishes unlessm1 ¼ m2, n1 ¼ n2. Evaluating the integral
in the above equation by the saddle point method, as done
in [11] for Pm, we see that Pm�q is approximately a

projector if we assume

tr ð�y�Þn ’ ��nþ1: (44)

I remind one that � is the index of nilpotency of �̂.

V. FIRST FORM OF THE EFFECTIVE ACTION AT
FINITE BARYON DENSITY

I follow the derivation of the effective action outlined in
Sec. III for zero baryon density, again setting the measure
of integration over the composite fields equal to 1. I skip
many intermediate steps because calculations of this kind
have been reported in detail in [11], and can be easily

repeated here by the help of the formulas collected in
Appendix A. I start by evaluating the matrix elements of
the transfer matrix between coherent states

h�t;�tjT̂y
t V̂t expð�n̂BÞT̂tþ1j�tþ1; �tþ1i

¼
Z
½d��d��½d��d��e��������h�t;�tjT̂y

t j��i

� h��jV̂t expð�n̂BÞT̂tþ1j�tþ1; �tþ1i: (45)

The last factor is

h��jV̂t expð�n̂BÞT̂tþ1j�tþ1; �tþ1i
¼ det�ð1þF yNÞtþ1 expf��U0;te

�Mtþ1ð1þF yNÞ�1
tþ1

� ½e�R�ð1=2Þ
tþ1 �tþ1 þF y

tþ1e
�Mtþ1Uy

0;t�
��g: (46)

A similar result for the other matrix element and integra-
tion over ��, �, ��, � leads to the expression

h�t;�tjT̂y
t V̂t expð�n̂BÞT̂tþ1j�tþ1; �tþ1i

¼ det�ðe�My
t R�1

t Þ
� expð��

t e
�R�ð1=2Þ

t RtU0;te
�Mtþ1R�ð1=2Þ

tþ1 �tþ1Þ: (47)
From the measure appearing in the definition of Pm�q,

Eq. (40), I get the factor

h�t;�tj�t;�ti�1 ¼ det�Rt expð���
t � �tÞ: (48)

Putting these pieces together I get the effective action of
mesons interacting with quasiquarks

Smesons quarks ¼ Smesons �
X
t

��
t ½��t þ e�R�ð1=2Þ

t

�RtU0;te
�Mtþ1R�ð1=2Þ

tþ1 �tþ1�; (49)

where Smesons is given by Eq. (35). I remind one that � is a
2-spinor with the quark intrinsic quantum numbers.
Smesons quarks can be put in a more transparent form

Smesons quarks ¼ Smesons � s
X
t

��
t ðrt �H tÞ�tþ1 (50)

by introducing the lattice covariant derivative in the pres-
ence of a chemical potential and the lattice Hamiltonian

rt�tþ1 ¼ 1

s
ðe�U0;t�tþ1 � �tÞ;

H t ¼ 1

s
e�½U0;t � R�ð1=2Þ

t RtU0;te
�Mtþ1R�ð1=2Þ

tþ1 �:
(51)

The factor s in the above equations takes the value 2 in the
Kogut-Susskind regularization because the quarks live on
blocks, and 1 in the Wilson regularization. I notice that the
time derivative is not symmetric, so that this action does
not give rise to fermion doubling. Integrating over the
Grassmann variables I get the purely bosonic effective
action
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Seffective ¼ �Tr� lnðR�1ReM � e�U0T
ðþÞ
0 Þ; (52)

where I adopted the following notations: All matrices (with

the exception of Tð�Þ
� ) which do not have a time label are

diagonal in time with matrix elements

ðU0Þx1;t1;x2;t2 ¼ �t1;t2�x1;x2
U0;t1ðx1Þ;

Ri1;t1;i2;t2 ¼ �t1;t2ðRt1Þi1;i2 ;
(53)

while the matrix elements of space-time translation opera-
tors are

ðTð�Þ
� Þx1;x2 ¼ �x2;x1�s�̂: (54)

‘‘Tr’’ is the trace on all entries including time, while I
remind one that ‘‘tr’’ is the trace on intrinsic and spatial
quantum numbers only.

VI. APPLICATION TO A FOUR-FERMION
INTERACTION MODELWITH KOGUT-SUSSKIND

FERMIONS

To get insight from the above result and also to test it I
apply it to the four-fermion interaction model adopted as a
test at zero fermion density [11]. It is a model in 3þ 1
dimensions regularized on a lattice with Kogut-Susskind
fermions in the flavor basis. (I do not know any formulation
of the transfer matrix in the spin-diagonal basis which can
be used in the present formalism.) For each of the four
Kogut-Susskind tastes there are Nf degenerated flavors.

Hence, the continuum limit will describe a theory with 4Nf
flavors. In the flavor basis the action reads

S ¼ X0

x

X0

y

� ðxÞ½m1 
 1þQ�x;y ðyÞ

þ 1

2

g2

4Nf

X0

x

ð � ðxÞ ðxÞÞ2; (55)

wherem is the mass parameter, g2 the coupling constant,  
the fermion fields, and Q the hopping matrix:

Q ¼ X
�

�� 
 1½Pð�Þ
� rðþÞ

� þ PðþÞ
� rð�Þ

� �: (56)

The matrices to the left (right) of the symbol
 act on Dirac
(taste) indices. I denote by � and t the matrices acting on
these indices, respectively. The operators

Pð�Þ
� ¼ 1

2½1 
 1� ���5 
 t5t�� (57)

are orthogonal projectors. The fermion fields are defined
on blocks (see Appendix B for details). The right and left

derivatives rð�Þ
� are given by

rð�Þ
� ¼ �1

2ðTð�Þ
� � 1Þ: (58)

The factor 1=2 is due to the fact that the operators T�
translate by one block. The model has a discreet chiral
symmetry at m ¼ 0:

 ! ��5 
 t5 ; � ! � �5 
 t5: (59)

To have an action bilinear in the fermion fields a scalar
field �ðxÞ is introduced, whose integration generates the
four-fermion coupling:

S 0 ¼ X0

x

X0

y

� ðxÞ½ðmþ �Þ1 
 1þQ�xy ðyÞ

þ 4Nf

2g2
X0

x

�2ðxÞ: (60)

The partition function now reads

Z ¼
Z
½d��½d � d � exp½�S0�: (61)

Its restriction to fermion composites plus a fermion gas,
without antifermions is

ZC�F ¼
Z
½d��½d��d��½d��d��

� exp

�
� 4Nf

2g2
X0

x

�2ðxÞ � SC�F
�
: (62)

SC�F is given by Eq. (49), in which one has to insert the
expressions of the matrices M, N appropriate to Kogut-
Susskind fermions in the flavor basis [19]: The matrixM is
equal to zero and the matrix N is reported in Appendix B.
Integration over the fermion fields gives the effective ac-
tion

Seffective ¼ �Tr� ln½R�1R� e�TðþÞ
0 �: (63)

Now I look for constant values of the fields ��, �, and �
which make the action stationary. I put a bar over constant
fields and their functions. Then

�S effective ¼ �Tr� ln½ �R�1 �R� e�TðþÞ
0 �; (64)

and I can perform the sum over time getting

�S effective ¼ �1
2L0 tr�f�	½e� � �R�1 �R�

þ lnð �R �R�1Þ	½ �R�1 �R� e��g; (65)

where 	 is the step function which defines the Fermi
surface. For � ¼ 0 I recover the effective action derived
[11] at zero fermion density.
To determine the magnitude of the condensate I must

perform a variation with respect to the boson fields ���, ��,
and to determine the form factor of the composite a varia-
tion with respect to the matrices �y, �. But �Seffective does
not depend on these variables separately; it is a function of
�F y and �F . The saddle point equations with respect to

these matrices for e� < �R�1 �R, are identical to the ones for
zero chemical potential. Using the result of [11] I then get

�F y ¼ N

2H
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
þ 1Þ; e� < �R�1 �R; (66)
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where

H ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
NyN

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ ��Þ2 � �

q
(67)

with � given by Eq. (B9). I notice that H differs from the
lattice Hamiltonian defined above

�H ¼ 1
2e
�ð1� �R�1 �RÞ ¼ e�Hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
�HÞ; (68)

but they are equal in the formal limit of vanishing lattice
spacing. In this limit I can rewrite SC�F in the form

SC�F ¼ SC � 2
X
t

��
t ½rðþÞ

t � ðH ��Þ�	ð2H ��Þ�t:

(69)

For m ¼ � ¼ 0, I recover the well-known result that the
fermionic system under consideration in the limit of Nf !
1 contains free fermions of mass �� in addition to free
bosons of mass 2 ��. I emphasize that the result recovered in
this way is only formal. Indeed after adding one fermion I
should determine the new minimum of the action, namely,
the variation of the structure functions. But it can be
justified in a concrete way by evaluating the difference of
�Seffective given by Eq. (71) at fermion numbers differing by
one unit.

Now I impose the condition on the fermion number
which determines the chemical potential. From Eq. (65) I
get

� 2

L0

@

@�
�Seffective ¼ tr�	½exp�� �R�1 �R�

¼ tr�	½exp�� 1� 2 �H � ¼ nF:

(70)

For �< 2 ��, nF ¼ 0. For �> 2 ��, quasifermions occupy
the states from zero energy up to a maximum energy EnF
depending on the fermion number nF.

The effective action at the minimum takes the form

�Seffective ¼ �L0 tr�flnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
þHÞ2

� 	ð2 �H þ 1� exp�Þg: (71)

Stationarity with respect to �� yields the gap equation
which determines the masses and therefore the breaking
of chiral invariance

4L0Nf

g2
�� ¼ � @

@ ��
�Seffective

¼ 2L0 �� tr�
�

1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p 	ð2 �H þ 1� exp�Þ
�
:

(72)

Increasing the fermion density, namely, the chemical po-
tential, quasifermions occupy higher and higher energy
states depleting the condensate, until only the solution �� ¼
0 remains and chiral invariance is restored.

VII. SECOND FORMOF THE EFFECTIVE ACTION

The expression (66) of the form factors is somewhat
surprising, because they are increasing functions of mo-
mentum. In [11] a more natural form was deduced by
performing a unitary transformation in the fermionic
Fock space and deriving the corresponding effective ac-
tion. This transformation changes the empty lattice into the
fully occupied one and particles into holes. In this new
Fock space the structure functions are decreasing functions
of momentum, and in a polar representation their polar
factor is equal to that of the Cooper pairs of the BCS model
of superconductivity.
But in addition the second form of the action provided a

test of consistency of the approximation for the projection
operator Pm. I could follow the same path at nonzero
baryon density, but instead I will get a similar result in a
different way. First I rearrange the trace in Fock space in
the following way:

Tr F
� YN0�1

t¼0

ðI T̂y
t V̂t expð�n̂BÞT̂tþ1Þ

�
¼ TrFfV̂0 expð�nBÞT̂1T̂

y
1 V̂1 expð�nBÞ � � � V̂Lo�1 expð�nBÞT̂0T̂

y
0 g: (73)

Then I insert the projection operator Pm�q in the trace
according to

Z 0
mesonsquarksðUÞ¼TrF

�YL0�1

t¼0

ðPm�qexpð�n̂BÞV̂tT̂tþ1T̂
y
tþ1Þ

�
:

(74)

I emphasize that Z0, Z need not coincide with each other
because Pm�q is not an exact projection operator, but the
results obtained by the two forms should agree within the
approximation for Pm�q. A comparison between these
results provides a check of its accuracy.

In the same way as for the first form of the effective
action I evaluate the matrix elements

h�t;�tj expð�n̂BÞV̂tT̂tþ1T̂
y
tþ1j�tþ1; �tþ1i

¼ expf�trþR0
t

þ ��
t e
�R�ð1=2Þ

t U0;te
�Mtþ1R0

tþ1R
�ð1=2Þ
tþ1 �tþ1g; (75)

where
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R0
t ¼ ½1þ ðNt þ e�MtUy

0;t�1F t�1U0;t�1e
�MtÞy

� ðNt þ e�MtF te
�MtÞ��1e�M

y
t : (76)

Including the contribution (40) from the measure I get

S0mesons quarks ¼ S0mesons� s
X
t

��
t ðrt �H 0

tÞ�tþ1; (77)

where

S0mesons ¼
X
t

tr�½� lnRt þ lnR0
t þMy

t �;

H 0 ¼ 1

s
e�½U0;t � R�ð1=2Þ

t U0;te
�Mtþ1R0

tþ1R
�ð1=2Þ
tþ1 �:

(78)

Integrating over ��, � I get the purely bosonic action

S0effective ¼ �Tr� ln½�RðR0Þ�1eM þ e�U0T
ðþÞ
0 �: (79)

By exploiting the cyclic property of the trace it can be
rewritten

S0effective ¼ �Tr� ln½ðR0Þ�1ReM � e�U0T
ðþÞ
0 �: (80)

This expression differs from Seffective, Eq. (52), by the
replacement of R by R0.

A. Application to the four-fermion interaction model

I use this second form of the effective action for the four-
fermion interaction model with Kogut-Susskind fermions
in the saddle point approximation. By means of the results
of Ref. [11] I find

�F y ¼ N

2H
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
�HÞ; 2 �H 0

> e� � 1: (81)

Now the structure function is a decreasing function of the
constituent fermions energy. Using the above expression I
find that

�H 0 ¼ �H ; (82)

so that the results concerning mass of the uncorrelated
fermions and restoration of chiral symmetry derived by
the first form of the action are recovered.

B. Application to QCD

I start by some heuristic considerations about chiral
symmetry breaking and mass generation in QCD in the
present formalism. In the effective action the matrices N
and F appear in the combination

N þF ¼ �2

�
m�0 
 1þ X3

j¼1

�0�j


 1½Pð�Þ
j rðþÞ

j þ PðþÞ
j rð�Þ

j �
�
þF :

This shows that a nonvanishing expectation value of F
with the quantum numbers of the chiral � meson at the

same time breaks chiral symmetry and gives a mass to the
quarks. It is reasonable to think that the present effective
action should make numerical simulations easier, because
of the arguments of Ref. [9] concerning the stability of
such calculations in the presence of massive fermions, and
of the arguments of Ref. [20] concerning the importance of
extending lattice QCD by including explicitly chiral fields.
In particular, one should be able to explore the exact chiral
limit in which the bare quark mass vanishes, m ¼ 0.
A numerical simulation requires a trial expression for

the structure functions of the mesons. For instance one can
assume

ð�xKÞx1a1;x2a2 ¼ fxKðjx1 � x2jÞ
� Y
�ðx1 ;x2Þ

Uk

�
a1a2

; (83)

where the product of the spatial links is along a line �
joining the quark-antiquark positions x1, x2. Waiting for
some analytic input from an approximate solution of the
saddle point equations the spatial part of the wave function
f can be taken from the literature [21] or parametrized in a
convenient way. As an extreme illustrative simplification
for the study of the chiral condensate one can assume a
pointlike structure for the � meson and neglect all the
others

�� ¼ �0 
 1 
 1c 
 1s; (84)

where 1c, 1s are the identity in color and spatial coordi-
nates, respectively (the normalization of �� is included in
the �-meson field). I assume that the � field (but not the
gauge field) is constant at the minimum of the action,
which then reads

�S0effective ¼ �Tr�½lnð1þ ��2
�Þ

� lnð1� e�
0
U0T

ðþÞ
0 þ NNy þ ��2

�Þ�; (85)

where

�0 ¼ �þ lnð1þ ��2
�Þ: (86)

The first term gives the contribution of the �-meson con-
densate, while the second one is the contribution of a
system of quarks (without antiquarks) interacting with a
gauge field in the presence of this condensate which gives a
contribution to their mass equal to ��� (remember that
NyN is essentially the square of the quark Hamiltonian
and therefore depends on the spatial link variables). One
should now determine the minimum of �S0effective with re-

spect to ��� under the condition on baryon number which
becomes

� 2

L0

@

@�0 �S
0
effective ¼

1

1þ ��2
�

nF: (87)

SEMIVARIATIONAL APPROACH TO QCD AT FINITE . . . PHYSICAL REVIEW D 78, 014514 (2008)

014514-9



VIII. SUMMARYAND OUTLOOK

I extended the formalism of composite boson dominance
to the case of nonvanishing fermion number. This required
a definition of fermion and antifermion states in the pres-
ence of bosonic composites which avoids double counting.
These states, called quasiparticles, satisfy a compositeness
condition. The resulting formalism provides a framework
to solve the old problem: given a Lagrangian which admits
bound states, how to define an equivalent Lagrangian in
which the bound states appear on the same footing as the
constituents. The problem is separated in two parts: the
construction of a Hilbert space in terms of composites and
constituents, and the determination of the structure of the
composites. The first part has been explicitly solved in a
way which allows one to tackle the second by analytical or
numerical techniques.

The extension is obtained by performing independent
generalized Bogoliubov transformations at each time slice
so that the resulting effective Lagrangian is exactly equiva-
lent to the original one. Our previous work of Ref. [11] can
therefore be regarded as an approximation in which qua-
siparticles are altogether neglected. This can be justified at
zero fermion density and very low temperature and energy.
In the present paper I include quasifermions neglecting
quasiantifermions. This amounts to neglecting virtual
baryon-antibaryon pairs and can be justified for not too
high temperature and baryon density. Quasiantiquarks
have been included in a separate work [16], in which the
four-fermi interaction model has been investigated analyti-
cally at finite temperature and density. An important issue
is left for future investigation: the role of the integration
measure over the mesonic fields �. In the cases we con-
sidered it has been possible to set this measure equal to 1.
But certainly at high temperature and/or baryon density it
will be necessary to assume a form which will make the
integral over mesonic fields convergent, and then we will
meet the problem of showing that physical results do not
depend on our choice.

Neglecting quasiantifermions I derived two forms of the
effective action and I applied both of them to a four-fermi
interaction model at zero temperature but finite fermion
density. I recovered in both cases the known results, pro-
viding a cross-check of the approximation of the projection
operator introduced to restrict the fermionic Fock space in
the partition function. The discrete chiral invariance of the
model (at zero fermion mass) is broken by composite
boson condensation and the spectrum of the broken phase
contains, in addition to a composite boson, a free fermion
whose mass is half that of the boson. Increasing the fer-
mion density, quasifermions occupy the lowest energy
states up to an energy which increases with increasing
density depleting the condensate, until chiral symmetry is
restored. The compositeness condition is crucial to get
these results.

I also showed how to use the formalism with QCD. Its
effective action can be studied numerically and analyti-
cally. In numerical simulations I expect an advantage in the
stability of the calculations and in the possibility of con-
sidering the limit of zero bare quark mass. To perform such
simulations it is at the moment necessary to adopt trial
expressions of the mesons structure functions, which
should be functions of gauge fields depending on tempera-
ture and baryon density, as suggested by the example of the
four-fermion model. Analytical investigations, apart from
their intrinsic interest, might be of great help in numerical
simulations. Among the various possibilities, I am consid-
ering an expansion in inverse powers of the index of
nilpotency. In this connection I must make two observa-
tions. The first is that the index of nilpotency includes the
number of momentum fermion states in the composites,
and is therefore in general much higher than the number of
quark intrinsic degrees of freedom. For instance in the BCS
model, the index of nilpotency of Cooper pairs is infinite in
the thermodynamic limit, but the number of intrinsic de-
grees of freedom of the electron is 2. The other observation
is that the organization of an expansion in inverse powers
of � is not a priori obvious for all quantities: for instance
in the BCS model neglecting terms of order ��1 in the
evaluation of the ground state energy per particle one gets
the exact result in the thermodynamic limit, but exactly
these terms give rise to the phase transition to the normal
state at high temperature [22]. An example of how the
properties of such expansions need a careful examination
depending on the quantity to which the expansion is ap-
plied is given by [23] for the otherwise familiar 1=N
expansion.
At last, exploiting the variational character of the

method I give a simple expression of the effective action
assuming a pointlike structure for the chiral � meson and
neglecting all the others.
Possible applications of the present formalism include

numerical studies of the evolution of the state of baryon
matter with temperature and density and the associated
phase transitions.
Also exotic states of baryon matter can be explored. For

instance it is not difficult, as will be shown in a separate
paper, to introduce in the present formalism diquark states
[16]. Among abnormal states of hadronic matter I would
like to mention the layered spin-isospin phase [24]. This is
a state characterized by one-dimensional crystallization
(which distinguishes it from usual pion condensation) in
which layers of spin-up protons and spin-down neutrons
alternate with layers of spin-up neutrons and spin-down
protons. An investigation of a dynamical realization of
such a phase in light deformed nuclei showed that the
spin-isospin nucleon-nucleon interaction is sufficiently
strong to produce a distinctive signature compatible with
observation [25], while the critical density for a static
phase in neutron stars has been estimated [26] to be 3–4
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times normal nuclear density. A first principles calculation
might be worthwhile to make an assessment of some
simplifications done in the quoted works.
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APPENDIX A: GRASSMANN INTEGRALS AND
COHERENT STATES

If j�i is a fermionic coherent state,

j�i ¼ expð��ûyÞj0i; (A1)

then

h�j�i ¼ expð���Þ; (A2)

and the identity can be written

Z
½d�d���h�j�i�1j�ih�j ¼ 1: (A3)

I remind one of the fundamental property of coherent states

ûj�i ¼ �j�i; (A4)

which implies the relations

h��j expðv̂NûÞj��i ¼ expð�N�Þh��j��i
¼ expð�N�þ ���þ ���Þ; (A5)

h��j expðûyF yv̂yÞj0i ¼ h0j expðv̂F ûÞj��i�
¼ expð��F y��Þ: (A6)

With the help of these formulas one can compute matrix
elements of the type

h��jev̂NûeûyF yv̂y j0i (A7)

¼
Z �

d��d�d��d�
h��j��i

�
h��jev̂Nûj��ih��jeûyF yv̂y j0i

(A8)

¼
Z
½d��d�d��d��e��������þ�N�þ���þ���þ��F y��

(A9)

¼
Z
½d��d��e���ð1þF �NT Þ�þ������F ���

(A10)

¼ expftr� lnð1þF �NTÞ � ��ð1þF �NTÞ�1F ���g;
(A11)

by use of the identity

Z
½d��d�� expð���A�þ J��þ ��JÞ
¼ detA expðJ�A�1JÞ: (A12)

APPENDIX B: THE MATRICES M, N OF THE
TRANSFER MATRIX

In this Appendix I report the expressions of the matrices
M, N appearing in the definition of the transfer matrix for
the Kogut-Susskind and the Wilson regularization. Their
common feature is that they depend only on the spatial link
variables.

1. Kogut-Susskind’s regularization

Kogut-Susskind fermions in the flavor basis are defined
on hypercubes whose sides are twice the basic lattice
spacing. While in the text intrinsic quantum numbers and
spatial coordinates were comprehensively represented by
one index i, here I distinguish the spinorial index � ¼
f1; . . . ; 4g, the taste index a ¼ f1; . . . ; 4g, and the flavor
index i ¼ f1; . . . ; Nfg, while x ¼ ft; x1; . . . ; x3g is a 4-

vector of even integer coordinates ranging in the intervals
½0; Lt � 1� for the time component and ½0; Ls � 1� for each
of the spatial components. I distinguish summations over
basic lattice and hypercubes according toX0

x

:¼ 2d
X
x

: (B1)

The projection operators over fermion-antifermion states
are

Pð�Þ
0 ¼ 1

2ð1 
 1� �0�5 
 t5t0Þ: (B2)

The relation between the variables u, v and the quark q
field is

PðþÞ
0 q ¼ 1

4u; Pð�Þ
0 q ¼ 1

4v
y: (B3)

In the presence of the scalar field � and of gauge fields,
neglecting an irrelevant constant, M ¼ 0, while N is [19]

N ¼ �2

�
ðmþ �Þ�0 
 1þ X3

j¼1

�0�j


 1½Pð�Þ
j rðþÞ

j þ PðþÞ
j rð�Þ

j �
�
;

where

rðþÞ
j ¼ 1

2ðUjT
ðþÞ
j � 1Þ; (B4)

rð�Þ
j ¼ 1

2ð1� Tð�Þ
j Uy

j Þ (B5)

are the lattice covariant derivative as the Tð�Þ
� are the

forward and backward translation operators of one block,
that is of two lattice spacings in the original lattice, in the�
direction (with unit versor �̂)
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½Tð�Þ
� �x1;x2 ¼ �x2;x1�2�̂: (B6)

I set

NyN ¼ 4H2: (B7)

In the absence of gauge fields

H2 ¼ ðmþ �Þ2 � � (B8)

with

� ¼ 1

4

X
i¼1;3

ðTðþÞ
i þ Tð�Þ

i � 2Þ: (B9)

The eigenvalues ofH2 for constant� ¼ �� are therefore the
fermion energies

E2
p ¼ ðmþ ��Þ2 þ ~p2; (B10)

where momentum component ~p2
i is

~p 2
i ¼ 1

2ð1� cos2piÞ; (B11)

and

~p 2 ¼ X3
i¼1

~p2
i : (B12)

2. Wilson’s regularization

The projection operators over fermions-antifermions are

Pð�Þ
0 ¼ 1

2ð1� �0Þ (B13)

in a basis in which �0 ¼ diagð1; 1;�1;�1Þ.
The relations between the quark field q and its upper and

lower components u, v are

PðþÞ
0 q ¼ B�ð1=2Þu; Pð�Þ

0 q ¼ B�ð1=2Þvy; (B14)

where

B ¼ 1� K
X3
j¼1

ðUjT
ðþÞ
j þ Tð�Þ

j Uy
j Þ (B15)

and K is the hopping parameter. The matrices M, N are

M ¼ 1

2
ln

�
B

2K

�
; N ¼ 2KB�ð1=2ÞcB�ð1=2Þ; (B16)

where

c ¼ 1

2

X3
j¼1

iðUjT
ðþÞ
j � Tð�Þ

j Uy
j Þ�j: (B17)
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