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We perform numerical simulations of lattice QCD with two flavors of dynamical overlap quarks, which

have exact chiral symmetry on the lattice. While this fermion discretization is computationally demand-

ing, we demonstrate the feasibility to simulate reasonably large and fine lattices by a careful choice of the

lattice action and algorithmic improvements. Our production runs are carried out on a 163 � 32 lattice at a

single lattice spacing around 0.12 fm. We explore the sea quark mass region down to ms=6, where ms is

the physical strange quark mass, for a good control of the chiral extrapolation in future calculations of

physical observables. We describe in detail our setup and algorithmic properties of the production

simulations and present results for the static quark potential to fix the lattice scale and the locality of

the overlap operator.
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I. INTRODUCTION

Since lattice QCD emerged as a quantitative tool to
study nonperturbative aspects of the strong interaction,
enormous efforts have been made to calculate physical
observables with controlled systematic uncertainties by
large-scale simulations on increasingly finer and larger
lattices. In particular, recent algorithmic improvements
[1–8] as well as development of computer technology
enable us to approach the chiral regime of QCD [9–17]
and to include all three light flavors of quarks dynamically
[9,10,14–18].

The remaining crucial step towards the simulation of
QCD is to preserve chiral symmetry on the lattice. Chiral
perturbation theory (ChPT) based on this symmetry pro-
vides a theoretical guidance to the chiral extrapolation of
physical observables to the quark mass in the real world.
The explicit symmetry breaking in the conventional lattice
actions for quarks distorts chiral behavior of the observ-
ables and introduces additional free parameters into ChPT
[19–24]. This makes the chiral extrapolation unstable un-
less one simulates a sufficiently wide region of the quark
mass and the lattice spacing. Lattice operator mixing is
another serious obstacle to precise calculations of hadronic
matrix elements, such as the kaon B parameter. We also
note that massive Wilson-type Dirac operators are not

protected from their (near-)zero modes due to the symme-
try breaking. Studies on their spectrum [25,26] suggest that
it is safe to simulate fine and large lattices with this type of
fermion discretization.
The five dimensional domain-wall formulation [27–29]

restores chiral symmetry in the limit of infinitely large size
Ls in the fifth dimension, while it is Ls=a times more costly
with respect to the Wilson-type fermions. The RBC and
UKQCD collaborations [14,30] have been pursuing large-
scale simulations employing Ls=a � 10–20, with which
the symmetry breaking is reduced to a level of a few MeV
in terms of the additive quark mass renormalization.
There have been no large-scale simulations with negli-

gible symmetry breaking, which is of course desirable and
opens new possibilities to study unexplored subjects such
as the calculation of the chiral condensate and the pion
mass splitting through the difference between vector and
axial-vector current correlators hVV � AAi. The JLQCD
Collaboration has started such realistic simulations of
QCD employing the overlap formulation [31,32]. Its
Dirac operator is

DðmÞ ¼
�
m0 þm

2

�
þ

�
m0 �m

2

�
�5sgn½HWð�m0Þ�; (1)

where m is the quark mass and HW ¼ �5DW is the
Hermitian Wilson-Dirac operator with a large negative
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mass �m0. This formulation exactly1 satisfies the
Ginsparg-Wilson (GW) relation [38]

f�5; Dð0Þg ¼ 1

m0

Dð0Þ�5Dð0Þ; (2)

and, hence, has exact chiral symmetry on the lattice [39–
41]. Note that, in practical simulations, the lattice spacing
should be sufficiently small to guarantee its locality.

The overlap fermions are, however, computationally
more demanding than the domain-wall fermions.
Simulations with dynamical overlap quarks have been
limited to small and coarse lattices [42–46]. The main
difficulty arises from the discontinuity of the overlap action
Eq. (1) when an eigenvalue of HW changes its sign. This
substantially impairs the efficiency of the commonly used
hybrid Monte Carlo (HMC) algorithm unless the time-
consuming reflection/refraction procedure [43] is imple-
mented. In our dynamical overlap simulations, we avoid
this overhead by suppressing zero modes of HW with a
modification of the lattice action proposed in Ref. [47].
While this prevents us from sampling different topological
sectors in a single simulation, the expectation values of
physical observables in the QCD vacuum can be estimated
by simulations in fixed topological sectors [48,49].

In this article, we perform the first large-scale simula-
tions with dynamical overlap quarks in two-flavor QCD.
The above-mentioned setup to fix the topology enables us
to simulate a lattice spacing a � 0:125 fm on a 2 fm box,
which is comparable to those in recent studies with other
discretizations. By implementing recent algorithmic im-
provements [3–5], the quark mass is reduced down toms=6
to control the chiral extrapolation of physical observables.
As an example, we present our estimate of the lattice
spacing through the Sommer scale r0 [50] extrapolated to
the chiral limit. The locality of the Dirac operator is a
nontrivial issue for the GW fermions and is directly
checked on the generated gauge ensembles. Status reports
of these production runs can be found in Refs. [16,51–54].
Simulations to study the �-regime at a slightly fine lattice
spacing have already been presented in Refs. [55–59].

This paper is organized as follows. We introduce our
lattice action in Sec. II. Section III is devoted to a descrip-
tion of our simulation algorithm. In Sec. IV, we present our
choice of simulation parameters and discuss algorithmic
aspects of our production runs in detail. We present results
for the static quark potential and the locality of the overlap
operator in Secs. V and VI, respectively. Our conclusions
are given in Sec. VII.

II. LATTICE ACTION

We employ the overlap quark action Eq. (1) which can
be rewritten in terms of the massless Dirac operator as

DðmÞ ¼
�
1� m

2m0

�
Dð0Þ þm; (3)

Dð0Þ ¼ m0ð1þ �5sgn½HWð�m0Þ�Þ: (4)

The parameter m0 should be adjusted so that the overlap
operator has good locality properties. We set m0 ¼ 1:6,
which was also employed in a previous simulation in
quenched QCD around our target lattice spacing [60].
The locality with our simulation setup is checked on
generated gauge ensembles in Sec. IV.
A major problem with the unsmeared Wilson kernelHW

is the appearance of its (near-)zero modes on relatively
coarse lattices. This makes simulations costly and possibly
spoils the locality of D. One way to reduce the localized
(near-)zero modes is the use of improved gauge actions
leading to smooth gauge configurations [61]. In our simu-
lations, we employ the Iwasaki gauge action [62]

Sg ¼ �

�
c0

X
x;�<�

1

3
Re tr½1� P��ðxÞ�

þ c1
X
x;�;�

1

3
Re tr½1� R��ðxÞ�

�
; (5)

where � ¼ 6=g20, and P�� and R�� are 1� 1 and 1� 2

Wilson loops in the ð�; �Þ plane. Their weights are c0 ¼
3:648 and c1 ¼ �0:331. In our preparatory study in
quenched QCD [54], we find that (near-)zero modes are
remarkably reduced and the overlap operator shows better
locality properties by switching the standard plaquette
gauge action to this improved action.
We, however, need to rule out the appearance of exact

zero modes in order to avoid the time-consuming reflec-
tion/refraction step [43]. To this end, we introduce two
copies of unphysical Wilson fermions with the large nega-
tive mass �m0 [47,63,64] and two copies of twisted mass
ghosts [47] leading to the following auxiliary fermionic
determinant:

det½�W� ¼ det½HWð�m0Þ2�
det½HWð�m0Þ2 þ�2� : (6)

The numerator suppresses the zero modes during continu-
ous evolutions of the gauge field such as HMC, whereas
effects of high modes of HW are canceled by the denomi-
nator. The twisted mass parameter � is tuned to compro-
mise between the suppression of the zero modes and
reduction of the � shift due to the unphysical fermions.
It should be noted that these unphysical fields have a mass
of Oða�1Þ and hence they do not change the continuum
limit of the theory. Their effects can be simply considered
as a modification of the gauge action by �Sg ¼
�tr½ln½�W��.
The auxiliary determinant det½�W� fixes the net topo-

logical charge Q during the HMC update. We note, how-
ever, that local topological fluctuations are not suppressed

1Dirac operators satisfying the GW relation approximately
have been proposed in Refs. [33–35] and have been employed
in simulations in Refs. [36,37].
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in this setup: actually, the topological susceptibility is
calculable in a topological sector as demonstrated in
Ref. [65]. The correction due to the fixed global topology
can be considered as a finite size effect, which is suppressed
by the inverse space-time volume 1=V [48,49]. In addition,
the expectation values of physical observables in the QCD
vacuum can be estimated by studying their Q dependence
from simulations in fixed topological sectors [48,49]. The
conventional setup, on the other hand, can sample different
topological sectors through lattice dislocations, i.e. discon-
tinuities of a gauge configuration. They occur by short-
distance statistical fluctuations and also by the appearance
(or disappearance) of more physical topological objects,
such as instantons, of order of lattice spacing. Both of these
effects yielding the topological tunneling are increasingly
more suppressed as the continuum limit is approached. Our
setup to fix the topology (or modified algorithms such as in
Refs. [66,67]) is an interesting alternative in future simu-
lations near the continuum limit. It is also noteworthy that
our setup provides a framework useful to study the
�-regime of QCD, as demonstrated in Refs. [57–59].

III. SIMULATION ALGORITHM

A. Multiplication of overlap operator

A central building block in our HMC program is the
multiplication of the overlap operator DðmÞ to a given
quark field vector �. We evaluate the sign function
sgn½HW� in DðmÞ with the low-mode preconditioning.
Namely, we introduce a threshold �W;th in the spectrum

of HW, and normalized eigenmodes uk ðk ¼ 1; . . . ; NepÞ
with their eigenvalues j�W;kj � �W;th are determined by

the implicitly restarted Lanczos algorithm. We denote the
number of low modes thus extracted by Nep in the follow-

ing. These modes are projected out in the multiplication of
sgn½HW�,

sgn½HW�� ¼ XNep

k¼1

sgn½�W;k�ukðuyk�Þ

þ sgn½HW�ð1� PlowÞ�; (7)

where Plow ¼ PNep

k¼1 uku
y
k is the projection operator on to

the eigenspace spanned by fukg. We also determine the
largest eigenvalue j�W;maxj. The contribution of higher

modes sgn½HW�ð1� PlowÞ� is then estimated by a min-
max rational approximation

sgn ½HW� ¼ HW

�
p0 þ

XNpole

l¼1

pl
H2

W þ ql

�
(8)

with the Zolotarev coefficients pl, ql for the range
½�W;th; �W;max� [68,69]. The multiple inversions for ðH2

W þ
qlÞ�1 (l ¼ 1; . . . ; Npole) can be carried out simultaneously

by the multishift conjugate gradient (CG) algorithm
[70,71]. We keep �W;th and Npole constant while Nep varies

as a result of fixing �W;th. This, together with a small

statistical fluctuation of �W;max, makes the accuracy and

the computational cost in the evaluation of sgn½HW� stable.

B. Overlap solver

We need to solve the linear equation

DðmÞx ¼ b (9)

for a given source vector b in preparation of pseudofer-
mions and calculations of the molecular dynamics (MD)
forces in HMC. In the early stage of our simulation, we
evaluate DðmÞ�1 by the nested four dimensional (4D) CG
algorithm, which consists of multishift CG for ðH2

W þ
qlÞ�1 as the inner solver and CG for normal equations
(CGNE) to evaluate DðmÞ�1 as the outer solver. As the
outer solver proceeds, the computational cost of the inner
solver can be substantially reduced by adjusting its stop-
ping condition

jðH2
W þ qlÞxi � bj2 < �ms

i ; (10)

where i is the iteration count for the outer solver [72,73].
We employ the relaxed stopping condition outlined in
Ref. [73]. This is based on the idea that, as the outer solver
proceeds, the correction to the solution vector jxi � xi�1j
becomes smaller and we do not have to evaluateDðmÞwith
too much accuracy. Its implementation depends on the
outer solver algorithm and, for CG(NE), the condition is
loosened as

�ms
i / ffiffiffiffi

	i
p

; 	i ¼ 	i�1 þ 1

jri�1j2
; (11)

where ri�1 ¼ Dxi�1 � b is the residual for the outer solver
at the ði� 1Þ-th iteration. It was observed on small lattices
[73] that this relaxation leads to roughly a factor of 2
reduction in the computational cost.
For a further improvement in the solver performance, we

later switch to the five dimensional (5D) solver proposed in
Refs. [74–76]. In the case of Npole ¼ 2 for instance, we

consider the following 5D matrix to solve Eq. (9),

M5ðmÞ ¼

HW � ffiffiffiffiffi
q2

p
0

� ffiffiffiffiffi
q2

p �HW
ffiffiffiffiffiffi
p2

p
HW � ffiffiffiffiffi

q1
p

0
� ffiffiffiffiffi

q1
p �HW

ffiffiffiffiffiffi
p1

p
0

ffiffiffiffiffiffi
p2

p
0

ffiffiffiffiffiffi
p1

p
R�5 þ p0HW

0
BBBBB@

1
CCCCCA ¼ A11 A12

A21 A22ðmÞ
� �

(12)
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where pl and ql are the coefficients in the Zolotarev
approximation Eq. (8) and R ¼ ð2m0 þmÞ=ð2m0 �mÞ.
The Schur decomposition

M5ðmÞ ¼ 1 0
A21A

�1
11 1

� �
A11 0
0 SðmÞ

� �
1 A�1

11 A12

0 1

� �
(13)

contains the Hermitian overlap operator as the Schur com-
pliment

SðmÞ ¼ A22ðmÞ � A21A
�1
11 A12 ¼

�
m0 �m

2

��1
�5DðmÞ:

(14)

Its inverse x ¼ SðmÞ�1b can be evaluated by solving the
5D equation

M5ðmÞx5 ¼ b5; x5 ¼
�
�
x

�
; b5 ¼

�
0
b

�
: (15)

We observe that the convergence of this solver can be
improved by a preconditioning based on the 5D structure
~M�1
5 M5, where ~M5 is obtained from M5 by setting all

gauge links to zero. Note that ~M5 is local, uniform in
space-time, and easy to invert through its LU decomposi-
tion and forward/backward substitutions. This is naturally
incorporated into the even-odd preconditioning [76]

ð1�M�1
5;eeM5;eoM

�1
5;ooM5;oeÞx5;e ¼ b05;e;

b05;e ¼ M�1
5;eeðb5;e �M5;eoM

�1
5;oob5;oÞ;

(16)

since M5;eeðooÞ ¼ ~M5;eeðooÞ where the subscripts ‘‘e’’ and

‘‘o’’ represent even and odd sites. It turns out in Sec. IV
that this preconditioned solver is roughly a factor of 3
faster than the relaxed 4D solver.

The low-mode preconditioning Eq. (7) is, however, not
straightforward with the even-odd preconditioning. We
switched it off in simulations with the 5D solver in this
article, but it is implemented in our latest simulations of
three-flavor QCD [15,16].

C. HMC

In our implementation of HMC, we employ a combina-
tion of the Hasenbusch preconditioning [4,5] and the mul-
tiple time scale integration for MD [3], which has been
shown to be very effective in simulations with Wilson-type
fermions [77,78]. In our HMC program with the 4D over-
lap solver, which is referred to as ‘‘HMC-4D’’ in the
following, the fermionic determinant is expressed as

det½DðmÞ2� ¼ det½Dðm0Þ2� det
�
DðmÞ2
Dðm0Þ2

�
; (17)

where m0 is the mass of the Hasenbusch preconditioner.
Two determinants as well as det½�W� from the extra-
Wilson fermions are evaluated by introducing three pseu-
dofermions �1, �2, �W: namely,

det½Dðm0Þ2� ¼
Z
½d�y

1 �½d�1�e�S1 ;

S1 ¼ �y
1 fDðm0ÞyDðm0Þg�1�1;

(18)

det

�
DðmÞ2
Dðm0Þ2

�
¼

Z
½d�y

2 �½d�2�e�S2 ;

S2 ¼ �y
2Dðm0ÞfDðmÞyDðmÞg�1Dðm0Þy�2;

(19)

and

det½�W� ¼
Z
½d�y

W�½d�W�e�SW ; (20)

SW ¼ �y
WDtmð�m0; �Þ

� fDWð�m0ÞyDWðm0Þg�1Dtmð�m0; �Þy�W;

(21)

where Dtmð�m0; �Þ ¼ DWð�m0Þ þ i��5 is the Dirac op-
erator for the twisted mass Wilson fermions.
The expression of the force associated with the overlap

pseudofermion is already available in Refs. [42,43,45,46].
Here, we explicitly write down only the simplest one from
S1,

dS1
d


¼�ðm2
0 �m02=4Þ y

1

�
dsgn½HW�

d

�5 þ�5

dsgn½HW�
d


�
 1

(22)

where  1 ¼ fDðm0ÞyDðm0Þg�1�1 and the derivative of the
sign function is given by

dsgn½HW�
d


¼ dHW

d


�
p0 þ

XNpole

l¼1

pl
H2

W þ ql

�

� XNpole

l¼1

plHW

H2
W þ ql

�
dHW

d

;HW

�
1

H2
W þ ql

: (23)

Hence, we need to evaluate fDðm0ÞyDðm0Þg�1 by the 4D
relaxed CGNE, and we also have to invoke the multishift
CG to calculate dsgn½HW�=d
. The forces F1 and F2 from
the overlap pseudofermion actions S1 and S2 are much
more expensive to evaluate thanFW from SW and the gauge
force Fg.

The use of the multiple time scale integration is there-
fore crucial to reduce the computational cost of the MD
evolution. We employ the following three nested loops:

T2ð�
Þ ¼ TP;2

�
�


2

��
T1

�
�


r�

��
r�
TP;2

�
�


2

�
; (24)

T1ð�
Þ ¼ TP;1

�
�


2

��
Tg

�
�


rg

��
rg
TP;1

�
�


2

�
; (25)
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Tgð�
Þ ¼ TP;g

�
�


2

�
TP;W

�
�


2

�
TUð�
ÞTP;W

�
�


2

�
;

TP;g

�
�


2

�
;

(26)

where TUð�
Þ evolves the gauge field by the MD step size
�
, and TP;Xð�
Þ updates the conjugate momentum with

the MD force FX (X ¼ 1, 2, W, g). We put TP;W together

with TU in the innermost loop; otherwise the suppression
of the (near-)zero modes of HW fails by a mismatch
between the updated gauge configuration and FW. The
integration scheme can be largely accelerated by an appro-
priate choice of positive integers r� and rg when the

magnitudes of the forces are well separated from each
other. This point is one of the central issues in the next
section.

The reflection/refraction step is designed to deal with the
discontinuity in the Hamiltonian along the MD evolution
of the gauge field, and hence has to be included into TU in
the innermost loop. This step requires a significant compu-
tational cost to accurately locate at which point of the MD
evolution the sign of an eigenvalue of HW changes. In our
simple implementation, moreover, it involves two inver-
sions of the overlap operator to evaluate the Hamiltonian
just before and after the change of the sign.2 This step,
therefore, could lead to a considerable slowdown of simu-
lations. The determinant det½�W� enables us to avoid this
serious overhead.

In HMC with the 5D solver, which we call ‘‘HMC-5D’’
in the following, we have to modify the implementation of
HMC due to the lack of the low-mode preconditioning. The
coefficients pl and ql for the 5D solver are determined with
an appropriate choice of �W;th and Npole, which are kept

fixed during our simulation. This could lead to a sizable
error in sgn½HW�, when HW has eigenvalues smaller than
�W;th. In order to keep the accuracy of sgn½HW� compa-

rable to that in HMC-4D, the fermionic determinant is
modified as

det½DðmÞ2� ¼ det½D0ðm0Þ2� det
�
D0ðmÞ2
D0ðm0Þ2

�
det

�
DðmÞ2
D0ðmÞ2

�
;

(27)

where D0 represent the less accurate overlap operator
without the low-mode preconditioning. The first two de-
terminants are dealt with by the usual HMC steps, whereas
the last factor is taken into account by the noisy Metropolis
test [81]. The probability is evaluated as

P ¼ minf1; e�dSg;
dS ¼ jW�1½Unew�W½Uold��j2 � j�j2;

(28)

where � is a random Gaussian noise vector and

W½UnewðoldÞ� is DðmÞ=D0ðmÞ on the final (initial) gauge

configuration. Therefore, this step needs to invert both
DðmÞ and D0ðmÞ and spends a significant fraction of the
total CPU time.
Another difference from HMC-4D is that ðDyDÞ�1 is

evaluated by invoking CGNE twice for Eq. (16), since no
5D representation is available for ðDyDÞ�1. It turns out,
however, that CGNE is effective in inverting the precondi-
tioned 5D matrix in Eq. (16), and switching CGNE to
MINRES does not lead to a substantial reduction in the
computational cost.

D. Machine

Our numerical simulations are carried out on the super-
computer system at KEK. This is a combination of 16
nodes of Hitachi SR11000 and 10 racks of IBM Blue
Gene/L, whose peak speeds are about 2.15 and 57.3
TFLOPS, respectively. Our measurement of the static
quark potential is inexpensive and is carried out on the
SR11000 computer. The configuration generation with the
above-mentioned HMC algorithm is computationally in-
tensive and is carried out on Blue Gene/L. To increase the
sustained speed as much as possible, we employ an assem-
bler code developed by IBM Japan for the multiplication of
DW. This code makes the best use of the so-called double
FPU instructions, which process complex-arithmetic op-
erations in double precision effectively using two arith-
metic pipelines. It also has a good scalability with respect
to the number of computing nodes by using a low-level
interface for internode communications. We find that this
assembler code is roughly a factor of 3 faster than our naive
FORTRAN code.

IV. PRODUCTION RUN

A. Simulation parameters

We simulate QCD with two flavors of degenerate up and
down quarks employing the lattice action introduced in
Sec. II. The twisted mass for the auxiliary determinant
det½�W� is set to � ¼ 0:2 from our studies in quenched
QCD [47,54]. Numerical simulations are carried out on a
N3
s � Nt ¼ 163 � 32 lattice at a single value of � ¼ 2:30,

which is expected to correspond to our target lattice spac-
ing of 0.125 fm. The box size L should be around 2 fm. In
the trivial topological sector, we simulate six sea quark
masses listed in Tables I and II. From our analysis of the
meson spectrum [82], this choice covers a range from ms

down to ms=6 in physical units. The statistics are 10 000
HMC trajectories at each quark mass with the unit trajec-
tory length set to 0.5. At m ¼ 0:050 which roughly corre-
sponds to ’ ms=2, we also accumulate 5000 trajectories in
the nontrivial topological sectors with Q ¼ �2 and �4.
The initial gauge configuration for these runs is prepared as
in Ref. [83]. The generated gauge configurations are stored
on disks every 10 trajectories for future measurements of

2Improved implementations of the reflection/refraction step
are proposed in Refs. [79,80].
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physical observables. These parameters are summarized in
Tables I and II.

In the course of our calibration of the lattice spacing, we
investigate the impact of the auxiliary determinant on the
computational cost at a slightly finer lattice spacing at
ð�;�Þ ¼ ð2:35; 0:2Þ. A single quark mass around ms is
simulated without the determinant (namely, � ¼ 0:0) but
with the reflection/refraction procedure. This run can be
compared to one of our simulations with � ¼ 0:2 at a
similar lattice spacing, which has been reported in
Ref. [58]. We summarize parameters of these runs in
Table III.

B. Autocorrelation

We first discuss the autocorrelation in our simulations to
fix the bin size used in the jackknife analysis in the sub-
sequent sections. In Fig. 1, we plot the time history of the
plaquette and the number of iterations Ninv to invert DðmÞ
in the simulations with HMC-4D. It is observed that Ninv

shows longer and larger fluctuations as m decreases, while
such a tendency is not clear in the plaquette.

A conventional measure of the autocorrelation of an
observable O is the integrated autocorrelation time 
int;O
defined by


int;O ¼ 1

2
þ X1


¼1

�Oð
Þ (29)

through the normalized autocorrelation function

�Oð
Þ ¼ �Oð
Þ
�Oð0Þ ;

�Oð
Þ ¼ hðOð
0Þ � hOiÞðOð
0 þ 
Þ � hOiÞi
0 ;
(30)

where the Monte Carlo average (over 
0) is explicitly
indicated by the bracket h� � �ið
0Þ. Practically, the sum in

Eq. (29) has to be truncated at a certain value of 
 ¼ 
max.
In this analysis, we employ the condition adopted in
Ref. [7]: namely, 
max is set to the minimum value of 

satisfying

�Oð
Þ � ��Oð
Þ � 0; (31)

TABLE I. Parameters in the production simulations with HMC-4D. The rightmost column shows the CPU time per HMC trajectory
on one rack of Blue Gene/L.

m Q Npole �W;th m0 NMD r� rg HMC traj. PHMC Time (min)

0.015 0 10 0.108 0.2 9 4 5 2800 0.875(7) 50

0.025 0 10 0.108 0.2 8 4 5 5200 0.900(3) 41

0.035 0 10 0.108 0.4 6 5 6 4600 0.739(7) 28

0.050 0 10 0.108 0.4 6 5 6 4800 0.781(5) 23

0.070 0 10 0.108 0.4 5 5 6 4500 0.818(7) 20

0.100 0 10 0.108 0.4 5 5 6 4600 0.852(5) 17

0.050 �2 10 0.108 0.4 6 5 6 1100 0.762(13) 24

TABLE II. Parameters in the production simulations with HMC-5D. The rightmost column shows the CPU time per trajectory.

m Q Npole �W;th m0 NMD r� rg HMC traj. PHMC Time (min)

0.015 0 10 0.108 0.2 13 6 8 7200 0.686(6) 26

0.025 0 10 0.108 0.2 10 6 8 4800 0.816(5) 22

0.035 0 10 0.108 0.4 10 6 8 5400 0.875(5) 19

0.050 0 10 0.108 0.4 9 6 8 5200 0.879(5) 15

0.070 0 10 0.108 0.4 8 6 8 5500 0.917(4) 13

0.100 0 10 0.108 0.4 7 6 8 5400 0.926(3) 11

0.050 �2 10 0.108 0.4 9 6 8 3900 0.882(5) 15

0.050 �4 10 0.108 0.4 9 6 8 5000 0.872(5) 15

TABLE III. Parameters in the test runs with and without the determinant factor Eq. (6). The rightmost column shows the CPU time
per trajectory.

� � m Q Npole �W;th m0 NMD r� rg HMC traj. PHMC Time (min)

2.45 0.0 0.090 � � � 12 0.096 0.4 6 5 6 300 0.78 46

2.35 0.2 0.110 0 10 0.144 0.4 5 5 6 1200 0.87 12
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FIG. 1. Monte Carlo history of the plaquette (left panels) and Ninv (right panels) during first 1000 trajectories with HMC-4D.
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where ��Oð
Þ is the standard deviation of �Oð
Þ estimated
by the Madras-Sokal formula [84,85].

In Fig. 2, we plot 
int;plaq for the plaquette and 
int;inv for

Ninv as a function of m. It turns out that 
int;plaq is not large

(about 5 trajectories) and has small m dependence, proba-
bly because it is a local quantity. On the other hand, Ninv is
expected to be sensitive to the low modes of DðmÞ, and in
fact 
int;inv increases to Oð100–200Þ trajectories at small

quark masses m & 0:035. While these observations are
consistent with Fig. 1, it is clear that our statistics are not
sufficiently large to estimate 
int;inv accurately at small m.

Therefore, we also check the bin size dependence of the
jackknife error in Fig. 3, where two data of the plaquette
obtained with HMC-4D and 5D are combined. Roughly
speaking, the jackknife error becomes stable when the bin
size is* 100–200 trajectories irrespective of the choice of
m and Q. At similar bin sizes, the jackknife error of Ninv

also becomes stable as shown in Fig. 4. From these obser-
vations, we employ the bin size of 200 trajectories through-
out this article, unless otherwise stated. Although only a
limited number of bins are available to analyze algorithm-
dependent quantities, such as Ninv, in simulations with
HMC-4D at ðm;QÞ ¼ ð0:015; 0Þ and (0.050, �2), it turns
out that decreasing the bin size leads to an even smaller
statistical error for such quantities. For a reference, the

plaquette averaged over our full statistics and its jackknife
errors are summarized in Tables IV and V.

C. Spectral density of HW and sgn½HW�
In Fig. 5, we compare the low-lying spectrum f�Wg of

HW in our test runs listed in Table III. Without the auxiliary
determinant det½�W�, j�Wj has an almost uniform density
in the investigated region j�Wj & 0:1. This causes the
reflection (refraction) occurring roughly 130 (14) times
per 100 trajectories at our lattice spacing which is only
slightly coarser than those in recent simulations with
Wilson-type actions. In contrast, near-zero modes are re-
markably suppressed by the determinant. We can safely
turn off the reflection/refraction without a serious loss in
the acceptance rate and observe about a factor of 4 reduc-
tion in CPU time as in Table III.
In Fig. 6, we plot the eigenvalue distribution in our

production simulations at several quark masses. Near-
zero modes are successfully suppressed also in these high
statistics runs, and the resulting distribution has small m
dependence, as it should. Figure 7 shows the MD evolution
of the lowest eigenvalue �W;min. We observe that �W;min

approaching �W ¼ 0 is eventually bounced back by the
repulsive force from the potential barrier generated by the
determinant.
The suppression of near-zero modes enables us to take a

relatively large value for the threshold �W;th and thus small

Npole in the multiplication ofD. We set �W;th ¼ 0:108 at all

values of m based on the small m dependence of the low-
mode distribution in Fig. 6. There are only a few eigenval-
ues below this threshold, and hence it does not take too
much time to determine such low-lying modes ð�W;k; uW;kÞ
(k ¼ 1; . . . ; Nep) with a strict condition

jðHW � �W;kÞuW;kj< 10�13 (32)

for the low-mode preconditioning Eq. (7). We set Npole ¼
10with which the accuracy of the Zolotarev approximation
Eq. (8) is typically jsgn½HW�2 � 1j � 10�7.
In simulations with HMC-5D, we consider saving the

CPU time by loosening the approximation of sgn½HW� for
D0ðm0Þ and D0ðmÞ in Eq. (27), since the noisy Metropolis
test guarantees that gauge configurations are generated
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FIG. 4. Jackknife error of Ninv in simulations with HMC-4D.

TABLE IV. Average of the plaquette from the production runs with Q ¼ 0.

msea 0.015 0.025 0.035 0.050 0.070 0.100

Plaquette 0.614 789(10) 0.614 777(9) 0.614 764(8) 0.614 718(9) 0.614 709(10) 0.614 667(9)

TABLE V. Average of the plaquette at Q � 0.

(msea, Q) (0.050, �2) (0.050, �4)

Plaquette 0.614 762(13) 0.614 704(15)
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with the fermionic determinant of the accurate overlap
operator det½DðmÞ2�. We set ð�W;th; NpoleÞ ¼ ð0:024; 10Þ
for the Hasenbusch preconditioner D0ðm0Þ. Since the
error of the rational approximation scales as
� exp½��W;thNpole�, this is less accurate compared to

Dðm0Þ with (0.108, 10) for HMC-4D. While Fig. 6 shows
that there appear a non-negligible number of eigenmodes
below �W;th ¼ 0:024, HMC-5D achieves the reasonable

acceptance rate listed in Table II. This suggests that the
error due to the rough approximation inD0’s, as well as that
due to the lack of the low-mode preconditioning, is sto-
chastically canceled (in part) between TP;1 and TP;2 in the

MD integration. We set ð�W;th; NpoleÞ ¼ ð0:0024; 16Þ for

D0ðmÞ, since relatively large �W;th leads to a substantially

poor acceptance rate for the noisy Metropolis test.

D. H2
W and overlap solvers

Our HMC programs involve various stopping condi-
tions. We need to specify conditions for the 4D overlap
solver

jDx� bj=jbj< �4D;X (33)

and those for the 5D solver

jð1�M�1
5;eeM5;eoM

�1
5;ooM5;oeÞx5;e � b05;ej=jbj< �5D;X;

(34)

where the subscript X is ‘‘f’’ or ‘‘ H’’ representing the
condition for the calculation of the MD force or the
Hamiltonian. Note that �5D;X is the condition fulfilled by

the 5D preconditioned solution vector x5;e. Our numerical

test suggests that �5D;X should be stricter than �4D;X by 1 or

2 orders of magnitude so that the accuracy of the 4D piece
x in x5 is comparable to that of the 4D solver with �4D;X.

FIG. 5. Eigenvalues of HW smaller than 0.04 at each HMC trajectory and its histogram. Left and right panels show data from test
runs at ð�;�Þ ¼ ð2:35; 0:2Þ and (2.45,0.0) (namely, with and without the determinant det½�W�). We plot data during the first 300
trajectories in each simulation.
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The stopping condition for the multishift CG inside the
4D overlap solver is automatically determined by Eq. (11)
except for the initial residual r0 ¼ Dx0 � b. An appropri-
ately strict value � 10�6 is employed to calculate r0 with
the given initial guess x0. Therefore, we only need to
specify conditions for multiplications of D and calcula-
tions of dsgn½HW�=d
 by Eq. (23),

jðH2
W þ qlÞx� bj=jbj � �ms

Y;X ðl ¼ 1; . . . ; NpoleÞ (35)

with X ¼ “f” or ‘‘ H.’’ Here the condition in HMC-4D
(5D) is represented by the subscript Y ¼ “4D” (‘‘5D’’). In
our production run, we employ a rather strict condition
�ms
Y;H ¼ �Y;H ¼ 10�10 for calculations of the Hamiltonian

in order to carry out the Metropolis tests accurately.
The choice of �ms

Y;f and �Y;f is crucial to save the compu-

tational cost but should be strict enough to make our HMC
reversible. The conventional measures of the reversibility
violation in the gauge links Ux;� and the Hamiltonian H

are

�U;ave¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;�;a;b

jUab
x;�ð
þ0:5�0:5Þ�Uab

x;�ð
Þj2=ð36N3
sNtÞ

s
;

(36)

�H ¼ jHð
þ 0:5� 0:5Þ �Hð
Þj; (37)

where a and b are color indices, and note that our unit
trajectory length is 0.5. We pick up ten gauge configura-
tions separated by 200 trajectories, and calculate �U;ave

and �H by updating them by one trajectory and then
evolving back with the reversed momenta. Figure 8 shows
these measures in HMC-4D, for which we set �ms

4D;f ¼ �4D;f
for simplicity. We observe a monotonous decrease in both
measures and small m dependence of their size. By em-
ploying

�ms
4D;f ¼ �4D;f ¼ 10�7; (38)

at all quark masses, the reversibility in our simulations is
preserved at a level of �U;ave & 10�8 and �H & 10�4,

which are comparable to those in previous large-scale
simulations with the Wilson-type actions [86–88]. A simi-
lar study for HMC-5D leads us to set

�ms
5D;f ¼ 10�6; �5D;f ¼ 10�7 (39)

in order to maintain the reversibility at the same level to
HMC-4D.
In Fig. 9, we compare the convergence of the 4D and 5D

solvers by plotting the normalized residual jrj2=jbj2 as a
function of the number of the DW multiplication Nmult. We
takem ¼ 0:025 and turn off the low-mode preconditioning
by setting �W;th ¼ 0:0 for a fair comparison between the

4D and 5D algorithms. The relaxed condition Eq. (11)
works well on our 2 fm box and achieves about a factor
of 2 speedup compared to the standard CG. The 5D solver
is even faster by about a factor of 3, mainly due to the
preconditioning of Eq. (16). We observe an acceleration of
similar magnitude also at other quark masses.
An interesting issue is how the computational cost scales

as a function ofm. The iteration count of our overlap solver
Ninv depends onm through eigenvalues �kðmÞ ofDðmÞ. For
simplicity, we use the following approximation for low-
lying eigenvalues,

�kðmÞ ¼ mþ i~�kð0Þ (40)

where ~�kð0Þ is the kth eigenvalue of the massless Dirac
operator Dð0Þ projected to the imaginary axis,

~� kð0Þ ¼ Im½�kð0Þ�
1� Re½�kð0Þ�=2 ; (41)

and we ignore the small correction factor 1�m=ð2m0Þ ’ 1
in Eq. (3). The m dependence of Ninv in HMC-4D is then
expected to be
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FIG. 8. Measures of reversibility violation �U;ave (left panel) and �H (right panel) for HMC-4D as a function of stopping conditions
�ms
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Ninv / 1

ðm2 þ ~�1ð0Þ2Þ
=2
(42)

with the power 
 � 1 for CGNE.
The mass parameter in Eq. (42) should be m0 for the

Hasenbusch preconditioner Dðm0Þ. Since we take large
values for m0, Ninv is governed by m0 and has small m
dependence as shown in Fig. 10. On the other hand, Ninv to
invert DðmÞ increases monotonously as m decreases. Data
at the four heaviest quark masses are reasonably described

by the scaling law Eq. (42) with ~�1 neglected,

Ninv ¼ cinvm
�
inv : (43)

Fit parameters are listed in Table VI. We note that the
power 
inv is close to its maximum value 
inv ¼ 1.

Our data of Ninv at m & 0:025, however, clearly deviate
from this fit. This can be considered as a manifestation of
finite size effects as we approach the �-regime by decreas-
ing m with the fixed spatial extent L [57,58]. Figure 11

actually shows that the magnitude of ~�kð0Þ in units of m
rapidly increases toward smaller m. Namely, at heavy
quark masses m * 0:050, DðmÞyDðmÞ for CGNE has
dense low-lying eigenvalues j�kðmÞj2 near m2 and, hence,
m is a good parameter to characterize its condition number.
On the other hand, j�kðmÞj2 becomes sparse and deviates
fromm2 asm decreases. It is likely that this rapid change in
the low-mode distribution distorts the m dependence of
Ninv from the simple scaling Eq. (43).

The influence of ~�kð0Þ on Ninv is less clear in HMC-5D,
since the matrix to be inverted is a 5D preconditioned
matrix rather than DðmÞ. We only note that, as seen in
Fig. 12, Ninv for the preconditioner D0ðm0Þ is mainly de-
termined by m0 and Ninv for D0ðmÞ shows a somewhat
weaker power scaling with the parameters listed in
Table VI.

E. Properties of HMC

The parameters for the Hasenbusch preconditioning,
Eqs. (17) and (27), and the multiple time scale MD inte-
gration, Eqs. (24)–(26), are listed in Tables I and II. The
gauge force Fg is known to be generally larger than the

fermionic force(s). Only m0 needs a nontrivial tuning to
make a hierarchic structure among the MD forces F2, F1,
and Fg. As discussed in Refs. [5,78], m0 should be de-

creased for smallerm to avoid a too large condition number
for the preconditioned Dirac operatorDðmÞ=Dðm0Þ. This is
why m0 is set to a smaller value at m � 0:025 than others.
While we have not done further fine-tuning of m0, Figs. 13
and 14 show that the forces F1, F2, and Fg are well

separated from each other with our choice of m0. This
enables us to use the ratios of the step sizes, namely, r�

0.0 5.0×10
5

1.0×10
6

1.5×10
6

N
mult

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

100

|r
|2  / 

|b
|2

5D (N
pole

=8)

5D (N
pole

=12)

5D (N
pole

=20)

relaxed CG
CG

FIG. 9. Residual of overlap solvers as a function of the number
of the DW multiplication at m ¼ 0:025. Thick and thin lines
show results for the 5D and 4D solvers. For the 5D solver, we
plot the residual for the 4D piece x of the 5D solution vector x5,
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and rg, around 4–8, which considerably reduce the com-

putational cost of the MD integration with the acceptance
rate kept in a reasonably high range * 0:7.

The same figures show that FW from the extra-Wilson
fermions exhibits large statistical fluctuations. It becomes
as large as Fg, probably due to the appearance of small

eigenvalues of HW. This is another reason why we update
FW in the innermost loop in Eq. (26), in addition to its
consistency with the updated gauge field described in
Sec. III.

We denote the change in the Hamiltonian due to the
discretized MD integration by �H and its average is
summarized in Table VII. The area-preserving property
of MD leads to the following (in)equality:

e�h�Hi � he��Hi ¼ 1; (44)

where we explicitly indicate the value averaged over HMC
updating by the bracket h� � �i. The inequality predicts that
the averaged �H is positive, and this is the case in our
simulations. Two of them are, however, dominated by huge
spikes shown in Fig. 15. Similar spikes have been observed
also in previous simulations with Wilson-type fermions
[89], and they may be attributed to the instability of
HMC with a large MD step size [90]. The spikes in our
simulations have rather simple origin as shown in Fig. 16:
HW can develop a very small lowest eigenvalue leading to a
spike in FW and hence in �H. This is why we take a larger
value for rg in HMC-5D to be more robust against the

spikes with a smaller MD step size for the calculation of
FW. Thanks to the determinant det½�W�, however, the
number of such huge spikes is not large even in HMC-
4D, at most a few per 10 000 trajectories. As a result, the
equality Eq. (44) is fulfilled within 2% accuracy without
introducing the replay trick [6,91]. We also note that the
�H dependence of PHMC is consistent with the expected
form of the complementary error function,

PHMC ¼ erfc½
ffiffiffiffiffiffiffiffi
�H

p
=2�; (45)

as plotted in Fig. 17.

F. Simulation cost

On a half rack of Blue Gene/L, the assembler code for
the multiplication of DW achieves roughly 28% efficiency
of the peak performance when all the data are in the L3
cache. The sustained speed averaged over all HMC steps is
about 15%, indicating significant overheads due to a lim-

TABLE VI. Fit parameters in Eq. (43) for two algorithms,
HMC-4D and 5D.

Algorithm cinv 
inv

HMC-4D 22.86(9) 0.869(1)

HMC-5D 159(8) 0.64(2)
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FIG. 11. Projected eigenvalue �kð0Þ as a function of m. We
plot data for five lowest-lying modes. The dashed line shows
� ¼ m.
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ited bandwidth to the off-chip memory, and to linear
computations with quark vectors in the low-mode precon-
ditioning and so on.

In Table VIII, we summarize the number of DW multi-
plications Nmult per trajectory, which serves as a machine-
independent measure of the simulation cost. This is com-
pared with Nmult at each HMC step in Fig. 18. As expected,
calculations of the overlap forces F1 and F2 spend a large
part of the total CPU time, especially at small quark masses
m & 0:050. Note also that the costs to calculate the two
forces are of the same order: in other words, they are
reasonably balanced with our choice of m0 and r�. While

FW is calculated in the innermost loop of our MD integra-
tion, its computational cost turns out to be negligible in
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TABLE VII. Average of �H and e��H .

HMC-4D HMC-5D

m Q �H e��H �H e��H

0.015 0 0.0603(72) 0.9957(64) 4618(4617) 0.998(14)

0.025 0 14(14) 0.9954(32) 0.1142(52) 0.9997(59)

0.035 0 0.2224(86) 1.016(11) 0.068(15) 0.9964(42)

0.050 0 0.1846(84) 1.0008(83) 0.0519(39) 0.9982(45)

0.070 0 0.198(99) 0.9989(52) 0.0260(29) 0.9950(24)

0.100 0 0.0692(33) 0.9963(34) 0.0207(33) 0.9989(30)

0.050 �2 0.37(16) 0.978(15) 0.0432(80) 1.0082(61)

0.050 �4 � � � � � � 0.0601(55) 0.9934(52)
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HMC-4D, and is not large even in HMC-5D, where the
overlap solver is accelerated by the 5D algorithm.

In simulations with HMC-5D, the noisy Metropolis test
also needs a substantial fraction of the total time. This is
because it has to invoke the 4D solver with the strict
stopping condition to calculate the probability Eq. (28)
accurately, whereas other HMC steps are implemented
with the much faster 5D solver. We note that this step is

removed in our latest 2þ 1-flavor simulations by incorpo-
rating the low-mode preconditioning into the 5D solver
[15,16].
Figure 19 shows a comparison between HMC-4D and

HMC-5D in Nmult for TP;1 and TP;2 as well as their total. To
take the difference in PHMC into account, Nmult in this
figure is corrected by a factor �
=�
0, where �
0 is the
step size corresponding to PHMC ¼ 0:8 estimated by as-
suming Eq. (45) and �H / �
4. Because of the rough
approximation and the lack of the low-mode precondition-
ing for sgn½HW� inD0, �
 have to be decreased by roughly
50% when the algorithm is switched from HMC-4D to
HMC-5D with PHMC kept fixed. Even with this overhead,
we observe about a factor of 2 reduction in Nmult for TP;1
and TP;2. The noisy Metropolis test reduces the net gain to

roughly 50% at all the simulated quark masses. We note in
passing that the CPU time summarized in Tables I and II
shows slightly better acceleration than in Nmult at m *
0:035. This is because the low-mode preconditioning lead-
ing to the overhead mentioned at the beginning of this
subsection is switched off in the 5D solver.
For future reference, we fit m dependence of the cor-

rected Nmult into a simple power law,

Nmult ¼ cmultm
�
mult : (46)

Fit parameters are summarized in Table IX. While data at
small m are subject to the finite size effects as discussed in
Sec. IVD, the fit parameters do not change significantly if
we discard the data atm � 0:025 from the fit. Note that this
is the cost per trajectory, and the m dependence of the
autocorrelation, which is not clear with our statistics, is not
taken into account. Thanks to the improved algorithms,
Nmult has a much milder m dependence than m�2, which
was employed to estimate the simulation cost with the
standard HMC in Ref. [92].
In Table VIII, we also list Nmult in the nontrivial topo-

logical sectors. At least at the simulated quark mass m ¼
0:050, we have not observed a substantialQ dependence of
Nmult.

V. STATIC QUARK POTENTIAL

We calculate the static quark potential to fix the lattice
spacing through the Sommer scale [50]. The temporal

Wilson loopsWðr; tÞ are measured up to t ¼ Nt=2 and r ¼ffiffiffi
3

p
Ns=2 with the spatial Wilson line parallel to one of the

following six directions:

2150 2150.5 2151 2151.5 2152

HMC traj
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λ m
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10000
F

W
,m
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FIG. 16. Maximum value of FW and lowest eigenvalue of HW

during MD evolution where a spike in �H is observed.
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FIG. 17. Acceptance rate PHMC as a function of �H in
simulations with HMC-4D (left panel) and HMC-5D (right
panel). The solid line is the expectation of Eq. (45). Data at
ðm;QÞ ¼ ð0:025; 0Þ with HMC-4D and at (0.015, 0) with HMC-
5D are consistent with the expectation within their huge error
and hence are omitted.

TABLE VIII. Number of DW multiplications per trajectory in units of 106.

Q 0 �2 �4

m 0.015 0.025 0.035 0.050 0.070 0.100 0.050 0.050

HMC-4D 11.9(1) 7.6(4) 5.0(2) 4.5(2) 3.4(1) 3.1(1) 5.08(2) � � �
HMC-5D 6.53(4) 5.10(2) 4.41(2) 3.62(1) 2.98(1) 2.44(1) 3.61(2) 3.65(1)
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ð1;0;0Þ; ð1;1;0Þ; ð2;1;0Þ; ð1;1;1Þ; ð2;1;1Þ; ð2;2;1Þ:
(47)

Gauge configurations separated by 10 HMC trajectories
are smeared 20 times using a method proposed in Ref. [93],
and we measure Wðr; tÞ every four smearing steps. The
computational cost of this measurement is not large: it
takes about 2 minutes per configuration on a single node
of SR11000 with the sustained speed of 30%.

We determine the static potential VðrÞ from the corre-
lated fit

Wðr; tÞ ¼ CðrÞ exp½�VðrÞt� (48)

at the number of the smearing steps which gives the
maximum value of the overlap to the ground state CðrÞ.
The fit range ½tmin; tmax� is set to [3, 5] by inspecting the t
dependence of the effective potential

VeffðrÞ ¼ ln½Wðr; tÞ=Wðr; tþ 1Þ�: (49)

Examples of VeffðrÞ are shown in Fig. 20, and VðrÞ is
plotted as a function of r in Fig. 21.
We do not observe any clear sign of the string breaking

even at our smallest quark mass �ms=6, possibly due to
the small overlap of the spatial Wilson line to the two
static-light meson state. We therefore fit VðrÞ to the con-
ventional form with the perturbative Coulomb and the
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calculations of MD forces and in the Metropolis tests (MTs), whereas the filled symbols are their total.
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TABLE IX. Fit parameters to Eq. (46) for two algorithms,
HMC-4D and 5D.

Algorithm cmult=10
6 
mult

HMC-4D 0.57(3) 0.68(2)

HMC-5D 0.368(3) 0.710(3)
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linear confinement terms

VðrÞ ¼ V0 � 
=rþ �r: (50)

The fit range is set to ½rmin; rmax� ¼ ½ ffiffiffi
6

p
; 8

ffiffiffi
3

p � at all quark
masses from the stability of 
 and � against the choice of
the fit range shown in Fig. 22. Fit results are summarized in
Table X. Systematic errors due to the choice of the fit
ranges are estimated from the (maximum) change in the
fit parameters by shifting ½tmin; tmax� to [4, 6] or varying

rmin and rmax in the ranges rmin 2 ½2; 3� and rmax 2
½8 ffiffiffi

2
p
; 8

ffiffiffi
3

p �. These are added in quadrature in Table X.
The fit curves are shown in Fig. 21.

The Sommer scale r0 is defined through the derivative of
VðrÞ in the intermediate region of r [50],

r20dVðrÞ=drjr¼r0 ¼ 1:65: (51)

We fix r0 in our simulations through the parametrization
Eq. (50),

0.72

0.73

0.74
V ef

f(r
)

0 5

t

1.05

1.10

1.15

V ef
f(r

)
m = 0.015, r = |(2,0,0)|

m = 0.015, r = |(3,3,3)|

0.73

0.74

0.75

V
ef

f(r
)

0 5 10

t

1.05

1.10

1.15

V
ef

f(r
)

m = 0.050, r = |(2,0,0)|

m = 0.050, r = |(3,3,3)|

FIG. 20. Effective potential VeffðrÞ at r ¼ 2 and 3
ffiffiffi
3

p
. Left and right panels show data at m ¼ 0:015 and 0.050.
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r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:65� 


�

s
; (52)

instead of the numerical derivative. In Fig. 22, we observe
that the rmin dependence of 
 is large and correlated to that
of � at rmin & 2. It turns out that these uncertainties
partially cancel each other in the ratio Eq. (52) leading to
a mild rmin dependence of r0 shown in Fig. 23. Therefore,
as intended in Ref. [50], r0 provides a more reliable
estimate of the lattice scale than the previously used inputffiffiffiffi
�

p
even through the parametrization Eq. (50) over the

wide region of r. Our numerical results are summarized in
Table X. We note that r0 from three topological sectors are
consistent with each other within their statistical accuracy.

Their Q dependence is therefore ignored in the following
analysis.
We employ an input r0 ¼ 0:49 fm to fix the scale. A

quantity aðmÞ ¼ 0:49=r0ðmÞ is then extrapolated to the
chiral limit testing the following fitting functions up to
quadratic order:

aðmÞ ¼ c0 þ c1mðþc2m2Þ; (53)

aðmÞ�1 ¼ c00 þ c01mðþc02m2Þ: (54)

Fit parameters are summarized in Table XI. Since we have
accurate data in the wide range of m, the lattice spacing in
the chiral limit a ¼ að0Þ is very stable against the choice of
the fitting function as plotted in Fig. 24. We obtain

a ¼ 0:1184ð3Þð17Þð12Þ fm; (55)

where the central value is from the linear form of Eq. (53)
and the first error is statistical. The second error is due to
the choice of the fit ranges for Eqs. (48) and (50). The third
represents the uncertainty due to the choice of the chiral
extrapolation form and estimated by the maximum devia-
tion in a from the other three forms, Eqs. (53) (quadratic)
and (54).

� shift

Inclusion of dynamical quarks into simulations gener-
ally makes us decrease � to keep the lattice spacing fixed.
The magnitude of the � shift depends on the fermion
formulation. A sizable negative shift, or too large bare
coupling in other words, could cause problematic lattice
artifacts: for instance, one may suffer from a remnant of the
fundamental-adjoint phase transition [94]. In practice,
some evidence of nontrivial phase structure has been found

TABLE X. Fit parameters in Eq. (50) and r0 from Eq. (52). The first and second errors are statistical and systematic, respectively.

� m Q V0 
 � r0

2.30 0.015 0 0.786(3)(15) 0.403(5)(28) 0.0740(6)(26) 4.103(14)(51)

2.30 0.025 0 0.776(4)(21) 0.389(5)(36) 0.0763(7)(37) 4.064(13)(59)

2.30 0.035 0 0.769(4)(22) 0.381(5)(38) 0.0780(6)(34) 4.032(10)(49)

2.30 0.050 0 0.760(3)(16) 0.375(5)(30) 0.0812(7)(26) 3.963(11)(42)

2.30 0.070 0 0.756(4)(25) 0.373(6)(42) 0.0832(7)(40) 3.917(11)(40)

2.30 0.100 0 0.749(4)(18) 0.368(5)(30) 0.0864(7)(30) 3.852(10)(35)

2.30 0.050 �2 0.759(7)(24) 0.370(11)(44) 0.0803(12)(34) 3.993(16)(29)

2.30 0.050 �4 0.758(6)(20) 0.368(10)(36) 0.0811(12)(29) 3.976(19)(36)
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FIG. 23. Sommer scale r0 as a function of rmin at m ¼ 0:015
(top panel) and 0.050 (bottom panel). We set rmax ¼ 8
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p
.

TABLE XI. Fit parameters in Eqs. (53) and (54). The first and second errors are statistical and systematic.

Fit form �2=dof cð0Þ0 cð0Þ1 cð0Þ2
Equation (53) 1.60 0.1184(3)(17) 0.0914(49)(57) � � �
Equation (53) 0.47 0.1172(6)(17) 0.145(24)(8) �0:45ð20Þð2Þ
Equation (54) 2.00 8.43(2)(12) �5:93ð32Þð50Þ � � �
Equation (54) 0.46 8.52(4)(13) �10:0ð1:6Þð0:8Þ 34(13)(3)
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in previous unquenched simulations even at relatively fine
lattice spacing a � 0:1 fm [95–97].

In Fig. 25, we compare the lattice spacing determined
from r0 in our simulations and previous simulations with
the Iwasaki gauge action. The � shift due to the extra-
Wilson fermions is not expected to be large, since effects of
their high modes are canceled in the ratio Eq. (6). This is
supported by the one-loop calculation of the vacuum po-
larization function in Ref. [47], and Fig. 25 provides a
nonperturbative confirmation.

The figure also shows that the dynamical overlap fermi-
ons lead to a small � shift, which is in good accordance
with the one-loop calculation in Ref. [98]. The net shift is

substantially smaller than that from the tadpole-improved
clover fermions. Therefore, the � shift is less problematic
in dynamical overlap simulations even with the unphysical
fermions, and this is also likely the case in three-flavor
QCD.

VI. LOCALITY

The locality of the overlap operator D is closely related
to the properties of low-lying modes (�W;k, uW;k) of HW. It

is proved in Ref. [99] that D is exponentially local,

jDðx; yÞj / e�jx�yj=l, if j�W;kj has a positive lower bound.

This does exist in our simulations by the use of the auxil-
iary determinant det½�W�.
The central concern is therefore the size of the localiza-

tion range l, which should be smaller than the QCD scale
��1

QCD. In Refs. [100,101], it is argued that the range ofD is

characterized by two sets of eigenmodes of HW:
(i) localized low-lying modes, whose maximum eigenvalue
is denoted by ��W in the following, and (ii) extended modes
with higher eigenvalues. It leads to a conjecture

jDðx; yÞj � ��W�ð ��WÞ exp
�
� jx� yj
2lW;lð ��WÞ

�
þ C exp½��W;cjx� yj�; (56)

where lW;l is the localization length of the localized modes,

and � represents the spectral density. The parameter �W;c is

the so-called mobility edge, which separates the localized
and extended modes. The prefactor of the first term follows
from a steep rise in � observed in Refs. [100,101]. The
extended modes govern the localization properties of D
through �W;c, provided that C� ��W�ð ��WÞ and �W;c &
ð2lW;lÞ�1.

We estimate �W;c in our simulations in the following

steps. First, we locate the lattice site yk, where the kth
lowest mode has its maximum magnitude �kðxÞ ¼
uW;kðxÞyuW;kðxÞ. Then a function characterizing its decay

is obtained by the average

fW;kðrÞ ¼ 1

NptðrÞ
X

x;jx�ykj¼r
�kðxÞ; (57)

where NptðrÞ represents the number of lattice points which

have the same distance r from yk. Since the spectrum of
HW depends on the gauge configuration, we consider a
range 0 � j�Wj � 0:3, which is divided into windows with
their size of ��W ¼ 0:3=125, and fW;kðrÞ is averaged over
the eigenmodes in each window. We calculate fW;iðrÞ,
where i is now a window index, at m ¼ 0:025 and 0.050
using 10–40 configurations separated by 10 trajectories.
Because of the small statistics, we set the bin size to one
configuration, which possibly underestimates the statistical
error quoted in this section. An example of fW;iðrÞ is

plotted in Fig. 26. Generally speaking, low modes decay

0 0.05 0.1

m

0.11

0.12

0.13

a(
m

)
a vs m: linear
a vs m: quad.

a
-1

 vs m: linear
a

-1
 vs m: quad.

FIG. 24. Chiral extrapolation of aðmÞ with the linear form of
Eq. (53) (circles). Extrapolated values with other fitting forms in
Eqs. (53) (square) and (54) (triangles) are also plotted. Two error
bars for these symbols show statistical and total errors.
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those in Ref. [57] and our preparatory study. These are compared
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exponentially at large r and the decay rate decreases as
j�Wj increases.

The localization length at the ith window lWðj�WjiÞ is
determined by fitting fW;iðrÞ at large r to

fW;iðrÞ ¼ ci exp

�
� r

lWðj�WjiÞ
�
: (58)

Its j�Wj dependence is plotted in Fig. 27. The mobility
edge �W;c is then estimated as j�Wj at which lWðj�WjÞ�1

vanishes. It turns out that �W;c has smallm dependence but

is roughly 0.33. We obtain ��1
W;c � 550 MeV in physical

units from our estimate of a in Eq. (55).
At m ¼ 0:025, we also study the localization properties

directly from the overlap operator multiplied to a pointlike
quark vector

fðrÞ ¼ max
x;jx�yj1¼r

�X
x0
Dðx; x0Þ�ðx0 � yÞ

�
: (59)

Here we use the taxi-driver distance jx� yj1 ¼ P
�jx� �

y�j to avoid underestimating the localization range l. We

obtain

l�1 ¼ 796ð2Þ MeV (60)

by an exponential fit fðrÞ / e�r=l shown in Fig. 28. Both
�W;c and l therefore suggest that the overlap operator is

exponentially local with a localization range smaller than
��1

QCD in our simulations.

VII. CONCLUSIONS

In this article, we simulate two-flavor QCD with dy-
namical overlap quarks on the reasonably large (1.9 fm)
and fine (a ¼ 0:12 fm) lattice. The high statistics of 10 000
trajectories are accumulated at sea quark masses down to
ms=6. The key step leading to such large-scale simulations
is the suppression of the (near-)zero modes of HW by the
auxiliary determinant. This enables us to use a relatively
cheap approximation of sgn½HW� and also to avoid the
substantial overhead to deal with the discontinuity of the
overlap action. The use of the 5D CG algorithm, the
Hasenbusch mass preconditioning, and the multiple time
scale MD integration also reduces the simulation cost to a
large extent.
Dynamical overlap simulations are still computationally

demanding compared to the domain-wall fermions [16].
The complexity of the overlap formulation, however, sug-
gests that there is much room for improvement in the
implementation of HMC. The low-mode preconditioning
for the 5D solver is developed after this study and imple-
mented in our latest runs [15,16]. Further improvement in
the solver algorithm, especially in the 5D solver (or alter-
natives) to invert ðDyDÞ, is a central concern for pushing
simulations to larger volumes. The test of MD integration
schemes with less discretization error and/or a further
tuning of the HMC parameters and the unit trajectory
length are also interesting subjects to be studied.
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We are now studying various nonperturbative aspects of
two-flavor QCD using the generated gauge ensembles. The
chiral condensate is one of the most fundamental parame-
ters in ChPT and has been determined in Refs. [57,58].
Studies of the low-lying hadron spectrum [102], the kaon B
parameter [103], and the pion form factor [104] are in
progress, paying particular attention to the consistency of
their chiral behavior with ChPT. Finite size corrections
based on ChPT are also important in these studies. Our
calculation of the topological susceptibility [65] is an
important step to study the nature of the QCD vacuum in
fixed topological sectors. The pion mass splitting through
the vector and axial-vector current correlators [105] is an
example for which the exact chiral symmetry is crucial and
might be difficult to study even with the domain-wall
fermions. Finally, our simulations have already been ex-
tended to three-flavor QCD [15,16] for fully realistic stud-
ies of QCD.
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B552, 363 (1999).
[100] M. Golterman and Y. Shamir, Phys. Rev. D 68, 074501

(2003).
[101] M. Golterman, Y. Shamir, and B. Svetitsky, Phys. Rev. D

72, 034501 (2005).

TWO-FLAVOR QCD SIMULATION WITH EXACT CHIRAL . . . PHYSICAL REVIEW D 78, 014508 (2008)

014508-21



[102] J. Noaki et al. (JLQCD Collaboration), Proc. Sci.,
LAT2007 (2007) 126 [arXiv:0710.0929].

[103] N. Yamada et al. (JLQCD Collaboration), Proc. Sci.,
LAT2007 (2006) 379 [arXiv:0710.0462].

[104] T. Kaneko et al. (JLQCD Collaboration), Proc. Sci.,
LAT2007 (2007) 148 [arXiv:0710.2390].

[105] E. Shintani et al. (JLQCD Collaboration), Proc. Sci.,
LAT2007 (2007) 134 [arXiv:0710.0691].

[106] S. Takeda et al. (CP-PACS Collaboration), Phys. Rev. D
70, 074510 (2004).

S. AOKI et al. PHYSICAL REVIEW D 78, 014508 (2008)

014508-22


