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A compact general integral formula is derived from which the fermionic contribution to the one-loop

coefficient in the perturbative expansion of theMS coupling in powers of the bare lattice coupling can be

extracted. It is seen to reproduce the known results for unimproved naive, staggered and Wilson fermions,

and has advantageous features which facilitate the evaluation in the case of improved lattice fermion

formulations. This is illustrated in the case of Wilson clover fermions, and an expression in terms of

known lattice integrals is obtained in this case which gives the coefficient to much greater numerical

accuracy than in the previous literature.
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I. INTRODUCTION

When transforming results from lattice simulations into

a continuum scheme such as MS it is often desirable to
know the perturbative expansion of the renormalized cou-
pling in powers of the bare lattice coupling. This is useful

as an intermediate step for relating theMS coupling to the
coupling defined in nonperturbative lattice schemes such
as the ones based on the static quark potential [1,2] and
Schrödinger functional [3,4], and is also needed to trans-

late bare lattice quark masses into the MS scheme (see,
e.g., [5,6]). The one-loop coefficient in the expansion is of
further interest because it determines the ratio of the lattice

and MS � parameters [7–14]. Moreover, the one-loop
coefficient is also needed for determining the two-loop
relation between the couplings, from which the third
term in the lattice beta function (governing the approach
to the continuum limit) can be determined [3,15–19].

In this paper we derive, for general lattice fermion
formulation, a compact general integral formula from
which the fermionic contribution to the one-loop coeffi-

cient in the perturbative expansion of the MS coupling in
powers of the bare lattice coupling can be extracted. The
motivations for pursuing this are as follows. First, given the
plethora of lattice fermion actions currently in use, and the
likelihood of new ones or improved versions of present
ones being developed in the future, it is desirable where
possible to have general formulas from which quantities of
interest can be calculated without having to do the calcu-
lation from scratch each time. Second, it is desirable to
have independent ways to check the computer programs
used these days to perform lattice perturbation theory
calculations via symbolic manipulations. Third, by reduc-
ing the calculation to a manageable number of one-loop
lattice integrals one can more easily achieve greater nu-

merical precision than with symbolic computer programs.
This is important, since, as emphasized in [20], the one-
loop results need to be determined with very high precision
to achieve reasonable precision in the two-loop result. As a
demonstration that the general formulas of this paper are
useful in this regard, we apply them to obtain the fermionic
contribution to the one-loop coefficient in the case of
Wilson clover fermions [21] to almost twice as many
significant decimal places as in the previous literature.
As reviewed in Sec. II, determining the fermionic con-

tribution to the one-loop coefficient reduces to determining
a constant cI arising in a logarithmically divergent one
fermion loop lattice Feynman integral IðamÞ, which has the
general structure

IðamÞ ¼ 1

24�2
logða2m2Þ þ cI: (1)

Here a is the lattice spacing and m an infrared regulator
fermion mass. The numerical factor in the log term is
universal, whereas cI depends on the details of the lattice
fermion formulation. IðamÞ arises from the one fermion
loop contribution to the gluonic two-point function, and it
is from this that it was evaluated in previous works for
specific lattice fermion formulations. However, Ward iden-
tities allow IðamÞ to also be evaluated from the gluonic
three- or four-point functions. In this paper we evaluate
IðamÞ from the one fermion loop contribution to the
gluonic four-point function. In this case there are five
lattice Feynman diagrams to consider rather than the two
diagrams for the gluonic two-point function (see Fig. 1).
Nevertheless, evaluation of IðamÞ from the four-point
function turns out to be advantageous. The diagrams are
evaluated at vanishing external momenta without the need
to first take momentum derivatives, and we find three nice
properties:
(i) Only one of the five diagrams is logarithmically

divergent—it is the first n ¼ 4 diagram in Fig. 1.
The other four diagrams are all convergent.
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(ii) The logarithmically divergent diagram is not af-
fected by changes in how the link variables are
coupled to the fermions (e.g., it is unchanged by
adding staples, clover term, etc.). Consequently, it
is the same for improved and unimproved versions of
the lattice fermion formulation (provided the free
field formulations are the same).

(iii) The four convergent diagrams, or subsets of them,
vanish when the lattice Dirac operator is sufficiently
simple. In particular, they all vanish for unimproved
Wilson and staggered fermions, also when the Naik
term [22] is included.

Thus for improved versions of Wilson and staggered fer-
mions the only new quantities to compute relative to the
unimproved case are the four convergent one-loop lattice
integrals.1

The main result in this paper is a general integral for-
mula for IðamÞ obtained by evaluating the contributions
from the five n ¼ 4 Feynman diagrams in Fig. 1 for general
lattice fermion formulation, from which the desired con-
stant cI can be extracted. Specifically, we do the following:
(a) evaluate the contribution from the logarithmically di-
vergent diagram, deriving a quite explicit general formula
which is seen to reproduce previous results for the cases of
unimproved Wilson and naive/staggered fermions, and
(b) derive formulas for, and describe a straightforward
procedure for evaluating, the contributions from the four
convergent diagrams. We illustrate this in the case of
Wilson clover fermions. The general formulas lead to
integrals to which the method of Ref. [23] can be applied,
reducing the integrals to basic lattice integrals that are
already known to high precision. The application of our

result to other lattice fermion formulations such as Asqtad
staggered fermions [24] and overlap fermions [25] will be
made in future work.
The paper is organized as follows. Section II reviews the

one-loop expansion of the MS coupling in the bare lattice
coupling, using the background field approach. In Sec. III
we derive an initial expression for IðamÞ as the sum of
contributions from the five n ¼ 4 diagrams in Fig. 1 and
point out the properties (i), (ii), and (iii) mentioned above.
Rather than evaluating the diagrams directly, we infer them
from perturbative expansion of the fermion determinant,
which is easier. From this the general formulas and appli-
cations mentioned in (a) and (b) above are derived in
Secs. IV and V, respectively. The concluding Sec. VI de-
scribes applications to be carried out in future work, as well
as the possibility of deriving similar results for the gauge-
ghost contribution to the one-loop coefficient. Also, it is
pointed out that the present results are relevant for a
previous proposal for constructing the gauge field action
on the lattice from the lattice fermion determinant [26].
Specifically, our results give an expression for the coeffi-
cient of the Yang-Mills action that arises in that proposal.
Some technical details of our calculations are provided in
two appendices.

II. GENERALITIES OF THE ONE-LOOP
RELATION BETWEEN BARE LATTICE

COUPLING AND MS COUPLING

The gauge field quantum effective action �ðAÞ in
Euclidean spacetime can be expressed (prior to gauge
fixing) as

e��ðAÞ ¼
Z
DQD � D e�ð1=g2ÞSYMðAþgQÞ�

R
� DðAþgQÞ (2)

FIG. 1. The lattice Feynman diagrams for the gluonic n-point function with internal fermion loop for n ¼ 2, 3, 4.

1This is only true in the staggered fermion case when the Naik
term is not used. More on this in the concluding section.
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where SYM is the Yang-Mills (YM) action and DðAþ gQÞ
is the Dirac operator coupled to Aþ gQ where A is the
background gauge field and Q the quantum fluctuation
field. The gauge group is taken to be SU(N) with the
fermion fields being in the fundamental representation.
�ðAÞ has the loop expansion

�ðAÞ ¼ 1

g2
SYMðAÞ þ �1ðAÞ þ g2�2ðAÞ þ . . .

þ g2ðn�1Þ�nðAÞ þ . . . : (3)

Expanding �ðAÞ in powers of A, the term quadratic in A has
the form

�ð2ÞðAÞ ¼
Z
p
�ð2ÞðpÞab��Âa�ðpÞÂb�ð�pÞ (4)

where Âa�ðpÞ denotes the Fourier transform of Aa�ðxÞ.
Gauge invariance of �ðAÞ and rotation symmetry imply
that the two-point function has the form

�ð2ÞðpÞab�� ¼ ��abðp2��� � p�p�Þ
�
1

g2
� �1ðpÞ � . . .

� g2ðn�1Þ�nðpÞ � . . .

�
: (5)

The relation between the MS renormalized coupling g
and bare lattice coupling g0 at one loop can be obtained by
requiring equality of �ðAÞMS and �ðAÞlat up to one loop

[8,9]

1

g2
SYMðAÞ þ �1ðAÞMS ¼

1

g20
SYMðAÞ þ �1ðAÞlat: (6)

Expanding each side in powers of A, the equality between
the quadratic terms gives, in light of (5),2

1

g2
� �1ðpÞMS ¼

1

g20
� �1ðpÞlat: (7)

The one-loop contribution to the two-point function is
given by a sum of three terms: gauge field loop, ghost
loop, and fermion loop. Consequently, for Nf flavors of

massless fermions, �1ðpÞMS and �1ðpÞlat have the general

forms

�1ðpÞMS ¼ ��0 logðp2=�2Þ þ cg
MS

þ Nfc
f

MS
(8)

�1ðpÞlat ¼ ��0 logða2p2Þ þ cglat þ Nfc
f
lat (9)

where� is the mass scale in theMS scheme, a is the lattice
spacing, and

�0 ¼ 1

16�2

�
N
11

3
� Nf

2

3

�
: (10)

The constant cg arises from the gauge and ghost loop
contributions; it depends on N and the gauge fixing pa-
rameter, while cf arises from the fermion loop contribu-
tion. In the lattice case cg and cf also depend on whatever
parameters are present in the lattice gauge and fermion

actions (e.g., for latticeWilson fermions cflat depends on the
Wilson parameter).
From (7)–(9) we get

1

g2
¼ 1

g20
þ �0 logða2�2Þ þ l0 (11)

where

l0 ¼ lg0 þ Nfl
f
0 (12)

lg0 ¼ cg
MS

� cglat; lf0 ¼ cf
MS

� cflat: (13)

(Our notations l0, l
g
0 , l

f
0 follow the papers of Panagopoulos

and collaborators, e.g., [14].) The relation between g and
g0 up to one loop now follows from (11)

g2 ¼ g20ð1� g20½�0 logða2�2Þ þ l0� þOðg40ÞÞ: (14)

Also, from (11) or (14) the relation between the lattice and

MS � parameters is obtained [7–11]

�lat

�MS

¼ el0=2�0 : (15)

The focus of our attention in this paper is the fermionic

contribution to l0, i.e., l
f
0 in (13) for general lattice fermion

formulation. The continuum constant cf
MS

is well-known

(see, e.g., [16])

cf
MS

¼ � 5

72�2
: (16)

Therefore, to determine lf0 we need to determine the lattice

constant cflat for general lattice fermion formulation.

To study cflat it suffices to consider the Nf ¼ 1 case

which we restrict to henceforth. We proceed by expanding

the lattice two-point function �ð2Þ
lat ðpÞab�� in powers of (the

components of) the external momentum p. Although

�ð2Þ
lat ðpÞab�� itself is infrared finite, the terms in the expansion

are individually infrared divergent. To deal with this we
introduce a fermion mass m as regulator; it renders the
expansion terms finite. Since gauge invariance is main-
tained when m is introduced, the expansion of the one

fermion loop contribution to �ð2Þ
lat ðpÞab�� up to second order

in p results in an expression of the general form

½�ð2Þ
lat ðpÞab���f;1�loop ¼ �abðp2��� � p�p�Þ½IðamÞ

þ Rðp2=m2Þ� (17)

up to terms which vanish for lattice spacing a! 0. Here
IðamÞ is a logarithmically divergent one-loop lattice

2In the lattice theory there is only hypercubic rotation sym-
metry. However, this suffices to obtain (5) in the lattice setting up
to terms which vanish for a! 0.
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Feynman integral given by

IðamÞ ¼ �@�@�½�ð2Þ
lat ðpÞ11���f;1�loopjp¼0

ð� � �; no sumÞ
(18)

(@� � @
@p�

). By the structural result of [27] it has the

general form3

IðamÞ ¼ 1

24�2
logða2m2Þ þ cI (19)

where the constant cI depends on the details of the lattice
fermion formulation. Rðp2=m2Þ in (17) denotes the con-
tinuum limit of the remainder term after expanding

½�ð2Þ
lat ðpÞab���f;1�loop to second order in p. It is convergent

by power counting and therefore coincides [28] with the
corresponding (known) continuum term

Rðp2=m2Þ ¼ 1

4�2

Z 1

0
dxxð1� xÞ log

�
xð1� xÞ p

2

m2
þ 1

�

¼ 1

24�2
logðp2=m2Þ þ 1

4�2

Z 1

0
dxxð1� xÞ

� log

�
xð1� xÞ þm2

p2

�

� 1

24�2
logðp2=m2Þ þ ~Rðm2=p2Þ: (20)

Substituting (19) and (20) in (17) gives

½�ð2Þ
lat ðpÞab���f;1�loop ¼ �abðp2��� � p�p�Þ

�
1

24�2

� logða2p2Þ þ cI þ ~Rðm2=p2Þ
�
:

(21)

Comparing this to the expression (5) for �ð2Þ
lat ðpÞab�� with

�1ðpÞlat given by (9), we see that

cflat ¼ cI þ ~Rð0Þ: (22)

In fact ~Rð0Þ is precisely the MS constant cf
MS

: explicit

evaluation of the integral in (20) at m ¼ 0 gives ~Rð0Þ ¼
�5=72�2. It follows from (13) that

lf0 ¼ �cI: (23)

Thus the issue is to determine the constant cI appearing in
the logarithmically divergent one-loop lattice integral
IðamÞ in (18) and (19). In this paper we are going to derive
a compact general formula for IðamÞ for general lattice
fermions which can then be used to determine cI.

III. AN INITIAL FORMULA FOR IðamÞ
In this section we derive an initial general formula for

IðamÞ. It is the starting point for deriving more explicit
formulas in the subsequent sections.
Let D be a general lattice Dirac operator which is trans-

lation invariant and transforms covariantly under gauge
transformations and rotations of the four-dimensional
Euclidean hypercubic lattice. The ansatz for the link var-
iables is

U�ðxÞ ¼ eaA�ðxþð1=2Þa�̂Þ (24)

(�̂ ¼ unit vector in the positive � direction). The Fourier-

transformed field Â�ðpÞ is defined via

A�

�
xþ 1

2
a�̂

�
¼

Z
p
Â�ðpÞeip�ðxþð1=2Þa�̂Þ: (25)

Here and in the following
R
pð� � �Þ �

R�=a
��=a

d4p
ð2�Þ4 ð� � �Þ. The

continuum gauge fields are A�ðxÞ ¼ Aa�ðxÞTa where fTag
are generators for SU(N) normalized such that trðTaTbÞ ¼
� 1

2�
ab. (We take the Ta’s to be anti-Hermitian, absorbing

into them the imaginary unit that multiplies A in other
notations.)
Expanding the link variables in powers of A gives an

expansion of the lattice Dirac operator,

D ¼ X1
n¼0

Dn: (26)

Translation invariance implies that each Dn can be ex-
pressed in momentum basis in the form

Dnðk0; kÞ ¼ an�1
Z
p1;...;pn

�ðp1 þ . . .þ pn þ k� k0Þ

� dnðakjap1; . . . ; apnÞ�1����n

� Â�1
ðp1Þ � � � Â�n

ðpnÞ: (27)

The continuum limit requirements on D are

1

a
d0ðakÞ !a!0

i��k� þm (28)

d1ðakjapÞ� !a!0
��: (29)

The mass m enters via an additive term am in d0ðakÞ (we
suppress the m dependence in the notation).
To derive a general formula for IðamÞ it is useful to

exploit the fact, clear from (2), that the one fermion loop
contribution to �ðAÞ is given by the fermion determinant

�ðAÞf;1�loop ¼ � logdetD (30)

where, in the present lattice setting,D is coupled to the link
variables (24) of the background gauge field A.
Decomposing D as

D ¼ D0 þDint (31)
3The factor 1=24�2 in the log term is fixed by universality

[27]; it is minus the fermionic term in �0 with Nf ¼ 1.
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where D0 is the free field operator and Dint the interaction
part, we start from D ¼ D0ð1þD�1

0 DintÞ to obtain the

expansion

logdetD� logdetD0 ¼ Tr logð1þD�1
0 DintÞ

¼ X1
l¼1

ð�1Þl�1

l
Tr½ðD�1

0 DintÞl�: (32)

From this, usingDint ¼ P
n�1Dn withDn given by (27), an

expansion in powers of A is obtained. It has the general
form

logdetD� logdetD0 ¼
X
n�1

Z
p1;...;pn�1

�ðnÞ
det

� ðp1; . . . ; pn�1Þ�1����n

� trÂ�1
ðp1Þ � � � Â�n

ðpnÞ (33)

(pn ¼ �ðp1 þ . . .þ pn�1Þ). The ‘‘ n-point function’’

�ðnÞ
detðp1; . . . ; pn�1Þ�1����n

can be Taylor expanded in powers

of (the components of) p1; . . . ; pn�1. Gauge invariance and
mass-dimension considerations imply that the terms in the
expansion can be combined to take the form4

logdetD� logdetD0 ¼ �IðamÞSYMðAÞ þ
X
r�1

1

mr SrðAÞ

(34)

up to terms which vanish for a! 0, where each SrðAÞ is a
gauge invariant function with mass dimension r � 1. The
fact that the coefficient of SYMðAÞ is �IðamÞ is inferred
from (17) and (30).

It is clear from (30) and (34) that IðamÞ can be evaluated
from either the two-, three- or four-point function in (33).
For the four-point function the relation is

IðamÞ ¼ ��ð4Þ
detð0; 0; 0Þ���� � � �; no sum (35)

for any choice of � and � with � � �. Usually IðamÞ is
evaluated from the two-point function via (18), but we will
see in the following that it is advantageous to use (35)
instead. To evaluate it we start by collecting the terms
containing four powers of A in the expansion of logdetD
in (32). These are

ð�1Þ3
4

Tr½ðD�1
0 D1Þ4� þ ð�1Þ2

3
3 Tr½ðD�1

0 D1Þ2D�1
0 D2�

þ ð�1Þ1
2

ð2TrðD�1
0 D1D

�1
0 D3Þ þ Tr½ðD�1

0 D2Þ2�Þ

þ ð�1Þ0
1

TrðD�1
0 D4Þ: (36)

Inserting the expression (27) for each Dn, and evaluating

the traces in momentum basis, the �ð4Þ
detðp1; p2; p3Þ�1�2�3�4

in (32) is readily worked out. The resulting expression for
IðamÞ from (35) is as follows. From the functions dn in
(27) we define

dnðkÞ�1����n
� dnðkj0; . . . ; 0Þ�1����n

: (37)

Then

IðamÞ ¼ Ið1;1;1;1ÞðamÞ þ Ið1;1;2ÞðamÞ þ Ið2;2ÞðamÞ
þ Ið1;3ÞðamÞ þ Ið0;4ÞðamÞ (38)

where

Ið1;1;1;1ÞðamÞ ¼ 1

4

Z �

��
d4k

ð2�Þ4 trd0ðkÞ�1d1ðkÞ�
� d0ðkÞ�1d1ðkÞ�d0ðkÞ�1d1ðkÞ�
� d0ðkÞ�1d1ðkÞ� (39)

Ið1;1;2ÞðamÞ ¼ �
Z �

��
d4k

ð2�Þ4 trd0ðkÞ�1d1ðkÞ�d0ðkÞ�1

� d1ðkÞ�d0ðkÞ�1d2ðkÞ�� (40)

Ið2;2ÞðamÞ ¼ 1

2

Z �

��
d4k

ð2�Þ4
� trd0ðkÞ�1d2ðkÞ��d0ðkÞ�1d2ðkÞ�� (41)

Ið1;3ÞðamÞ ¼
Z �

��
d4k

ð2�Þ4 trd0ðkÞ�1d1ðkÞ�d0ðkÞ�1d3ðkÞ���
(42)

Ið0;4ÞðamÞ ¼ �
Z �

��
d4k

ð2�Þ4 trd0ðkÞ�1d4ðkÞ���� (43)

for any choice of � and � with � � � (no sum over
repeated indices). The traces are over spinor indices alone.
Each integral corresponds to an n ¼ 4 Feynman diagram in
Fig. 1 in Sec. I and the notation reflects the structure of the
corresponding diagram. The above integrals could have
been derived directly from the Feynman diagrams, with
fermion propagator and vertices read off from (27), but it is
easier (and equivalent) to use the fermion determinant
expansion as we have done above.
The expression of IðamÞ as the sum of the integrals (39)–

(43) is our initial general formula. It has a number of
advantageous features which we note in the following.

4In order for the link variables (24) to transform in the correct
way under lattice gauge transformations, the transformation of
the continuum gauge field A needs to be modified in the lattice
setting [10,29]. However, one still finds that the mass-dimension
zero function in (34) must be �SYMðAÞ—this can be inferred
from the argument in T. Reisz’s proof of renormalizability of
Lattice QCD [29]; see also Sec. 5 of [10].
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In light of (28) it is clear that the integral Ið1;1;1;1ÞðamÞ
diverges logarithmically for am! 0 while the other inte-
grals (40)–(43) are all finite in this limit. The divergent
integral necessarily [27] has the general form

Ið1;1;1;1ÞðamÞ ¼ 1

24�2
logða2m2Þ þ ~cI (44)

up to terms which vanish for a! 0. Then cI is given by

cI ¼ ~cI þ Ið1;1;2Þð0Þ þ Ið2;2Þð0Þ þ Ið1;3Þð0Þ þ Ið0;4Þð0Þ: (45)

Next we point out that Ið1;1;1;1ÞðamÞ, and hence ~cI, depend
only on the free field lattice Dirac operator. This is because
d1ðkÞ� in (39) is determined by d0ðkÞ: for any lattice

fermion formulation we have

d1ðkÞ� ¼ 1

i

d

dk�
d0ðkÞ: (46)

This is derived in Appendix A. Therefore, a change of
gauging of D (e.g., by adding staples, clover term, etc.)
affects only the finite integrals (40)–(43).

A further advantage becomes apparent when consider-
ing the description of D in terms of lattice paths [30,31]
(we will discuss the path description more explicitly in
Sec. V). It is easy to see that the vertex function
dnðkjp1; . . . ; pnÞ�1����n

receives contributions only from

lattice paths which contain a lattice link parallel to the
�1 axis, preceded at some point by a link parallel to the�2

axis, preceded at some point by a link parallel to the �3

axis, and so on. In particular, if the lattice paths describing
D are straight lines, as is the case for the Wilson-Dirac,
naive and staggered operators, then dnðkÞ�1����n

vanishes

unless the �j’s are all the same. It follows that the finite

terms (40)–(43) all vanish in this case (since� � � there).
Thus, for such lattice Dirac operators, IðamÞ is given
entirely by Ið1;1;1;1ÞðamÞ. If staples ‘‘ ���’’ are attached

to such an operator then (40)–(42) are nonvanishing while
(43) still vanishes. If a clover term ( ’ closed paths around
plaquettes) is added then all the finite integrals (40)–(43)
are potentially nonvanishing. However, as we will see in
Sec. V, d3ðkÞ��� and d4ðkÞ���� both vanish in the clover

case, so the terms (42) and (43) also vanish there.
These properties make (38)–(45) useful for evaluating

IðamÞ and cI in practice for specific lattice fermion for-
mulations, especially for improved formulations. E.g.,
when the improved D differs from the original one by a
more complicated choice of gauging the only new quanti-
ties that need to be evaluated are the finite integrals (40)–
(43) withm ¼ 0 in d0ðkÞ. The quantities d2ðkÞ��, d3ðkÞ���,
and d4ðkÞ���� appearing in their integrands are generally

easy to determine in practice as we will see in Sec. V.
Besides these, the integrands only involve the free fermion
d0ðkÞ and its derivative [recall (46)].

Taking the initial formula for IðamÞ in this section as
starting point, we go on to derive more explicit expressions
in the following two sections.

IV. FORMULAS FOR Ið1;1;1;1ÞðamÞ
For simplicity we use the notations d0 � d0ðkÞ and

@� � @
@k�

in the following. We assume that

�0 � dy0d0 ¼ d0d
y
0 (47)

is a scalar, i.e., trivial in spinor space. Note that this is a free
field statement; it holds for all lattice Dirac operators of
current interest (naive, staggered, Wilson, overlap, . . .).
Recalling (46): d1ðkÞ� ¼ �i@�d0, and using the rela-

tions

d�1
0 ¼ dy0

�0

; @�d
�1
0 ¼ 1

�0

�
@�d

y
0 �

@��0d
y
0

�0

�
; (48)

evaluation of (39) leads to

Ið1;1;1;1ÞðamÞ ¼ 1

24

Z �

��
d4k

ð2�Þ4
trX��ðkÞ
�0ðkÞ2

(49)

for any choice of �, � with � � �, where

X�� ¼ �6dy0@�ð@�d0@�dy0@�d0Þ þ @2�ð@��0d
y
0@�d0Þ

� @2�ð�0@�d
y
0@�d0Þ þ @�ð@2��0d

y
0@�d0Þ

� 2@2��0@�d
y
0@�d0: (50)

The details of the calculation are given in Appendix B. To
evaluate this expression further, we now assume that d0
(the free field momentum representation of the lattice
Dirac operator D) has the general form

d0 ¼ i���� þ 	 (51)

where ��ðkÞ and 	ðkÞ (which includes the mass term) are
real scalar functions, and the gamma-matrices are

Hermitian, so that dy0 ¼ �i���� þ 	 and �0 ¼
�2 þ 	2. This is the typical free field form of lattice
Dirac operators of interest in practice; it covers the naive,
staggered, Wilson, and overlap operators and their im-
proved versions. For simplicity we make the further as-
sumption that

@�@�d0 ¼ 0 for � � �: (52)

This holds for Wilson, naive, and staggered fermions, also
when the Naik term is included, but does not hold for the
overlap operator. (The extension of the following to the
general case @�@�d0 � 0 is straightforward but tedious,

and we defer it to a future article where the specific results
for the overlap operator will be derived.)
Substituting (51) into (49) and (50), a calculation using

(52) and the other mentioned properties gives
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Ið1;1;1;1ÞðamÞ ¼ 1

12

Z �

��
d4k

ð2�Þ4
Y��ðkÞ

ð�ðkÞ2 þ 	ðk; amÞ2Þ2
ð� � �Þ

(53)

where

Y�� ¼ @2��
2
�@

2
��

2
� � 12ð@���Þ2ð@���Þ2 þ 2@2�	

2@2��
2
�

� 24ð@�	Þ2ð@���Þ2 � 12@2�	@�	��@���

� 4ð@�	Þ2	@2�	þ 4	2@2�	@
2
�	: (54)

From this, using integration by parts (in a similar way to
the calculations in Appendix B), a more compact expres-
sion can be obtained

Ið1;1;1;1ÞðamÞ ¼ �
Z �

��
d4k

ð2�Þ4

�
�½ð@���Þ2 þ ð@�	Þ2�½ð@���Þ2 þ ð@�	Þ2�

�2
0

� 1

2
ð@�@� log�0Þ2

�
(55)

(recall �0 ¼ �2 þ 	2). Although this expression is more
compact, the preceding one (53) and (54) seems more
useful for evaluating Ið1;1;1;1ÞðamÞ in practice.

In the remainder of this section we show that these
general formulas readily reproduce the previously known
results for the specific cases of (unimproved) naive, stag-
gered, and Wilson fermions. (Recall from Sec. III that
IðamÞ is given entirely by Ið1;1;1;1ÞðamÞ in these cases.)

A. Naive and staggered fermions

For a naive fermion, �� ¼ sink�, 	 ¼ am, and (54)
reduces to

Y��ðkÞ ¼ 4 cos2k� cos2k� � 12cos2k�cos
2k� (56)

up to terms which are OðaÞ for a! 0. Since a naive
fermion decomposes into four degenerate staggered fermi-
ons [32], IðamÞ for a staggered fermion is obtained by
dividing the naive fermion result by four. The invariance of
(56) under k� ! k� þ � allows the integration domain in
(53) to be restricted to ½��=2; �=2�4 at the expense of an
overall factor of 16. Thus we find

IðamÞ ¼ Nt
Z �=2

��=2
d4k

ð2�Þ4

�
1
3 cos2k� cos2k� � cos2k�cos

2k�

ððamÞ2 þP
�
sin2k�Þ2

(57)

up to terms which vanish for a! 0, where Nt is the
number of fermion ‘‘tastes’’ (16 for a naive fermion, 4
for a staggered fermion). This is precisely the expression
for IðamÞ derived previously in Eq. (6.8) of [12] where the
contribution to the gluonic two-point function from a

naive/staggered fermion loop was evaluated. [IðamÞ corre-
sponds to �f in [12].]
After changing variables by k� ! k�=2 the integral (57)

can be evaluated by the method of Ref. [23]. It expresses
the integral in terms of certain basic lattice integrals that
were evaluated numerically to high precision in [23]. We
find the following result:

IðamÞ ¼ Nt

�
1

24�2
ðlogð2amÞ2 þ �E � F0Þ þ 7

144
Z0

�

(58)

where �E is the Euler constant and F0, Z0 are numerical
constants listed to high numerical accuracy in Table 1 of
[23]. Thus the divergent part has the correct universal

structure, and the constant cI ( ¼ �lf0) that we are after

is given by

� cI=Nt ¼ 1

24�2
ðF0 � �E � logð4ÞÞ � 7

144
Z0

¼ 0:002 624 762 101 243 148 5 . . . : (59)

In Ref. [12] this constant was denoted P4 and our value
agrees with the one in Eq. (6.16) of that paper. We have
obtained it to much higher numerical precision here
though, thanks to the high accuracy to which F0 and Z0

were evaluated in [23].

B. Wilson fermions

In this case �� ¼ sink�, 	 ¼ r
P

ð1� cosk
Þ þ am

where r is the Wilson parameter, and (54) reduces to

Y��ðkÞ ¼ 4 cos2k� cos2k� � 12cos2k�cos
2k�

þ r2
�
8sin2k�ðcos2k� � 3cos2k�Þ

� 6 sin2k� sink� cosk�

þ 16 cos2k� cosk�
X



sin2ðk
=2Þ
�

þ r4
�
�8sin2k� cosk�

X



sin2ðk
=2Þ

þ 16 cosk� cosk�

�X



sin2ðk
=2Þ
�
2
�

(60)

up to terms which are OðaÞ for a! 0. Substituting this
into (53) we recover the previous result of Kawai et al. for
the one fermion loop contribution in Eq. (3.24)–(3.25) of
Ref. [10]. [Dimensional regularization of the infrared di-
vergence was used there, but the result is easily trans-
formed into mass-regularized form (cf. Sec. 5.1 of [23])
and then coincides with ours.] The constant cI is related to
the constant L defined there by

cI ¼ 1

24�2
ð�E � logð4�ÞÞ þ 1

2
L: (61)

The integral IðamÞ can again be evaluated by the method of
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Ref. [23]; in fact this was done in that paper for r ¼ 1, and
the expression for L in terms of the basic constants is given

in Eq. (6.8) of [23]. From that, lf0 is obtained to high

precision in the Wilson fermion case

lf0 ¼ �cI ¼ 0:006 695 999 331 733 08 . . . : (62)

The Wilson fermion case was also considered indepen-
dently by P. Weisz in [11]. Note that for Wilson fermions
ð@���Þ2 þ ð@�	Þ2 ¼ sin2k� þ cos2k� ¼ 1, hence (55)

simplifies to

IðamÞ ¼ �
Z �

��
d4k

ð2�Þ4
�
1

�2
0

� 1

2
ð@�@� log�0Þ2

�
(63)

thus reproducing Weisz’s expression in Eq. (13) of [11].

The constant lf0 , denoted as P3 there, was evaluated nu-

merically but to low precision—a systematic error of �
2% was estimated, and this is indeed the case when com-
paring the value for P3 in Eq. (22) of [11] with the high
precision value in (62) above.

V. EVALUATION OF THE FINITE INTEGRALS

In this section we derive general formulas for the finite
integrals (40)–(43) and describe how these can be straight-
forwardly evaluated, using staple and clover terms as
illustrations.
Evaluation of Ið1;1;2ÞðamÞ: Starting from (40), calcula-

tions of the same type as in Appendix B lead to

Ið1;1;2ÞðamÞ ¼ �
Z �

��
d4k

ð2�Þ4
tr½@�dy0@�d0dy0d2�� � 1

2@�ðdy0@�d0dy0d2��Þ�
�2

0

(64)

(for any choice of�, �with� � �) with the notations d0 ¼ d0ðkÞ,�0 ¼ dy0 ðkÞd0ðkÞ, and d2�� ¼ d2ðkÞ��. Specializing as
before to the case where d0 has the general form d0 ¼ i���� þ 	 and satisfies @�@�d0 ¼ 0 for� � �, and assuming that
the gamma-matrix structure of d2�� has the general form

d2ðkÞ�� ¼ ����e��ðkÞ ð� � �Þ (65)

(64) leads to

Ið1;1;2ÞðamÞ ¼ �
Z �

��
d4k

ð2�Þ4
4ð��@���@�	þ ��@���@�	� @���@���	Þe��

ð�2 þ 	2Þ2 : (66)

(There are no terms involving derivatives of e��ðkÞ since
these all cancel out.)

Evaluation of Ið2;2ÞðamÞ: From (41) we obtain

Ið2;2ÞðamÞ ¼ 1

2

Z �

��
d4k

ð2�Þ4
trdy0d2��d

y
0d2��

�2
0

: (67)

Specializing as before, this leads to

Ið2;2ÞðamÞ ¼ �2
Z �

��
d4k

ð2�Þ4
	2e2��

ð�2 þ 	2Þ2 : (68)

Evaluation of Ið1;3ÞðamÞ: From (42) we find

Ið1;3ÞðamÞ ¼
Z �

��
d4k

ð2�Þ4
itrdy0@�d3���

�0

(69)

with the notation d3��� ¼ d3ðkÞ���. Specializing as be-

fore, and assuming that d3��� has the general form

d3ðkÞ��� ¼ ��e��� � if��� (70)

(69) leads to

Ið1;3ÞðamÞ ¼ 4
Z �

��
d4k

ð2�Þ4
��@�e��� þ 	@�f���

�2 þ 	2
: (71)

Evaluation of Ið0;4ÞðamÞ: From (43) we find

Ið0;4ÞðamÞ ¼ �
Z �

��
d4k

ð2�Þ4
trdy0d4����

�0

(72)

with the notation d4���� ¼ d4ðkÞ����. A specialized for-

mula can be worked out as in the previous cases (we omit
the details). Note that terms in d4���� involving a product

of two or more gamma matrices give vanishing contribu-
tion to the trace in (72).
To evaluate the integrals in practice one needs to deter-

mine d2ðkÞ��, d3ðkÞ���, and d4ðkÞ���� (� � �) for the

lattice Dirac operator D. This can be done straightfor-
wardly from the description of D in terms of lattice paths,
as we now describe. In the path description,D is expressed
as

D ðxÞ ¼ 1

a

X
P

cP�PUP ½x; xþ a�P � ðxþ a�P Þ (73)

where the sum is over a collection of translation-
equivalence classes P of oriented lattice paths. Each has
an associated numerical constant cP and element �P of the
Clifford algebra generated by the gamma matrices.
Associated with each equivalence class P is a vector �P
with integer components: it is the difference in lattice units
between the start and end points. UP ½x; xþ a�P � denotes
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the product of the link variables along the representative
path for P starting at xþ a�P and ending at x.

The Clifford algebra-valued functions
dnðkjp1; . . . ; pnÞ�1����n

in the expansion (26) and (27) of

D are found by expanding the link variable products
UP ½x; xþ a�P � in (73) in powers of the continuum gauge
field A. In the present case we only need to determine these
functions at vanishing ‘‘external momenta,’’ i.e.,
dnðkÞ�1����n

¼ dnðkj0; . . . ; 0Þ�1����n
. Therefore we can

take the continuum gauge fields fA�g to be constants.

Then UP ½x; xþ a�P � is independent of x, and its expan-
sion in powers of the continuum gauge field has the form

UP ¼ X
n

uP�1����n
A�1

� � �A�n
: (74)

The functions dnðkÞ�1����n
are then given by

dnðkÞ�1����n
¼ X

P

dPn ðkÞ�1����n
(75)

where

dPn ðkÞ�1����n
¼ cP�Pu

P
�1����n

ei�P �k: (76)

Thus, given the description (73) of D in terms of lattice
paths, the problem of determining dnðkÞ�1����n

is reduced to

determining the coefficients uP�1����n
in the expansion (74)

of the link variable product UP with constant A, which is
generally straightforward in practice. In the present case
things are further simplified since we only need to know
dnðkÞ�1����n

when�1 � � ��n is��, ���, and����. Since

� � � we can replace each link variable U	1
� appearing in

the product UP by

U	1
� !

�
1	 A� if � 2 f�; �g
1 if �f�; �g : (77)

To illustrate this, consider the case of a ‘‘ ��� staple’’
UP ¼ U�U�U

�1
� . The relevant parts of the expansion are

found by

U�U�U
�1
� ! ð1þ A�Þð1þ A�Þð1� A�Þ

¼ �A�� � A�A�A� þ other (78)

where ‘‘other’’ refers to terms which are not proportional to
A�A�, A�A�A�, or A�A�A�A� and therefore do not con-

tribute to d2ðkÞ��, d3ðkÞnu��, or d4ðkÞ����. Thus the rele-
vant contributions from the staple are

dP2 ðkÞ�� ¼ �cP�P e
ik�; dP3 ðkÞ��� ¼ �cP�P e

ik� ;

dP4 ðkÞ���� ¼ 0 (79)

where cP�P are whatever factors that accompany the
staple UP in the expression (73) for the lattice Dirac
operator.

As another example we now consider the
Sheikholeslami-Wohlert (SW) clover term for Wilson clo-
ver fermions [21]

C ¼ csw
i

4

X

�

�
�P
� (80)

where csw is a tunable constant, �
� ¼ i
2 ½��; ���, and

P
�ðxÞ is a sum of products of link variables around

oriented plaquettes in the 
� plane starting and ending
at x. The relevant contributions in this case come from the
�� parts

csw
i

4
ð���P�� þ ���P��Þ ¼ �csw 1

2
����P��: (81)

For constant gauge fields, P�� is explicitly given by

P�� ¼ 1
8½U�U�U

�1
� U�1

� þU�U
�1
� U�1

� U�

þU�1
� U�1

� U�U� þU�1
� U�U�U

�1
�

� ð�$ �Þ�: (82)

Expanding this as described above, the relevant expansion
coefficients are found to be u�� ¼ 1, u��� ¼ 0, and

u���� ¼ 0. Since the plaquette paths are closed we have

�P ¼ 0 in all cases. Using this, it follows from (75) and
(76) that

d2ðkÞ��¼�csw1
2����; d3ðkÞ���¼ 0; d4ðkÞ����¼ 0

(83)

independent of k. Note that, as discussed in Sec. III, there
are no contributions from the Wilson-Dirac operator since
in its path description the paths are all straight lines.
The finite integral contributions to IðamÞ can now be

determined in the case of Wilson clover fermions. By (83)
and the previous formulas, Ið1;3Þ ¼ Ið0;4Þ ¼ 0. The other

integrals are determined by substituting �� ¼ sink�, 	 ¼
r
P
�ð1� cosk�Þ þ am, and e�� ¼ �csw=2 into (66) and

(68). Taking the Wilson parameter to be r ¼ 1 and evalu-
ating the integrals by the method of Ref. [23] we find, in the
a! 0 limit,

Ið1;1;2Þð0Þ=csw ¼ 2
3F ð1; 0Þ �F ð2;�1Þ

¼ 0:005 046 714 024 535 753 066 . . . (84)

and

Ið2;2Þð0Þ=c2sw ¼ �1
8F ð2;�2Þ

¼ �0:029 843 467 195 426 848 15 . . . (85)

where F ð1; 0Þ, F ð2;�1Þ, and F ð2;�2Þ are certain basic
convergent one-loop lattice integrals defined in Sec. 4 of
Ref. [23], whose numerical values are given to high preci-
sion in Table 2 of that paper.
Recalling (45), collecting the results for Wilson clover

fermions with r ¼ 1 we have

lf0 ¼ �cI ¼ ð62Þ � cswð84Þ � c2swð85Þ (86)

[(62) means the numerical constant given in Eq. (62), etc.].
This agrees with the previous literature but gives the nu-
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merical constants to much greater precision. The previ-
ously most precise values were those in Eq. (14) of
Ref. [17] where (84) and (85) were given to 11 decimal
places. We have obtained them here to 20 decimal places,
thanks to the high precision with which the basic integrals
in Ref. [23] were evaluated. For earlier results for these
quantities, see [4] and the references therein.

VI. CONCLUDING REMARKS

The focus in this paper has been on deriving the general
integral formulas for IðamÞ, confirming their correctness
by checking that they reproduce the known results in the
cases of staggered, Wilson, and clover fermions, and in the
process developing general techniques for evaluating the
formulas. In doing this we were able to express IðamÞ in
those cases in terms of basic one-loop lattice integrals that
have already been evaluated to high precision in [23]. This
had already been done in [23] in the Wilson fermion case,
but the results for the staggered and clover cases [(59),
(84), and (85), respectively] are presented here for the first
time. The further applications of the general formulas are
left for future work, and in the following we discuss some
possibilities for this.

Obvious targets for future applications are the various
improved versions of staggered fermions. These formula-
tions involve ‘‘smearing’’ of the link variables to reduce
flavor symmetry violations; specifically there is the ‘‘Fat-
7’’ link [33] and hypercube smeared (HYP) link [34]. Since
these differ from unimproved staggered fermions only by a
choice of gauging, evaluating IðamÞ should be straighfor-
ward: expand the relevant products of link variables in
powers of the constant continuum gauge field to determine
d2ðkÞ��, d3ðkÞ���, and d4ðkÞ���� as described in Sec. V;

then, from the formulas in Sec. V the convergent integrals
Ið1;1;2Þ, Ið2;2Þ, Ið1;3Þ, and Ið0;4Þ can be explicitly evaluated by

the method of Ref. [23]; this will express the integrals in
terms of basic lattice integrals that have already been
calculated to high precision. Adding these to the already
known Ið1;1;1;1ÞðamÞ [ ¼ IðamÞ for unimproved staggered

fermions] then gives IðamÞ in these improved cases.
Of more interest, however, is the case ofOða2Þ improved

‘‘Asqtad’’ staggered fermions [24] that are currently used
by the MILC collaboration to generate the ensembles used
in high precision lattice simulations [35]. Besides smearing
of link variables, this formulation also contains the Naik
term [22] which modifies the free field staggered Dirac
operator. Therefore, Ið1;1;1;1Þ is not the same as for unim-

proved staggered fermions in this case, and the method and
results of Ref. [23] do not apply. IðamÞmay still be readily
determined in this case from the general formulas and
techniques of this paper, but it will be necessary to nu-
merically evaluate the one-loop lattice integrals that arise.
(The approach of Ref. [36] could be used for this.) The

relation between theMS coupling and bare lattice coupling
has already been determined to two loops for Asqtad

staggered fermions via a symbolic computer program [2].
Determining the fermionic contribution to the one-loop
coefficient independently via the (semi-)analytic approach
of the present paper would provide a useful check on the
computer program.
Another future application is to overlap fermions. The

fermionic contribution to the one-loop relation between the

MS coupling and bare lattice coupling in this case was
calculated via a symbolic computer program in [13], and
the two-loop relation was subsequently calculated in
[18,19]. Application of the results of the present paper
will allow the one fermion loop contribution to be obtained
from numerical evaluation of one-loop lattice integrals
without the need for symbolic computer programs.
Reproducing the result of [13] in this way will be a useful
check on the computer program, which the two-loop result
[18,19] also relies on. It will also allow the one fermion
loop contribution to be calculated more easily and to higher
precision for any value of the overlap parameter that one
wishes to consider. I emphasize that, in the approach of the
present paper, the technical problem of calculating the one
fermion loop contribution for overlap fermions is greatly
reduced compared to the usual approach followed in [13].
The simplification comes about because the determination
of the quantities d2ðkÞ��, d3ðkÞ���, and d4ðkÞ���� in the

expansion of the overlap Dirac operator can be done with
constant continuum gauge fields. Expansion of the overlap
Dirac operator in powers of constant continuum gauge
fields is relatively straightforward, and has already been
successfully used [37] to reproduce results obtained via a
symbolic computer program in another context [38].5

Having found useful general formulas for the fermionic
contribution to the coefficient in the one-loop relation

between the MS and bare lattice couplings, a natural
question is whether a similar approach is possible for the
contribution from the gauge and ghost loops. In fact this
seems quite possible. In the background field approach the
gauge field in the action is Aþ gQ, and it is the part
quadratic in the quantum fluctuation fields Q that deter-
mines the one-loop contribution to the effective action.
Coming from the functional integral of a quadratic term,
it is clear that this can be expressed as a functional deter-
minant, both in the continuum and lattice settings. There is
also the Faddeev-Popov determinant through which the
ghosts arise. One can then expand the determinants in
powers of A as done for the fermion determinant in this
paper. The constant to be determined in this case, cglat in (9),
can again be found from the quartic term in the expansion
(via Ward identities). In the fermionic case considered in
the present paper, the possibility to introduce an infrared
regulator mass was crucial for deriving the general formu-
las. This can also be done in the gluonic-ghost case: note

5Reference [37] is the work mentioned in the concluding
section of [38].
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that Q transforms under gauge transformations by Q!
UQU�1 so a regulator mass termmtrQ2 may be introduced
without breaking gauge invariance. This is currently being
pursued, and I hope to be able to present general formulas
for the gluonic-ghost contribution to the one-loop coeffi-
cient in future work. The hope is that this may allow a
(semi-)analytic calculation of the one-loop contribution in
the case of improved lattice gauge actions, which has
recently been evaluated via a symbolic computer program
in [14].

Finally, the results of this paper are relevant for a pre-
vious proposal for constructing the gauge field action on
the lattice from the lattice fermion determinant [26]. Set
� ¼ am and regard m ¼ �=a as a function of � and a.

Expanding �ðnÞ
detðp1; . . . ; pn�1Þ�1����n

in (33) in powers of

the momenta, without taking the a! 0 limit, leads on
dimensional grounds to the following variant of (34)

logdetDð�Þ � logdetD0ð�Þ ¼ �Ið�ÞSYMðAÞ
þ X

r�1

ar ~SrðA;�Þ (87)

where ~SrðA;�Þ, a function of A and �, has mass-dimension
r. Now taking a! 0 we obtain6

lim
a!0

ðlogdetDð�Þ � logdetD0ð�ÞÞ ¼ �Ið�ÞSYMðAÞ: (88)

(Strictly speaking this depends on the sum in (87) being
convergent, which requires the continuum gauge field A to
be sufficiently weak.) Thus the coefficient of the YM gauge
action obtained from the lattice fermion determinant is
seen to be�Ið�Þ, which can be evaluated from the general
formulas in this paper after replacing am by�.7 In the�!
0 limit we have

Ið�Þ ��!0 1

24�2
logð�2Þ þ cI: (89)

Although calculation of the constant cI was the main focus
in this paper, the general formulas can just as well be used
to determine Ið�Þ for general values of �. The integrals
will need to be evaluated numerically for the specific
values of � that one considers though.
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APPENDIX A: DERIVATION OF FORMULA (46)
FOR d1ðkÞ�

We derive this from the path description (73)–(76) of the
lattice Dirac operator. From (76) we have

dP0 ðkÞ ¼ cP�P e
i�P �k (A1)

dP1 ðkÞ� ¼ cP�Pu
P
�e

i�P �k: (A2)

Thus to show the relation (46): d1ðkÞ� ¼ �i@�d0ðkÞ it

suffices to show

uP� ¼ ð�P Þ�: (A3)

From the definition (74) it is easy to see that uP� counts the

number of links of the pathP that lie along the� direction,
counted with the sign 	 depending on whether they are
oriented in the positive or negative � direction. But this is
precisely the � coordinate of the difference (in lattice
units) between the start and end points of (a representative
path for) P , i.e., the � coordinate of �P . Thus we have
found that (A3) holds.

APPENDIX B: DERIVATION OF THE GENERAL
FORMULA FOR Ið1;1;1;1ÞðamÞ

The general formula (49) and (50) is obtained by eval-
uating the integrand in the initial expression (39) as fol-
lows. For notational simplicity we omit the ‘‘tr,’’ write d,�
for d0, �0, and use ‘‘ ’’’ to denote equality up to terms
which vanish upon taking the trace or terms which are total
derivatives and therefore give vanishing contribution to the
integral

d�1@�dd
�1@�dd

�1@�dd
�1@�d ¼ @�d

�1@�d@�d
�1@�d

¼ 1

�2

�
@�d

y � @��d
y

�

�
@�d

�
@�d

y � @��d
y

�

�
@�d

’ 1

�2
@�d

y@�d@�dy@�dþ @�

�
1

�2

�
dy@�d@�dy@�d

� @�

�
1

3�3

�
@��d

y@�ddy@�d

’ � 1

�2
dy@�ð@�d@�dy@�dÞ þ 1

3�3
ð@2��dy@�ddy@�d

þ @��@�ðdy@�ddy@�dÞÞ: (B1)

The second term here is reexpressed using

dy@�ddy@�d ¼ ð@��� @�d
ydÞdy@�d

¼ @��d
y@�d��@�d

y@�d (B2)

6Sincem ¼ �=a, taking a! 0 with � fixed amounts to taking
a simultaneous continuum and large mass limit. The fact that the
large mass limit of the lattice fermion determinant effectively
gives a lattice gauge action was discussed before in [39].

7The relationship between Ið�Þ and the coefficient cSð�Þ in
[26] is Ið�Þ ¼ 2cSð�Þ.
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to get

1

3
@�

��1

2�2

�
@2��d

y@�d� 1

3�2
@2��@�d

y@�d

’ 1

3�2

�
1

2
@�ð@2��dy@�dÞ � @2��@�d

y@�d
�
: (B3)

The third term in (B1) is reexpressed as

1

3
@�

��1

2�2

�
@�ðdy@�ddy@�dÞ ’ 1

6�2
@2�ðdy@�ddy@�dÞ:

(B4)

The resulting expression for the integrand, given by the
first term in (B1) plus (B3) plus (B4), leads to the claimed
formula (49) and (50).
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