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We present a quenched lattice calculation of the weak nucleon form factors: vector [FVðq2Þ], induced
tensor [FTðq2Þ], axial vector [FAðq2Þ] and induced pseudoscalar [FPðq2Þ] form factors. Our simulations

are performed on three different lattice sizes L3 � T ¼ 243 � 32, 163 � 32, and 123 � 32 with a lattice

cutoff of a�1 � 1:3 GeV and light quark masses down to about 1=4 the strange quark mass (m� �
390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical

volume of our largest lattice is about ð3:6 fmÞ3, where the finite volume effects on form factors become

negligible and the lower momentum transfers (q2 � 0:1 GeV2) are accessible. The q2 dependences of

form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector

form factors are well described by the dipole form, while the induced pseudoscalar form factor is

consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA=gV ¼
FAð0Þ=FV ð0Þ ¼ 1:219ð38Þ and the pseudoscalar coupling gP ¼ m�FPð0:88m2

�Þ ¼ 8:15ð54Þ, where the

errors are statistical errors only. These values agree with experimental values from neutron � decay and

muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial

vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar

nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix

elements, which may be called as the generalized Goldberger-Treiman relation.
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I. INTRODUCTION

A comprehensive understanding of hadron structure,
especially nucleon structure, based on quantum chromo-
dynamics (QCD) is one of our ultimate goals in lattice
QCD calculations. The latest lattice calculations of nu-
cleon structure have been greatly developed with increas-
ing accuracy [1]. So far, large efforts by lattice QCD
simulations have been mostly devoted to studies of elec-
tromagnetic structure of the nucleon and either unpolarized
or polarized parton distributions in deep inelastic scattering
[1–5]. However, there are only a few lattice studies to be
completed for the weak nucleon form factors [6,7], which
are associated with weak probes of nucleon structure. In
this paper, we present results from our intensive study of
the nucleon matrix elements of the weak current in
quenched lattice QCD calculations with domain wall fer-
mions (DWFs).

Experimentally, weak processes meditated by the weak
charged current like neutron beta decay n! pþ e� þ ��e
muon capture on the proton �� þ p! �� þ n or quasi-

elastic neutrino scattering ��� þ p! �þ þ n are mainly

exploited for studying the weak nucleon form factors,
while available information obtained from the experiment

of the neutral current weak process such as semileptonic
elastic scattering �þ p! �þ p is still limited. The weak
current is known to be described by a linear combination of
the vector and axial-vector currents. In general, four form
factors appear in the nucleon matrix elements of the weak
current. Here, for example, we consider the matrix element
for neutron beta decay. In this case, the vector and axial-
vector currents are given by Vþ

� ðxÞ ¼ �uðxÞ��dðxÞ and
Aþ
� ðxÞ ¼ �uðxÞ���5dðxÞ, and then the matrix element is

expressed by

hpjVþ
� ðxÞ þ Aþ

� ðxÞjni
¼ �up½��FVðq2Þ þ ���q�FTðq2Þ

þ ���5FAðq2Þ þ iq��5FPðq2Þ�uneiq�x; (1)

where q ¼ Pn � Pp is the momentum transfer between the

proton (p) and neutron (n). The vector (FV) and induced
tensor (FT) form factors are introduced for the vector
matrix element, and also the axial vector (FA) and induced
pseudoscalar (FP) form factors for the axial-vector matrix
element. The vector part of weak processes are related to
the nucleon’s electromagnetic form factors, which are well
measured up to large momentum transfer by electron scat-
tering [8], through an isospin rotation. Based on the
conserved-vector-current hypothesis, the vector and in-
duced tensor form factors are well understood by knowl-
edge of the electromagnetic structure of the nucleon.
In the axial-vector part of the weak process, the axial-

vector coupling gA ¼ FAðq2 ¼ 0Þ is most accurately mea-
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sured by neutron beta decay, where the extremely small
momentum transfer is accessible due to a very small mass
difference of the neutron and proton. The q2 dependence of
FAðq2Þ can be determined by other processes such as quasi-
elastic neutrino scattering experiments and charged pion
electroproduction experiments. It has been observed that
the dipole form is a good description for low and moderate
momentum transfer q2 < 1 GeV2 [9]. On the other hand,
the induced pseudoscalar form factor FPðq2Þ is rather less
known experimentally. The main source of information on
FPðq2Þ stems from muon capture. The induced pseudosca-
lar coupling, gP ¼ m�FPðq2Þ evaluated at q2 ¼ 0:88m2

�,

wherem� is the muon mass, is measured by ordinary muon

capture (OMC) or radiative muon capture (RMC).
Although there is some discrepancy between the OMC
result and the RMC result [9,10], the new precise OMC
measurement by the MuCap Collaboration, which is nearly
independent of �-molecular effect, yields gP ¼ 7:3� 1:1
[11]. Only a few of the other q2 data points on FPðq2Þ are
measured in the low q2 region by a single experiment of
pion electroproduction [12].

Theoretically, in the axial part of such weak processes at
low energies, one may consider that spontaneous chiral
symmetry breaking, which is induced by the strong inter-
action, plays an essential role. In other words, the axial
structure of the nucleon would be highly connected with
the physics of chiral symmetry and its spontaneous break-
ing, which ensures the presence of pseudo Nambu-
Goldstone particles such as the pion. This is empirically
known as the partially conserved axial-vector current
(PCAC) hypothesis [8], where the divergence of the
axial-vector current is proportional to the pion field.
Applying this idea to the axial-vector part of Eq. (1), there
appears a specific relation between the residue of the pion-
pole structure in FPðq2Þ and the axial-vector coupling gA
known as the Goldberger-Treiman relation [13].

There was the long-standing disagreement between ex-
periment and lattice calculations about the axial-vector
coupling gA. However, the RBC Collaboration finally re-
solved this puzzle using quenched DWF simulations
[14,15]. DWFs are expected to provide an implementation
of lattice fermions with exact chiral symmetry [16–18]. In
the limit where the fifth-dimensional extent Ls is taken to
infinity, DWFs preserve the axial Ward-Takahashi identity,
even at a finite lattice spacing [18]. Although not suffi-
ciently large Ls loses the virtues of DWFs, the explicit
chiral symmetry breaking with moderate sizes of Ls can be
attributed to a single universal ‘‘residual mass’’ parameter
mres, acting as an additive quark mass in the axial Ward-
Takahashi identity as @�A

a
� � 2ðmf þmresÞPa [19,20]. A

very small value of mres, which is typically smaller than
10% of the quark mass, is always achieved at a given Ls
around 10–20 with the help of improved gauge actions
[20]. This fact greatly simplifies the nonperturbative deter-
mination of the renormalization of quark bilinear currents

[21]. For a calculation of the axial-vector coupling gA, the
chiral symmetry is very useful because the renormalization
factors of local vector and local axial-vector current op-
erators are equal ZV ¼ ZA [21]. This means that the ratio of
the nucleon axial-vector and vector couplings, gA=gV ,
calculated on the lattice is not renormalized [15].
Therefore, in DWF simulations, the ambiguity in the re-
normalization of quark currents, which is present in other
fermions such as Wilson-type fermions, is eliminated. In
Ref. [15], gA ¼ 1:212ð27Þ in the chiral limit is obtained
from quenched DWF simulations. It underestimates the
experimental value of 1.2695(29) [22] by less than 5%. It
has also shown that there is a significant finite volume
effect between the axial-vector couplings calculated on
lattices with ð1:2 fmÞ3 and ð2:4 fmÞ3 volumes. This obser-
vation strongly indicates that the axial-vector coupling is
particularly sensitive to finite volume effects. Sub-
sequently, the LHPC Collaboration has evaluated the
axial-vector coupling using domain wall valence fermions
with improved staggered sea quark configurations with
physical volume as large as ð3:5 fmÞ3 and obtained gA ¼
1:226ð84Þ at the physical pion mass [23]. Its value again
agrees with experiment within 5%.
In this paper, we naturally extend the quenched DWF

calculation for exploring the axial structure of the nucleon,
namely, the axial-vector form factor and the induced pseu-
doscalar form factor at low q2 as well as the electromag-
netic structure of the nucleon. Especially, to evaluate the
induced pseudoscalar coupling gP is one of our main
targets, since no intensive study has been done to deter-
mine this particular quantity in lattice QCD. Recall that the
induced pseudoscalar form factor is assumed to be domi-
nated by a pion pole, which give rises to very rapid q2

dependence at low q2. The larger physical volume, where
the lower momentum transfers are accessible, is required.
We therefore utilize ð3:6 fmÞ3 volume where the smallest
momentum squared (q2 � 0:1 GeV2) is smaller than mea-
sured pion mass squared (m2

� > 0:15 GeV2). We also re-
examine the finite volume effect on the axial-vector
coupling using three different volumes, which include
ð3:6 fmÞ3 together with smaller ones ð1:8 fmÞ3 and
ð2:4 fmÞ3. Furthermore, we calculate the nucleon matrix
element of the pseudoscalar density hpj �u�5djni to check
the axial Ward-Takahashi identity in terms of the nucleon
matrix elements, which may be called as the generalized
Goldberger-Treiman relation [24].
Our paper is organized as follows. In Sec. II, we first

present a brief introduction of the weak nucleon form
factors and the status of experimental studies. In Sec. III,
details of our Monte Carlo simulations and some basic
results are given. We also describe the lattice method for
calculating the nucleon form factors. Section IV presents
our results of the four weak form factors as well as the
pseudoscalar form factor on lattice with ð3:6 fmÞ3 volume.
Especially, the q2 dependences of all measured form fac-
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tors at low q2 are discussed with great interest. At the end
of this section, we discuss the consequence of the axial
Ward-Takahashi identity among the axial-vector form fac-
tor, the induced pseudoscalar form factor and the pseudo-
scalar form factor. In Sec. V, we discuss the finite volume
effects on the form factors using results from three differ-
ent volumes. Meanwhile, we also check whether approxi-
mated forms of q2 dependence of form factors, which are
observed at low q2, are still valid even in the relatively high
q2 region, up to at least q2 � 1:0 GeV2, apart from con-
sideration of the finite volume effects. In Sec. VI, we
compare our results with previous works. Finally, in
Sec. VII, we summarize the present work and discuss
future directions.

II. WEAK NUCLEON FORM FACTORS AND
EXPERIMENTAL STATUS

In general, the nucleon matrix elements of the weak
current are given by a linear combination of the vector
and axial-vector matrix elements. Here, let us introduce the
vector and axial-vector currents, which are expressed in
terms of the isospin doublet of quark fields  ¼ ðu; dÞT

Va�ðxÞ ¼ � ðxÞ��ta ðxÞ; (2)

Aa�ðxÞ ¼ � ðxÞ���5t
a ðxÞ; (3)

where ta are the SUð2Þ flavor matrices normalized to obey
TrðtatbÞ ¼ �ab. Then, the nucleon matrix elements are
given by

hNðP0ÞjJwk� ðxÞjNðPÞi
¼ hNðP0ÞjVa�ðxÞ þ Aa�ðxÞjNðPÞi; (4)

¼ �uNðP0ÞðOV
�ðqÞ þOA

�ðqÞÞtauNðPÞeiq�x; (5)

where q � P� P0 is the momentum transfer between the
initial (P) state and the final state (P0) and N represents the
nucleon isospin doublet as N ¼ ðp; nÞT . Four form factors
are needed to describe these matrix elements: the weak
vector and induced tensor (weak magnetism) form factors
for the vector current

O V
�ðqÞ ¼ ��FVðq2Þ þ ���q�FTðq2Þ (6)

and the weak axial-vector and induced pseudoscalar form
factors for the axial-vector current [25]

O A
�ðqÞ ¼ ���5FAðq2Þ þ iq��5FPðq2Þ; (7)

which are here given in the Euclidean metric convention
[26]. Thus, q2 denoted in this paper, which stands for
Euclidean four-momentum squared, corresponds to the
timelike momentum squared as q2M ¼ �q2 < 0 in
Minkowski space.

The weak matrix elements are related to the electromag-
netic matrix elements if the strange contribution is ignored

under the exact isospin symmetry. A simple exercise in
SUð2Þ Lie algebra leads to the following relation between
the vector part of the weak matrix elements of neutron beta
decay and the difference of proton and neutron electro-
magnetic matrix elements [8,15]

hpj �u��djni ¼ hpj �u��u� �d��djpi
¼ hpjjem� jpi � hnjjem� jni; (8)

where jem� ¼ 2
3
�u��u� 1

3
�d��d. This relation gives a con-

nection between the weak vector and induced tensor form
factors and the isovector part of electromagnetic nucleon
form factors

Fv1 ðq2Þ ¼ FVðq2Þ; (9)

Fv2 ðq2Þ ¼ 2MNFTðq2Þ; (10)

where Fv1 (Fv2 ) denotes the isovector combination of the
Dirac (Pauli) form factors of the proton and neutron, which
are defined by

hNðP0Þjjem� ðxÞjNðPÞi ¼ �uNðP0Þ
�
��F

N
1 ðq2Þ

þ ���
q�
2MN

FN2 ðq2Þ
�
uNðPÞ; (11)

where MN denotes the nucleon mass, which is defined as
the average of neutron and proton masses, andN represents
p (proton) or n (neutron). Experimental data from elastic
electron-nucleon scattering is usually presented in terms of
the electric GEðq2Þ and magnetic GMðq2Þ Sachs form
factors, which are related to the Dirac and Pauli form
factors [8,27]

GN
E ðq2Þ ¼ FN1 ðq2Þ �

q2

4M2
N

FN2 ðq2Þ; (12)

GN
Mðq2Þ ¼ FN1 ðq2Þ þ FN2 ðq2Þ: (13)

Their normalization at q2 ¼ 0 are given by the proton
(neutron) charge and magnetic moment [22]:

Proton: Gp
Eð0Þ¼ 1; Gp

Mð0Þ¼�p¼þ2:792847351ð28Þ;
Neutron: Gn

Eð0Þ¼ 0; Gn
Mð0Þ¼�n¼�1:91304273ð45Þ:

(14)

Therefore, one finds FVð0Þ ¼ Gp
Eð0Þ �Gn

Eð0Þ ¼ 1 and
2MNFTð0Þ ¼ Gp

Mð0Þ �Gn
Mð0Þ � 1 ¼ 3:70 589. As for the

q2 dependence of the form factors, it is experimentally
known that the standard dipole parametrization GDðq2Þ ¼
�2=ð�2 þ q2Þ with � ¼ 0:84 GeV (or �2 ¼ 0:71 GeV2)
describes well the magnetic form factors of both the proton
and neutron and also the electric form factor of the proton,
at least, in the low q2 region [27]. Here, the current
interesting issues of the q2 dependence of the electromag-
netic form factors at higher q2 are beyond the scope of this
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paper. Recent reviews on the experimental situation can be
found in Ref. [27]. The slopes of the form factors at q2 ¼ 0
determine mean-squared radii, which can be related to
dipole masses as hr2i i ¼ 12=M2

i (i ¼ E orM) in the dipole

form Giðq2Þ ¼ Gið0Þ=ð1þ q2=M2
i Þ. The experimental val-

ues of the electric root mean-squared (rms) radius for the
proton and the magnetic rms radii of the proton and neu-
tron are compiled in Table I. These rms radii are all equal
within errors and are in agreement with the empirical
dipole parameter �. On the other hand, the slope of the
neutron electric form factor Gn

Eðq2Þ is determined with

high precision from double-polarization measurements of
neutron knockout from a polarized 2H or 3He target, while
only a small deviation from zero is observed for Gn

Eðq2Þ at
low q2 [27]. Combined with all four of the electric charge
and magnetization radii of the proton and neutron, we
finally evaluate the rms radii for the weak vector form

factor and induced tensor form factor as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffihðrVÞ2i

p ¼
0:797ð4Þ fm and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffihðrTÞ2i
p ¼ 0:879ð18Þ fm, which corre-

spond to the dipole masses, MV ¼ 0:857ð8Þ GeV and
MT ¼ 0:778ð23Þ GeV. See Appendix A for details.

The axial-vector form factor at zero momentum transfer,
namely, the axial-vector coupling gA ¼ FAð0Þ, is precisely
determined by measurements of the beta asymmetry in
neutron decay. The value of gA ¼ 1:2695ð29Þ is quoted
in the 2006 PDG [22]. Nevertheless, kinematics of neutron
beta decay are quite limited due to a very small mass
difference of the proton and neutron. Other experimental
methods are utilized for determination of the q2 depen-
dence of FAðq2Þ. For this purpose, there are basically two
types of experiments, namely, quasi-elastic neutrino scat-
tering and charged pion electroproduction experiments.
The former suffers from severe experimental uncertainties
concerning the incident neutrino flux and the background
subtraction of elastic events, while model-dependent
analysis is somewhat inevitable for the latter [9]. Both
methods reported that the dipole form FAðq2Þ ¼
FAð0Þ=ð1þ q2=M2

AÞ is a good description for low and

moderate momentum transfer q2 < 1 GeV2. The resulting
world average of the dipole mass parameter MA is quoted
asMA ¼ 1:026ð21Þ GeV from neutrino scattering orMA ¼
1:069ð16Þ GeV from pion electroproduction in Ref. [9]. As
for a small discrepancy between two averages, it has been

argued that within heavy-baryon chiral perturbation theory
the finite pion mass correction of�0:055 GeV to the latter
value may resolve this discrepancy [9]. Therefore, one can
translate the axial dipole mass into the axial rms radius offfiffiffiffiffiffiffiffiffiffiffiffiffiffihðrAÞ2i
p ¼ 0:67ð1Þ fm, which is consistently obtained
from quasi-elastic neutrino scattering experiments and
charged pion electroproduction experiments [9].
On the other hand, the induced pseudoscalar form factor

FPðq2Þ is less well known experimentally [10]. The main
source of information on FPðq2Þ stems from OMC on the
proton, �� þ p! �� þ n. One measures the induced

pseudoscalar coupling gP ¼ m�FPðq20Þ at the specific mo-

mentum transfer for the muon capture by the proton at rest
as q20 ¼ 0:88m2

�. The induced pseudoscalar coupling gP is

also measured in RMC, �� þ p! �þ �� þ n. Before

2006, the Saclay OMC experiment, which was the most
recent OMC experiment at that time, reported
ðgOMC
P ÞSaclay;original ¼ 8:7� 1:9 [29]. Combining with the

older OMC experiments including bubble chamber mea-
surements, the world average for OMC is obtained as
ðgOMC
P ÞoldAve ¼ 8:79� 1:92, which is given in

Refs. [9,29]. Surprisingly, this value is close to the theo-
retically predicted value by heavy-baryon chiral perturba-
tion theory gChPTP ¼ 8:26� 0:16 [9]. However, the novel
RMC experiment at TRIUMF [30,31] is puzzling: their
measured value of gRMC

P ¼ 12:4� 1:0 is quite higher than
the theoretical value as is the OMC value as gRMC

P �
1:4gOMC

P . This disagreement is reduced by reanalysis
with the updated�þ lifetime [10]. Then, the updated result
of the Saclay OMC experiment yields ðgOMC

P ÞSaclay;updated ¼
10:6� 2:7. Accordingly, the weighted world average for
OMC, ðgOMC

P ÞupdatedAve: ¼ 10:5� 1:8 given in Ref. [10], is

shifted away from the theoretical expected value, while the
updated average value is in agreement with the RMC result
within its error. Indeed, there is a caveat that the ortho-para
transition rate in �-molecular Hydrogen, to which either
OMC and RMC results are very sensitive, is poorly known
due to mutually inconsistent results among two experi-
ments [29,32] and theory [33]. Comprehensive reviews of
a history of gP have been given in Refs. [9,10].
Recently, a new OMC experiment has been done by the

MuCap Collaboration [11]. The MuCap result is nearly
independent of �-molecular effects in contrast with the
previous OMC experiments and the RMC experiment.
After the electroweak radiative corrections, which were
underestimated in the old literature, are correctly taken
into account [34], the new precise OMC measurement
yields

gMuCap
P ¼ 7:3� 1:1: (15)

Including the new MuCap result and taking into account
the electroweak radiative corrections, the new world aver-
age of the OMC results becomes ðgOMC

P ÞnewAve ¼ 8:7� 1:0
[34]. As for other q2 data of FPðq2Þ, only a few data points

TABLE I. Experimental values of magnetic moments, electric
charge, and magnetization radii of the proton and neutron.

Observable Experimental value Reference

�p þ2:792 847 351ð28Þ [22]

�n �1:91 304 273ð45Þ [22]

hðrpEÞ2i1=2 0.8750(68) fm [22]

hðrnEÞ2i �0:1161ð22Þ fm2 [22]

hðrpMÞ2i1=2 0.855(35) fm [27]

hðrnMÞ2i1=2 0.873(11) fm [28]
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are measured in the low q2 region by a single experiment of
pion electroproduction at threshold [12]. These data are
summarized in Table II. Three data points from pion
electroproduction at threshold are well fitted by the pion-
pole dominance form, FPðq2Þ ¼ 2MNFAðq2Þ=ðq2 þm2

�Þ
[36], which is also consistent with the value determined
by the new OMC result at q2 ¼ 0:88m2

�. Therefore, the

pion-pole dominance is confirmed, more or less, through
pion electroproduction [12].

III. SIMULATION DETAILS

We work in the quenched approximation and use DWFs
to compute the nucleon matrix elements of the weak cur-
rent. We generate ensembles of the quenched QCD con-
figuration with the renormalization group improved,
DBW2 (doubly blocked Wilson in two-dimensional pa-
rameter space) gauge action [37,38] at � ¼ 6=g2 ¼ 0:87
(a�1 � 1:3 GeV), where the residual chiral symmetry
breaking of domain wall fermions is significantly im-
proved with a moderate size of the fifth-dimension Ls
such as Ls ¼ 16 [20]. Indeed, the residual quark mass for
Ls ¼ 16 is measured as small asmres � 5� 10�4 in lattice
units [20], which is safely negligible compared with the
input quark masses in our simulations 0:02 	 mf 	 0:08.

We work with relatively coarse lattice spacing, a �
0:15 fm [39], which is determined from the 	 meson
mass [20].

To study finite volume effects, numerical simulations are
performed on three different lattice sizes L3 � T ¼ 243 �

32, 163 � 32, and 123 � 32. The spatial extents in our
study correspond to La ’ 3:6, 2.4 and 1.8 fm. Quark
propagators are generated for four bare masses mf ¼
0:02, 0.04, 0.06, and 0.08 for L ¼ 24 and three bare masses
mf ¼ 0:04, 0.06, and 0.08 for L ¼ 16 and 12, using DWFs

with Ls ¼ 16 andM5 ¼ 1:8. Details of our simulations are
summarized in Table III. In Table IV, some basic physics
results are compiled from Ref. [20].
The pseudoscalar meson (pion) masses computed in

these calculations are summarized in Table V. All fitted
values are obtained from the covariant single cosh fit. It is
clear that there is no visible finite-volume effect on the pion
mass. Measured values for L ¼ 16 are in good agreement
with the values found in Ref. [15], where point-to-box
quark propagators are used with the mostly same gauge
ensembles, while the point-to-gauss-smeared quark propa-
gators are utilized in the present study. Our simulated
values of the pion mass range from 0.39 GeV to 0.76 GeV.

A. Nucleon spectra and dispersion relation

In order to compute nucleon masses or matrix elements,
we define the nucleon (proton) operator as


Sðt;pÞ ¼ X
x

e�ip�x"abc½uTa ðy1; tÞC�5dbðy2; tÞ�ucðy3; tÞ

��ðy1 � xÞ�ðy2 � xÞ�ðy3 � xÞ; (16)

where abc and ud have usual meanings as color and flavor
indices. C is the charge conjugation matrix defined as C ¼
�t�y and the superscript T denotes transpose. The super-

TABLE II. Summary of available experimental data for the induce pseudoscalar form factor
FPðq2Þ. The smallest q2 point is given by the MuCap experiment, while other three q2 points are
obtained from a single experiment of pion electroproduction at threshold.

q2 ðGeV2Þ FPðq2Þ ðMeV�1Þ Experiment (reference)

0.0098 0:069� 0:010 ordinary muon capture [11]

0.073 0:0229� 0:0028 pion electroproduction [12,35]

0.139 0:0140� 0:0022 pion electroproduction [12,35]

0.179 0:009 32� 0:002 48 pion electroproduction [12,35]

TABLE III. Simulation parameters for each volume studied in this work.

Gauge action (�) L3 � T Ls M5 Quark-mass values (mf) Spatial size L [fm] Statistics # of sources

DBW2 (0.87) 243 � 32 16 1.8 0.02, 0.04, 0.06, 0.08 3.6 70 3

163 � 32 16 1.8 0.04, 0.06, 0.08 2.4 377 1

123 � 32 16 1.8 0.04, 0.06, 0.08 1.8 800 1

TABLE IV. The residual mass mres, inverse lattice spacing (a�1
	 , set by the 	 meson mass), the renormalization factor of the axial-

vector current (ZA), and the pion decay constant (F�). Those values are taken from Ref. [20], where simulations are performed on a
163 � 32 volume.

Gauge action (�) M5 Ls mres a�1
	 [GeV] ZAðmf ¼ �mresÞ F� [MeV]

DBW2 (0.87) 1.8 16 5:69ð26Þ � 10�4 1.31(4) 0.77 759(45) 91.2(5.2)
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script S of the nucleon operator 
 specifies the smearing
for the quark propagators. In this study, we use two types
of source: local source as �ðyi � xÞ ¼ �ðyi � xÞ and
Gaussian smeared source. Here, we take y1 ¼ y2 ¼ y3 ¼
0 in our calculation. As for the Gaussian smeared source,
we apply the gauge-invariant Gaussian smearing [40,41]
with N ¼ 30, ! ¼ 4:35. Details of our choice of smearing
parameters are described in Ref. [42].

We construct two types of the two-point function for the
proton. One interpolating operator at the source location is
constructed from Gaussian smeared quark fields, while the
other interpolating operator at the sink location is either
constructed from local quark fields (denoted LG) or
Gaussian smeared ones (denoted GG)

CSGðt� tsrc; qÞ ¼ 1

4
TrfPþh
Sðt;qÞ �
Gðtsrc;�qÞg; (17)

with S ¼ L or G. The projection operator Pþ ¼ 1þ�t
2 can

eliminate contributions from the opposite-parity state for
q2 ¼ 0 [43,44]. It is rather expensive to make the Gaussian
smeared interpolating operator projected onto a specific
finite momentum at the source location (tsrc). However, it is
sufficient to project only the sink operator onto the desired
momentum by virtue of momentum conservation. Thus,
the quark fields at the source location are not projected
onto any specific momentum in this calculation. For the
momentum at the sink location (tsink), we take all possible
permutations of the three momentum q including both
positive and negative directions.

Nucleon masses and energies are computed by using the
LG correlators with the five lowest momenta: (0, 0, 0),
(1, 0, 0), (1, 1, 0), (1, 1, 1), and (2, 0, 0) in units of 2�=L.
All fitted values, which are obtained from the conventional
single exponential fit, for each volume are summarized in
Table V. Next, we examine the dispersion relation of the
nucleon state in our simulations. The purpose of this
examination is two fold: 1) Our analysis should be re-
stricted to the lower momenta that do not suffer from large

Oða2Þ errors. 2) The evaluation of the squared four-
momentum transfer q2 requires precise knowledge of the
nucleon energies with finite momentum. The later point
can be achieved by an estimation of the energy EðpÞ with
the help of the dispersion relation and the measured nu-
cleon rest mass MN that can be most precisely measured.
For mf ¼ 0:04 the measured values of the nucleon

energy, which are obtained from L ¼ 24 (open circles),
L ¼ 16 (open squares) and L ¼ 12 (open diamonds), are
compared with the relativistic dispersion relation

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

N

q
(18)

in Fig. 1 with either the naive discrete (continuumlike)
momentum pi ¼ 2�

L ni or the lattice discrete momentum

pi ¼ sin½2�L ni� (ni ¼ 0; 1; 2; � � �; ðL� 1Þ) for p ¼
ðpx; py; pzÞ. We observe that the measured energies EðpÞ
are consistent with the estimated values from the relativ-
istic dispersion formula for continuumlike momenta
(dashed-dotted curve) and lattice momenta (dashed curve)
in the range of our admitted momentum except for the
largest momentum on the lattice with L ¼ 12 as shown in
Fig. 1. The difference between either choice of the discrete
momentum is mostly comparable to the statistical errors,
while differences increase at the larger momentum. To
restrict ourselves to low q2 region (q2 < 1 GeV2), we do
not use the two largest momenta on the lattice with L ¼ 12
for the proceeding analysis. Therefore, it is not a concern to
choose what type of the discrete momentum in the disper-
sion relation in our current calculation. We simply choose
the continuumlike momentum throughout this paper and
then evaluate the values of the squared four-momentum
transfer q2 with the measured rest mass MN and the con-
tinuum dispersion relation (18).

B. Three-point correlation functions

As discussed in the previous section, under the exact
isospin symmetry (mu ¼ md), the SUð2Þ current algebra

TABLE V. Fitted masses of the pseudoscalar meson state and fitted energies of the nucleon state with the five lowest momenta for
each volume. All tabulated values are given in lattice units. Results for the nucleon energies with nonzero momenta are averaged over
all possible permutations of the lattice momentum p ¼ ðnx; nx; nzÞ in units of 2�=L, including both positive and negative directions.

ENðpÞ
Size L mf m� (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0)

24 0.02 0.3003(10) 0.8651(70) 0.9038(79) 0.9432(94) 0.9824(117) 1.0157(130)

0.04 0.4143(11) 0.9801(52) 1.0152(58) 1.0496(66) 1.0829(77) 1.1161(83)

0.06 0.5040(11) 1.0783(47) 1.1098(50) 1.1408(55) 1.1710(60) 1.2006(66)

0.08 0.5829(11) 1.1690(43) 1.1976(45) 1.2257(49) 1.2531(53) 1.2793(57)

16 0.04 0.4148(9) 0.9869(50) 1.0595(58) 1.1251(74) 1.1822(106) 1.2436(150)

0.06 0.5050(8) 1.0821(42) 1.1483(48) 1.2095(61) 1.2632(84) 1.3189(111)

0.08 0.5837(8) 1.1703(37) 1.2313(43) 1.2886(54) 1.3391(71) 1.3890(92)

12 0.04 0.4150(10) 0.9795(75) 1.097(10) 1.190(17) 1.332(68) 1.236(79)

0.06 0.5046(9) 1.0729(55) 1.1844(70) 1.280(12) 1.419(41) 1.466(22)

0.08 0.5832(8) 1.1703(37) 1.2313(43) 1.289(54) 1.339(71) 1.389(92)

SHOICHI SASAKI AND TAKESHI YAMAZAKI PHYSICAL REVIEW D 78, 014510 (2008)

014510-6



leads to the following relations [8,15]

hpjVþ
� jni ¼ 2hpjV3

�jpi; (19)

hpjAþ
� jni ¼ 2hpjA3

�jpi; (20)

where V3
� ¼ 1

2 ð �u��u� �d��dÞ and A3
� ¼ 1

2 �ð �u���5u� �d���5dÞ. Thus, we may calculate the weak

transition matrix elements by the isovector proton matrix
elements.
First of all, we define the finite-momentum three-point

functions for the relevant components of either the local
vector current (J V

�ðxÞ ¼ �uðxÞ��uðxÞ � �dðxÞ��dðxÞ) or the
local axial-vector current (J A

�ðxÞ ¼ �uðxÞ���5uðxÞ �
�dðxÞ���5dðxÞ) with the proton interpolating operator 


h
ðt0;p0ÞJ �
�ðt;qÞ �
ð0;�pÞi

¼ G�
�ðp; p0Þ � fðt; t0; EðpÞ; Eðp0ÞÞ þ � � �; (21)

where the initial and final proton states carry fixed mo-
menta p and p0, respectively, and then the current operator
has a three-dimensional momentum transfer q ¼ p� p0.
Here, Dirac indices have been suppressed. The ellipsis
denotes excited state contributions, which can be ignored
in the case of t0 � t
 1 and t
 1. We separate the
correlation function into two parts G�

�ðp; p0Þ, which are
defined as

G �
�ðp; p0Þ ¼ ð�i� � p0 þMNÞO�

�ðqÞð�i� � pþMNÞ;
(22)

where O�
�ðqÞ corresponds to either Eq. (6) or Eq. (7), and

the factor fðt; t0; EðpÞ; Eðp0ÞÞ, which collects all the kine-
matical factors, normalization of states, and time depen-
dence of the correlation function. The trace of G�

�ðp; p0Þ
with some appropriate projection operator P for specific
combinations of � and� yields some linear combination of
form factors in each � channel. On the other hand, all time
dependences of the factor fðt; t0; EðpÞ; Eðp0ÞÞ can be elim-
inated by the appropriate ratio of three- and two-point
functions [2,3]

R ðtÞ ¼ CP
�;�ðt;p0;pÞ

CGGðtsink � tsrc;p
0Þ
�
CLGðtsink � t;pÞCGGðt� tsrc;p

0ÞCLGðtsink � tsrc;p
0Þ

CLGðtsink � t;p0ÞCGGðt� tsrc;pÞCLGðtsink � tsrc;pÞ
�
1=2
; (23)

where

CP
�;�ðt; qÞ ¼ 1

4 TrfP h
Gðtsink;p0ÞJ �
�ðt;qÞ �
Gðtsrc;�pÞig;

(24)

which are calculated by the sequential source method
described in Ref. [15]:

In this study, we consider only the case at the rest frame
of the final state (p0 ¼ 0), which leads to q ¼ p. Therefore,
the squared four-momentum transfer is given by q2 ¼
2MNðEðqÞ �MNÞ. Nucleon energy EðqÞ is simply abbre-
viated as E, hereafter. In this kinematics, G�

�ðp; p0Þ is
represented by a simple notation as G�

�ðqÞ. Then, the ratio
(23) gives the asymptotic form as a function of the current-
operator insertion time t,

R ðtÞ ! 1

4
TrfPG�

�ðqÞg � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

NEðEþMNÞ
q (25)

in the limit when the Euclidean time separation between all
operators is large, tsink 
 t
 tsrc with fixed tsrc and tsink.
We choose particular combinations of the projection

operator P and the current operator J �
� (� ¼ V or A).

We consider two types of the projection operator P t ¼
Pþ�t and P z

5 ¼ Pþ�5�z in this study. The latter projec-

tion operator implies that the z direction is chosen as the
polarized direction. We then obtain some linear combina-
tion of desired form factors from the projected correlation
functions

FIG. 1 (color online). Comparison of measured and estimated
energies of the nucleon for mf ¼ 0:04 as a function of absolute

value of three momentum jpj. Open circles, squares, and
diamonds, which correspond to the measured values in lattice
units, are obtained from L ¼ 24, L ¼ 16, and L ¼ 12. The
estimated energies are given by the relativistic dispersion for-

mula EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

N

q
for continuumlike momenta pi ¼

2�
L ni (dashed-dotted curve) and lattice momenta pi ¼
sin½2�L ni� (dashed curve) with the rest mass MN measured at

L ¼ 24.
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1
4 TrfP tGV

t ðqÞg ¼ MNðEþMNÞ
� ½FVðq2Þ � ðE�MNÞFTðq2Þ�; (26)

1
4 TrfP z

5G
V
i ðqÞg ¼ �i"ijzqjMN½FVðq2Þ þ 2MNFTðq2Þ�;

(27)

for the vector currents J V
t and J V

i ði ¼ x; y; zÞ. Similarly,
we get

1

4
TrfP z

5G
A
i ðqÞg ¼ MNðEþMNÞ

�
�
FAðq2Þ�iz � qiqz

EþMN

FPðq2Þ
�
;

(28)

for the axial-vector current J A
i ði ¼ x; y; zÞ. In this calcu-

lation, we use at most the four nonzero three-momentum
transfer q ¼ 2�

L n (n2 ¼ 1, 2, 3, 4). All possible permuta-

tions of the lattice momentum including both positive and
negative directions are properly taken into account. All
three-point correlation functions are calculated with a
source-sink separation of 10 in lattice units, which is the
same in the previous DWF calculation of the axial-vector
coupling gA [15]. For L ¼ 24, we calculate three-point
correlation functions with three different sequential
sources generated with source-sink locations, ½tsrc; tsink� ¼
½0; 10�, [10, 20], and [20, 30] on a given gauge configura-
tion [45], while only a single sequential source with
½tsrc; tsink� ¼ ½0; 10� is utilized for L ¼ 12 and L ¼ 16
calculations.

In Fig. 2, we plot the dimensionless projected correlators

�V
0 ¼

1
4 TrfP tGV

t ðqÞg
MNðEþMNÞ ; (29)

�V
T ¼ � 1

2

�1
4 TrfP z

5G
V
x ðqÞg

iqyMN

�
1
4 TrfP z

5G
V
y ðqÞg

iqxMN

�
; (30)

as a function of the current insertion time slice t for mf ¼
0:04 on the largest volume (L ¼ 24) as typical examples.
Good plateaus for all squared three-momentum transfer are
observed in the middle region between the source and sink
points. The quoted errors are estimated by a single elimi-
nation jackknife method. The lines plotted in each figure
represent the average value (solid lines) and their 1 standard
deviations (dashed lines) in the time-slice range 3 	 t 	 7.

Similarly, Fig. 3 shows �A
L and �A

T for the axial-vector
current, which are defined by

�A
L ¼

1
4 TrfP z

5G
A
z ðqÞg

MNðEþMNÞ ; (31)

�A
T ¼ � 1

2

�1
4 TrfP z

5G
A
x ðqÞg

qzqx
þ

1
4 TrfP z

5G
A
y ðqÞg

qzqy

�
: (32)

It is worth noting that in the axial-vector channel the z
direction is chosen as the polarized direction in this study.
Therefore, the longitudinal momentum (qz) dependence
explicitly appears in Eq. (28). This fact provides two
kinematical constraints on determination of the three-point
functions in our calculation. First, there are two types of
kinematics, qz � 0 and qz ¼ 0 in the longitudinal compo-
nent (i ¼ z) of Eq. (28), except for the case of n2 ¼ 3,
where qz is always nonzero. Secondly, the transverse com-
ponents (i ¼ x or y) of Eq. (28) are prevented from vanish-
ing by the kinematics only if n2 ¼ 2 and 3, where two
components of the momentum including the polarized
direction (z direction) are nonzero. These are the reasons
why �A

Lðqz ¼ 0Þ and �A
Lðqz � 0Þ are separately plotted in

Fig. 3 and results of�A
Lðqz ¼ 0Þ at n2 ¼ 3 and �A

T at n
2 ¼

1, 4 are missing there.

FIG. 2 (color online). Relevant ratios of three- and two-point
functions, �V

0 (top) and �V
T (bottom), for all possible three-

momentum transfer q as a function of the current insertion time
slice at mf ¼ 0:04.
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Finally, we recall that the lattice local operators J �
�ðxÞ

(� ¼ V or A), which are represented as the quark bilinear
currents, receive finite renormalizations relative to their
continuum counterparts. Thus, the renormalized form
factors require some independent estimation of Z�, the
renormalization of the quark bilinear currents ½J �

��ren ¼

Z�½J �
��lattice. As mentioned previously, good chiral prop-

erties of DWFs ensure that the lattice renormalizations of
the local currents are equal ZV ¼ ZA up to terms of order
Oða2Þ in the chiral limit and neglecting explicit chiral
symmetry breaking due to the moderate size of the fifth-
dimensional extent Ls [21]. In this paper, we evaluate ZV at
each quark mass from the inverse of FVð0Þ that should be
unity in the continuum under the exact SUð2Þ isospin
symmetry and multiply four weak form factors by this
renormalization factor ZV to estimate the renormalized
form factors in the chiral limit.

C. Vector coupling gV and axial-vector coupling gA

At zero three-momentum transfer jqj ¼ 0, only �V
0 and

�A
L are calculable. Then, these directly yield the values of

ðgVÞlattice and ðgAÞlattice, respectively. Our results of
ðgVÞlattice, ðgAÞlattice, and their ratio ðgAÞren ¼ ðgA=gVÞlattice
obtained in this calculation are summarized in Table VI,
where old results for L ¼ 8 and L ¼ 16 calculated in
Ref. [15] are also tabulated. In Fig. 4, we show the ratios
of the axial to the vector coupling ðgA=gVÞlattice calculated
for three different volumes as functions of pion mass
squared. Clearly, the finite volume effect on ðgA=gVÞlattice
can be observed. The larger volume results exhibit milder
quark-mass dependence, while the smallest volume results
show a slow downward tendency toward the chiral limit
away from the experimental point. Therefore, for the larg-
est volume results, we simply adopt a linear extrapolation
with respect to the pion mass squared to take the chiral
limit. We obtain the axial-vector coupling grenA ¼
1:219ð38Þ at the physical point (m� ¼ 0:14 GeV).
We next examine more details of the finite volume effect

on the vector and axial-vector couplings separately.
Combined results from three different spatial sizes, La �
1:8 fm, 2.4 fm, and 3.6 fm together with old results from
La � 1:2 fm, we plot ðgVÞlattice and ðgAÞlattice against the
spatial lattice size in the physical unit in Fig. 5. The quoted
errors in the figure represent only the statistical errors,
which are obtained by a single elimination jackknife
method. The left (right) figure is for lighter (heavier)
pion mass. The axial-vector coupling ðgAÞlattice shows the
significant spatial-size dependence, while we do not see
any serious finite volume effect on the vector coupling
ðgVÞlattice. This indicates that the observed finite volume
effect in Fig. 4 stems from that of ðgAÞlattice. Clearly, it is
observed that ðgAÞlattice decreases monotonically with de-
creasing spatial size L. Therefore, we simply utilize the
power-law formula to estimate the infinite volume limit of
the axial-vector coupling as

glatticeA ðLÞ ¼ glatticeA ð1Þ þ bL�n (33)

with the power three (n ¼ 3). Horizontal lines in figures
represent the values in the infinite volume limit and their

FIG. 3 (color online). Relevant ratios of three- and two-point
functions, �A

Lðqz ¼ 0Þ (top), �A
Lðqz � 0Þ (middle) and �A

T

(bottom), for all possible three-momentum transfer q as a
function of the current insertion time slice at mf ¼ 0:04.
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1 standard deviations. The values obtained from the largest
volume, ð3:6 fmÞ3, are quite close to the values in the
infinite volume limit. At a glance, the spatial size over
2.5 fm is large enough to accurately calculate the axial-
vector coupling, at least within the range of our admitted
quark mass.

We finally quote

grenA ¼ 1:219� 0:038ðstatÞ � 0:024ðnormÞ
� 0:002ðvolumeÞ; (34)

where the second error is evaluated from a 2% error stem-
ming from ZV � ZA, which was observed previously [15],
and the third error is estimated from a difference between

TABLE VI. Results for the vector coupling glatticeV , the axial-vector coupling glatticeA and their
ratio grenA ¼ ðgV=gAÞlattice. Gauss-smeared-to-gauss-smeared quark propagators are used in the

present study, while box-to-local quark propagators were used in the previous calculation [15].
L ¼ 16 results in the present calculations agree well with the previous L ¼ 16 results.

Smearing type (Ref.) L3 � Nt mf ðgVÞlattice ðgAÞlattice ðgAÞren
Gauss-Gauss (this work) 243 � 32 0.02 1.2435(60) 1.509(52) 1.212(42)

0.04 1.2386(18) 1.537(27) 1.240(22)

0.06 1.2306(12) 1.533(18) 1.245(15)

0.08 1.2206(10) 1.529(14) 1.252(11)

163 � 32 0.04 1.2429(24) 1.494(29) 1.202(24)

0.06 1.2332(12) 1.497(17) 1.214(14)

0.08 1.2224(9) 1.499(13) 1.226(11)

123 � 32 0.04 1.2465(34) 1.441(51) 1.156(41)

0.06 1.2328(16) 1.462(27) 1.185(22)

0.08 1.2213(11) 1.474(17) 1.206(14)

Box-Local [15] 163 � 32 0.02 1.2440(30) 1.531(60) 1.229(49)

0.04 1.2323(14) 1.523(24) 1.230(20)

0.06 1.2220(10) 1.510(15) 1.230(12)

0.08 1.2106(8) 1.505(11) 1.236(9)

83 � 24 0.04 1.223(10) 1.303(146) 1.059(120)

0.06 1.214(5) 1.342(74) 1.099(62)

0.08 1.203(4) 1.373(46) 1.136(39)

FIG. 4 (color online). The physical ratio of couplings gA=gV
as a function of the pion mass squared. Results on the largest
volume ð3:6 fmÞ3 (circles) exhibit milder quark-mass depen-
dence, while the smaller volume results (right-oriented triangles)
show a slow downward tendency toward the chiral limit away
from the experimental point (asterisk).

FIG. 5 (color online). The vector coupling ðgV Þlattice and axial-
vector coupling ðgAÞlattice as functions of spatial lattice size for
mf ¼ 0:04 (left figure) and mf ¼ 0:08 (right figure). Dashed

curves are fits of the form glatticeA ðLÞ ¼ glatticeA ð1Þ þ bL�3.
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the extrapolated value in the infinite volume limit and the
largest volume result at mf ¼ 0:04.

IV. RESULTS OF NUCLEON FORMFACTORS ONA
ð3:6 fmÞ3 VOLUME

In this section, we focus on the results obtained from
lattice size 243 � 32, which corresponds to physical vol-
ume V � ð3:6 fmÞ3. The lower momentum is admitted by
the larger spatial extent L. Therefore, we can make the
shorter extrapolation with respect to q2 toward the forward
limit q2 ¼ 0 for nucleon form factors FTðq2Þ and FPðq2Þ of
which values at q2 ¼ 0 cannot be accessible directly due to
the kinematical constraint as described before. We also
discuss the finite size effect on the nucleon form factors,
which may be sensitive to the nucleon ‘‘wave function’’ or
the nucleon ‘‘size’’ squeezed due to the finite spatial extent
of lattice volume. In the previous section, the spatial
lattice-size dependence of the axial-vector coupling shows
that spatial lattice size La � 3:6 fm is large enough to
avoid significant finite volume effect on gA.

A. Vector channel

In the case if spatial momentum transfer q is nonzero, all
three-point correlation functions defined in Eqs. (26) and
(27) are calculable. Two independent form factors FVðq2Þ
and FTðq2Þ are obtained by

FVðq2Þ ¼ 2MN

EþMN

�V
0 þ E�MN

EþMN

�V
T ; (35)

FTðq2Þ ¼ 1

EþMN

ð��V
0 þ�V

T Þ (36)

at finite q2.

1. Dirac form factor FVðq2Þ
First, we show quark-mass dependence of the Dirac

form factor FVðq2Þ. In Fig. 6, we plot the normalized
FVðq2Þ by FVð0Þ as a function of four-momentum squared
q2. Different symbols represent the values obtained from
different quark masses mf. There is no large mf depen-

dence, while it seems that the smaller quark mass makes
the q2 dependence steeper. The Dirac form factor is sup-
posed to be the dipole form at low q2

FVðq2Þ ¼ FVð0Þ
ð1þ q2=M2

VÞ2
; (37)

where MV denotes the dipole mass. A dashed curve in
Fig. 6 corresponds to the dipole form with the empirical
value of the dipole mass MV ¼ 0:857ð8Þ GeV, which is
evaluated from the electric charge and magnetization radii
of the proton and neutron as described in Appendix A.
In order to see how our measured FVðq2Þ has an ex-

pected dipole form, we define the following quantity only
at nonzero momentum:

Meff
V ðq2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FVðq2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
FVð0Þ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FVðq2Þ

p
vuuut ; (38)

which should provide q2 independent plateau if the q2

dependence of FVðq2Þ ensures the dipole form. We call
this quantity the effective dipole mass, hereafter. In Fig. 7,
we show the effective dipole-mass plot for the Dirac form
factor at mf ¼ 0:02 as a typical example. Horizontal solid

and dashed lines represent the fitted dipole mass obtained
from a correlated fit to FVðq2Þ using the dipole form (37)
and its 1 standard deviation. The dotted lines shows the
empirical dipole massMV ¼ 0:857ð8Þ GeV. Clearly, there
is no appreciable q2 dependence of the effective dipole
mass within statistical errors. Even at the highest q2 �
0:44 GeV2, the fitted dipole mass agrees with the value of
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FIG. 6 (color online). The renormalized Dirac form factor,
Fren
V ðq2Þ ¼ FV ðq2Þ=FVð0Þ as a function of four-momentum

squared q2.
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FIG. 7. Effective dipole-mass plot for the Dirac form factor
FVðq2Þ as a function of four-momentum squared q2 at mf ¼
0:02.
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the effective dipole mass. Therefore, we conclude that the
dipole form describes well the q2 dependence of our mea-
sured Dirac form factor FVðq2Þ. This observation is con-
sistent with previous studies [2,4].

Figure 8 shows the quark-mass dependence of the fitted
dipole mass. As seen from this figure, the quark-mass
dependence is rather mild and then there is no appreciable
curvature as a function of the pion mass squared.
Therefore, we simply adopt a linear extrapolation with
respect to the pion mass squared to evaluate the value of
the dipole mass of FVðq2Þ in the chiral limit. Diamond
symbols in Fig. 8 are extrapolated values for the chiral
limit (m� ¼ 0) and the physical point (m� ¼ 0:14 GeV)
and the solid line represents the fitted line. Our measured
dipole masses of the Dirac form factor are much larger than
the experimental value. Here we recall that the rms radii
can be determined with the corresponding dipole mass asffiffiffiffiffiffiffiffiffi
hr2Vi

q
¼ ffiffiffiffiffiffi

12
p

=MV . The larger dipole mass MV means that

the spatial size of the nucleon in our simulations is smaller
than the physical one. This may be attributed to the missing
large ‘‘pion cloud’’ contribution, since it is well known that
the mean-squared radius hr2Vi receives a large pion loop

correction, which leads to a logarithmic divergence in the
chiral limit in heavy baryon chiral perturbation theory [46].
Indeed, the present calculation is still far from the chiral
regime: our smallest pion mass is around 0.39 GeV, which
is comparable to the lightest pion mass in the most recent
lattice study of nucleon electromagnetic form factors [4].
Although the expected chiral behavior is not guaranteed in
the quenched approximation, in the present study the esti-
mation of systematic errors stemming from quenching and
a long chiral extrapolation is beyond the scope of this
paper. Rather, we would like to see how large volume
can be fitted for studying the structure of the nucleon,

namely, the nucleon form factors without significant finite
volume effect. Studies of the finite size effect on the
nucleon form factors using results obtained from three
different lattice sizes will be presented in the next section.

2. Pauli form factor FTðq2Þ
In Fig. 9, we show the Pauli form factor F2ðq2Þ ¼

2MNFTðq2Þ as a function of four-momentum squared q2.
The form factor plotted here is scaled by the renormaliza-
tion factor ZV ¼ 1=FVð0Þ to get the renormalized one
Fren
2 ðq2Þ ¼ ZVF2ðq2Þ. In contrast with Fig. 6, large
mf-dependence is observed. As well as the Dirac form

factor, the Pauli form factor is phenomenologically sup-
posed to be the dipole form at low q2

Fren
2 ðq2Þ ¼ Fren

2 ð0Þ
ð1þ q2=M2

TÞ2
; (39)

where the value of Fren
2 ðq2Þ at q2 ¼ 0 is associated with the

difference of the proton and neutron magnetic moments
�p ��n ¼ 1þ Fren

2 ð0Þ. This dipole form is commonly

adopted as a fitting form of the q2 extrapolation to evaluate
Fren
2 ð0Þ in published works [2,4]. We also plot the dipole

form with the empirical value of the Pauli dipole mass
MT ¼ 0:778ð23Þ GeV and the experimental values of �p

and�n in the same figure. Our results of Fren
2 ðq2Þ gradually

approach this dipole form as mf decreases. Indeed, data

points for mf ¼ 0:02 in the range of our calculated q2

follow the experimental curve within the statistical error.
However, if we apply the dipole form to the data, our
obtained values of Fren

2 ð0Þ from dipole fits are somewhat
underestimated in comparison with the experimental value
�p ��n � 1 ¼ 3:70589 as shown in Fig. 10.

In contrast to the Dirac form factor, we cannot try the
effective dipole mass plot for a justification of the applied
dipole form, since we do not have data of Fren

2 ð0Þ without
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the q2 extrapolation. Instead, we consider an independent
observation for the difference of �p and �n, which can be

derived from the forward limit of the ratio of the magnetic
form factor GMðq2Þ and the electric form factor GEðq2Þ.
The ratio is calculated by a different combination of �V

0

and �V
T [42] as

GMðq2Þ
GEðq2Þ

¼ Gren
M ðq2Þ

Gren
E ðq2Þ ¼

�V
T

�V
0

: (40)

Experimentally, it is known that this ratio shows no q2

dependence at low q2, since both form factors are well
fitted by the dipole form with the comparable dipole
masses [8,27]. Therefore, this ratio may yield the constant
value identified to �p ��n ¼ Gren

M ð0Þ. Indeed, in our

calculation, the proposed ratio (40) exhibits no appreciable
q2 dependence in the range of our calculated q2. We may
use a simple linear fitting form with respect to four-
momentum squared q2 for an alternative evaluation of
the value �p ��n. Figure 10 shows that two determina-

tions to evaluate �p ��n � 1 are consistent with each

other.
In Fig. 11, we plot values of �p ��n, which are eval-

uated by two determinations, 1þ Fren
2 ð0Þ and

GMð0Þ=GEð0Þ, as a function of pion mass squared m2
�. As

described above, both determinations fairly agree with
each other. Although the values measured at two heaviest
points are consistent with the experimental one, a strong
m2
� dependence appears near the chiral limit and then the

extrapolated value tends to somewhat underestimate the

experimental data. Here, we simply adopt a linear fit with
respect to m2

� regardless of the fact that a slight downward
curvature is observed in Fig. 11.
We also extrapolate the Pauli dipole mass MT to the

chiral limit in Fig. 12. Again, we use a simple linear fitting
form for the chiral extrapolation. The value obtained at the
physical point is about a 20% overestimation in compari-
son with the experimental one, the same as in the case of
the Dirac dipole mass. This indicates that corresponding
rms radii are somewhat smaller than the actual nucleon
size. Finally, all fitted results with the dipole form for both
form factors and their extrapolated values to the chiral limit
are summarized in Table VII.

B. Axial-vector channel

In the axial-vector channel, two independent form fac-
tors FAðq2Þ and FPðq2Þ can be evaluated separately by
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FAðq2Þ ¼ �A
Lðqz ¼ 0Þ; (41)

FPðq2Þ ¼ �A
T=MN (42)

at finite q2. It should be reminded that �A
Lðqz ¼ 0Þ at n2 ¼

3 and �A
T at n2 ¼ 1, 4 are not obtained directly from

corresponding three-point functions due to the kinematics
as described in the previous section. However, instead, we
can evaluate them by using a relation

�A
Lðqz � 0Þ ¼ �A

Lðqz ¼ 0Þ � q2z
MNðEþMNÞ�

A
T; (43)

where �A
Lðqz � 0Þ are always calculable at finite q2.

1. Axial-vector form factor FAðq2Þ
Figure 13 shows quark-mass dependence of the axial-

vector form factor FAðq2Þ. The vertical axis is normalized
by FAð0Þ and the horizontal axis denotes the four-
momentum squared q2 in physical units. Different symbols
represent the values obtained from different quark mass
mf. The axial-vector form factor is phenomenologically

fitted with the dipole form, at least at low q2, as well as the

Dirac and Pauli form factors [9]:

FAðq2Þ ¼ FAð0Þ
ð1þ q2=M2

AÞ2
; (44)

whereMA denotes the axial dipole mass. A dashed curve in
Fig. 13 shows the dipole form with an experimental value
of the axial dipole massMA ¼ 1:026ð21Þ GeV [9]. There is
a similarity here in comparison with Fig. 6. No large mf

dependence is observed. Even at the smallest quark mass
mf ¼ 0:02, where the corresponding pion mass is less than

400 MeV, our observed FAðq2Þ is far from the experimental
curve. Indeed, the axial-vector form factor FAðq2Þ is flatter
than the experimental one, similar to what we observe in
FVðq2Þ and F2ðq2Þ ¼ 2MNFTðq2Þ. This again indicates
that the nucleon size in coordinate space shrinks away.
The similar observation is reported in Ref. [7].
Next, to see how the dipole form is fitted to our mea-

sured FAðq2Þ, we show the effective dipole mass plot,
which was defined similarly to Eq. (38). Figure 14 is
plotted for mf ¼ 0:02 as a typical example. We also in-

clude the fittedMA, which is obtained from a correlated fit

TABLE VII. Fitted results of F1ðq2Þ and F2ðq2Þ with the dipole form [Eqs. (37) and (39)] and their extrapolated values to the chiral
limit and the physical point.

F1ðq2Þ ¼ FVðq2Þ F2ðq2Þ ¼ 2MNFTðq2Þ
mf MV (GeV) hr2Vi1=2 (fm) Fren

2 ð0Þ ¼ F2ð0Þ=FVð0Þ MT (GeV) hr2Ti1=2 (fm)

0.08 1.330(17) 0.514(7) 3.76(7) 1.155(18) 0.592(9)

0.06 1.286(21) 0.532(9) 3.65(9) 1.112(22) 0.615(12)

0.04 1.239(32) 0.552(14) 3.48(13) 1.072(32) 0.637(19)

0.02 1.177(65) 0.581(32) 3.08(26) 1.062(78) 0.644(47)

phys. point 1.148(55) 0.589(25) 3.13(23) 1.002(58) 0.676(34)

chiral limit 1.142(57) 0.592(25) 3.11(24) 0.997(60) 0.679(35)

Empirical values 0.857(8) 0.797(4) 3.70589 0.778(23) 0.879(18)
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to FAðq2Þ using the dipole form (44), with its 1 standard
deviation as solid and dashed horizontal lines. All momen-
tum points except the third one, which deviates from the
fitted value by about 2�, are located within the horizontal
lines. Here, we remark that the third momentum point of
FAðq2Þ atmf ¼ 0:02 in Fig. 13 is slightly dropped from the

values measured at other quark masses. We then stress that
the case of mf ¼ 0:02 is the worst example. Indeed, it is

found that the effective dipole mass plot for heaviermf are

quite consistent with the fitted values in all q2 range that we
measured. From this observation, we conclude that the q2

dependence of our measured FAðq2Þ can be well described
by the dipole form (44) in the range of our utilized q2,
(q2 	 0:44 GeV2). This is quite consistent with the phe-
nomenological knowledge on the q2 dependence of
FAðq2Þ.

We show the quark-mass dependence of the fitted axial
dipole mass as a function of the pion mass squared in
Fig. 15. All measured values are listed in Table VIII. We
find that the quark-mass dependence is somewhat milder
than the dipole masses for the Dirac and Pauli form factors.
Clearly, there is no appreciable curvature as a function of

the pion mass squared. As before, we simply adopt a linear
extrapolation for the axial dipole mass MA toward the
chiral limit. The extrapolated values (diamond symbols)
overestimate the experimental one marked by the asterisk
in Fig. 15.
As pointed out before, our observed size of the nucleon

in coordinate space is much smaller than the experimental
one. We will see that there is no significant finite volume
effect, which may cause the size of the nucleon to be
squeezed on the lattice with ð3:6 fmÞ3 volume. Thus, this
observed ‘‘squeezing,’’ which is evident from the broad-
ening of the form factors, may be attributed to the missing
contribution of the ‘‘pion cloud’’ surrounding the nucleon
outside of the chiral regime. Interestingly, however, the
ratio of the axial dipole mass to the Dirac dipole mass is in
very good agreement with the experiment. In Fig. 16, we
show the ratioMA=MV together with the ratioMT=MV as a
function of the pion mass squared. The quark-mass depen-
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FIG. 15 (color online). Chiral extrapolation of the axial dipole
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TABLE VIII. Fitted results of FAðq2Þ with the dipole form [Eq. (37)] and FPðq2Þ with the PPD-like form [Eq. (47)], and their
extrapolated values to the chiral limit and the physical point.

FAðq2Þ FPðq2Þ
mf ðgAÞren ¼ FAð0Þ=FVð0Þ MA (GeV) hr2Ai1=2 (fm) ðgPÞren �PPD

0.08 1.252(11) 1.572(26) 0.435(7) 11.08(28) 0.815(18)

0.06 1.245(15) 1.541(32) 0.444(9) 10.37(28) 0.831(18)

0.04 1.240(22) 1.523(47) 0.449(14) 9.66(34) 0.853(20)

0.02 1.212(42) 1.618(126) 0.422(33) 8.73(51) 0.884(31)

phys. point 1.219(38) 1.502(83) 0.453(24) 8.15(54) 0.897(32)

chiral limit 1.218(40) 1.500(85) 0.454(25) 8.04(55) 0.900(33)

Experimental values 1.2695(29) 1.026(21) 0.666(14) 7.3 (1.1) 1 (Theor.)
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dence of both ratios is found to be very mild in our
observed range of m2

�. All measured values of MA=MV

and MT=MV , which are listed in Table IX, are fairly
comparable to their respective experimental values. We
obtain MA=MV ¼ 1:285ð73Þ and MT=MV ¼ 0:869ð57Þ at
the physical point by using a simple linear extrapolation.

2. Induced pseudoscalar form factor FPðq2Þ
First, we show the quark-mass dependence of the in-

duced pseudoscalar form factor FPðq2Þ in Fig. 17. In con-
trast to the axial-vector form factor FAðq2Þ, significant mf

dependence is observed especially in the lower q2 region
(q2 < 0:3 GeV2). This might be associated with the pion-
pole contribution to FPðq2Þ, which is expected theoreti-
cally. Indeed, the PCAC hypothesis and pion-pole domi-
nance (PPD) predict that the induced pseudoscalar form
factor approximately behaves like

FPPD
P ðq2Þ ¼ 2MNF

ren
A ðq2Þ

q2 þm2
�

; (45)

which becomes exact in the chiral limit where the pion is
massless (m� ¼ 0) [8,36]. The single pion electroproduc-

tion experiment also supports the PPD form [12]. Here, to
see how the pion-pole behavior is preserved in FPðq2Þ
measured in the quenched calculation, we consider the
following ratio

�PPD ¼ Fren
P ðq2Þ

FPPD
P ðq2Þ ; (46)

which is inspired by the above PCAC prediction. If the
measured FPðq2Þ has exactly the same form described in
Eq. (45), the ratio �PPD yields the value of unity in the
entire q2 region.
In Fig. 18, we plot the above defined ratio �PPD as a

function of four-momentum squared q2. This figure shows
two important features. The significant quark-mass depen-
dence observed in Fig. 17 almost disappears as expected.
Furthermore, there is no appreciable q2 dependence in
�PPD. Clearly, four different q

2 points of �PPD reveal q2

independent plateau within the statistical errors. We simply

TABLE IX. Ratio of the dipole masses and their extrapolated
values to the chiral limit and the physical point.

mf MT=MV MA=MV

0.08 0.869(14) 1.182(17)

0.06 0.865(19) 1.198(24)

0.04 0.865(32) 1.229(42)

0.02 0.902(84) 1.374(131)

phys. point 0.869(57) 1.285(73)

chiral limit 0.869(58) 1.289(75)

Empirical values 0.908(28) 1.197(27)
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take the weighted average of �PPD within four measured q2

points, then plot them against the pion mass squared. As
shown in Fig. 19, the average values of �PPD gradually
approach unity as the pion mass decreases. However, a
simple linear extrapolation of �PPD yields a value slightly
smaller than 1 even in the chiral limit. As a result, mea-
sured Fren

P ðq2Þ is quite well described by the PPD form with
a multiplicative (quenching) factor �PPD < 1.

Fren
P ðq2Þ � �PPD � FPPD

P ðq2Þ: (47)

The validity of the PPD form is also tested by the other
analysis. Following the analysis done in the previous study
of the q2 dependence of FPðq2Þ [7], we apply the monopole
fit to the ratio FPðq2Þ=FAðq2Þ. The satisfactory consistency
between the fitted monopole mass and the measured pion
mass is observed in our DWF calculation [47], while both
quenched and unquenched Wilson simulations fail to ex-
hibit the correct pion-pole structure of FPðq2Þ [7].

Next, we evaluate the induced pseudoscalar coupling,
which is defined by ðgPÞren ¼ m�F

ren
P ð0:88m2

�Þ, where m�

is the muon rest mass and Fren
P ðq2Þ ¼ FPðq2Þ=FVð0Þ. The

specific momentum transfer for muon capture (q2 ¼
0:88m2

�) is still far from our lowest momentum transfer

(q2 � 0:1 GeV2) so that the determination of ðgPÞren re-
quires the q2 extrapolation of Fren

P ðq2Þ. We have already
learned that the q2 dependence of measured Fren

P ðq2Þ is
well described by the PPD-like form (47) in the low q2

region. Therefore, the induced pseudoscalar coupling can
be evaluated by

ðgPÞren ¼
2m�MN

m2
� þ 0:88m2

�

� �PPDF
ren
A ð0:88m2

�Þ; (48)

where Fren
A ð0:88m2

�Þ is precisely determined through the q2

interpolation with the help of the dipole form and very

accurate data Fren
A ð0Þ. The pion mass in Eq. (48) is simply

replaced by its physical value in order to subtract the
dominant source of the large mf dependence. In Fig. 20,

we plot the resulting value of ðgPÞren (square symbols) as a
function of the pion mass squared. All measured values are
listed in Table VIII. Although there still remains the ex-
plicit dependence of the quark mass, the simple linear
extrapolation yields ðgPÞren ¼ 8:15� 0:54 at the physical
point (m� ¼ 0:14 GeV).
Here, the observed mf dependence stems from that of

measured MN , since both �PPD and Fren
A ðq2Þ have a very

mild quark-mass dependence. To diminish the explicit mf

dependence, we may evaluate the dimensionless prefactor
in Eq. (48) with the experimental values of m� ¼
105:7 MeV,m� ¼ 139:6 MeV, andMN ¼ 938:9 MeV in-
stead of using measured values. We then obtain a more
simple form as ðgPÞren ¼ 6:77� �PPDF

ren
A ð0:88m2

�Þ, which
is similar to the known phenomenological form for gP
beside the quenching factor �PPD [10]. Indeed, evaluated
values using this simple formula have no appreciable mf

dependence as shown in Fig. 20. After the linear extrapo-
lation, we obtained ðgPÞren ¼ 7:31� 0:39 at the physical
point. Two determinations provide consistent results
within their statistical errors. Of course, the latter determi-
nation is rather phenomenological, then we prefer to quote
the former value for our final result. We finally quote

ðgPÞren ¼ 8:15� 0:54ðstatÞ � 0:16ðnormÞ; (49)

where the second error is an estimate of a 2% error stem-
ming from ZV � ZA, the same as in the axial-vector cou-
pling gA.
This value is to be compared with the most recent

experimental value gexpP ¼ 7:3� 1:1 from the MuCap ex-
periment [11], where the obtained value of gexpP is nearly
independent of �-molecular effects. We also quote the
prediction of chiral perturbation theory, gChPTP ¼ 8:26�
0:23 and the new world average of experimental values,
gexpP ¼ 8:7� 1:0 [34] obtained from ordinary muon cap-
ture including the new MuCap result.
Phenomenologically, the residue of the pion pole in the

induced pseudoscalar form factor is related to the pion-
nucleon coupling g�NN [36]. The induced pseudoscalar
form factor should be expressed as

Fren
P ðq2Þ ’ 2F�g�NN

q2 þm2
�

(50)

near the pion pole (q2 � �m2
�) [8,36] with the renormal-

ized pion decay constant F�, which is defined as
ZAh0j@�Aa�ðxÞj�bðqÞi ¼ m2

�F��abe
iq�x [48]. This parame-

terization provides a way to evaluate the pion-nucleon
coupling g�NN from the measured induced pseudoscalar
form factor as follows:

g�NN ¼ lim
q2!�m2

�

ðq2 þm2
�ÞF

ren
P ðq2Þ
2F�

; (51)
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¼ �PPD

F�
�MNF

ren
A ð�m2

�Þ; (52)

where the second equality follows from our observed form
(47) on Fren

P ðq2Þ. The value of Fren
A ð�m2

�Þ is evaluated by
the dipole form with measured Fren

A ð0Þ, MA, and m�. We
then obtain

g�NN ¼ 10:4� 1:0ðstatÞ (53)

at the physical point. Our obtained value is about 20%
smaller that a recent estimation g�NN ¼ 13:32� 0:09
(g2�NN=4� ¼ 14:11� 0:20) obtained from forward �N
scattering data [49].

C. Pseudoscalar channel

1. Pseudoscalar form factor GPðq2Þ
In this study, we also calculate the pseudoscalar nucleon

matrix element

hNðP0ÞjPaðxÞjNðPÞi ¼ �uNðP0ÞOPðqÞtauNðPÞeiq�x; (54)

which is associated with the axial-vector matrix element
through the axial WTI. Here, PaðxÞ is a local pseudoscalar
density, PaðxÞ � � ðxÞ�5t

a ðxÞ. The pseudoscalar matrix
element can be described only by a single form factor,
which is called the pseudoscalar form factor GPðq2Þ

O PðqÞ ¼ �5GPðq2Þ: (55)

To extract the form factor, therefore, we simply calculate
the following trace of GPðqÞ, which represents the spinor
structure of the corresponding three-point function, with
the projection operator P z

5

1
4 TrfP z

5G
PðqÞg ¼ iqzMNGPðq2Þ; (56)

where the definition ofGPðqÞ is given by Eqs. (21) and (22)
with the local current J P

5 ðxÞ ¼ �uðxÞ�5uðxÞ � �dðxÞ�5dðxÞ.
It is apparent that nonzero three momentum q � 0 is
required to access the pseudoscalar form factor. In other
words, GPðq2Þ in the vicinity of q2 ¼ 0 cannot be eval-
uated without q2 extrapolation.

In Fig. 21, we show the mf dependence of the pseudo-

scalar form factor GPðq2Þ. Significant mf dependence is

observed in the lower q2 region, similar to the induced
pseudoscalar form factor FPðq2Þ. We will discuss the q2

dependence on GPðq2Þ from the viewpoint of pion-pole
dominance later.

2. Test for the axial Ward-Takahashi identity

First, we address the question whether our DWF calcu-
lations of nucleon form factors satisfy the axial Ward-
Takahashi identity. A similar study has been recently
done with the Wilson fermions in both quenched and
unquenched simulations [7].

In the limit where the fifth-dimensional extent Ls is
taken to infinity, domain wall fermions preserve the axial
Ward-Takahashi identity at nonzero lattice spacing [18].
The axial Ward-Takahashi identity for the DWF with
SUð2Þ isospin symmetry is

@�Aa
�ðxÞ ¼ 2mfJ

a
5 ðxÞ þ 2Ja5qðxÞ; (57)

where Aa
� is the partially conserved axial-vector current,

which is point split and requires sums over the extra fifth
dimension of the DWF, Ja5 is a usual bilinear pseudoscalar

density corresponding to Pa, and Ja5q is a similar pseudo-

scalar density defined at the midpoint of the fifth dimen-
sion. The ‘‘midpoint’’ term Ja5q is responsible for the

explicit chiral symmetry breaking due to the finiteness of
the fifth dimension [18]. With moderate Ls, this effect can
be described by the so-called residual mass term mres.
Then, Eq. (57) can be approximately represented by

@�Aa
�ðxÞ � 2ðmf þmresÞPaðxÞ: (58)

This residual mass mres is determined by
h0jJa5qj�i=h0jJa5 j�i. The value of mres is known to be small

in this calculation. (See Table IV.)
For a practical reason, we did not use the conserved

axial-vector current for evaluating the nucleon axial matrix
element in this study. Instead, we use the local axial-vector
current Aa� ¼ � ���5t

a , which may be related to the

conserved axial-vector current as A� ¼ ZAA� þ
Oða2; mfa

2Þ. It is worth mentioning that ZV ¼ ZA is sat-

isfied up to small discretization errors ofOða2Þ in the chiral
limit [15]. We also did not measure the nucleon matrix
element of Ja5q, therefore we cannot fully check the axial

Ward-Takahashi identity in terms of the nucleon matrix
element in this paper. Instead, we test the following ratio,
which may have no apparent q2 dependence:
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FIG. 21 (color online). The bare pseudoscalar form factor
GPðq2Þ as a function of four-momentum squared q2.
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�AWT ¼ 2MNF
ren
A ðq2Þ � q2Fren

P ðq2Þ
2mfGPðq2Þ

(59)

This ratio (59) is associated with the following identity
[50]:

ZAhNj@�Aa�ðxÞjNi ¼ 2mAWThNjPaðxÞjNi; (60)

where mAWT � �AWTmf, which is expected to be compa-

rable to mf þmres up to terms of order Oða2; mfa
2Þ.

As shown in Fig. 22, indeed, there is no appreciable q2

dependence in the ratio �AWT for each mf. Four different

q2 points of �AWT reveal a q2-independent plateau within
the statistical errors. We evaluate the weighted average of
�AWT by using all four measured q2 points. The obtained
values of �AWT are tabulated in Table X. Deviation from
unity is getting large as mf decreases [51]. This indicates

that �AWT may possess a 1=mf term, which is induced by

the presence of the additive mass shift in the axial Ward-
Takahashi identity such as mres. To see this point clearly,
we plot the modified ratio as mfð�AWT � 1Þ, which can be
interpreted as the difference between mAWT and mf.

Figure 23 shows modified ratios as functions of four-
momentum squared q2 for all four values of mf. There is

again no visible q2 dependence. Moreover, all mf results

are consistent with each other within statistical errors.
mshift � mAWT �mf, which is given by taking the

weighted average of four q2 points in Fig. 23, corresponds
to the relative amplitude of hNjJa5qjNi to the usual pseu-

doscalar matrix element hNjJa5 jNi. More precisely,mshift is

expressed by

mshift ¼
hNjJa5qjNi
hNjJa5 jNi

þOða2; mfa
2Þ: (61)

Therefore, supposing that hNjJa5qjNi=hNjJa5 jNi �
h0jJa5qj�i=h0jJa5 j�i, we expect mshift � mres besides

Oða2; mfa
2Þ corrections. We plot mshift against the pion

mass squared in Fig. 24. The mild mf dependence allows

us to take a linear extrapolation formshift to the chiral limit.
At mf ¼ 0, we obtain mshift ¼ 0:0073ð12Þ, which is about
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FIG. 22 (color online). The ratio �AWT defined in Eq. (59) as a
function of four-momentum squared q2.

TABLE X. Results of the ratio �AWT, the quark mass (mAWT)
defined in the generalized Goldberger-Treiman relation
[Eq. (62)] and the mass shift mshift.

mf �AWT mAWT mshift ¼ mAWT �mf

0.08 1.12(1) 0.0896(7) 0.0096(7)

0.06 1.15(1) 0.0688(7) 0.0088(7)

0.04 1.21(2) 0.0484(8) 0.0084(8)

0.02 1.41(6) 0.0281(12) 0.0081(12)

0 N/A 0.0073(12) 0.0073(12)
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FIG. 23 (color online). The modified ratio mfð�AWT � 1Þ,
which may be expressed as mAWT �mf, as a function of

four-momentum squared q2.
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a function of pion mass squared. For a comparison, the value of
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1 order of magnitude larger than mres ¼ 5:69ð26Þ � 10�4

[20] contrary to our naive expectation. A few % level
Oða2Þ correction, which is observed in the difference
between ZV and ZA cannot account for this discrepancy.
To resolve it, it is necessary to calculate the relative am-
plitude of hNjJa5qjNi to the usual pseudoscalar matrix

element hNjJa5 jNi directly. We plan to study hNjJa5qjNi as
well as hNjAa

�jNi with the conserved axial-vector current
A� in our extended work [52].

3. Test for the pion-pole dominance on GPðq2Þ
According to the pion-pole dominance of FPðq2Þ, we

may expect that the pion-pole dominance holds even in
GPðq2Þ. As described in Appendix B, a naive pion-pole
dominance hypothesis predicts the ratio of the pseudosca-
lar form factor and induced pseudoscalar form factor, will
not depend on q2 at low q2 but will exhibit a constant value,
related to the low-energy constant B0. Indeed, this is not
the case. In Fig. 25, we show the ratio of our measured
GPðq2Þ and FPðq2Þ as a function of momentum squared q2.
There is a linearlike q2 dependence, which strengthens as
the quark mass decreases. However, as we will describe
below, we confirm that the pion-pole dominance onGPðq2Þ
still remains valid in our calculation.

What we have observed in the previous subsection can
be interpreted as a consequence of the axial Ward-
Takahashi identity among three nucleon form factors:

2MNF
ren
A ðq2Þ � q2Fren

P ðq2Þ � 2mAWTGPðq2Þ: (62)

Combined with this relation and the important observation
of pion-pole dominance in FPðq2Þ [Eq. (47)], one may
expect that the q2 dependence of GPðq2Þ is mostly de-
scribed by the pion-pole dominance form with a slight
modification, which corresponds to an extra q2 dependence
caused by the fact that �PPD � 1

GPðq2Þ �
1þ ð1� �PPDÞ q2m2

�

�AWT

�GPPD
P ðq2Þ; (63)

where the naive pion-pole dominance form [53] is defined
as

2mfG
PPD
P ðq2Þ ¼ 2MNF

ren
A ðq2Þ m2

�

q2 þm2
�

: (64)

This residual q2 dependence due to �PPD � 1 is supposed
to be responsible for the q2 dependence in the ratio of our
measured GPðq2Þ and Fren

P ðq2Þ

GPðq2Þ
Fren
P ðq2Þ �

1þ ð1� �PPDÞ q2m2
�

�PPD�AWT

GPPD
P ðq2Þ

FPPD
P ðq2Þ

¼ �PPDðq2Þ m2
�

2mAWT

; (65)

where �PPDðq2Þ � ð1þ ð1� �PPDÞ q2m2
�
Þ=�PPD. It is clear

that the residual q2 dependence becomes large as m2
�

goes to zero. This feature is in agreement with what we
observe in Fig. 25. If we multiply the ratio by the corre-
sponding factor �PPDðq2Þ, which is evaluated with mea-
sured �PPD and m�, the linearlike q2 dependence indeed
disappears as indicated in Fig. 26. Four different q2 points
of this ratio reveal q2 independent plateau within their
statistical errors. We then can evaluate the weighted aver-
age by using all four measured q2 points to obtain the value
of GPðq2Þ=Fren

P ðq2Þ in the limit of q2 ! 0, which corre-
sponds to m2

�=ð2mAWT�PPDÞ.
Although GPð0Þ=Fren

P ð0Þ is associated with the bare
value of the low-energy constant B0 in the pion-pole domi-
nance model as discussed in Appendix B, this prediction is
slightly modified as
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FIG. 25 (color online). The ratio of GPðq2Þ=Fren
P ðq2Þ as a

function of four-momentum squared q2. A slight
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lim
q2!0

GPðq2Þ
Fren
P ðq2Þ ¼

1

�PPD

mf þmres

mf þmshift

B0; (66)

where the low-energy constant B0 is defined by the
relation m2

� ¼ 2ðmf þmresÞB0. Because of the fact that

mres � mshift, the values of GPð0Þ=Fren
P ð0Þ � �PPD deviate

from B0 as shown in Fig. 27. The horizontal solid and
dashed lines represent the reference value of B0 and its
standard deviation, which are evaluated from fitting
squared pion masses to the linear function c0 þ c1 �mf.

The fit yields the low-energy constant B0 ¼ c1=2 ¼
2:0705ð93Þ in lattice units. The ratio of fitting parameters
c0 and c1 gives rise to the value of 1:75ð15Þ � 10�3, which
slightly overestimates mres quoted in Ref. [20]. This is
simply because our fitting is performed in the rather heav-
ier quark-mass region (0:02 	 mf 	 0:08). For compari-

son, values of m2
�=2mf and m2

�=2ðmf þmresÞ are also

plotted as square and circle symbols in Fig. 27. This ob-
servation may raise a question whether the single universal
‘‘residual mass’’ parameter exists. However, what we ob-
serve here is very sensitive to the correct chiral behavior of
the nucleon matrix elements. The quenched approximation
may provide unknown quenching effects in nucleon matrix
elements near the chiral limit. In this sense, dynamical
simulations are much preferable to investigate it further.

V. FINITE VOLUMEEFFECTONNUCLEON FORM
FACTORS

As we discussed in Sec. III C, we have found a signifi-
cant finite volume effect on the axial-vector coupling gA,
while there is no appreciable effect on the vector coupling
gV . In this section, we test for finite volume effects on all of
the five nucleon form factors computed in this study.
Unlike those couplings gV and gA, which are defined at
q2 ¼ 0, it is hard to compare values of the form factor at
nonzero q2 among different spatial sizes L. This is simply
because nonzero q2 values are discrete in units of ð2�=LÞ2.
In this study, however, our largest spatial size (L ¼ 24) is
twice as large as the smallest one (L ¼ 12). The q2 value
for q ¼ 2�

L ð2; 0; 0Þ at L ¼ 24 coincides with the one for

q ¼ 2�
L ð1; 0; 0Þ at L ¼ 12. Therefore, at least, a single

value of nonzero q2 is common between two different
lattice sizes.
In Fig. 28, we show results for the vector form factor

FVðq2Þ for three spatial sizes. The left (right) panel is for
mf ¼ 0:04 (mf ¼ 0:08). Different symbols represent the

values obtained from simulations with different spatial
lattice sizes. Solid curves are dipole form fits results on
the largest volume (L ¼ 24) as we described in Sec. IVA1.
These curves should be capable of exposing finite volume
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effects on the form factor. Data points from smaller lattice
sizes of either L ¼ 16 or L ¼ 12 at heavier mf agree well

with the dipole fits, while results obtained from the small-
est lattice (L ¼ 12) at lighter mf seem to be slightly away

from them. However, the values obtained from L ¼ 24 and
L ¼ 12 at q2 � 0:44 GeV are not significantly different in
the statistical sense.

We next show the same type of figures for the induced
tensor form factor FTðq2Þ in Fig. 29. Qualitative features
are quite similar to the case of the vector form factor. In the
case of the heavier quark mass (mf ¼ 0:08), all data points

follow the solid curve fairly well, which is the dipole form
fitted to the data of the largest volume (L ¼ 24). On the

other hand, at lighter quark mass (mf ¼ 0:04), the data

points obtained from the smallest lattice volume (L ¼ 12)
slightly overestimate the solid curve. Again, the value for
L ¼ 12 at q2 � 0:44 GeV2 is not significantly away from
the value for L ¼ 24 in the statistical sense.
Next, let us examine two form factors in the axial-vector

channel, where the axial-vector coupling gA significantly
suffers from the finite volume effect. In Fig. 30, the axial-
vector form factor FAðq2Þ=FAð0Þ for three spatial sizes is
shown. Gross features are mostly similar to both the vector
form factor and the induced tensor form factor. At the
heavier quark mass, it is observed that all data points
follow the solid curve fitted to data of the largest volume
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with the dipole form (44). Although two values at q2 �
0:44 GeV2 obtained from both largest and smallest vol-
umes agree each other within statistical errors, the finite
volume effect seems to be non-negligible in the lighter
quark mass region. On the other hand, the finite volume
effects do not show up in the induced pseudoscalar form
factor except for the lowest q2 value for L ¼ 16, as in-
dicated in Fig. 31. The solid curves are obtained by fitting
data of the largest volume with the PPD-like form (47),
where the pion-pole structure is essential at low q2. At this
moment, we do not have an explanation as to why the
lowest q2 data for L ¼ 16 deviates from the solid curve.
We also show the form factor in the pseudoscalar channel,

namely GPðq2Þ, for three lattice sizes in Fig. 32. At either
quark mass mf ¼ 0:04 or 0.08, all data points agree well

with the solid curves fitted to data of the largest volume by
the modified PPD form (63). All data that appear in
Figs. 28–32 are tabulated in Tables XI, XII, and XIII.
Although we may observe the common tendency that the

three form factors FVðq2Þ, FTðq2Þ, and FAðq2Þ become
flatter as a function of q2 in the smallest volume (L ¼
12), we do not make a definite conclusion through this
study. Rather, we can say that the finite volume effects on
the values of any form factor at finite q2 are less appre-
ciable than our expectation raised by the fact that the axial-
vector coupling significantly suffers from the finite volume
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TABLE XI. Results of five (dimensionless) form factors computed on a 243 � 32 volume. All form factors are renormalized except
for the pseudoscalar form factor GPðq2Þ. For notational simplicity, we use the momentum q in units of 2�=L.

mf q q2 (GeV2) Fren
V ðq2Þ 2MNF

ren
T ðq2Þ Fren

A ðq2Þ 2MNF
ren
P ðq2Þ Gbare

P ðq2Þ
0.02 (0, 0, 0) 0.000 1.0000(48) N/A 1.212(42) N/A N/A

(1, 0, 0) 0.113 0.852(15) 2.53(21) 1.132(41) 19.79(1.55) 21.75(1.11)

(1, 1, 0) 0.222 0.739(23) 2.16(17) 1.040(40) 12.00(99) 15.26(79)

(1, 1, 1) 0.326 0.633(29) 1.82(17) 0.892(40) 8.36(74) 11.76(78)

(2, 0, 0) 0.427 0.617(42) 1.61(19) 0.921(62) 7.40(79) 8.88(1.01)

0.04 (0, 0, 0) 0.000 1.0000(15) N/A 1.240(22) N/A N/A

(1, 0, 0) 0.114 0.864(6) 2.88(11) 1.131(21) 15.61(81) 17.43(43)

(1, 1, 0) 0.224 0.757(10) 2.42(10) 1.031(21) 10.97(50) 13.12(34)

(1, 1, 1) 0.331 0.668(13) 2.06(9) 0.927(19) 8.20(43) 10.45(33)

(2, 0, 0) 0.434 0.622(18) 1.83(10) 0.897(28) 6.91(47) 8.44(35)

0.06 (0, 0, 0) 0.000 1.0000(10) N/A 1.245(15) N/A N/A

(1, 0, 0) 0.114 0.872(4) 3.05(8) 1.133(14) 13.46(59) 14.66(25)

(1, 1, 0) 0.225 0.771(6) 2.60(7) 1.036(14) 10.27(39) 11.60(20)

(1, 1, 1) 0.333 0.687(8) 2.24(7) 0.946(13) 8.01(33) 9.53(20)

(2, 0, 0) 0.439 0.633(11) 1.98(7) 0.895(18) 6.72(39) 7.87(22)

0.08 (0, 0, 0) 0.000 1.0000(8) N/A 1.252(11) N/A N/A

(1, 0, 0) 0.114 0.879(3) 3.18(6) 1.143(10) 12.29(53) 12.88(17)

(1, 1, 0) 0.226 0.782(4) 2.74(6) 1.048(10) 9.80(34) 10.51(14)

(1, 1, 1) 0.335 0.702(6) 2.39(5) 0.963(10) 7.88(29) 8.82(14)

(2, 0, 0) 0.442 0.645(8) 2.11(6) 0.905(14) 6.67(37) 7.41(17)

TABLE XII. The same as Table XI, but for a 163 � 32 volume.

mf q q2 (GeV2) Fren
V ðq2Þ 2MNF

ren
T ðq2Þ Fren

A ðq2Þ 2MNF
ren
P ðq2Þ Gbare

P ðq2Þ
0.04 (0, 0, 0) 0.000 1.0000(19) N/A 1.202(24) N/A N/A

(1, 0, 0) 0.251 0.718(15) 2.14(10) 0.939(23) 7.87(64) 12.54(45)

(1, 1, 0) 0.485 0.565(19) 1.53(8) 0.751(30) 6.00(40) 7.45(36)

(1, 1, 1) 0.706 0.430(25) 1.14(8) 0.645(35) 3.78(34) 5.04(35)

(2, 0, 0) 0.915 0.417(49) 0.97(14) 0.558(64) 2.29(43) 4.53(59)

0.06 (0, 0, 0) 0.000 1.0000(10) N/A 1.214(14) N/A N/A

(1, 0, 0) 0.253 0.744(9) 2.37(7) 0.963(15) 8.00(52) 10.93(25)

(1, 1, 0) 0.491 0.593(13) 1.80(5) 0.788(20) 6.04(27) 7.09(21)

(1, 1, 1) 0.717 0.471(17) 1.33(6) 0.688(23) 4.17(25) 4.93(22)

(2, 0, 0) 0.933 0.430(29) 1.06(9) 0.580(37) 2.48(32) 4.15(34)

0.08 (0, 0, 0) 0.000 1.0000(7) N/A 1.226(11) N/A N/A

(1, 0, 0) 0.254 0.760(7) 2.53(5) 0.988(11) 7.99(50) 9.92(18)

(1, 1, 0) 0.495 0.611(10) 1.93(4) 0.816(15) 6.15(22) 6.76(15)

(1, 1, 1) 0.725 0.496(13) 1.47(5) 0.714(17) 4.42(22) 4.83(16)

(2, 0, 0) 0.946 0.440(20) 1.14(7) 0.599(27) 2.64(30) 3.98(25)

TABLE XIII. The same as Table XI, but for a 123 � 32 volume.

mf q q2 (GeV2) Fren
V ðq2Þ 2MNF

ren
T ðq2Þ Fren

A ðq2Þ 2MNF
ren
P ðq2Þ Gbare

P ðq2Þ
0.04 (0, 0, 0) 0.000 1.0000(27) N/A 1.156(41) N/A N/A

(1, 0, 0) 0.434 0.681(34) 2.02(14) 0.883(43) 7.47(74) 7.81(61)

(1, 1, 0) 0.822 0.466(53) 1.32(16) 0.693(81) 3.44(56) 4.79(66)

0.06 (0, 0, 0) 0.000 1.0000(13) N/A 1.185(22) N/A N/A

(1, 0, 0) 0.439 0.672(17) 2.03(8) 0.885(23) 7.00(54) 7.60(33)

(1, 1, 0) 0.837 0.468(25) 1.33(8) 0.666(38) 3.59(34) 4.41(30)

0.08 (0, 0, 0) 0.000 1.0000(9) N/A 1.206(14) N/A N/A

(1, 0, 0) 0.442 0.671(11) 2.09(6) 0.891(16) 6.74(48) 7.23(23)

(1, 1, 0) 0.848 0.477(15) 1.38(5) 0.669(25) 3.74(25) 4.20(19)
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effect. Indeed, we could attempt the direct comparison
between results for two lattice sizes only at q2 �
0:44 GeV2, which is a relatively high value. Therefore,
we deduce that the finite volume effects are not so serious
in the high q2 region. Finally, it is worth mentioning that
we confirm that our observed forms for the five form
factors well describe the q2 dependence of those form
factors even in the relatively high q2 region, up to at least
q2 � 1:0 GeV2, apart from consideration of finite volume
effects.

VI. COMPARISON WITH PREVIOUS RESULTS

As we discussed in Sec. IV, the larger spatial volume
enables us to perform the shorter q2 extrapolation to extract
fundamental information on the nucleon structure, e.g. the
magnetic moment, the charge radius, and the induced
pseudoscalar coupling from respective form factors with-
out large systematic uncertainties. However, some of pre-
vious studies are performed on relatively small volumes,
where the longer q2 extrapolation is inevitable. In this
context, our lattice setup is superior to previous studies.
(See Table XIV for a summary of previous calculations
[2,4,5,7].)

A large volume simulation, which is comparable to our
lattice volume ð3:6 fmÞ3 has been done by the LHPC
Collaboration with the mixed action simulation using
DWF valence quarks on the asqtad-improved gauge con-
figurations with fourth-rooted staggered sea quarks. The
quenching effect in our simulations could be observed
through a comparison with the mixed action results.
However, there is no detailed analysis of the usual form
factors in Ref. [5]. Instead, we can access their raw data of
four nucleon form factors from their tables. We simply
compare our measured form factors at the lightest quark

mass (m� ¼ 0:39 GeV) with their results with the lightest
pion mass of 0.35 GeVand the largest volume of ð3:5 fmÞ3
in Fig. 33. Surprisingly, all figures for four form factors
show good consistency between our quenched results and
the LHPC mixed action results within statistical errors, at
least, in the low q2 region. This indicates that (un)quench-
ing effects on these form factors are still small for m� *
0:35 GeV. However, this conclusion is rather premature,
since the mixed action simulation is not a fully dynamical
simulation, rather a partially quenched simulation [54]. We
must wait for fully dynamical DWF simulation to make a
firm conclusion. The RBC and UKQCD Collaborations
have begun 2þ 1 flavor DWF calculations with large
physical volume [55,56]. We will do such a comparison
in a future publication.
Finally, it is worth comparing our DWF results with the

results obtained using Wilson fermions. In Table XV, our
results of the axial-vector coupling gA and the rms radii of
the isovector Dirac and Pauli form factors, the isovector
nucleon magnetic moment �p ��n, the axial dipole

mass, the induced pseudoscalar coupling gP, and the
pion-nucleon coupling g�NN in the chiral limit are com-
pared with previous quenched Wilson results from
Refs. [4,7]. Their lightest pion mass of 0.41 GeV and
physical volume of ð2:9 fmÞ3 are relatively similar to our
lattice setup. One finds that the rms radii and the axial
dipole mass are quite consistent with each other, while the
better agreement with the experiment for the axial-vector
coupling and the isovector nucleon magnetic moment ap-
pear in our quenched DWF results. Note that although the
induced pseudoscalar form factor FPðq2Þ was calculated in
Ref. [7], the value of the induced pseudoscalar coupling gP
was not evaluated there.
Let us estimate gP from their fit parameters given in

Table III of Ref. [7] as follows. First we read off �PPD from

TABLE XIV. Previous lattice calculations for nucleon form factors. Note that our lowest nonzero q2 (q2min) is smaller than previous
calculations. This is an essential point in determinations of the induced pseudoscalar coupling (gP) from FPðq2Þ and the nucleon
magnetic moments (�N) from FTðq2Þ in order to reduce the systematic uncertainties stemming from long q2 extrapolation.

Group (Ref.) Type Fermion (valence) a [fm] Spatial size [fm] m� [GeV] q2min [GeV2]

QCDSF [2] a Quench Clover 0.11 1.8 0.54, 0.64, 0.74, 0.91, 0.98 0.47

0.08 1.9 0.61, 0.76, 0.89, 1.03 0.40

0.06 1.9 0.63, 0.79, 0.79, 0.93, 1.05 0.39

Cyprus-MIT [4,7] Quench Wilson 0.09 2.9 0.41, 0.49, 0.56 0.17

Full (Nf ¼ 2) Wilson 0.08 1.9 0.38, 0.51,0.69 0.42

LHPC [5] b Mixed (Nf ¼ 2þ 1) c DWF 0.124 3.5 0.35 0.11

0.124 2.5 0.36, 0.50, 0.60, 0.68, 0.76 0.18–0.20

This work Quench DWF 0.15 3.6 0.39, 0.54, 0.66, 0.76 0.11

0.15 2.4 0.54, 0.66, 0.76 0.25

0.15 1.8 0.54, 0.66, 0.76 0.43

aOnly electricmagnetic form factors (FV , FT) are studied.
bRaw data of FV , FT , FA, and FP are available in tables, while detail analysis is not found.
cDWF valence quarks on the asqtad-improved gauge configurations with fourth-rooted staggered sea quarks.
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their parameters obtained by the monopole fit c0=ð1þ
q2=�2Þ to the ratio of 2MNFPðq2Þ=FAðq2Þ. The authors
reported that the monopole mass � is larger than their
measured pion mass, while the value of c0 is smaller than
4M2

N=m
2
� evaluated by the measured pion and nucleon

masses. Therefore, their �PPD may have appreciable q2

dependence, which is given by ð1þ q2=m2
�Þ=ð1þ

q2=�2Þ. On the other hand, the value of �PPD at q2 ¼ 0
can be given by c0m

2
�=ð4M2

NÞ, which is ranged from 0.68 to

0.62 when the pion mass vary from 0.56 GeV to 0.41 GeV.

There is the descending tendency with the decrease of the
pion mass. A simple linear extrapolation with respect to the
pion mass squared leads to a value in the chiral limit less
than 0.6, that is significantly deviated from unity. Thus, one
may easily deduce that their gP should be much smaller
than our observed gP since their corresponding �PPD and
measured FAð0Þ, both of which are main ingredients in
Eq. (48), are about 40% and 20% smaller than our DWF
values, respectively. Indeed, our quoted gP of the quenched
Wilson results in Table XV, which is determined with the
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FIG. 33 (color online). Comparisons to results obtained from the LHPC mixed action results [5]. Results for all four form factors at
low q2 are consistent with each other. This suggest that unquenching effects on these form factors are still small for m� * 0:35 GeV.

TABLE XV. Comparisons with previous quenched Wilson results obtained from Refs. [4,7]. The extrapolated values in the chiral
limit are evaluated by a simple linear quark-mass dependence.

Ref. �p ��n hr2Vi1=2 [fm] hr2Ti1=2 [fm] ðgAÞren MA [GeV] ðgPÞren g�NN
a

Refs. [4,7] 3.73(13) 0.585(13) 0.72(2) 1.065(24)b 1.500(59)b 3.54(61)c 11.8(0.3)

This work 4.11(24) 0.592(25) 0.679(35) 1.218(40) 1.500(85) 8.04(55) 10.4(1.0)

ag�NN was evaluated at q2 ¼ 0 in Ref. [7], while our g�NN is defined at the pion pole q2 ¼ �m2
� with the physical pion mass.

bThe chiral extrapolated values are not available in Ref. [7]. Therefore, we performed correlated fits with their measured data to
evaluate them.
cAlthough FPðq2Þ was calculated in Ref. [7], the value of the induced pseudoscalar coupling was not evaluated. The quoted value is
estimated by us as described in the text.
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value of�PPD evaluated at q2 ¼ 0:88m2
�, is almost a half of

our quenched DWF value. This discrepancy is attributed to
the fact that the Wilson fermions do not yield the correct
pion-pole structure of FPðq2Þ [7], while the PPD form
provides a good description of the q2 dependence of
FPðq2Þ at low q2 in our DWF calculation.

VII. CONCLUSION

In this paper, we have studied the weak nucleon form
factors at low q2 in quenched lattice QCD. We have used
domain wall fermions in a very large physical volume
ð3:6 fmÞ3. There are two reasons for requiring such large
volume. As shown in the early calculation of the axial-
vector coupling gA [15], the nucleon matrix element may
suffer significantly large finite volume effects. However,
we really did not know whether the spatial volume
ð2:4 fmÞ3, that was utilized in Ref. [15], was large enough
for the nucleon. Secondly, the large spatial extent provides
the capability to access lower nonzero momentum transfer.
For the spatial volume ð3:6 fmÞ3, the smallest value of
nonzero q2 is about 0:1 GeV2.

We first demonstrated that the finite volume effect on the
axial-vector coupling gA is well described by the power-
law behavior, while the vector coupling gV has no appre-
ciable finite volume effect. However, it is found that a
serious finite volume effect on the axial-vector coupling
gA is not seen in the range of the spatial lattice size from
2.4 fm to 3.6 fm. Finally, we obtain the ratio of the axial-
vector to the vector coupling ðgA=gVÞren ¼ 1:219�
0:038ðstatÞ � 0:024ðnormÞ � 0:002ðvolÞ at the physical
point from the largest volume ð3:6 fmÞ3, which agrees
with our early estimate from the volume ð2:4 fmÞ3 [15]
and underestimates the experimental value of 1.2695(29)
by less than 5%.

Using the largest volume ð3:6 fmÞ3, we studied four of
the weak nucleon form factors and also the pseudoscalar
form factor. The q2 dependences of all measured form
factors at low q2 are discussed with great interest [57]. It
is observed that the vector (FV), induced tensor (FT) and
the axial-vector (FA) form factors are well described by the
dipole form as Fiðq2Þ ¼ Fið0Þ=ð1þ q2=M2

i Þ ði ¼ V; T; AÞ
at low q2 (q2 < 0:44 GeV2). Each measured dipole mass
overestimates the corresponding experimental value by
about 20%. This fact indicates that corresponding rms radii
are somewhat smaller than the actual nucleon size.
However, interestingly, the ratios of dipole masses,
MA=MV ¼ 1:285� 0:073 and MT=MV ¼ 0:869� 0:057
are fairly consistent with respective experimental ones.
We also calculated the difference of the proton and neutron
magnetic moments, �p ��n ¼ 4:13� 0:23, from the

value of FTðq2Þ at q2 ¼ 0. Our obtained value is about
14% smaller than the experimental value of 4.70 589.

We have presented a detailed study of the induced
pseudoscalar form factor FPðq2Þ, which is less well known
experimentally. It is observed that the q2 dependence of

FPðq2Þ exhibits the strong quark-mass dependence in the
low q2 region. This is associated with the pion-pole con-
tribution. Indeed, we confirm that the measured value of
FPðq2Þ is well described by the PPD form FPPD

P ðq2Þ ¼
2MNFAðq2Þ=ðq2 þm2

�Þ with a multiplicative factor
�PPDð<1Þ. With the help of such the PPD-like form, we
can evaluate the induced pseudoscalar coupling as
ðgPÞren ¼ 8:15� 0:54ðstatÞ � 0:16ðnormÞ. This value is
to be compared with the most recent experimental value
of 7:3� 1:1 from the MuCap experiment. Furthermore, we
evaluated the pion-nucleon coupling g�NN from the residue
of the pion pole in the induced pseudoscalar form factor
and found g�NN ¼ 10:4� 1:0ðstatÞ.
We have also studied the axial Ward-Takahashi identity

in terms of the nucleon matrix elements, which may be
referred to as the generalized Goldberger-Treiman relation.
For this purpose, we also calculated the pseudoscalar ma-
trix element, which is described by the single form factor
called as the pseudoscalar form factor GPðq2Þ. We have
found that the measured q2 dependence of GPðq2Þ is quite
consistent with an expected behavior associated with
FAðq2Þ and FPðq2Þ in consequence of the axial Ward-
Takahashi identity, or the generalized Goldberger-
Treiman relation. This fact ensures that the PPD form
provides a good description of the q2 dependence of
GPðq2Þ as well.
In the case of large but finite fifth dimension, the axial

Ward-Takahashi identity for domain wall fermions can be
slightly modified by introducing an additive shift of the
quark mass due to the presence of the midpoint contribu-
tion to the divergence of the axial-vector current. Such an
additive constant shift known as the residual quark mass is
usually measured through mesonic two-point correlation
functions. In an earlier calculation, the residual quark mass
is observed as much smaller than the lightest quark mass
utilized here [20]. However, our observed quark-mass shift
mshift, which is required for satisfaction of the generalized
Goldberger-Treiman relation, is close to 50% of our light-
est quark mass and an order of magnitude larger than the
residual mass quoted in Ref. [20]. This issue may be
connected with the correct chiral behavior of the nucleon
matrix elements. In the quenched approximation, there
may be unknown quenching effects in nucleon matrix
elements in the vicinity of the chiral limit. In this context,
the above issue is beyond the scope of this quenched study.
Rather, dynamical simulations are much preferable to in-
vestigate it further. The RBC and UKQCD Collaborations
have begun Nf ¼ 2þ 1 flavor domain wall fermion cal-

culations with large physical volume V � ð2:7 fmÞ3 and
the lightest ud quark mass down to 1=7 the strange quark
mass (m� � 330 MeV) [55]. We plan to develop the
present calculation for a precise determination of nucleon
form factors and also to address all of unsolved issues
described in this paper. Such planning is now underway
[56].
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Note added.—After the completion of this work, we
became aware of a paper [7] where the nucleon axial-
vector form factor FAðq2Þ and induced pseudoscalar form
factor FPðq2Þ are calculated in quenched and unquenched
lattice QCD using Wilson fermions.

APPENDIX A: VARIOUS RMS RADII IN THE
VECTOR CHANNEL

In Table I, the electric charge and magnetization radii for
the proton and neutron are summarized. Using these ex-
perimental values, the isovector electric charge and iso-
vector magnetization radii can be evaluated by the
following relations [4,8]:

hðrvEÞ2i � �6
1

Gv
Eðq2Þ

dGv
Eðq2Þ
dq2

��������q2¼0
¼ hðrpEÞ2i � hðrnEÞ2i;

(A1)

hðrvMÞ2i � �6
1

Gv
Mðq2Þ

dGv
Mðq2Þ
dq2

��������q2¼0

¼ �p

�v

hðrpMÞ2i �
�n

�v

hðrnMÞ2i; (A2)

where Gv
EðMÞðq2Þ ¼ Gp

EðMÞðq2Þ �Gn
EðMÞðq2Þ and �v ¼

�p ��n. Then, one obtains
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

q
¼ 0:939ð5Þ fm andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrvMÞ2i
q

¼ 0:862ð14Þ fm. Similarly, the rms radii for the

isovector Dirac form factor Fv1 ðq2Þ ¼ Fp1 ðq2Þ � Fn1 ðq2Þ
and the isovector Pauli form factor Fv2 ðq2Þ ¼ Fp2 ðq2Þ �
Fn2 ðq2Þ can be given through the following relations [4,8]:

hðrv1 Þ2i ¼ hðrvEÞ2i �
3

2

Fv2 ð0Þ
M2
N

; (A3)

hðrv2 Þ2i ¼
1

�v � 1
ð�vhðrvMÞ2i � hðrv1 Þ2iÞ; (A4)

which yield
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrv1 Þ2i

q
¼ 0:797ð4Þ fm and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrv2 Þ2i

q
¼

0:879ð18Þ fm.

APPENDIX B: GENERALIZED GOLDBERGER-
TREIMAN RELATION AND PION-POLE

DOMINANCE

The generalized Goldberger-Treiman relation is derived
from the nucleon matrix elements of the currents on both
sides of the axial Ward-Takahashi identity [24];
@�A

a
�ðxÞ ¼ 2m̂PaðxÞ where the exact isospin symmetry is

considered as m̂ ¼ mu ¼ md. The nucleon matrix element
of the divergence of the axial-vector current is represented
in the following form:

hNðp0Þj@�Aa�ð0ÞjNðpÞi
¼ �uNðp0Þ½iðp6 � p6 0ÞFAðq2Þ � q2FPðq2Þ��5t

auNðpÞ
¼ ½2MNFAðq2Þ � q2FPðq2Þ� �uNðp0Þ�5t

auNðpÞ: (B1)

Here, it is worth mentioning that we have used the Dirac
equation for the nucleon �uNðpÞðip6 þMNÞ ¼ ðip6 þ
MNÞuNðpÞ ¼ 0 to get from the first line to the second
line. Then, one easily finds that the q2 dependences of
three form factors are constrained by the following rela-
tion:

2MNFAðq2Þ ¼ q2FPðq2Þ þ 2m̂GPðq2Þ; (B2)

which is a consequence of the axial Ward-Takahashi iden-
tity. This expression may be referred to as the generalized
Goldberger-Treiman relation [24].
Here, we discuss the case where the limits m̂! 0 and

q2 ! 0 are taken on Eq. (B2). Of course, the left-hand side
(l.h.s.) of Eq. (B2) yields a nonzero value in the double
limit. First, we consider the case where the chiral limit is
first taken before the limit of q2 ! 0.

lim
q2!0

ð lim
m̂!0

2MNFAðq2ÞÞ ¼ lim
q2!0

ðq2 lim
m̂!0

FPðq2ÞÞ; (B3)

which requires the massless pion pole in FPðq2Þ in the
chiral limit [36] as limm̂!0FPðq2Þ / 1

q2
for nonvanishing of

the l.h.s. of Eq. (B3). Secondly, the chiral limit is taken
after the limit of q2 ! 0:

lim
m̂!0

ð lim
q2!0

2MNFAðq2ÞÞ ¼ lim
m̂!0

ð2m̂ lim
q2!0

GPðq2ÞÞ; (B4)

which requires the 1=m̂ singularity in GPðq2Þ at q2 ¼ 0 as
limq2!0GPðq2Þ / 1

m̂� 1
m2
�
for nonvanishing of the l.h.s. of

Eq. (B4). As a result, FPðq2Þ and GPðq2Þ must have the
pion-pole structure, which should become dominant at low
q2 [36]. Therefore, one can deduce that FPðq2Þ and GPðq2Þ
are described by the following forms, at least, in the
vicinity of the pole position q2 ¼ �m2

� [36,53]:
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FPPD
P ðq2Þ ¼ 2MNFAðq2Þ

q2 þm2
�

; (B5)

2m̂GPPD
P ðq2Þ ¼ 2MNFAðq2Þ m2

�

q2 þm2
�

; (B6)

which we call the PPD forms. Consequently, we realize

that the ratio of GPPD
P ðq2Þ and FPPD

P ðq2Þ gives the low-
energy constant B0 as

GPPD
P ðq2Þ

FPPD
P ðq2Þ ¼ B0; (B7)

where m2
� ¼ 2m̂B0.
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