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The thermodynamics of massless ideal gas of overlap quarks has been investigated both analytically

and numerically for both zero and nonzero baryon chemical potential. Any �2 divergence is shown

analytically to be absent for a class of actions with nonzero chemical potential. All such actions are shown

to violate chiral invariance. While the parameter M can be shown to be irrelevant in the continuum limit,

as expected, it is shown numerically that the continuum limit can be reached with relatively coarser

lattices for 1:5 � M � 1:6. Numerical limitations of the existing method of introduction of chemical

potential are demonstrated. Finally we also show that the energy density for the massive overlap fermions

has the correct continuum limit.
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I. INTRODUCTION

Lattice QCD has so far provided the most reliable theo-
retical predictions for the thermodynamics of quarks and
gluons important for the ongoing experiments at the
Relativistic Heavy Ion Collider (RHIC), and may continue
to do so for those at the upcoming Large Hadron Collider
(LHC). While the equation of state seems [1] to exhibit
robust features as one changes the number of light quarks
Nf, the order of the phase transition and the transition

temperature Tc seems [2] to depend on it crucially.
Indeed, the location and even the existence of the critical
point in the �B � T phase diagram is expected [3] to
depend on Nf, as a result of this dependence of the order

of the transitions on Nf. Since the transition seems to be

associated with the restoration of the spontaneously broken
chiral symmetry at high temperatures, it is very important
to study it using fermions having exact chiral symmetries
on the lattice. The popular choices of the fermions em-
ployed in simulations so far have either no chiral symmetry
(Wilson fermions) on the lattice or only partial chiral
symmetry (staggered fermions). For the latter even Nf is

not well-defined on the lattice and is typically taken to be
the anticipated continuum value. Of course, these issues
are expected to become irrelevant in the continuum limit of
vanishing lattice spacing, i.e, in the limit when the number
of sites in the temporal direction becomes very large:
NT ! 1. But they are likely to affect the current bunch
of results obtained on lattices up to NT ¼ 8.

In view of the experimental relevance of these issues, it
would clearly be ideal to employ fermions with exact chiral
symmetry on lattice for investigations of the QCD thermo-
dynamics. As is well-known by now, the overlap fermions
[4] have such good chiral properties even on the lattice.
The corresponding fermion operator respects chiral sym-

metry at the expense of being highly nonlocal, making the
corresponding computations rather expensive. Advances in
both algorithms and the computer hardware may have
brought such investigations closer to reality today. In this
paper we investigate the thermodynamics of the free over-
lap fermions with an aim to examine its continuum limit
both analytically and numerically. For the above men-
tioned practical reasons, we investigate numerically
whether the irrelevant parameterM (see below for explicit
definition) can be tuned optimally to recover the contin-
uum results on the smallest possible lattice size. These
predictions can be used in full QCD simulations with
such fermions to do the finite temperature calculations
faster. A way to introduction of chemical potential in the
overlap formalism was proposed [5] and has been recently
studied [6] numerically withM ¼ 1. It was shown that the
known canonical �2 divergence at zero temperature did
not appear. Our analytical work shows the absence of the
divergence for all allowed M, 0<M< 2, for the same
class [7] of actions as the staggered fermions.
The plan of our paper is as follows. Section II deals with

zero chemical potential case. The analytical (NT ! 1)
results for the energy density (equivalently pressure) at
nonzero temperatures are derived and the numerical result
for finite NT are presented. Corresponding results for non-
zero chemical potential are given in the next section, where
the quark number susceptibility is also presented in addi-
tion. Section IV covers the case of massive quarks. A
summary is provided in the final Sec. V.

II. ZERO CHEMICAL POTENTIAL

The overlap Dirac operator [4] has the following form
for massless fermions on asymmetric lattice with spacing a
and a4 in the spatial and temporal directions:

Dov ¼ 1þ �5sgnð�5DWÞ; (1)

where sgn denotes the signum function and
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is the standard Wilson-Dirac operator on the lattice but
with a negative mass term M 2 ð0; 2Þ. The overlap opera-
tor satisfies the Ginsparg-Wilson relation [8] and has exact
chiral symmetry on the lattice. The corresponding infini-
tesimal chiral transformations [9] for Nf ¼ 1 are

� ¼ ��5

�
1� 1

2
Dov

�
 and

� � ¼ � � 

�
1� 1

2
Dov

�
�5;

(3)

 and � are the usual four-component fermion and anti-
fermion fields. They acquire a flavor index for higher Nf,
with corresponding modification in the transformations
above similar to that in the continuum. The expression
for energy density and pressure can be obtained from the
partition function Z ¼ detDov obtained by integrating the
quark-antiquark fields

� ¼ T2

V

@ lnZðV; TÞ
@T

��������V
; and P ¼ T

@ lnZðV; TÞ
@V

��������T
;

(4)

where the spatial volume V ¼ N3a3 and the temperature
T ¼ ðNTa4Þ�1 for an N3 � NT lattice. We restrict our-
selves to U ¼ 1 here to focus on the ideal gas limit.
Noting that the signum function for a matrix is defined in
terms of its eigenvalues, the energy density can be written
as

� ¼ � 1

N3a3NT

�@ lnðQ
n
�nÞ

@a4

�
a
¼ � 2

N3a3NT

X
��

�
@ ln��
@a4

�
a
;

(5)

where the chiral nature of the eigenvalue spectrum in the
free case was used. The eigenvalues of the free overlap
operator in the momentum space can be easily worked
[6,10] out to be

�� ¼ 1� sgnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ h25

q
Þh5 � i

ffiffiffiffiffi
h2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ h25

q ; (6)

where the variables h above are given by

h5 ¼ M� X3
j¼1

ð1� cosðapjÞÞ � a

a4
ð1� cosða4p4ÞÞ;

hj ¼ � sinðapjÞ where j ¼ 1; 2; 3;

h4 ¼ � a

a4
sinða4p4Þ; h2 ¼ h21 þ h22 þ h23 þ h24:

(7)

From the (anti)periodic fermion boundary conditions in the
(time) space directions, the discrete p�’s appearing in the
equations above are seen to have the following allowed
values:

apj ¼
2nj�

N
; nj ¼ 0; . . . ; ðN � 1Þ;

j ¼ 1; 2; 3 and ap4 ¼ ð2nþ 1Þ�
NT

;

n ¼ 0; . . . ; ðNT � 1Þ:

(8)

Note that the variables hi are all real. Further, a simple
algebra shows that ðh2 þ h25Þ> 0 for all ranges of interest
forM, a, and a4. Since the signum term in Eq. (6) is thus a
constant, it does not contribute to the derivative in Eq. (5);
it merely provides the overall sign for the energy density.

Choosing sgnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ h25

q
Þ ¼ 1, the energy density becomes

� ¼ 2
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where the summations are over all the discrete sets of
momenta on the lattice. The derivatives in the expression
above are seen to be

@h4
@a4

¼ � h4
a4

(10)

@h5
@a4

¼ a

a24
ð1� cosða4p4ÞÞ: (11)

Similarly pressure P can be computed by taking partial
derivative with respect to a, holding a4 constant to obtain

P ¼ �2

3N3a2a4NT

X
pj;p4

h2 @h5@a � h5h4
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(12)

The derivatives in the expression for pressure are
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@h4
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¼ h4
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(13)
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¼ � 1

a4
ð1� cosða4p4ÞÞ: (14)

Substituting the derivatives in Eqs. (9) and (12), one finds
the expected ideal gas equation of state � ¼ 3P, valid for
all values of a and a4. We shall therefore focus in the
remainder only on the energy density for free overlap
quarks on the lattice and evaluate it by setting a4 ¼ a.
We introduce a more compact notation for doing so:

h5 ¼ gþ cos! h2 ¼ fþ sin2!

h2 þ h25 ¼ dþ 2g cos!;
(15)

where ! ¼ ap4 and the functions g, f, and d are given by

g ¼ M� 4þ b; with

b ¼ cosðap1Þ þ cosðap2Þ þ cosðap3Þ
f ¼ h21 þ h22 þ h23

d ¼ 4þ ðM� 4Þ2 þ 2ðM� 4Þbþ c; with

c ¼ X
i<j<4

2 cosðapiÞ cosðapjÞ:

(16)

It may be noted that the g, d, and f depend only on spatial
momenta pj and enable us to write down the ap4 ¼ !
dependence of the energy density explicitly:

�a4 ¼ 2

N3NT

X
pj;n
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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As shown in Appendix A, the summation over the
Matsubara frequencies can be carried out using the stan-
dard contour integral techniques, resulting in the energy
density on the lattice to be,

�a4 ¼ 4

N3

X
pj

� ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
�

1

eNTsinh
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where the �3, �4 terms come from the line integrals 3 and 4
in Fig. 8 respectively. Their explicit NT dependence indi-
cates that they contribute to the energy density on the
lattice. However, they do not do so in the continuum limit,
as we shall see below.

In order to take the continuum limit of a! 0, we let N,
NT ! 1 such that T and VT3 are kept constant. Each
summation over momenta is replaced by an integral in
this limit:

1

N

X
pj

! a

2�

Z 1

�1
dpj: (19)

Further the integration variable ! ¼ ap4 can be traded for
p4, pushing the branch points at ��� icosh�1 d

2g to in-

finity faster than the contours 3 and 4 are pushed. The line
integrals and hence the terms �3 and �4 vanish. Since the
poles at isinh�1

ffiffiffi
f

p
scale as a in this limit, they continue to

be enclosed in the contour at a finite p4 and do contribute to
the energy density. This can, of course, be explicitly
checked algebraically by taking the limit of Eq. (18) to
obtain the expression for the continuum energy density as

�SB ¼ 2

ð2�Þ3
�
2
Z Y3

j¼1

dpj
E

1þ eE=T

�
¼ 7�2

60
T4; (20)

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3

q
is the energy of the massless

quarks.

A. Numerical evaluation

In this subsection we investigate the lattice energy den-
sity of Eq. (17) numerically by summing over all the
momenta. Our aim is (i) to estimate the importance of
the terms �3 and �4 in it on lattices of practical sizes, and
(ii) to find out the role M plays on finite lattices. In
particular, it would be good to know if there exists a range
of the irrelevant parameterM for which the energy density
converges to that of the continuum ideal Fermi gas on
reasonable, i.e. computationally inexpensive, lattice sizes.
Since we have shown the existence of the continuum limit
for the entire allowed range of M in the previous subsec-
tion, it is clear that a sufficiently fine lattice must even-
tually yield the correct result for any M.
In general, the dimensionless lattice energy density will

be of the form

E ¼ AðMÞ þ B

N4
T

þ CðMÞ
N6
T

þDðMÞ
N8
T

þ � � � ; (21)

where the coefficients AðMÞ and B are the usual vacuum
and the T4 contributions, while CðMÞ and DðMÞ are finite
lattice spacing artifacts. For each value of M and aspect
ratio, defined as � ¼ N=NT , the energy density on the
lattice was calculated as a function of the NT . Clearly A
is the dominant contribution and its removal turned out to
be a tricky issue governed by the precision of our compu-
tations. Fitting the above form to obtain C or D was
therefore not feasible. The zero temperature part of the
energy density was calculated from Eq. (17) by taking
NT ! 1 and a large spatial extent, keeping the lattice
spacing finite. The resulting integral over ! was done
numerically for each M to estimate the zero temperature
contribution. Subtracting the zero temperature part from
the energy density and dividing the resultant � by �SB gives
us a ratio which we employ for further studies. Figure 1
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displays the ratio �=�SB as a function of NT for M ¼ 1:55
and various aspect ratios � . A mild dependence on � is
visible for lower values but in each case the curve ap-
proaches to unity by NT ¼ 12, signalling the onset of
continuum limit. Figure 2 exhibits the M dependence of
the same ratio for a fixed � ¼ 5 for the range 0:4 � M �
1:65. A range of 1:5 � M � 1:6 emerges as the favored
one because all the M-dependent terms are seen to be
minimum there and hence the continuum limit is reached
faster. On smaller lattices with NT ¼ 4–8, the lattice re-
sults are seen to be 1.6–1.8 times larger in this range ofM.
For other values of M, the continuum limit is seen to be
approached slowly; even an NT ¼ 25 seems not enough.
For largerM, we also observed oscillations as NT changed
between odd and even, limiting our effort to increase theM
range further. The values of �=�SB for NT ¼ 4–16 and
different M are tabulated in Tables I and II, for easy
reference. We note that the � ¼ 3; 4 results are the same

as that for � ¼ 5 as seen from Fig. 1. In order to estimate
the size of the 1=N2

T correction term for different values of
M, the same ratio is plotted as a function of 1=N2

T in Fig. 3.
From the plot, it is evident that the correction terms die
down very fast for 1:50 � M � 1:60 and the continuum
limit is reached within 2–3% already for NT ¼ 12 whereas
for M ¼ 1 they are relevant even for NT � 12. Of course,
the continuum extrapolation forM ¼ 1:0 is easier than for
1:50 � M � 1:60 due to the nonlinearities present for the
latter. Note, however, that energy density for at least three
different lattice sizes with NT ¼ 10; 12; 14 needs to be
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TABLE I. �=�SB values for different M for � ¼ 2.

NT M ¼ 1:0 1.50 1.55 1.60 1.65

4 0.630 1.453 1.571 1.697 1.828

6 1.194 1.606 1.690 1.792 1.914

8 1.316 1.355 1.383 1.431 1.506

10 1.268 1.158 1.150 1.156 1.186

12 1.206 1.078 1.054 1.036 1.033

14 1.160 1.060 1.032 1.004 0.983

16 1.129 1.061 1.037 1.008 0.979

TABLE II. �=�SB values for different M for � ¼ 5.

NT M ¼ 1:0 1.50 1.55 1.60 1.65

4 0.561 1.342 1.450 1.563 1.681

6 1.141 1.563 1.644 1.742 1.857

8 1.272 1.319 1.350 1.399 1.475

10 1.228 1.122 1.116 1.124 1.157

12 1.167 1.041 1.018 1.001 1.002

14 1.123 1.023 0.996 0.969 0.950

16 1.092 1.025 1.001 0.972 0.944
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FIG. 3. The variation of the ratio �=�SB with 1=N2
T for

different M � 1 and � ¼ 5. The plusses, crosses, stars, boxes,
and triangles denote M ¼ 1:0, 1.50, 1.55, 1.60 and 1.65,
respectively.

DEBASISH BANERJEE, R.V. GAVAI, AND SAYANTAN SHARMA PHYSICAL REVIEW D 78, 014506 (2008)

014506-4



computed for such an extrapolation. On the other hand,
although the extrapolation for 1:50 � M � 1:60 is difficult
due to the complex variation seen in Fig. 3, the deviation
from the continuum value is within the typical accuracy
range of the current lattice results, making it an optimal
range for simulations. It should also be noted that the
corrections for the overlap fermions for M� 1:55 for
NT < 12 are smaller than compared to the Wilson and
the staggered case [11] as well. Reference [11] deals
with p=pSB which we showed above to be identical to
the �=�SB for the overlap ideal gas.

Filled squares in Fig. 4 show the percentage average
deviations of the ratio from unity due to lattice artifact
terms as a function ofM for large NT values (NT � 18). It
shows marginal dependence on M for M< 1:2 but the
deviation itself is about 5–6%. For larger M, the data
show a dip, indicating clearly that the thermodynamics of
free fermions favors the optimum value ofM to lie between
1.50–1.60, with a deviation of only about 2.5% or lower.

Comparing our results with other studies of thermody-
namics of free fermions done with improved actions [12]
and also with overlap fermions (M ¼ 1) in 2D [13] as well
as in 4D [6,11], we find that (i) there are larger deviations
in higher dimensions and (ii) the oft-favored choice of
M ¼ 1 favors rather poorly on finite lattices. Indeed, one
can significantly reduce the corrections to the energy den-
sity of overlap fermions due to the lattice artifacts with a
proper choice of M.

III. NONZERO CHEMICAL POTENTIAL

The chemical potential is usually introduced as the
Lagrange multiplier to investigate thermodynamics at con-
stant conserved number. Constructing the relevant number
operator for the overlap Dirac fermions is not easy due to
its nonlocality [14] and may even be not unique [15].

Instead of deriving the conserved number, one may make
an inspired guess for it such that it has the right continuum
limit. One such proposal for introducing the chemical
potential for the overlap operator is [5] to introduce it in
the DW as one would for the usual Wilson fermions:

Dov ¼ 1þ �5sgnð�5DWð�̂ÞÞ; (22)

where the chemical potential �̂ ¼ �a4 appears only as
multiplying factors expð�̂Þ and expð��̂Þ to the links U4

and Uy
4 respectively in Eq. (2). This, of course, renders

�5DWð�Þ to be non-Hermitian, necessitating an extension
of the usual definition of the signum function. The natural
choice [5] was to use the sign of the real part of the
eigenvalues of �5DWð�Þ in the equation above. It is im-
portant to note that the extended signum function it is not
defined for purely imaginary eigenvalues. Numerical simu-
lations were performed [6] for an ideal gas of overlap
fermions to show that the above way of introducing �
does not encounter any quadratic divergences at zero tem-
perature. Such divergences were known to arise [16,17] for
staggered and Wilson fermions, if � was introduced
naively as a coefficient of the conserved number. These
were eliminated by the choice of the expð��̂Þ factors. A
more general way to introduce the chemical potential is, of
course, to introduce functions Kð�̂Þ and Lð�̂Þ in place of
the factors expð�̂Þ and expð��̂Þ respectively such that
Kð�̂Þ ¼ 1þ �̂þOð�̂2Þ and Lð�̂Þ ¼ 1� �̂þOð�̂2Þ. It
was shown [7] that the quadratic divergences are avoided if
Kð�̂Þ � Lð�̂Þ ¼ 1.
Here we follow that idea and introduce chemical poten-

tial in the overlap Dirac operator through the K and L
factors in DW and study where the condition to eliminate
the quadratic divergences remains the same. Introducing

Kð�̂Þ � Lð�̂Þ
2

¼ R sinh	
Kð�̂Þ þ Lð�̂Þ

2
¼ R cosh	;

(23)

one can follow through the steps of the previous section to
find that the free overlap operator in the momentum space
can again be written in terms of the hi of Eq. (7) but with h4
and h5 changed to

h5 ¼ M� X3
j¼1

ð1� cosðapjÞÞ � a

a4
ð1� R cosða4p4 � i	ÞÞ

h4 ¼ � a

a4
R sinða4p4 � i	Þ: (24)

The energy density in presence of finite chemical poten-
tial is defined as

�ð�Þ ¼ � 1

N3a3NT

�
@ ln detD

@a4

�
a;a4�

(25)

¼ � 2

N3a3NT

�
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: (26)
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In the following we assume that the signum function is
always defined and is þ1, as for the � ¼ 0 case. We shall
comment on this assumption later. The energy density is
obtained using Eq. (25) and setting a ¼ a4,

�a4 ¼ 2

N3NT

X
pj;n

�
1�Rcosð!n� i	Þ

dRþ 2gRcosð!n� i	Þ

þ R2sin2ð!n� i	ÞðgþRcosð!n� i	ÞÞ
ðdRþ 2gRcosð!n� i	ÞÞðfþR2sin2ð!n� i	ÞÞ

�

�½gþRcosð!n� i	Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRþ 2gRcosð!n� i	Þ

q
�:

(27)

Note that the summand in the equation above has the same

functional form as that in Eq. (17). Indeed the only changes
are: dR ¼ fþ g2 þ R2 replaces d of Eq. (16), !! !�
i	, and the factor Rmultiplies each sine/cosine term. Let us
therefore denote the summand in Eq. (27) as FðR;!� i	Þ.
Comparing Eq. (24) with Eq. (7), and using the expression
for the pressure given in Eq. (12), one again finds that the
equation of state � ¼ 3P also holds in the presence of a
chemical potential �. An additional new physical observ-
able that can be computed is the number density, defined as

n ¼ 1

N3a3NT

�
@ ln detD

@�̂

�
a4

: (28)

In terms of h’s the previous expression can be calculated
explicitly,

na3 ¼ �2i

N3NT

X
pj;n

�
R sinð!n � i	Þ

�
gR cosð!n � i	Þ þ R2 þ f

ðdR þ 2gR cosð!n � i	ÞÞðfþ R2sin2ð!n � i	ÞÞ
�

�
�
gþ R cosð!n � i	Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dR þ 2gR cosð!n � i	Þ

q ��

¼ �2i

N3NT

X
pj;n

FNðR;!n � i	Þ: (29)

A. Analytic results

In order to obtain the condition for removing the diver-
gences, we first calculate the energy density at zero tem-
perature i.e for the limitNT ! 1 at finite a. The frequency
sum 1

NT
� in Eq. (27) gets replaced by the integral 1

2� �R
�
�� d!. Subtracting the vacuum contribution correspond-

ing to� ¼ 0, i.e., R ¼ 1, 	 ¼ 0, the energy density at zero
temperature is given by

�a4 ¼ 1

�N3

X
pj

�Z �

��
FðR;!� i	Þd!�

Z �

��
Fð!Þd!

�
:

(30)

Choosing the contour shown in Fig. 5, the expression
above can be evaluated in the complex ! plane as

�a4 ¼ 1

�N3

X
pj

�
2�i

X
i

ResFðR;!iÞ �
Z �

��i	
FðR;!Þd!

�
Z ��

�
FðR;!Þd!�

Z ���i	

��
FðR;!Þd!

�
Z �

��
Fð!Þd!

�
: (31)

The second and fourth terms cancel since F is an even
function which satisfies Fð�þ i
Þ ¼ Fð��þ i
Þ.
Hence, we obtain

�a4 ¼ 1

�N3

X
pj

�
2�R3�

�
Kð�̂Þ � Lð�̂Þ

2
� ffiffiffi

f
p �

þ
Z �

��
FðR;!Þd!�

Z �

��
Fð!Þd!

�
; (32)

where �iR3 is the residue of the function FðR;!Þ at the
pole �i sinh�1ð ffiffiffi

f
p
=RÞ and is given by

FIG. 5. Contour chosen for evaluating the energy density and
the number density for nonzero of chemical potential at zero
temperature. The thick line indicates the Matsubara frequencies
while the filled circles denote the poles of FðR;!Þ.
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R3 ¼
ffiffiffi
f

p ðgþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dR þ 2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

pq
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

p ðdR þ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

p Þ
ðg

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

q
Þ: (33)

Noting that the number density in Eq. (29) has the same
pole structure as the energy density, with only the residues
being different in the two cases, the latter can also be
calculated in the same way to obtain

na3 ¼ 1

�N3

X
pj

�
2�R4�

�
Kð�̂Þ � Lð�̂Þ

2
� ffiffiffi

f
p �

� i
Z �

��
FNðR;!Þd!þ i

Z �

��
FNð!Þd!

�
; (34)

where R4 is the residue of the function FNð!Þ at the pole
�i sinh�1ð ffiffiffi

f
p
=RÞ given by

R4 ¼
ðgþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fþ R2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dR þ 2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

pq
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

p ðdR þ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ R2

p Þ
� ðg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ f

q
þ R2 þ fÞ:

It is clear from both Eqs. (32) and (34) that the condition
R ¼ 1 cancels the two integrals in each of them, yielding
the canonical forms of the Fermi surface. For R � 1, there
will in general be violations of the Fermi surface on the
lattice. Moreover, in the continuum limit a! 0, one will in
general have the �2=a2 divergences for R � 1 in both the
energy density and the number density. The condition to
obtain the correct continuum values of � ¼ �4=4�2 and
n ¼ �3=3�2 can also be seen to be the expected Kð�̂Þ �
Lð�̂Þ ¼ 2�̂þOð�̂2Þ. Note that the earlier work [7] on
staggered fermions employed the exact number density on
the lattice which is not the case for the overlap fermions
here. That one obtains still identical conditions in both the
cases suggests that it is indeed the behavior near the con-
tinuum limit which dictates these conditions.

Another crucial difference is that the introduction of the
functions K and L for the staggered fermions still leaves
the action invariant under the chiral transformations due to
the locality of the action. This is true for the full theory, i.e.,
even after the link variables U�

x are restored. On the con-
trary, one can easily check that one breaks the chiral
invariance in the case of the overlap fermions by these
functions K, L, or expð��̂Þ. As defined in Eq. (3), the
chiral transformation involves Dovð�̂ ¼ 0Þ, while the ac-
tion for � � 0 for the overlap fermions has Dovð�̂Þ of the
Eq. (22). By construction, the latter does satisfy the
Ginsparg-Wilson relation [8] with the �-dependent over-
lap Dirac operator on both sides:

f�5; Dovð�̂Þg ¼ Dovð�̂Þ�5Dovð�̂Þ: (35)

Unfortunately though, it is not sufficient to guarantee
invariance under the chiral transformation in Eq. (3), as it

does not have any � dependence. Indeed, the variation of
action under the chiral transformation of Eq. (3) is

�S ¼ �
X
x;y

� x½�5Dovð�̂Þ þDovð�̂Þ�5

� 1

2
Dovð0Þ�5Dovð�̂Þ � 1

2
Dovð�̂Þ�5Dovð0Þ�xy y;

(36)

which clearly does not vanish in spite of Eq. (35).
Finally, using the same techniques to evaluate the

Matsubara frequencies sum, the energy density at nonzero
temperature and chemical potential can be computed ana-
lytically. Further details are given in Appendix B. The final
expression is

�a4 ¼ 2

N3

X
pj

� ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p 1

eðsinh
�1

ffiffi
f

p
��̂ÞNT þ 1

þ
ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p 1

eðsinh
�1

ffiffi
f

p
þ�̂ÞNT þ 1

þ �3� þ �4�

�
: (37)

The terms �3� and �4� are contributions of the line inte-

grals in Figs. 9 and 10. They vanish in the continuum limit
leaving only the contribution due to the residues of the
poles shown in those figures. It can be shown explicitly that
the expression for the lattice energy density reduces to the
well-known [18] result in the continuum.

� ¼ 2

ð2�Þ3
Z E

Q
3
j¼1 dpj

1þ eðEþ�Þ=T
þ 2

ð2�Þ3
Z E

Q
3
j¼1 dpj

1þ eðE��Þ=T
:

(38)

B. Numerical evaluation

As in Sec. , our aim of presenting numerical results by
carrying out the sums over all momenta in Eq. (B7) is to
find out the importance of lattice artifacts in form of the
terms involving �3� and �4�, resulting from the line inte-

grals 3 and 4, and to look for the role ofM. The focus here
is, of course, on the chemical potential. We therefore
consider two observables here. One is the change in the
energy density ��ð�; TÞ ¼ �ð�; TÞ � �ð0; TÞ. In contin-
uum it is given by

��ð�; TÞ
T4

¼ �4

4�2T4
þ �2

2T2
: (39)

The other quantity we consider is the quark number sus-
ceptibility at �¼̂0. For the free overlap fermions, it is
given for any �̂ by

� ¼ 1

N3a2NT

�
@2 ln detD

@�̂2

�
a4

; (40)

which can be worked out to be
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� ¼ 2i

NTN
3a2

X
pj;p4

��ðh2h4 þ h4h5 cosðap4 � i�̂ÞÞu
s4ðs� h5Þ2

þ v

s2ðs� h5Þ
�
: (41)

u and v are in the expression above are

u ¼ 2ðs� h5Þ
�
h4
@h4
@�̂

þ h5
@h5
@�̂

�
þ s2

�
@s

@�̂
� @h5
@�̂

�
; (42)

v¼ @h4
@�̂

ð2h24 þh2 þh5 cosðap4 � i�̂ÞÞ

þ h4
@h5
@�̂

cosðap4 � i�̂Þþ ih4h5 sinðap4 � i�̂Þ; (43)

and

s2 ¼ h2 þ h25: (44)

Again in the continuum, the susceptibility is known to be

�ð�Þ ¼ �2

�2
þ T2

3
: (45)

Our computations for the energy density were per-
formed keeping the ratio r ¼ �=T ¼ �̂NT fixed, yielding
a constant ��=T4 in the continuum from Eq. (39). Our
choices of r were restricted by the fact that on lattices with
odd NT , eigenvalues of �5DWð�̂Þ can turn purely imagi-
nary for sufficiently large �̂. This is related to the fact that
ð�5DWÞy�5DW has h2 þ h25 as eigenvalues and

Reðh2 þ h25Þ ¼ g2 þ 1þ fþ 2g cos! cosh�̂

Imðh2 þ h25Þ ¼ 2g sin! sinh�̂ (46)

has zero imaginary part at ! ¼ � with negative real part
for � � �c. The signum function is undefined for such
cases. Indeed, in the interacting case it may even be
possible to get such purely imaginary argument of the
signum function of the overlap Dirac operator for all NT .
From the plots of the ratio of the ��=T4 on the lattice

and in the continuum [Eq. (39)] shown in Fig. 6, we again
conclude that the continuum limit is reached for NT � 12
for both the cases for essentially allM, with the 1:5<M<
1:6 region displaying the smallest deviations in the region
NT > 12 as in the �¼̂0 case in Sec. . Moreover the results
for �� again appear about 1.6–1.8 times larger on the
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lattices with NT ¼ 4–8 while the susceptibility is close to
twice the continuum result.

In the upper panel of Fig. 7, we display the ratio of
�ð� ¼ 0; TÞ on the lattice with the corresponding contin-
uum value from Eq. (45). One sees again a similar pattern
as for the energy density. As in Eq. (21), the susceptibility
calculated on the lattice will also have a form

�ð0Þ ¼ B�

N2
T

þ C�ðMÞ
N4
T

þD�ðMÞ
N6
T

þ � � � ; (47)

where the only difference is the absence above of a con-
stant term like A. Keeping only the first term, one will
again get the effective B� to become M dependent; its
deviation from 1=3 will be a measure of the finite lattice
spacing effects. The filled circles in Fig. 4 display these
artifact effects as a function of M which were obtained by
assuming a constant behavior in the range 18 � NT � 32.
The absence of a dominant term like A in the equation
above allowed us to redo the fit with the inclusion of the
next term for each M. We found that the resultant B� is
already M independent and close to 1=3 in each case.
Moreover the C� changed with M substantially and was
smallest for M ¼ 1:6. From all these fits, it also emerged
that by NT ¼ 64 the contribution of the C� term becomes
negligible. The lower panel of Fig. 7 exhibits the results of
our attempt to verify this by extending the computations to
larger lattices. One does, indeed, find a convergence to the
continuum result irrespective of the value ofM from lattice
sizes of 3203 � 64. Note that one finds very similar effects

of finite lattice spacing for both the susceptibility and the
energy density at � ¼ 0 in Fig. 4, withM� 1:6 emerging
as a good choice for calculations on lattices with small NT
due to smallest values of the correction terms.

IV. MASSIVE OVERLAP FERMIONS

While we restricted ourselves to the thermodynamics of
massless overlap fermions, most of our treatment goes
through for the massive fermions as well. In this section
we outline this for the � ¼ 0 case. For the sake of novelty,
we use an alternative way of doing the computation. The
overlap operator for fermions of mass m is written as

Dov ¼
�
1þ m

2M

�
þ

�
1� m

2M

�
�5 sgnð�5DWÞ: (48)

The eigenvalues of the overlap Dirac operator change from
�� in Eq. (6) to �� ! ��ð1�m=2MÞ þm=M. As a
result the energy density modifies from Eq. (9) to

� ¼ 2

N3a3NT

X
pj;p4

�ðh2 @h5@a4
� h5h4

@h4
@a4

Þ
ðh2 þ h25Þð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ h25

q
� �h5Þ

; (49)

where

� ¼ 2

�
1�m2a2

4M2

�
and � ¼ 2

�
1þm2a2

4M2

�
:

Substituting the values of h4, h5, and their derivatives, one
obtains

�a4 ¼ 2�

N3NT

X
pj;n

� ð1� cos!nÞðfþ sin2!nÞ
ðdþ 2g cos!nÞð�2ðdþ 2g cos!nÞ � �2ðgþ cos!nÞ2Þ

þ sin2!nðgþ cos!nÞ
ðdþ 2g cos!nÞð�2ðdþ 2g cos!nÞ � �2ðgþ cos!nÞ2Þ

�
½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dþ 2g cos!n

p þ �ðgþ cos!nÞ�: (50)

Note that settingm ¼ 0 reduces � ¼ �. Substituting in the
equation above, and using the relation d ¼ g2 þ fþ 1, it
becomes identical to the expression in Eq. (17), as
expected.

One can again use the same contour method for evaluat-
ing the energy density. By comparing with Eq. (17), the
functions F1 and F2 can be identified as the two terms
obtained by removing the second pair of brackets of
Eq. (50). The poles (and branch cuts) of these functions
can be seen to be the same except that the poles defined by
! ¼ �isinh�1

ffiffiffi
f

p
are now given by

cosð!Þ ¼ y� z; (51)

where y and z are defined as

y ¼ g

�
�2

�2
� 1

�
(52)

z ¼ �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
�
�2

�2
� 1

�
þ fþ 1

s
: (53)

As proved in Appendix C, z� y > 1, making absðcos!Þ>
1 or! purely imaginary. The pole! ¼ icosh�1ðyþ zÞ lies
on the imaginary axis while that for ! ¼ icosh�1ðy� zÞ
lies on parallel lines shifted by ��. The choice of contour
can be made similar to that in Fig. 8, allowing only the
former to contribute to the energy density.
Settingm ¼ 0, it is easy to verify that this approach also

yields precisely the result in Eq. (A7) by selecting the
contour as in the upper half plane of Fig. 8. Its analog for
m � 0 can be obtained by computing the residue at the
pole defined by Eq. (51). Instead of giving the full expres-
sion again, we only indicate how the results in the contin-
uum limit arise. The pole positions can be computed to be
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cos! ¼ �1 ¼
�
1þ a2ð ~p2 þm2Þ

2

�
; (54)

and denoting by m0 ¼ mðM� 2Þ=M

cos! ¼ �2 ¼ �
�
1þ a2ð ~p2 þm02Þ

2

�
; (55)

where ~p2 ¼ p2
1 þ p2

2 þ p2
3. The pole at �1 has, at order a,

the residue

ResF1ð�1Þ ¼ � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
2

:

Note that all the other poles, including the poles at �2, and
the branch cuts do not contribute to the contour integrals,
as seen in Fig. 8. Therefore the energy density in the
continuum comes out to be the same as in Eq. (20) but

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1 þ p2
2 þ p2

3

q
.

V. SUMMARY

Investigating the thermodynamics of QCD on lattice
with fermions which possess both the chiral symmetry
and the flavor symmetry relevant to our world has impor-
tant consequences for both the experimental aspects of the
heavy ion collisions and the theoretical aspects of the ��
T phase diagram. Staggered fermions used in the bulk of
the work so far are not adequate to resolve some of these
issues. Overlap fermions, while computationally more ex-
pensive, may prove better in such studies in the near future.

We have presented analytical and numerical results on
the thermodynamics of free overlap fermions in 4D both

for zero and nonzero (baryonic) chemical potential by
varying the irrelevant parameter M. From the energy den-
sity computed on the lattice in these cases, we showed that
the expected continuum limit is reached. Generalizing the
proposed action [5] for nonzero �, we demonstrated that
the �2 divergence in the continuum limit is avoided for a
class of functions Kð�̂Þ and Lð�̂Þ with Kð�̂Þ � Lð�̂Þ ¼ 1;
the choice expð��̂Þ for K, L also satisfies this condition
and is therefore shown to be free of any �2 divergence. In
all of these cases, however, the chiral invariance of the
action is lost for nonzero �.
While the signum function in the free overlap Dirac

operator remains a constant in computations for � ¼ 0,
we pointed out that it becomes undefined on lattices with
odd number of temporal sites for � � �c, where the value
of �c depends on M. Our numerical computations were
restricted to smaller � values. The numerical results were
mildly dependent on the aspect ratio of the spatial and
temporal direction but changed significantly as a function
of the irrelevant parameterM of the overlap Dirac operator.
For the choice of 1:5 � M � 1:6, both the energy density
and the quark number susceptibility computed for � ¼ 0
exhibited the smallest deviations from the ideal gas limit,
as seen in Fig. 4. As seen from Figs. 1, 6, and 7, lattice
results approximate the continuum well for lattices with 12
or more temporal sites, with typically a factor	 1:8 larger
results for smaller lattices with 6–8 temporal sites. It would
be interesting to check whether the optimum M range is
still the same in the presence of gauge fields.
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APPENDIX A: ENERGY DENSITY FOR � ¼ 0

Before we show the details of the energy density calcu-
lation, let us list certain useful relations amongst the quan-
tities g, d, b, and c introduced in Eq. (16), (which will be
useful for the calculations below).
(i) Since cosðapjÞ � 1 for any j, g < 0 for M< 1,

(ii) g2 þ fþ 1 ¼ d) d > 0, since f is a sum of
squares,

(iii) d2=4g2 � f� 1 ¼ ðg2 � f� 1Þ2=2g2 )
d2=2g2 > 1þ f,

(iv) cosh�1 d
2g > sinh�1

ffiffiffi
f

p
. This follows trivially from

the line above. Since d2

4g2
> ð1þ fÞ, it follows d

2g >ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
( d2g <� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

, for g < 0). Noting that

coshðsinh�1
ffiffiffi
f

p Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
, one has cosh�1ð d2gÞ>

sinh�1
ffiffiffi
f

p
(cosh�1ð d2gÞ<�sinh�1

ffiffiffi
f

p
for g < 0).

The last line justifies the drawing of the contour in Fig. 8 by
avoiding the poles/cuts at �icosh�1ð d2gÞ.

FIG. 8. The choice of contours for evaluating the ! sum in
Eq. (17). The dashed lines represent branch cuts. The crosses
denote the Matsubara frequencies !n, while the filled circles
denote the poles of Fð!Þ.
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The summation over all Matsubara frequencies !n ¼
ð2nþ1Þ�
NT

can be done using the standard textbook [18]

method of contours in the complex ! plane. For a general
function Fð!Þ (which in addition may, and does, depend on
other variables such as pj, but this dependence will not be

shown explicitly below), the frequency sum therefore is

2�

NT

X
n

Fð!nÞ ¼
Z ���i�

��i�
Fð!Þd!
ei!NT þ 1

þ
Z �þi�

��þi�
Fð!Þd!
ei!NT þ 1

;

(A1)

where the integrals are evaluated on the contour lines
running parallel to the real axis. The second integral can
further be rewritten as

Z �þi�

��þi�
Fð!Þd!
ei!NT þ 1

¼
Z �þi�

��þi�
Fð!Þd!

�
Z �þi�

��þi�
Fð!Þd!
e�i!NT þ 1

: (A2)

The summand Fð!Þ in Eq. (17) can be split into two
terms,

Fð!Þ ¼ F1ð!Þ þ F2ð!Þ;

with

F1ð!Þ ¼
� ð1� cos!Þ
dþ 2g cos!

þ sin2!ðgþ cos!Þ
ðdþ 2g cos!Þðfþ sin2!Þ

�
� ðgþ cos!Þ; (A3)

and

F2ð!Þ ¼
� ð1� cos!Þ
dþ 2g cos!

þ sin2!ðgþ cos!Þ
ðdþ 2g cos!Þðfþ sin2!Þ

�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ 2g cos!

p
: (A4)

Both the functions Fi have a finite number of poles at ! ¼
�isinh�1

ffiffiffi
f

p
and �m�� isinh�1

ffiffiffi
f

p
, where m is an inte-

ger. Furthermore, F1 has poles for d
2g > 0 at ! ¼ �k��

icosh�1 d
2g while F2 has branch points at the same loca-

tions. Similarly, for d
2g < 0 the poles (branch points) of F1

(F2) are at�icosh�1 d
2g . In the rest of the complex! plane

both the functions are analytic. In view of these properties
the contours in Eq. (A1) can be deformed to the contours
shown in Fig. 8. We chose each contour such that it lies
below (above) the cut in the upper (lower) half of the plane.
As shown above, cosh�1 d

2g > sinh�1
ffiffiffi
f

p
. Defining there-

fore 2
 ¼ cosh�1 d
2g� sinh�1

ffiffiffi
f

p
with 
> 0, the lines 3

and 4 are drawn through the points 
ðisinh�1
ffiffiffi
f

p þ i
Þ
respectively to avoid the cuts shown in Fig. 8.

Consequently, the frequency sum in Eq. (A1) becomes

2�

NT

X
n

Fð!nÞ ¼ �2�i
X

Im!>0

ResFð!Þ
e�i!NT þ 1

þ 2�i
X

Im!<0

ResFð!Þ
ei!NT þ 1

�
Z
3

Fð!Þd!
ei!NT þ 1

þ
Z
4

Fð!Þd!
e�i!NT þ 1

þ
Z �þi�

��þi�
Fð!Þd!:

(A5)

Note that the line integrals along the vertical lines through
� and �� cancel each other due to the periodicity of the
function Fð!Þ. Indeed, in general for any function Gð!Þ
satisfying the property Gð�þ i
Þ ¼ Gð��þ i
Þ, the
sum of integrals of Gð!Þ along opposite vertical paths of
equal length through �� and � is identically zero.
The residues of the function F1;2ð!Þ at the poles ! ¼

�isinh�1
ffiffiffi
f

p
are �iR1 and �iR2 respectively where

R1 ¼ R2 ¼
ffiffiffi
f

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p : (A6)

Our choice of the contour ensures that the poles at���
isinh�1

ffiffiffi
f

p
do not contribute to the energy density. By

taking the limit NT ! 1 on the lattice, one finds that the
last term of Eq. (A5) gives the quartically divergent vac-
uum contribution in the continuum limit. Defining the
physical energy density by subtracting it off, we have

�a4 ¼ 4

N3

X
pj

� ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
�

1

eNTsinh
�1

ffiffi
f

p
þ 1

þ �3 þ �4; (A7)

where �3, �4 terms come from the line integrals 3 and 4,
respectively.

APPENDIX B: ENERGY DENSITYAT T � 0AND
� � 0

For evaluating the energy density, we revert back to the
choice Kð�̂Þ ¼ expð�̂Þ and Lð�̂Þ ¼ expð��̂Þ which has
R ¼ 1 and 	 ¼ �̂. The physical part of the energy density
on the lattice is calculated by subtracting off the �̂ ¼ 0,
T ¼ 0 contribution,

�a4 ¼ X
pj

1

N3

�
2

NT

X
n

Fð!n � i�̂Þ � 1

�

Z �

��
Fð!Þd!

�
:

(B1)

The further evaluation of the energy density can be done,
noting that, compared to Fig. 8, the Matsubara frequencies
ð2nþ 1Þ�=NT in this case are displaced along the imagi-
nary axis by i�̂ in the lower half plane with the choice of
the function 1=ðexp½ið!þ i�̂ÞNT� þ 1Þ. The frequency
sum can be replaced by line integrals as
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2�

NT

X
n

Fð!n � i�̂Þ ¼
Z ���i��i�̂

��i��i�̂
Fð!Þd!

eið!þi�̂ÞNT þ 1

þ
Z �þi��i�̂

��þi��i�̂
Fð!Þd!

eið!þi�̂ÞNT þ 1
:

(B2)

The choice of the contour will be analogous to that in
Fig. 8, but will depend on whether the pole ! ¼
�isinh�1

ffiffiffi
f

p
is above or below the Im! ¼ ��̂ line.

Therefore the frequency sum can be split into two terms,X
n

Fð!n � i�̂Þ ¼ X
n

½F<ð!n � i�̂Þ þ F>ð!n � i�̂Þ�;

(B3)

where F> and F< are the functions with sinh�1
ffiffiffi
f

p
< �̂

and sinh�1
ffiffiffi
f

p
> �̂, respectively. We have taken �̂ <

cosh�1 d
2g because we expect that in the continuum limit

the �̂ will scale as the lattice spacing whereas the second
term will tend to infinity. For the case �̂ < sinh�1

ffiffiffi
f

p
, the

contour was chosen as shown in Fig. 9.
Using the standard trick of rewriting the second integral

in Eq. (B2) as done in Eq. (A2) the frequency sum becomes

2�

NT

X
n

F<ð!n � i�̂Þ ¼ �ðsinh�1
ffiffiffi
f

p � �̂Þ
�
�2�i

X
Im!>0

ResFð!Þ
e�ið!þi�̂ÞNT þ 1

þ 2�i
X

Im!<0

ResFð!Þ
eið!þi�̂ÞNT þ 1

�
Z
3

Fð!Þ
eið!þi�̂ÞNT þ 1

d!þ
Z
4

Fð!Þ
e�ið!þi�̂ÞNT þ 1

d!þ
Z �

��
Fð!Þd!

�
: (B4)

The expression can be evaluated by substituting the values of the residues of the function Fð!Þ, which are the sum of
residues calculated in Eq. (A6). The integrals 3 and 4 are along the lines Im! ¼ 
ðsinh�1

ffiffiffi
f

p þ 
Þ. Representing them as
�3�;4� respectively, we get

2�

NT

X
n

F<ð!n � i�̂Þ ¼ �ðsinh�1
ffiffiffi
f

p � �̂Þ
�

4�R1

eðsinh
�1

ffiffi
f

p
þ�̂ÞNT þ 1

þ 4�R1

eðsinh
�1

ffiffi
f

p
��̂ÞNT þ 1

þ
Z �

��
Fð!Þd!þ �3� þ �4�

�
:

(B5)

Similarly for �̂ > sinh�1
ffiffiffi
f

p
the frequency sum is replaced by integrals along the contour as shown in Fig. 10. There are no

poles below the Im! ¼ ��̂ line so the first integral in Eq. (B2) can be replaced by a line integral along the line 3.
Following the same steps as discussed for the above case, the frequency sum reduces to

FIG. 10. The contours chosen for evaluation of the ! sum for
�̂ > sinh�1

ffiffiffi
f

p
. Same notation as in Fig. 8.

FIG. 9. The contours chosen for evaluation of the ! sum for
�̂ < sinh�1

ffiffiffi
f

p
. Same notation as in Fig. 8.
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2�

NT

X
n

F>ð!n � i�̂Þ ¼ �ð�̂� sinh�1
ffiffiffi
f

p Þ
�

4�R1

eðsinh
�1

ffiffi
f

p
��̂ÞNT þ 1

þ 4�R1

eðsinh
�1

ffiffi
f

p
þ�̂ÞNT þ 1

þ
Z �

��
Fð!Þd!þ �3� þ �4�

�
:

(B6)

Finally, the energy density on the lattice is obtained from
Eq. (B1) by substituting in Eq. (B3) the frequency sums
calculated above,

�a4 ¼ 2

N3

X
pj

� ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p 1

eðsinh
�1

ffiffi
f

p
��̂ÞNT þ 1

þ
ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p 1

eðsinh
�1

ffiffi
f

p
þ�̂ÞNT þ 1

þ �3� þ �4�

�
: (B7)

APPENDIX C

Here we prove the claim made in Eq. (51).
(i) y > 0 since � > �.

(ii) Let � ¼ �2

�2 � 1, where � > 0.

(iii) A little algebra shows that z2 � ðyþ 1Þ2 ¼ �½ðg�
1Þ2 þ f� þ f > 0 which in turn implies the relation
z� y > 1.
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