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We extend the Fermilab method for heavy quarks to include interactions of dimensions 6 and 7 in the

action. There are, in general, many new interactions, but we carry out the calculations needed to match the

lattice action to continuum QCD at the tree level, finding six nonzero couplings. Using the heavy-quark

theory of cutoff effects, we estimate how large the remaining discretization errors are. We find that our

tree-level matching, augmented with one-loop matching of the dimension-5 interactions, can bring these

errors below 1%, at currently available lattice spacings.
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I. INTRODUCTION

An important application of lattice gauge theory is to
calculate hadronic matrix elements relevant to experiments
in flavor physics. With recent advances in lattice calcula-
tions with nf ¼ 2þ 1 flavors of dynamical quarks [1–4],

we now have an exciting prospect of genuine QCD calcu-
lations. To match the experimental uncertainty, available
now or in the short term, it is essential to control all other
sources of theoretical uncertainty as well as possible. An
attractive target is to reduce the uncertainty, from any given
source, to 1%–2%. This target will be hard to hit if one
relies on increases in computer power alone: methodologi-
cal improvements are needed too.

Many of the important processes are electroweak tran-
sitions of heavy charmed or b-flavored quarks. A particular
challenge stems from heavy-quark discretization effects,
because mQa 6�1. The key to meeting the challenge is to

observe that heavy quarks are nonrelativistic in the rest
frame of the containing hadron [5,6]. The scale of the
heavy-quark mass, mQ, can (and should) be separated

from the soft scales inside the hadron and treated with an
effective field theory instead of computer simulation. Even
so, at available lattice spacings [1], many calculations of
D-meson (B-meson) properties suffer from a discretization
error of around 7% (5%) [2,3]. Thus, it makes sense to
develop a more accurate discretization.

In this paper we extend the accuracy of the ‘‘Fermilab’’
method for heavy quarks [7] to include in the lattice ac-
tion all interactions of dimension 6. We also include cer-
tain interactions of dimension 7. Because heavy quarks
are nonrelativistic, they are commensurate with related
dimension-6 terms, in the power counting of heavy-quark
effective theory (HQET) for heavy-light hadrons [5] or
nonrelativistic QCD (NRQCD) for quarkonium [6].

The Fermilab method starts with Wilson fermions [8]
and the clover action [9]. With these actions lattice spacing
effects are bounded for large mQa, thanks to heavy-quark

symmetry. They can be reduced systematically by allowing
an asymmetry between spatial and temporal interactions.
Asymmetry in the lattice action compensates for the non-
relativistic kinematics, enabling a relativistic description
through the Symanzik effective field theory [10]. Alter-
natively, one may interpret Wilson fermions nonrelativis-
tically from the outset [7], and set up the improvement
program matching lattice gauge theory and continuum
QCD to each other through HQET and NRQCD [11,12].
The Symanzik description makes it possible to design a
lattice action that behaves smoothly asmQa! 0, converg-
ing to the universal continuum limit. The HQET descrip-
tion, on the other hand, makes semiquantitative estimates
of discretization errors more transparent.
The new action introduced below has 19 bilinear inter-

actions beyond those of the asymmetric version of the clo-
ver action, as well as many four-quark interactions. Several
of these couplings are redundant, and many more vanish
when matching to continuum QCD at the tree level. We
study semiquantitatively how many of the new operators
are needed to achieve 1%–2% accuracy. We find, in the
end, that only six new interactions are essential for such
accuracy. The action is designed with some flexibility, so
that one may choose the computationally least costly ver-
sion of the action.
This paper is organized as follows. Section II considers

the description of lattice gauge theory via continuum ef-
fective field theories. Then, in some detail, we identify a
full set of operators describing heavy-quark discretization
effects. We then determine how many of these are redun-
dant, and which redundant directions should be used to
preserve the good high-mass behavior. We have two goals
in this analysis. One is to design the new, more highly
improved, action; for this step a Symanzik-like description*Present address.
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is more helpful, and the resulting action is given in Sec. III.
The other is to estimate the discretization errors of the new
action; here the HQET and NRQCD descriptions are more
useful. To make error estimates, and to use the new action
in numerical work, we need matching calculations; they
are in Sec. IV. Our error estimates are in Sec. V. Section VI
concludes. Some of the material is technical and appears in
appendixes: Feynman rules needed for the matching cal-
culation are in Appendix A; some details of the Compton
scattering amplitude used for matching are in Appendix B;
a discussion of improvement of the gauge action on aniso-
tropic lattices (which one needs only if the heavy quarks
are not quenched) is in Appendix C. Some of these results
have been reported earlier [13].

II. EFFECTIVE FIELD THEORY

In this section we discuss how to understand and control
discretization effects using effective field theories. We start
with a brief overview, focusing on issues that arise for
heavy quarks, those with mass mQ � �. For more details,

the reader may consult earlier work [7,11,12,14,15] or a
pedagogical review [16]. Here we catalog all interactions
of dimension 6 and also certain interactions of dimension 7
that, for heavy quarks, are of comparable size when
mQa 6�1.

A. Overview

Cutoff effects in lattice field theories are most elegantly
studied with continuum effective field theories. The idea
originated with Symanzik [10] and was extended to gluons
and light quarks by Weisz and collaborators [9,17–19].
One develops a relationship

L lat ¼: LSym; (2.1)

where ¼: means that the two Lagrangians generate the
same on-shell spectrum and matrix elements. The lattice
itself regulates the ultraviolet behavior of the underly-
ing (lattice) theory Llat. On the other hand, a continuum
scheme, which does not need to be specified in detail,
regulates (and renormalizes) the ultraviolet behavior of
the effective theory LSym.

In lattice QCD (with Wilson fermions), the local effec-
tive Lagrangian (LEL) is

L Sym ¼ 1

2g2
tr½F��F��� �

X
f

�qfð 6DþmfÞqf

þX
i

adimLi�4Kiðg2; ma; cj;�aÞLi; (2.2)

where g2 andmf are the gauge coupling and quark mass (of

flavor f), renormalized at scale� & a�1. The (continuum)
QCD Lagrangian appears as the first two terms. The sum
consists of higher-dimension operators Li, multiplied by
short-distance coefficients Ki. These terms describe cutoff
effects. The short-distance coefficients depend on the re-

normalization point and on the couplings, including cou-
plings cj of improvement terms in Llat. Equation (2.2) is

fairly well established to all orders in perturbation theory
[20,21] and believed to hold nonperturbatively as well. If a
is small enough, the terms Li may be treated as operator
insertions, leading to a description of lattice gauge theory
as ‘‘ QCDþ small corrections.’’
In heavy-quark physics mQ � �, where � is the

QCD scale, so one is led to consider what happens when
mQa 6�1. The short-distance coefficients depend explicitly
on the mass. Time derivatives of heavy-quark or heavy-
antiquark fields in theLi also generate mass dependence of
observables. With field redefinitions—or, equivalently,
with the equations of motion—these time derivatives can
be eliminated. Focusing on a single heavy flavor Q, the
result of these manipulations is [7,14,15]

L Sym ¼ � � � � �Q

�
�4D4 þm1 þ

ffiffiffiffiffiffi
m1

m2

s
� �D

�
Q

þX
i

adim
�Li�4 �Kiðg2; m2a;�aÞ �Li; (2.3)

where the ellipsis denotes the unaltered LEL for gluons
and light quarks. By construction the �Li do not have any
time derivatives acting on quarks or antiquarks.
The advantage of Eq. (2.3) is that all dependence on the

heavy-quark mass is in the short-distance coefficients m1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
, and �Kiðm2aÞ. Matrix elements of the �Li generate

soft scales. The heavy-quark symmetry of Wilson quarks
(with either the Wilson [8] or Sheikholeslami-Wohlert [9]
actions) guarantees that the coefficients �Kiðm2aÞ are
bounded for all m2a. This feature can be preserved by
improving the lattice Lagrangian with discretizations of

the �Li, thereby avoiding higher time derivatives [7,11]. For
such improved actions, Eq. (2.3) neatly isolates the poten-
tially most serious problem of heavy quarks into the de-

viation of the coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
from 1.

Fortunately, the problem can be circumvented in two
simple ways. One is a Wilson-like action with two hopping
parameters [7], tuned so thatm1 ¼ m2. Then Eq. (2.3) once
again takes the form QCDþ small corrections. The new
lattice action introduced in Sec. III has two hopping pa-
rameters for this reason.
Another solution is to interpret Wilson fermions in a

nonrelativistic framework. One can replace the Symanzik
description with one using a nonrelativistic effective field
theory for the quarks (and antiquarks) [11]. For the leading
�Q-Q term in Eq. (2.3)

�Q

�
�4D4 þm1 þ

ffiffiffiffiffiffi
m1

m2

s
� �D

�
Q

¼: �hðþÞ
�
D4 þm1 �D2 þ zBðm2a;�aÞi� � B

2m2

�
hðþÞ

þ � � � ; (2.4)
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where zB is a matching coefficient, and hðþÞ is a heavy-

quark field satisfying hðþÞ ¼ þ�4h
ðþÞ. Another set of

terms appears for the antiquark, with field hð�Þ satisfying
hð�Þ ¼ ��4h

ð�Þ. The nonrelativistic effective theory con-
serves heavy quarks and heavy antiquarks separately. As
a consequence, the rest mass m1 has no effect on mass
splittings and matrix elements.1 For lattice gauge theory
this implies that the bare quark mass (or hopping pa-
rameter) should not be adjusted via m1. Instead, the bare
mass should be adjusted to normalize the kinetic energy
D2=2m2.

One can develop the nonrelativistic effective theory for

the lattice artifacts �Li by using heavy-quark fields instead
of Dirac quark fields [11]. Higher-dimension operators in
the heavy-quark theory receive contributions from the ex-

pansions of Eq. (2.4) and of the �Li. Coalescing the coef-
ficients of like operators obtains a description of lattice
gauge theory with heavy quarks

L lat ¼: � � � � �hðþÞðD4 þm1ÞhðþÞ

þX
i

Clati ðg2; m2;m2a; cj;�=m2ÞOi; (2.5)

where the operatorsOi on the right-hand side are those of a
(continuum) heavy-quark effective theory, of dimension 5

and higher, built out of heavy-quark fields hð�Þ, gluons, and
light quarks. (The leading ellipsis denotes term for the
gluons and light quarks only.) The Ci are short-distance
coefficients, which depend on g2, the heavy-quark mass,
the ratio of short distancesm2a, and also all couplings cj in

the lattice action. The logic and structure is the same as the
nonrelativistic description of QCD,

L QCD ¼: � � � � �hðþÞðD4 þmQÞhðþÞ

þX
i

Cconti ðg2; mQ;�=mQÞOi: (2.6)

Thus, improvement of lattice gauge theory is attained
by adjusting couplings cj until Clati ðcjÞ � Cconti vanishes

(identically, or perhaps to some accuracy) for the first
several Oi.

It does not matter whether one carries out the improve-
ment program by adjusting �KiðcjÞ ¼ 0 or Clati ðcjÞ ¼ Cconti

[12]. The results for the cj are the same, provided one

identifies mQ with m2. The matching assumes that pa�
1, but at the same time m2a 6�1. One is thus led to non-
relativistic kinematics (p=m2 � 1) in the matching calcu-
lation, where both descriptions—Eqs. (2.3) and (2.5)—are

valid. Kinematics are encoded into the operators �Li or Oi

and are not transferred to the short-distance coefficients.
Hence, kinematics cannot influence matching conditions
on the cj. In particular, when indeedm2a� 1 (which may

be impractical, but is conceivable theoretically) relativistic

kinematics (p�m2) are possible, and it follows from
the Symanzik effective field theory that the solution of
�KiðcjÞ ¼ 0 yields the same cj for both relativistic and

nonrelativistic kinematics.

B. Quark bilinears in the LEL

In the rest of this section we construct the LEL appro-
priate to heavy quarks. The two main steps are first to list
all of the Li that can appear, and second to decide which
should be considered redundant. In part it is a general-
ization of the dimension-6 analysis of Ref. [9] to the case
without axis-interchange symmetry. At dimension 6 there
are quark bilinears, four-quark interactions, and interac-
tions that contain only the gauge field. We shall start with
the bilinears and turn to the others further below. In each
case, we first consider complete lists of operators, and then
consider which can be chosen to be redundant.
Table I contains a list of all quark bilinears through

dimension 6 that can appear in the effective Lagrangian.
The second column contains interactions that respect axis-
interchange symmetry; the fourth column contains the ex-
tension to the case without axis-interchange symmetry. The
meaning of the other columns is explained below. Co-
variant derivatives act on all fields to the right,

D�FQ ¼ ð@�Fþ ½A�; F�ÞQþ FD�Q: (2.7)

This notation is convenient for the interactions with com-
mutators and anticommutators. To arrive at the lists we
exploit identities such as

6D2 ¼ D2 � i

2
���F��; (2.8)

2�4D4� �D�4D4 ¼ f�4D4;� �Eg � fD2
4;� �Dg; (2.9)

2� �D�4D4� �D ¼ f� �D;� �Eg � f�4D4; ð� �DÞ2g:
(2.10)

Some interactions are omitted, because the underlying lat-
tice gauge theory is invariant under cubic rotations, spatial
inversion, time reflection, and charge conjugation.2

The fourth column is arranged so that its entries are part
of the corresponding interactions in the second column. It
is easy to show that the list is complete, by writing out all
independent ways to have three covariant derivatives, ex-
pressing the E and B fields as anticommutators of co-
variant derivatives. One finds 11 possibilities, and then
one can use identities to manipulate this list to that given
in the fourth column of Table I.
The LEL contains several redundant directions. The

equation of motion of the leading LEL plays a key role

1A simple proof can be found in Ref. [11].

2Reference [9] included the dimension-6 interaction
�q½ 6D;D2�q. Reference [7] included the dimension-5 interaction
�Q½�4D4;� �D�Q. Both are odd under charge conjugation and,
thus, may be omitted.
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in specifying which operator insertions may be considered
redundant. Let us assume, for the moment, that m1 ¼ m2,
so that the equation of motion in the Symanzik LEL is the
Dirac equation. Below we shall use the nonrelativistic
effective field theory to address the case m1 � m2.

The quark fields are integration variables in a functional
integral, so an equally valid description is obtained by
changing variables

Q� eJQ; (2.11)

�Q� �Qe
�J; (2.12)

where

J ¼ a"1ð 6DþmÞ þ a�1� �Dþ a2"2ð 6DþmÞ2
� a212"Fi���F�� þ a2�2ð� �DÞ2 þ a2�Bi� � B
þ a2#2½�4D4;� �D� (2.13)

and similarly for �J with separate parameters �"i, ��i, and �#i.

If the � parameters (and #2, �#2) vanish, then J and �J
preserve invariance under interchange of all four axes.

One can propagate the change of variables to the LEL,
and trace which coefficients of dimensions 5 and 6 are
shifted by amounts proportional to the parameters in J and
�J. To avoid generating terms that violate charge conjuga-
tion one chooses �"i ¼ þ"i, ��i ¼ þ�i, and �#2 ¼ �#2. We
then see that there are two redundant directions at dimen-
sion 5, and five at dimension 6. That means that two
couplings in the dimension-5 lattice action may be set by
convenience, and five in the dimension-6 lattice action.
The third and fifth columns show the correspondence
between parameters in the change of variables and the
interactions that we choose to be redundant. As expected

from general arguments [7,14,15], all interactions in which
�4D4 acts on Q or (after integration by parts) �Q are
redundant.
There is quite a bit of freedom here. One could choose

"F to eliminate �Q½D4;� �E�Q ¼ �Qf�4D4;� �EgQ in-
stead of �Qf� �D;� �EgQ. But the former is suppressed,
relative to the latter, in heavy-quark systems. Moreover, in
HQET and NRQCD one has

�Q� �EQ ¼: �hðþÞf� �D;� �EghðþÞ=2m2 þ � � � ; (2.14)

�Qf� �D;� �EgQ ¼: �hðþÞf� �D;� �EghðþÞ þ � � � ;
(2.15)

which mean that �Q� �EQ and �Qf� �D;� �EgQ generate
nearly the same effects in heavy-quark systems. Thus, we
prefer to take �Qf� �D;� �EgQ to be redundant.
To understand the general pattern of redundant interac-

tions, let us introduce some notation. Let B ðEÞ be a
combination of gauge fields, derivatives, and Dirac matri-
ces that commutes (anticommutes) with �4. An example of
B ðEÞ is i� � B ð� �EÞ. Also, let us write B� (and E�)
when �QB�Q (or �QE�Q) has charge conjugation �1. Be-
cause we wish to eliminate time derivatives of quark and
antiquark fields, we would like �Qf�4D4;BþgQ and
�Q½�4D4; E��Q to be redundant. That is always possible:
simply add to J in Eq. (2.13) terms of the form �BþBþ
and #E�E�. As a consequence, neither �Qf� �D;BþgQ
nor �Q½� �D; E��Q is redundant. On the other hand, in
�Q½�4D4;B��Q and �Qf�4D4; EþgQ the time derivative
acts only on gauge fields. Thus, by adding to J terms of
the form #B�B� and �EþEþ it is possible to choose
�Q½� �D;B��Q and �Qf� �D; EþgQ to be redundant.
Instead of �Q½� �D;B��Q or �Qf� �D; EþgQ it may be

TABLE I. Bilinear interactions that could appear in the Symanzik LEL through dimension 6.

Dim With axis-interchange symmetry Without axis-interchange symmetry HQET �s NRQCD �t

3 �qq �QQ
4 �q 6Dq �Qð�4D4 þm1ÞQ 1 �2

�Q� �DQ � �2

5 �qD2q "1 �QD2
4Q "1

�QD2Q �1 � �2

� i
2
�q���F��q �Qi� � BQ � �4

�Q� �EQ �2 �4

6 �q��D
3
�q �Q�iD

3
i Q �3 �4

�qf 6D;D2gq "2 �Q�4D
3
4Q "2

�Qf�4D4;D
2gQ �2

�QfD2
4;� �DgQ #2

�Qf� �D;D2gQ �3 �4

� i
2
�qf 6D;���F��gq "F �Qf� �D;� �EgQ "F �2 �4

�Qf�4D4; i� �BgQ �B
�Qf� �D; i� �BgQ �3 �6

�Q½D4;� �E�Q �3 �6

�q½D�; F�����q �Q�4ðD �E�E �DÞQ �2 �4

�Q� � ðD�BþB�DÞQ �3 �6
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convenient to choose an operator related through an
identity.

C. Power counting

The corrections of an effective field theory are small,
because the product of the short-distance coefficients and
the operators yield a ratio of a short-distance scale to a
long-distance scale. For light quarks in the Symanzik
effective field theory, the essential ratio is a=��1 ¼ �a,
and dimensional analysis reveals the power of�a to which
any contribution is suppressed. In particular,B- and E-type
interactions of the same dimension are equally important.

For heavy quarks the physics is different, because m�1
Q

is a short distance. The ratio a=m�1
Q ¼ mQa should not

be taken commensurate with �a [7]. Instead, interactions
should be classified in a way that brings out the physics.
It is natural to turn to HQET and NRQCD. Let us start
with heavy-light hadrons and HQET. E-type interactions
of given dimension are �=mQ times smaller than B-type

interactions of the same dimension. Because �=mQ � 1
and�a� 1, it makes sense to count powers of �, where �
is either of the small parameters [11,12,15]

�� a�; �=mQ: (2.16)

This power counting pertains whethermQ < a,mQ � a, or
mQ > a. Writing the corrections in the Symanzik fashion

(with Dirac quark fields Q and �Q), each �Li is suppressed
by �s, with

s ¼ dimL� 4þ n�: (2.17)

Here n� ¼ 0 or 1 for interactions of the form �QBþQ or
�QEþQ, respectively. The sixth column of Table I ( labeled
HQET) shows the suppression of each interaction, relative
to the (leading) contribution from the light degrees of
freedom. In the following we call the power counting for
heavy-light hadrons, based on Eq. (2.17), ‘‘HQET power
counting.’’

Now let us recall how to classify interactions in quark-
onium according to the power of the relative internal
velocity, �. Because color source and sink are both non-
relativistic, chromoelectric fields carry a power of �3, and
chromomagnetic fields a power of �4 [22]. E-type inter-
actions are suppressed by a power of p=mQ ¼ �, analo-
gously to their suppression in heavy-light hadrons. Thus,
bilinears are suppressed by �t, where now

t ¼ dimL� 3þ nE þ 2nB þ n�; (2.18)

and nEðnBÞ is the number of chromoelectric (chromo-
magnetic) fields. The seventh column of Table I (labeled
NRQCD) shows the suppression of each interaction. In the
following we call the power counting for quarkonium,
based on Eq. (2.18), ‘‘NRQCD power counting.’’
Glancing down the sixth and seventh columns of Table I,

one sees several terms of order �3 and �6. From Eqs. (2.17)
and (2.18) one realizes that some dimension-7 interactions
are of the same order. They are listed in Table II. There are
two interactions with four derivatives, six with the chro-
momagnetic field and two derivatives, and four with twoE
or two B fields. A third combination of four derivatives is
omitted, using the identity DiD

2Di ¼ ðD2Þ2 þD � ðB�
DÞ �B2. Other dimension-7 operators carry power �4 in
HQET power counting, or �8 (or higher) in NRQCD power
counting. Five combinations are redundant (as shown), and
we shall see below how they and the others arise in
matching calculations.
The ðd; n�Þ ¼ ð7; 1Þ operator �QfD2;� �EgQ and several

ðd; n�Þ ¼ ð8; 0Þ operators, all with nE ¼ 1 and nD þ n� ¼
3, have NRQCD power-counting �6. Reference [22] in-
cludes spin-dependent ones, to obtain the next-to-leading
corrections to spin-dependent mass splittings. We have not
included these operators in our analysis, but a straightfor-
ward extension of the matching calculation in Sec. IVB1
would suffice to determine their couplings.
Although this description of cutoff effects is somewhat

cumbersome, it provides a valuable foundation for our new

TABLE II. Dimension-(7,0) bilinear interactions that are commensurate, for heavy quarks, with those of order �3 (in HQET) or �4,
�6 (in NRQCD).

Dim Without axis-interchange symmetry HQET �s NRQCD �t

7 �QD4
i Q �3 �4P

i�j
�Q i�iDjBiDjQ �½Pi�iD

3
i � �3 �6P

i�j
�QfD2

j ; i�iBigQ �3 �6

�QðD2Þ2Q �3 �4

�QfD2; i� � BgQ �3 �6

�Q� �Di� � B� �DQ �½f� �D; i� � Bg� �3 �6

�QDii� � BDiQ �3 �6

�QD � ðB�DÞQ �½� � ðD� BþB�DÞ� �3 �6

�Qði� � BÞ2Q �½f� �D;D2g� �3 �8

�QB �BQ �3 �8

�Qð� �EÞ2Q �½½D4;� �E�� �3 �6

�QE �EQ �3 �6

NEW LATTICE ACTION FOR HEAVY QUARKS PHYSICAL REVIEW D 78, 014504 (2008)

014504-5



action, given in Sec. III. To obtain the new action, we
simply discretize the interactions in Tables I and II, except
those with higher time derivatives. The discretization of
�Q� �DQ is needed to obtain a lattice action that behaves
smoothly as mQa! 0 [7], reproducing the universal

continuum limit of QCD. Similarly, discretizations of the
E-type interactions, such as �Q� �EQ and �Qf� �D;D2gQ,
are needed to retain that feature here.

D. Heavy-quark description

For understanding the size of heavy-quark discretiza-
tion effects, it is simpler to switch to a nonrelativistic
description. (When m1 � m2, it is also necessary to see
the connection to QCD.) The list of interactions is much
shorter, because the constraint �4h

ð�Þ ¼ �hð�Þ removes
the E-type interactions. It is given in Table III, including
the dimension-7 interactions related to those in Table II.
Also, fewer changes of the field variables are possible:

hð�Þ � eJh; (2.19)

�h ð�Þ � �he
�J; (2.20)

where now

J ¼ a"1ð�4D4 þm1Þ þ a2"2ð�4D4 þm1Þ2 þ a2�2D
2

þ a2�Bi� �B; (2.21)

and similarly for �J. To avoid C-odd interactions, one
should choose equal parameters in J and �J. Thus, there

are four redundant directions of interest—all with time
derivatives of the (anti-)quark field. In the end, just as
many nonredundant interactions remain as in the Syman-
zik description. The heavy-quark description provides a
good way to estimate the size of remaining discretization
effects, as in Sec. V.

E. Gauge-field and four-quark interactions in the LEL

We now turn to interactions in the gauge sector of the
LEL, and also to four-quark interactions. The two are
connected when one considers on-shell improvement, be-
cause in quark-quark scattering short-distance gluon ex-
change generates the same behavior as four-quark contact
interactions. Here we give a cursory sketch of the gauge
action. Then we consider the four-quark interactions, in-
cluding details mostly for completeness. In practice (see
Sec. V), we find the four-quark corrections to be smaller
than those of the bilinear interactions analyzed in the
preceding subsection.
The gauge sector of the LEL is the same as for aniso-

tropic lattices, where one adjusts the action so that the
temporal lattice spacing at differs from the spatial lattice
spacing as. The short-distance coefficients are different;
here asymmetry between spatial and temporal gauge cou-
plings arises only from heavy-quark loops. Improved an-
isotropic actions have been discussed in the literature [23],
but full details remain unpublished [24]. We present the
details in Appendix C.

TABLE III. Bilinear interactions that could appear in the heavy-quark LEL through dimension 7.

Dim Without axis-interchange symmetry HQET �s NRQCD �t

3 �hð�Þhð�Þ
4 �hð�Þ�4D4h

ð�Þ
5 �hð�ÞD2

4h
ð�Þ "1

�hð�ÞD2hð�Þ � �2

�hð�Þi � Bhð�Þ � �4

6 �hð�Þ�4D
3
4h

ð�Þ "2
�hð�Þf�4D4;D

2ghð�Þ �2
�hð�Þf� �D;� �Eghð�Þ �2 �4

�hð�Þf�4D4; i� �Bghð�Þ �B
�hð�Þ�4ðD �E�E �DÞhð�Þ �2 �4

7 �hð�ÞD4
i h

ð�Þ �3 �4P
i�j

�hð�ÞfD2
j ; i�iBighð�Þ �3 �6P

i�j
�hð�Þi�iDjBiDjh

ð�Þ �3 �6

�hð�ÞðD2Þ2hð�Þ �3 �4

�hð�ÞfD2; i� � Bghð�Þ �3 �6

�hð�Þ� �Di� � B� �Dhð�Þ �3 �6

�hð�ÞDii� � BDih
ð�Þ �3 �6

�hð�ÞD � ðB�DÞhð�Þ �3 �6

�hð�Þði� � BÞ2hð�Þ �3 �8

�hð�ÞB �Bhð�Þ �3 �8

�hð�Þð� �EÞ2hð�Þ �3 �6

�hð�ÞE �Ehð�Þ �3 �6
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We are most concerned here with effects that survive on
shell, so we study here the possible changes of variables for
the gauge field. With axis-interchange symmetry one
has [9,19]

A� � A� þ a2"A½D�; F��� þ a2g2
X
f

"Jft
að �qf��taqfÞ;

(2.22)

with a color-adjoint vector-current term for each flavor f of
quark (heavy or light). The appearance of g2 multiplying
the currents is a convenient normalization convention.
When one now considers giving up axis-interchange sym-
metry, one has

A4 � A4 þ a2"AðD �E�E �DÞ
þ a2g2

X
f

"Jft
að �qf�4t

aqfÞ; (2.23)

A�A�a2ð"Aþ�EÞ½D4;E�þa2ð"Aþ�AÞðD�B

þB�DÞþa2g2X
f

ð"Jfþ�JfÞtað �qf�taqfÞ; (2.24)

which reduce to Eq. (2.22) when the �s vanish.
For a moment, let us set "Jf ¼ �Jf ¼ 0 in Eqs. (2.23)

and (2.24), and focus on the gauge fields alone. As dis-
cussed in Appendix C, there are eight independent gauge-
field interactions that arise at dimension 6. There are three
independent ways—parametrized by "A, �A, and �E—to
transform the gauge field, yielding three redundant direc-
tions. Similarly, there are eight distinct classes of six-link
loops, shown in Fig. 1, that can be used in an improved
lattice gauge action. In Appendix C, we show that three of
them—all three classes of ‘‘bent rectangles’’ in the bottom
row of Fig. 1—may be omitted from an on-shell improved
gauge action.
The transformations involving the currents �qf��t

aqf
are more interesting. They shift the LEL [cf. Equa-
tion (2.2)] by

FIG. 1. Six-link loops available for improving the gauge action on anisotropic lattices: rectangles (top row); parallelograms (middle
row); bent rectangles (bottom row). Nomenclature from Ref. [19].
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LSym � LSym � a2
X
f

"Jf �qf�4ðD �E�E �DÞqf

þ a2
X
f

ð"Jf þ �JfÞ �qf½D4;� �E�qf

� a2
X
f

ð"Jf þ �JfÞ �qf� � ðD� Bþ B�DÞqf

� a2g2
X
fg

"Jfð �qf��taqfÞð �qg��taqgÞ

� a2g2
X
fg;j

�Jfð �qf�jtaqfÞð �qg�jtaqgÞ; (2.25)

where the derivatives act only on the gauge fields. The size
of these shifts—of order g2 for four-quark operators and of
order g0 for bilinears—is commensurate with the respec-
tive terms that already appear in LSym. Thus, the 2nf
parameters "Jf and �Jf could be used to eliminate bilinears

or four-quark operators. For simulations it is prefera-
ble to remove the latter, namely �qf�4t

aqf �qf�4t
aqf and

�qf�t
aqf � �qf�taqf.

We now list the dimension-6 four-quark interactions
in the LEL. For a single flavor, the complete list is in
Table IV, which also indicates that the current-current in-
teractions are redundant. Interactions with the color struc-
ture ð �q�qÞ2 may be omitted, because they can be related to
those listed through Fierz rearrangement of the fields.

When considering several flavors of quark, we must
keep track of flavor indices as well as color and Dirac
indices. The Fierz problem becomes more intricate, and we
shall find that color-singlet and color-octet structures
should be maintained. Let us start with Fierz rearrange-

ment of the Dirac indices. The four-quark terms in the
LEL take the formX

X

KX �qf��Xqg	 �qh��Xqi�

¼ �X
X;Y

KXFXY �qf��Yqi� �qh��Yqg	; (2.26)

where KX denotes short-distance coefficients, the Greek
(Latin) indices label color (flavor), F is the Fierz rearrange-
ment matrix (with F2 ¼ 1), and the minus sign comes from
anticommutation of the fermion fields. Equation (2.26)
leaves the flavor and color indices uncontracted, but to
get terms in the LEL, the color indices must be contracted
(one way or another), and the flavor labels must yield a
flavor-neutral interaction. Without loss, we can choose the
side of Eq. (2.26) such that the Dirac matrices contract
quark fields of the same flavor. Then one can use Fierz
identities for SUðNÞ generators (tay ¼ �ta)

Nta�	t
a
�� ¼ �ta��ta�	 � ðN2 � 1Þ�����	=2N; (2.27)

��	��� ¼ �����	=N � 2ta��t
a
�	; (2.28)

so that the color indices are contracted across the same
fields as the Dirac and flavor indices.
After using Fierz rearrangement to bring quarks of the

same flavor next to each other, one is left with the inter-
actions in Table V. To be concrete, we consider nl flavors
of light quarks (with mq & �) and two flavors of heavy

quarks (charm and bottom). We neglect the dependence of
the coefficients on the light-quark masses, because four-
quark interactions are already small corrections (of dimen-

TABLE IV. Four-quark interactions that could appear in the LEL (for a single flavor).

Dim With axis interchange Without axis interchange

6 ð �qtaqÞ2 ð �QtaQÞ2
ð �q�5t

aqÞ2 ð �Q�5t
aQÞ2

ð �q��taqÞ2 "J ð �Q�4t
aQÞ2 "J

ð �Q�itaQÞ2 �J
ð �q���5t

aqÞ2 ð �Q�4�5t
aQÞ2

ð �Q�i�5t
aQÞ2

ð �qi���taqÞ2 ð �Qi�it
aQÞ2

ð �Q�itaQÞ2

TABLE V. Four-quark interactions that remain when Fierz rearrangement is taken into
account. A sum over Dirac matrices �X in each of the sets f1g, f�4g, f�g, fi�g, f�g, f��5g,
f�4�5g, f�5g is assumed. (With axis-interchange symmetry, the sets would be f1g, f��g, fi���g,
f���5g, f�5g.)
Quarks Color octet Color singlet

Heavy-heavy �Q�Xt
aQ �Q�Xt

aQ � � �
Heavy-heavy �Q1�Xt

aQ1
�Q2�Xt

aQ2
�Q1�XQ1

�Q2�XQ2

Heavy-light �Q�Xt
aQ

P
f �qf�Xt

aqf �Q�XQ
P
f �qf�Xqf

Light-light
P
f �qf�Xt

aqf
P
g �qg�Xt

aqg
P
f �qf�Xqf

P
g �qg�Xqg
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sion 6). In that case, the four-quark interactions can
be arranged so that only the SUðnlÞ flavor singletsP
f �qf�Xt

aqf and
P
f �qf�Xqf appear.

The parameters "Jf and �Jf may be used to eliminate

color-octet current-current interactions. For each heavy
flavor, one finds ð �Q�4t

aQÞ2 andPið �Q�itaQÞ2 to be redun-
dant. For light quarks, we may neglect the differences in
the mass, so they have common parameters, and the flavor-
singlet combination ðPf �qf��t

aqfÞ2 is redundant. For the
light flavors, our list of operators is a Fierz rearrangement
of the list in Ref. [9].

The leading HQET power counting for heavy-light
four-quark operators follows from dimensional analysis
and Eq. (2.17): �2þn� , just as if the light-quark part were
replaced by three derivatives. Heavy-heavy four-quark
operators will be suppressed, once matrix elements are
taken, by a heavy-quark loop, leading to g2�4þn� .

In quarkonium, the size of heavy-light four-quark op-
erators follows similarly from Eq. (2.18): �3þn� . The va-
lence heavy-heavy operators are more interesting. They
must contain two contributions, one to improve t-channel
gluon exchange, and another to improve s-channel an-
nihilation. The former have NRQCD power counting
g2�3þn� � �4þn� (since g2 � � [22]). The latter are �2

times smaller, because the s-channel gluon is far off shell,
but the Dirac-matrix suppression is now �1�n� , leading to
g2�6�n� � �7�n� in all. In practice, the s-channel contri-
butions are suppressed further, when treated as an insertion
in a color-singlet quarkonium state. At the tree level, the
only color structure that can arise is the color octet. Its
matrix elements vanish in the �QQ-color-singlet Fock state
of quarkonium, leaving the �3-suppressed �QQA color octet
[25]. Color-singlet four-quark operators arise at one loop,
with an additional factor of g2 � �.

III. NEW LATTICE ACTION

In this section we introduce a new, improved lat-
tice action for heavy quarks, designed to yield smaller
discretization errors than the action in Ref. [7]. Our design
is based on several lessons from the preceding section and
Refs. [7,11,12]. First, it is important to preserve the natural
heavy-quark symmetry of Wilson fermions, so that the
coefficients �Ki stay bounded for all mQa. (This feature is

spoiled in the standard improvement program designed for
light quarks, which introduces several new terms that grow
with mQ.) Second, the new lattice action is flexible enough

to match cleanly onto both the Symanzik description and
the nonrelativistic description.

Let us write the action as follows:

S ¼ SD2F2 þ S0 þ
X1
d¼5

X1
n�¼0

Sðd;n�Þ þ S �qq �qq; (3.1)

where SD2F2 is the improved gauge action [Eq. (C7)], S0 is
the basic Fermilab action, the Sðd;n�Þ consist of the bilinear
terms added to improve the quark sector, and S �qq �qq denotes

four-quark interactions. Sðd;n�Þ consists of (discretizations
of) interactions of dimension d, with n� as in the discus-
sion of power counting, Eqs. (2.16), (2.17), and (2.18).
Including the interactions in Sðd;1Þ couples ‘‘upper’’ and

‘‘lower’’ components, but allows a smooth limit a! 0.3

Our aim is to improve the action to include all interac-
tions of dimension 6. Then the power counting requires
us to include Sð7;0Þ as well. Finally, S �qq �qq consists of

discretizations of four-quark operators, at dimension 6,
those of Table V.
The basic Fermilab action [7] is a generalization of the

Wilson action [8]:

S0 ¼ m0a
4
X
x

� ðxÞ ðxÞ þ a4
X
x

� ðxÞ�4D4lat ðxÞ

� 1

2
a5
X
x

� ðxÞ 44lat  ðxÞ þ 
a4
X
x

� ðxÞ� �Dlat ðxÞ

� 1

2
rs
a

5
X
x

� ðxÞ 4ð3Þ
lat  ðxÞ: (3.2)

We denote lattice fermion fields with  to distinguish
them from the continuum quark fields in Sec. II. The
dimension-5 Wilson terms are included in S0 to remove
doubler states. The remaining dimension-5 interactions are
[7,9]

Sð5;0Þ ¼ SB ¼ � 1

2
cB
a

5
X
x

� ðxÞi� �Blat ðxÞ; (3.3)

Sð5;1Þ ¼ SE ¼ � 1

2
cE
a

5
X
x

� ðxÞ� �Elat ðxÞ; (3.4)

where the notation SB and SE is from Ref. [7], and the

discretizations D�lat, 4�lat, 4ð3Þ
lat , Blat, and Elat are defined

below.
The new interactions in Eq. (3.1) introduced in this

paper are

Sð6;0Þ ¼ rEa
6
X
x

� ðxÞf� �Dlat;� �Elatg ðxÞ

þ zEa
6
X
x

� ðxÞ�4ðDlat �Elat �Elat �DlatÞ ðxÞ;

(3.5)

3Lattice NRQCD, which directly discretizes the continuum
heavy-quark action, can be thought of as omitting Sðd;1Þ in favor
of Sðdþ1;0Þ.

NEW LATTICE ACTION FOR HEAVY QUARKS PHYSICAL REVIEW D 78, 014504 (2008)

014504-9



Sð6;1Þ ¼ c1a
6
X
x

� ðxÞX
i

�iDilat 4ilat  ðxÞ þ c2a
6
X
x

� ðxÞf� �Dlat;4ð3Þ
lat g ðxÞ þ c3a

6
X
x

� ðxÞf� �Dlat; i� �Blatg ðxÞ

þ z3a
6
X
x

� ðxÞ� � ðDlat � Blat þBlat �DlatÞ ðxÞ þ cEEa
6
X
x

� ðxÞf�4D4lat;� �Elatg ðxÞ; (3.6)

Sð7;0Þ ¼ c4a
7
X
x

� ðxÞX
i

42
ilat  ðxÞ þ c5a

7
X
x

� ðxÞX
i

X
j�i

fi�iBilat;4jlatg ðxÞ þ r5a
7
X
x

� ðxÞX
i

X
j�i

i�i½DjBiDj�lat ðxÞ

þ z6a
7
X
x

� ðxÞð4ð3Þ
lat Þ2 ðxÞ þ z7a

7
X
x

� ðxÞf4ð3Þ
lat ; i� �Blatg ðxÞ þ z07a7

X
x

� ðxÞ½Dii� � BDi�lat ðxÞ

þ r7a
7
X
x

� ðxÞ� �Dlati� � Blat� �Dlat ðxÞ þ r07a7
X
x

� ðxÞ½D � ðB�DÞ�lat ðxÞ þ rBBa
7
X
x

� ðxÞði� � BlatÞ2 ðxÞ

þ zBBa
7
X
x

� ðxÞBlat � Blat ðxÞ � rEEa
7
X
x

� ðxÞð� �ElatÞ2 ðxÞ þ zEEa
7
X
x

� ðxÞElat �Elat ðxÞ: (3.7)

All couplings in Eqs. (3.2), (3.3), (3.4), (3.5), (3.6), and
(3.7) are real; explicit factors of i are fixed by reflection
positivity [26] of the continuum action. Some of the im-
provement terms extend over more than one time slice, so
there are small violations of reflection positivity for the
lattice action. We expect that the associated problems are
not severe, as with the improved gauge action [27].

Equations (3.5), (3.6), and (3.7) contain 19 new cou-
plings. The convention for couplings ci, ri, and zi is as
follows. In matching calculations we find that couplings zi
vanish at the tree level, while the couplings ci do not.
Couplings ri are redundant and, for this reason, could
be omitted. The analysis in Sec. II gives the number of
redundant interactions, rather than the specific choices
of interactions themselves. The possibilities for the
dimension-7 redundant directions are as follows. One of
ðc4; c5; r5Þ is redundant; we choose r5. Furthermore, one
of ðz6; z7; r7; rBBÞ, another of ðz7; r7; rBBÞ, and another of
ðz7; r7; r07; rBBÞ are redundant; we choose r7, r

0
7, and rBB.

But because pragmatic considerations could motivate other
choices, we keep all of them in our analysis. This strategy
also provides a good way for the matching calculations to
verify the formal analysis of the LEL. In future numerical
work, we recommend choosing rs, as usual, to solve the
doubling problem (in practice rs 	 1). The others may be
chosen to save computer time, which presumably means
choosing the couplings of computationally demanding in-
teractions to vanish.

The difference operators and fields with the subscript
‘‘lat’’ are taken to be

D�lat ¼ ðT� � T��Þ=2a; (3.8)

4�lat ¼ ðT� þ T�� � 2Þ=a2; 4ð3Þ
lat ¼

X3
i¼1

4ilat; (3.9)

F��lat ¼ 1

8a2
X
��¼��

X
��¼��

sgn ��sgn ��½T ��T ��T� ��T� ��

� T ��T ��T� ��T� ���; (3.10)

where the covariant translation operators T�� translate all

fields to the right one site in the�� direction, and multiply
by the appropriate link matrix [28]. These discretizations
are conventional for S0 þ SB þ SE. For the new interac-
tions, we have reused the same ingredients.
For the interactions with couplings r5 and z07 one can

consider

½DjBiDj�lat ¼ DjlatBilatDjlat; (3.11)

or

½DjBiDj�lat ¼ 1

2a2
½ð1� T�jÞBilatðTj � 1Þ

þ ðTj � 1ÞBilatð1� T�jÞ�: (3.12)

In tree-level matching calculation, both lead to the same
dependence on r5 and z07. Equation (3.11) has the advan-
tage that it reuses elements that are already defined (in a
computer program, say) for the dimension-4 and -5 actions.
Equation (3.12) is more local, however, and may have other
advantages. A FERMIQCD [29] computer code of the new
action indicates that Eq. (3.11) is faster [30]. This code also
indicates that it is advantageous to choose the redundant
directions so that one may set r5 ¼ r7 ¼ 0.
The improved gluon action SD2F2 is defined in Ap-

pendix C. The four-quark action S �qq �qq contains the obvious

discretization of the (continuum) operators explained in
Sec. II E and listed in Tables IV and V: simply substitute
lattice fermion fields for the continuum fields, and assign
each a real coupling. When matching to continuum QCD,
the couplings in S �qq �qq start at order g2, making them

commensurate with order-g2 matching effects in Sð6;1Þ þ
Sð7;0Þ, such as tree-level quark-quark scattering. To incor-

porate the four-quark action in a Monte Carlo simulation,
one would introduce auxiliary fields to recover a bilinear
action. In the next section we show, however, that these
operators are not necessary for the target accuracy of 1%–
2%, so this cumbersome setup can be avoided for now.
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IV. MATCHING CONDITIONS

In this section we derive improvement conditions on the
new couplings at the tree level. We calculate on-shell ob-
servables for small pa without any assumption on mQa.
We look at the energy as a function of 3-momentum, which
is sensitive to c1, c2, c4, and z6. We then look at the
interaction of a quark with classical background chromo-
electric and chromomagnetic fields. The former is sensitive
to cE, rE, and zE; the latter to all but cEE, rEE, zEE, rBB, and
zBB. To ensure that these results are compatible with the
improved gauge action, we next compute the amplitude for
quark-quark scattering. This step also matches the four-
quark interactions, which are not written out explicitly in
Sec. III. Finally, we compute the amplitude for Compton
scattering to match cEE, rEE, zEE, rBB, and zBB.

A. Energy

The energy of a heavy quark on the lattice is defined
through the exponential falloff in time of the propagator.
For small momentum p the energy can be written

E ¼ m1 þ p2

2m2

� 1

6
w4a

3
X
i

p4
i �

ðp2Þ2
8m3

4

þ � � � ; (4.1)

where the coefficients m1, m2, m4, and w4 depend on the
couplings in the action. Appendix A contains the Feynman
rule for the propagator and recalls the general formula for
the energy, Eq. (A4). By explicit calculation we find

m1a ¼ lnð1þm0aÞ; (4.2)

1

m2a
¼ 2
2

m0að2þm0aÞ þ
rs


1þm0a
; (4.3)

w4 ¼ 2
ð
 þ 6c1Þ
m0að2þm0aÞ þ

rs
 � 24c4
4ð1þm0aÞ ; (4.4)

1

m3
4a

3 ¼ 8
4

½m0að2þm0aÞ�3
þ 4
4 þ 8rs


3ð1þm0aÞ
½m0að2þm0aÞ�2

þ r2s

2

ð1þm0aÞ2
þ 32
c2
m0að2þm0aÞ �

8z6
1þm0a

:

(4.5)

The dimension-6 and -7 couplings ðc1; c4Þ and ðc2; z6Þ
modify w4 and m4a, but not m1a or m2a.

To match Eq. (4.1) to the continuum QCD, one requires
m4 ¼ m2 and w4 ¼ 0. From m4 ¼ m2 one obtains the
tuning condition

16
c2 ¼ 4
4ð
2 � 1Þ
½m0að2þm0aÞ�2

� 
3½2
 þ 4rsð1þm0aÞ � 6rs

2=ð1þm0aÞ�

m0að2þm0aÞ
þ 3r2s


4

ð1þm0aÞ2
þm0að2þm0aÞ

2ð1þm0aÞ
�

�
8z6 þ r3s


3

ð1þm0aÞ2
� r2s


2

1þm0a

�
; (4.6)

which (at fixed m0a) prescribes a line in the ðc2; z6Þ plane.
From w4 ¼ 0 one obtains the tuning condition

0 ¼ 
2 þ 6
c1 þ ðrs
 � 24c4Þm0að2þm0aÞ
8ð1þm0aÞ ; (4.7)

which (at fixed m0a) prescribes a line in the ðc1; c4Þ plane.
As m0a! 0, both lines become vertical: the coefficients
c1 and c2 of dimension-6 operators are fixed, whereas the
coefficients of c4 and z6 dimension-7 operators are unde-
termined. At this stage it is tempting to choose c4 and z6 to
be two of the redundant couplings, but below we shall see
that there are better choices.

B. Background field

To compute the interaction of a lattice quark with a con-
tinuum background field, we have to compute vertex dia-
grams with one gluon attached to the quark line. The
Feynman rules are given in Eqs. (A23) and (A24). Our
Feynman rules introduce a gauge potential via

U�ðxÞ ¼ exp½g0A�ðxþ 1
2e�aÞ�; (4.8)

where e� is a unit vector in the � direction, and take the

Fourier transform of the gauge field to be

A�ðxÞ ¼
Z d4k

ð2�Þ4 e
ik�xA�ðkÞ: (4.9)

A background field would, however, lead to parallel
transporters

U�ðxÞ ¼ P exp

�
g0

Z 1

0
A�ðxþ se�aÞds

�
: (4.10)

Equation (4.8) is a convention. If we use Eq. (4.10) instead,
vertices, propagators, and external line factors for gluons
would change, in such a way that Feynman diagrams for
on-shell amplitudes end up being the same.
To use the interaction with a background classical field

as a matching condition, we must compute the current J�
that couples to the background field A� in Eq. (4.10).

Current conservation requires

k � JðkÞ ¼ 0; (4.11)

where k is the external gluon’s momentum. The usual
convention for A�ðkÞ, from Eqs. (4.8) and (4.9), yields a

current Ĵ� satisfying
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k̂ � ĴðkÞ ¼ 0; (4.12)

where k̂� ¼ ð2=aÞ sinðk�a=2Þ. One sees, therefore, that a

classical gluon line with Lorentz index � must be mul-
tiplied by

n�ðkÞ ¼
k̂�
k�


 1� k2�a
2

24
: (4.13)

One should think of n�ðkÞ as a wave-function factor for the
external line. Its appearance has been noted previously by
Weisz [17].

In the rest of this subsection we match the vertex func-
tion in lattice gauge theory with our new action to that in
the continuum gauge theory. The incoming quark’s mo-
mentum is p, the outgoing p0, and the gluon’s K ¼ p0 � p.
The current is given by (no implied sum on �)

J�¼n�ðKÞN ðp0Þ �uð0;p0Þ��ðp0;pÞuð;pÞN ðpÞ; (4.14)

where ��ðp0; pÞ is the vertex function derived in Appen-

dix A. The external quarks take normalization factors N
as well as spinor factors [7].

1. Chromoelectric field: � ¼ 4

For the interaction with the chromoelectric background
field, we use the time component J4. To Oðp2=m2Þ the
current in continuum QCD is

J4 ¼ �uð0; 0Þ
�
1� K2 � 2i� � ðK� PÞ

8m2

�
uð; 0Þ; (4.15)

where P ¼ ðp0 þ pÞ=2. After a short calculation with the
new lattice action we find

J4 ¼ �uð0; 0Þ
�
1�K2 � 2i� � ðK� PÞ

8m2
E

þ zEK
2a2

1þm0a

�
uð; 0Þ; (4.16)

where

1

4m2
Ea

2 ¼ 
2

½m0að2þm0aÞ�2
þ 
2cE
m0að2þm0aÞ

þ 2rE
1þm0a

: (4.17)

The correct (tree-level) matching is achieved if one adjusts

zE ¼ 0 (4.18)

and ðcE; rEÞ such that mE ¼ m2:


2cE þ rE
2m0að2þm0aÞ

1þm0a
¼ 
2ð
2 � 1Þ
m0að2þm0aÞ þ

rs

3

1þm0a

þ r2s

2m0að2þm0aÞ
4ð1þm0aÞ2

:

(4.19)

At fixed m0a the latter prescribes a line in the ðcE; rEÞ
plane. As before, this line becomes vertical at m0a ¼ 0,
fixing cE ¼ 1 and leaving rE undetermined.
To obtain conditions on cEE, rEE, and zEE, we shall have

to turn to Compton scattering in Sec. IVD.

2. Chromomagnetic field: � ¼ i

For the interaction with the chromomagnetic back-
ground field, we use the spatial components Ji. To
Oðp3=m3Þ the current in continuum QCD is

Ji ¼ �i �uð0; 0Þ
�
Pi

�
1

m
� P2 þ 1

4K
2

2m3

�
� KiP �K

8m3

� "ijli�lKj

�
1

2m
� P2 þ 1

4K
2

4m3

�

þ "ijli�lPj
P �K
4m3

�
uð; 0Þ: (4.20)

After another short calculation we find

Ji ¼ �i �uð0; 0Þ
�
Pi

�
1

m2

� P2 þ 1
4K

2

2m3
4

�
� KiP �K

8m2m
2
E

þ zEa
2KiP �K

m2ð1þm0aÞ þ
1

8
wB1

a3½PiK2 � KiP �K� � 1

16
wB2

a3"ijlKji�lK
2

� 1

4
wB3

a3"ijlKjPli� � P þ 1

4
wXa

3Xi � 2

3
w4a

3Pi

�
P2
i þ

1

4
K2
i

�
þ 1

12
w0
Ba

3"ijli�lKjðK2
i þ K2

j Þ

þ 1

12
ðw4 þ w0

4Þa3"ijli�lKj

��
3P2

i þ
1

4
K2
i

�
þ

�
3P2

j þ
1

4
K2
j

��

� "ijli�lKj

�
1

2mB

� P2 þ 1
4K

2

4m3
B0

�
þ "ijli�lPj

P �K
4m2m

2
E

�
uð; 0Þ; (4.21)

where m2, m
3
4, w4, and m

2
E have been introduced already,

and

1

mBa
¼ 1

m2a
þ ðcB � rsÞ


1þm0a
; (4.22)

1

m3
B0a3

¼ 1

m3
4a

3
� rsðrs � cBÞ
2

ð1þm0aÞ2

þ 8ðz6 � z7Þ þ 4ðr7 � z07Þ
1þm0a

; (4.23)
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wB3
¼ 4ðrs � cBÞ
3ð1þm0aÞ

½m0að2þm0aÞ�2
þ 16ðc2 � c3Þ

m0að2þm0aÞ

þ 8r7
1þm0a

; (4.24)

wB2
¼ wB3

þ 16z3


m0að2þm0aÞ �
8z07

1þm0a
; (4.25)

wB1
¼ wB2

� 8ðr07 � z07Þ
1þm0a

; (4.26)

w0
B ¼ cB
 � 4ðc5 � r5Þ

1þm0a
; (4.27)

w0
4 ¼ � rs
 � 24c4 þ 16ð2c5 þ r5Þ

4ð1þm0aÞ : (4.28)

The term wXa
3X is discussed below.

Comparing Eqs. (4.20) and (4.21), one sees that the first
four terms match the continuum if m2 ¼ m4 ¼ mE ¼ m.
The other terms do not match unless one adjusts cB ¼ rs
[7] and zE ¼ 0 [as in Eq. (4.18)] and, furthermore, de-
mands w4 ¼ w0

4 ¼ wB1
¼ wB2

¼ wB3
¼ w0

B ¼ 0:

c3 ¼ c2 þ r7



m0að2þm0aÞ
2ð1þm0aÞ ; (4.29)

z3 ¼ r07



m0að2þm0aÞ
2ð1þm0aÞ ; (4.30)

c4 ¼ 1

24
rs
 þ 1

3
cB
 þ 2r5; (4.31)

c5 ¼ 1
4cB
 þ r5; (4.32)

z7 ¼ z6 þ 1
2ðr7 � r07Þ; (4.33)

z07 ¼ r07: (4.34)

Taken with Eqs. (4.6) and (4.7), these tuning conditions put
eight constraints on the nine (nonredundant) couplings for
interactions made solely out of spatial derivatives (and,
hence, chromomagnetic fields). To eliminate z6 from the
right-hand side of Eq. (4.33), and to obtain conditions on
rBB and zBB, we shall have to turn to Compton scattering in
Sec. IVD.

Equations (4.29), (4.30), (4.31), (4.32), (4.33), and (4.34)
make concrete several abstract features of Sec. II. If one
would like to take c4 to be redundant in Eq. (4.7), then one
cannot take r5 to be redundant here, and similarly for z6
and r7 or r07. Also, a mistuned c5 � r5 leads to w0

B � 0
and a spin-dependent contribution ½1þ 1

6w
0
Bm2aðK2

i þ
K2
j Þa2�"ijli�lKj=2m2. The mismatch here is suppressed

by �2 in the HQET counting—as expected from
Table II—and by a3 in the usual Symanzik counting.
The only undesired term in Eq. (4.21) not yet discussed

is 1
4wXa

3Xi, where

X ¼ ði��KÞP2 � ði�� PÞP �K� P½i� � ðK� PÞ�
þ ðK� PÞi� � P; (4.35)

wX ¼ 4rs

3ð1þm0aÞ

½m0að2þm0aÞ�2
þ 16c2


m0að2þm0aÞ : (4.36)

One cannot tune wX ¼ 0. Fortunately, however, X ¼ 0. A
simple geometric proof is as follows: if, by chance, P is
parallel to K, then setting P / K one sees that the last two
terms on the right-hand side of Eq. (4.35) vanish and the
first two cancel. In the general case that P is not parallel to
K, then K, P, and K� P are three linearly independent
vectors. But one easily sees that

K �X ¼ P �X ¼ ðK� PÞ �X ¼ 0; (4.37)

thus, X ¼ 0. Such identities are very useful in simplifying
expressions for the Compton scattering amplitude.

C. Quark-quark scattering

To match the four-quark action, S �qq �qq, one must work

out the quark-quark scattering amplitude. With the current
J� derived in the previous subsection, this is a relatively

simple task. The main new ingredient is the improved
gluon propagator. For k2a2 � 1, one finds [17]

D��ðkÞ ¼ n�ðkÞDcont
�� ðkÞn�ðkÞ½1þ xa2k2� þOða4Þ;

(4.38)

where x is the redundant coupling of the pure-gauge action,
cf. Appendix C and Ref. [19]. This approximation suffices
for evaluating t-channel gluon exchange. Once the bilinear
action has been matched correctly, the lattice amplitude
(using, say, Feynman gauge) is clearly merely

A latð12 ! 12Þ ¼ Acontð12 ! 12Þ þ xa2taJ1 � J2ta;
(4.39)

where 1 and 2 label the scattered quark flavors, and both ta

have uncontracted color indices. We find, therefore, that
the tree-level couplings of S �qq �qq are, at most, proportional

to x. They can be eliminated, at the tree level, by setting
x ¼ 0, with the added benefit of simplifying the gauge
action SD2F2 .
Note, however, that the approximation in Eq. (4.38) and,

thus, Eq. (4.39), breaks down for s-channel annihilation of
heavy quarks. As discussed in Sec. II E, these interactions
are suppressed for other reasons, so the four-quark opera-
tors needed to correct them may be neglected.
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D. Compton scattering

The matching of Secs. IVA, IVB, and IVC leaves four
nonredundant couplings of the new action undetermined:
z6, cEE, zEE, and zBB. To find four more matching con-
ditions, we turn to Compton scattering. We shall proceed
with the gauge-action redundant coupling x ¼ 0.

The amplitude is

A ab
lat ðqg! qgÞ ¼ X

��

��0�ðk0Þn�ðk0ÞM̂ab
����ðkÞn�ðkÞ;

(4.40)

where ��� and �� are continuum polarization vectors, and

M̂ab
�� denotes the sum of Feynman diagrams shown in

Fig. 2. The factors n�ðk0Þ and n�ðkÞ appear in Eq. (4.40)

to account for lattice gluons. With them one can verify thatX
pol:

��ðkÞn�ðkÞn�ðkÞ ���ðkÞ ¼ �D��ðkÞ; (4.41)

as usual. We find it convenient to associate these

factors with the diagrams and introduce Mab
�� ¼

n�ðk0ÞM̂ab
��n�ðkÞ. Then

Mab
�� ¼ tbtan�ðk0ÞN ðp0Þ �uð0;p0Þ��ðp0; qÞSðqÞ��ðq; pÞuð;pÞN ðpÞn�ðkÞ

þ tatbn�ðk0ÞN ðp0Þ �uð0;p0Þ��ðp0; q0ÞSðq0Þ��ðq0; pÞuð;pÞN ðpÞn�ðkÞ
� 1

2fta; tbgn�ðk0ÞN ðp0Þ �uð0;p0ÞaX��ðp; k;�k0Þuð;pÞN ðpÞn�ðkÞ
� 1

2½ta; tb�n�ðk0ÞN ðp0Þ �uð0;p0ÞaY��ðp; k;�k0Þuð;pÞN ðpÞn�ðkÞ;
þ tcVabc���ðk;�k0;�KÞD��ðKÞn�ðk0ÞN ðp0Þ �uð0;p0Þ��ðp0; pÞuð;pÞN ðpÞn�ðkÞ; (4.42)

where q ¼ pþ k ¼ p0 þ k0, q0 ¼ p� k0 ¼ p0 � k, and
K ¼ k� k0 ¼ p0 � p. The propagator SðqÞ and vertex
factors ��, X��, and Y�� are defined in Appendix A.

The gluon propagator, to the accuracy needed, is given in
Eq. (4.38), and to the same accuracy the triple-gluon vertex
is (with x ¼ 0)

Vabc���ðk;�k0;�KÞ ¼ ifabc½n�ðkÞn�ðk0Þn�ðKÞ��1f���½ðkþ k0Þ�ð1� 1
12���K

2a2Þ þ 1
12K�ðk2� � k02�Þa2� � ���½ðk0 � KÞ�

�ð1� 1
12���k

2a2Þ þ 1

12
k�ðk02� � K2

�Þa2� � ���½ðK þ kÞ�ð1� 1
12���k

02a2Þ � 1
12k

0
�ðK2

� � k2�Þa2�g:
(4.43)

Note that the factors n�ðKÞ, etc., arise naturally. Note also
that K � J ¼ k � � ¼ k0 � ��0 ¼ k2 ¼ k02 ¼ 0, so most of the
lattice artifacts in the vertex drop out. The remaining one is
necessary to cancel a similar lattice artifact from the other
diagrams, cf. Eqs (B10) and (B11).

We may choose the polarization vectors such that ��04 ¼
�4 ¼ 0. Then we need only focus on Mmn. We have
verified thatM44 is improved by (a subset of) the improve-
ment conditions needed for Aðqg! qgÞ calculated with
these polarization vectors.

To present the results, let us introduce some notation.
Write the momenta as

P ¼ ðp0 þ pÞ=2; (4.44)

R ¼ ðkþ k0Þ=2; (4.45)

K ¼ p0 � p ¼ k� k0; (4.46)

so q ¼ Pþ R and q0 ¼ P� R. Note that P0 ¼ �iP4 ¼
2m1 þ � � � is larger than the other momenta, and K0 ¼
�iK4 ¼ ðp02 � p2Þ=2m2 is smaller. Next separate the dia-
grams according to a color decomposition,

M ab
�� ¼ 1

2fta; tbgM�� þ 1
2½ta; tb�N ��; (4.47)

(a) (b) (c) (d)

FIG. 2. Feynman diagrams for Compton scattering in lattice gauge theory.

MEHMET B. OKTAYAND ANDREAS S. KRONFELD PHYSICAL REVIEW D 78, 014504 (2008)

014504-14



where the second term would be absent in an Abelian
gauge theory. Finally, write

M �� ¼
X3
n¼0

Xn
s¼0

Rn�1�2s
0 Mðn;n�1�2sÞ

�� ; (4.48)

and similarly for N ��, where the superscript ðn; rÞ de-
notes the power in 1=m and R0.

Most of these terms are well matched with Eqs. (4.18),
(4.19), (4.29), (4.30), (4.31), (4.32), (4.33), and (4.34). New

matching conditions come from Mð3;2Þ
mn , N ð3;2Þ

mn , Mð3;0Þ
mn ,

and N ð3;0Þ
mn . The ðn; rÞ ¼ ð3; 2Þ amplitudes are

M ð3;2Þ
mn ¼ �mn

4m3
EE

þ 2a3zEE�mn
1þm0a

; (4.49)

N ð3;2Þ
mn ¼ "mnii�i

4m3
EE

; (4.50)

where

1

m3
EEa

3 ¼ 8½
 þ 1
2 cE
m0að2þm0aÞ�2
½m0að2þm0aÞ�3

þ 4
2

½m0að2þm0aÞ�2

þ 16cEE


m0að2þm0aÞð1þm0aÞ þ
8ðcEE
 þ rEEÞ

1þm0a
:

(4.51)

To match to continuum QCD one requires

zEE ¼ 0 (4.52)

and the adjustment of ðcEE; rEEÞ so that mEE ¼ m2. As
with, say, ðcE; rEÞ, at fixed m0a the latter prescribes a
line in the ðcEE; rEEÞ plane, which becomes vertical at
m0a ¼ 0, fixing cEE ¼ � 1

8 and leaving rEE undetermined.

The ðn; rÞ ¼ ð3; 0Þ amplitudes are

Mð3;0Þ
mn ¼ Mð3;0Þ

mn jmatched � 2a3

em1a
ðzBB þ z6 þ r7 � rBB

� z07ÞMmn; (4.53)

Mmn ¼ �mnðR2 � 1
4K

2Þ � ðRm � 1
2KmÞðRn þ 1

2KnÞ;
(4.54)

N ð3;0Þ
mn ¼ N ð3;0Þ

mn jmatched � 2a3

em1a
ðz6 þ r7 � rBB � z07ÞNmn;

(4.55)

Nmn ¼ "mnrðRri� �R� 1
4Kri� � KÞ � 1

2ði�n"mrs

þ i�m"nrsÞRrKs; (4.56)

where ‘‘matched’’ denotes terms (spelled out in Appen-
dix B) that already match, if the conditions derived so far

are applied. Equations (4.53) and (4.55) yield the new
conditions

zBB þ z6 � z07 ¼ rBB � r7; (4.57)

z6 � z07 ¼ rBB � r7: (4.58)

Solving these, and noting z07 ¼ r07 [Eq. (4.34)], we find

zBB ¼ 0; (4.59)

z6 ¼ rBB þ r07 � r7; (4.60)

which completes the set of conditions needed to match the
new lattice action.

E. Matching summary

Equations (4.6), (4.7), (4.31), (4.32), (4.33), (4.34),
(4.59), and (4.60) can now be combined to yield

6
c1 ¼ �
2 þ ðcB
 þ 6r5Þm0að2þm0aÞ
1þm0a

; (4.61)

16
c2 ¼ 4
4ð
2 � 1Þ
½m0að2þm0aÞ�2

� 
3½2
 þ 4rsð1þm0aÞ � 6rs

2=ð1þm0aÞ�

m0að2þm0aÞ
þ 3r2s


4

ð1þm0aÞ2
þm0að2þm0aÞ

2ð1þm0aÞ
�
8ðrBB þ r07

� r7Þ þ r3s

3

ð1þm0aÞ2
� r2s


2

1þm0a

�
; (4.62)

c3 ¼ c2 þ r7



m0að2þm0aÞ
2ð1þm0aÞ þ ðrs � cBÞ
2ð1þm0aÞ

4m0að2þm0aÞ ;

(4.63)

c4 ¼ 1
24rs
 þ 1

3cB
 þ 2r5; (4.64)

c5 ¼ 1
4cB
 þ r5; (4.65)

z3 ¼ r07



m0að2þm0aÞ
2ð1þm0aÞ ; (4.66)

z6 ¼ rBB þ r07 � r7; (4.67)

z7 ¼ rBB � 1
2ðr7 � r07Þ; (4.68)

z07 ¼ r07; (4.69)

zBB ¼ 0: (4.70)

To run a numerical simulation, we would like to have as
few new couplings as possible. The matching calculations
verified the presence of several redundant directions. We
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may, therefore, take

r5 ¼ r7 ¼ r07 ¼ rBB ¼ 0 (4.71)

to all orders in perturbation theory. Hence

cB ¼ rs; (4.72)

c1 ¼ � 1

6

 þ cB

m0að2þm0aÞ
6ð1þm0aÞ ; (4.73)

c2 ¼ c3

¼ 
3ð
2 � 1Þ
½2m0að2þm0aÞ�2

� 
2½
 þ 2rsð1þm0aÞ � 3rs

2=ð1þm0aÞ�

8m0að2þm0aÞ
þ 3r2s


3

16ð1þm0aÞ2
þm0að2þm0aÞr2s


32ð1þm0aÞ2

�
�

rs


1þm0a
� 1

�
; (4.74)

c4 ¼ 1
24rs
 þ 1

3cB
; (4.75)

c5 ¼ 1
4cB
; (4.76)

and

z3 ¼ z6 ¼ z7 ¼ z07 ¼ zBB ¼ 0: (4.77)

From the chromoelectric interactions we require mE ¼ m2

and mEE ¼ m2, whence

cE ¼ 
2 � 1

m0að2þm0aÞ þ
rs


1þm0a
þ r2sm0að2þm0aÞ

4ð1þm0aÞ2

� rE

2

2m0að2þm0aÞ
1þm0a

; (4.78)

cEE½2þm0að2þm0aÞ� ¼ 
ð
2 � 1Þð1þm0aÞ
½m0að2þm0aÞ�2

þ cE
ð
2 � 1Þð1þm0aÞ
m0að2þm0aÞ þ 
ðrs
 � 1�m0aÞ

2m0að2þm0aÞ þ 1

2
rscE


2 þ 2rE


� 1

4
c2E
ð1þm0aÞ þ rsrEm0að2þm0aÞ

1þm0a
� rEE



m0að2þm0aÞ; (4.79)

and we also find

zE ¼ zEE ¼ 0: (4.80)

Without loss one may set the redundant rE ¼ rEE ¼ 0 to
simplify the action and Eqs. (4.78) and (4.79).

In summary, of the 19 new couplings in Eqs. (3.5), (3.6),
and (3.7), we find only six that are nonzero at tree-level
matching. Moreover, once the bilinear action has been
matched, and the redundant gauge coupling x ¼ 0, the
only nonzero four-quark interaction would correspond to
(highly suppressed) Q �Q annihilation. In the next section
we shall examine the size of the remaining uncertainties, to
justify that this level of matching suffices.

V. ERRORS FROM TRUNCATION

In this section we give a semiquantitative analysis of
heavy-quark discretization effects with the new action. Our
aim is to study the accuracy needed in matching lattice
gauge theory to continuum QCD. Several elements are
needed. First, we need estimates of the mismatch at short
distances. This is straightforward, because the calculations
of Sec. IV can be applied to work out how large the
mismatch is for the unimproved action. Second, we need
estimates of the long-distance effects, which is possible
parametrically, by counting powers of� and �. Finally, the
size of discretization effects depends on the lattice spacing

(obviously) so we must note the range that is tractable
today and in the near future.
The error analysis is convenient using the nonrelativistic

description. Heavy-quark effects of operators that are re-
lated as in Eqs. (2.14) and (2.15) are lumped into one short-
distance coefficient Clati per HQET operator in Table III. In
Sec. IV the short-distance coefficients are 1=2m2, 1=2mB,
1=4m2

E, 1=8m
3
4, w4, wBi , etc. In the corresponding contin-

uum short-distance coefficients Cconti , these masses are
replaced with a single massmQ. To eliminate discretization

effects from the kinetic energy, one should identify mQ

with m2.
Comparison of Eqs. (2.5) and (2.6) then says that heavy-

quark discretization effects take the form

error i ¼ ðClati � Cconti ÞhOii: (5.1)

For example, the error from ðp2Þ2=8m3
4 is

errorm4
¼

�
1

8m3
4a

3
� 1

ð2m2aÞ3
�
a3hðp2Þ2i: (5.2)

See Refs. [11,12] for further details, and Ref. [31] for the
application of this technique to compare several heavy-
quark formalisms. We estimate the matrix elements hOii
using the power counting of HQETand NRQCD for heavy-
light hadrons and quarkonium, respectively. The power of
� or � is listed in Table III. The coefficient mismatches are
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obtained from Sec. IV, where explicit expressions show
how the coefficients depend on the new couplings. In par-
ticular, when the new couplings vanish, we derive the
mismatch for the Wilson and clover actions.

Explicit calculations of the mismatch at higher orders
of perturbation theory are not yet available. (They would
be tantamount to higher-loop matching.) Nevertheless, the
asymptotic behavior remains constrained, when mQa� 1

because of the presence of the E-type operators, when
mQa 6�1 by heavy-quark symmetry, and when mQa� 1

because the Wilson time derivative ensures only one pole
in the propagator [11]. It turns out that the most pessimistic
asymptotic behavior for 1=2mB, 1=4m

2
E, etc., is the same

at higher orders as in the tree-level formulas in Sec. IV.
It seems reasonable, therefore, to multiply the tree-level
mismatch with �ls to estimate the l-loop mismatch. We use
one-loop running for �sðaÞ starting with �sð1=11 fmÞ ¼
1=3. This yields the high end of the Brodsky-Lepage-
Mackenzie coupling [32] calculated for similar quanti-
ties [33].

The resulting estimates for the mismatch of rotationally
symmetric operators are shown in Fig. 3, as a function of
the lattice spacing a ¼ m2a=mQ, Q 2 fc; bg. We show the

relative error in mass splittings, which are of order � in
heavy-light hadrons and of order mQ�

2 in quarkonium.

The left set of plots uses HQET power counting, for
heavy-light hadrons, while the right set of plots uses
NRQCD power counting, for quarkonia. The light gray
or red (dark gray or blue) curves show the estimate for

hadrons containing c (b) quarks. The dotted curves show
the error when the corresponding correction term is omit-
ted completely, i.e., the errors in the Wilson action. The
dashed (solid) curves show the estimate of the error for
tree-level (one-loop) matching. The vertical lines highlight
a ¼ 0:125, 0.09, 0.06, and 0.045 fm, corresponding to the
ensembles of gauge fields with nf ¼ 2þ 1 flavors from the

MILC Collaboration [34].
To drive each contribution to heavy-quark discretization

effects below 1%, we find that one-loop matching is nec-
essary for cB, the coupling of the chromomagnetic clover
term. Tree-level matching is sufficient for the chromoelec-
tric clover coupling cE, though one-loop matching would
be desirable for charmonium and charmed hadrons. The
lowest plots, labeled from 1=8m3

4 are for the relativistic

correction terms, with couplings c2 and z6. They also apply
to 1=8m3

B0 and the related chromomagnetic couplings c3
and z7. The one-loop mismatches of four-quark interac-
tions are suppressed not only by a loop factor, but also by
�2 or �2, so they should fall below 1% too.
Similar results for operators that break rotational sym-

metry are shown in Fig. 4. To drive these contributions to
heavy-quark discretization effects below 1%, we again find
it sufficient to tune the couplings of the new action at the
tree level.
There are some other noteworthy features of Figs. 3 and

4. For mQa� 1, the discretization effects vanish as a

power of a, as one would deduce from the Symanzik ef-
fective field theory. Because we identify m2 with the mass
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FIG. 3 (color online). Relative truncation errors for the new action. The light gray or red curves stand for c quarks; dark gray or blue
for b. Dotted curves show the error when the contribution is unimproved. Dashed and solid curves show the error for tree-level and
one-loop matching, respectively, of the needed operators. � ¼ 700 MeV, mc ¼ 1400 MeV, mb ¼ 4200 MeV; �2�cc ¼ 0:3, �2�bb ¼ 0:1.

Vertical lines show lattice spacings available with the MILC ensembles [34].
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in the Cconti , the powers of a are balanced by � or mQ�,
not mQ. Had we identified m1 with the physical mass,

errors of order ðmQaÞn would have appeared. For mQa�
1, the tree-level curves flatten out. The error cannot grow
without bound, because of the heavy-quark symmetries of
the Wilson action and our improvements to it. Indeed, the
curves for the b quark are usually lower than those for the c
quark, which bodes well for calculations relevant to
the Cabibbo-Kobayashi-Maskawa matrix. The underlying
reason for the pattern is that the static approximation works
better for b-flavored hadrons than for charmed hadrons.
The 1=mn

b contributions start out smaller, so their mis-

matches are also smaller. Similarly, the leading NRQCD
works better for bottomonium than charmonium. The mis-
matches from 1=8m3

4 and w4=6 deviate from the pattern,

however, because NRQCD’s relative suppression �2�bb=�
2
�cc

is not as strong as HQET’s ðmc=mbÞ3. Mismatches from
wBi=4 and ðw4 þ w0

4Þ=4 are of order �4 and again follow

the pattern.
In tree-level improvement, one should avoid choices

where it is known that one-loop corrections from tadpole
diagrams will be large [35]. Therefore, we envision follow-
ing some sort of tadpole improvement. In the action, write
each link matrix as u0½U�=u0� and absorb all but one pre-

factor of u0 into tadpole-improved couplings ~ci and ~ri. [In
several cases, it will be necessary to expand expressions
such as Dilat 4ilat , 42

ilat, and Eq. (3.11), to eliminate any

instance of U�U
y
� ¼ 1 before inserting u0.] Then apply

the conditions of Sec. IV to ~ci and ~ri instead of ci and ri,
and take the u0 factors in the denominator from the
Monte Carlo simulation.

VI. CONCLUSIONS

In this paper we have presented the formalism and
explicit calculations needed to define a new lattice action
for heavy quarks. Our aim was to obtain an action whose
discretization errors would be & 1% at currently available
lattice spacings. Combining our matching calculations,
power counting, and the heavy-quark theory of discretiza-
tion effects, we have argued that the proposed action
should meet its target. Setting to zero the redundant cou-
plings and those that vanish when matched at the tree level,
our action can be written S ¼ S0 þ SB þ SE þ Snew, where

Snew ¼ c1a
6
X
x

� ðxÞX
i

�iDilat 4ilat  ðxÞ

þ c2a
6
X
x

� ðxÞf� �Dlat;4ð3Þ
lat g ðxÞ

þ c3a
6
X
x

� ðxÞf� �Dlat; i� � Blatg ðxÞ

þ cEEa
6
X
x

� ðxÞf�4D4lat;� �Elatg ðxÞ

þ c4a
7
X
x

� ðxÞX
i

42
ilat  ðxÞ

þ c5a
7
X
x

� ðxÞX
i

X
j�i

fi�iBilat;4jlatg ðxÞ: (6.1)

The new action has six additional nonzero couplings,
which depend on the couplings in S0 þ SB þ SE according
to Eqs. (4.73), (4.74), (4.75), (4.76), and (4.79). To achieve
1% accuracy, SB must be, and SE could well be, matched at
the one-loop level [36].
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FIG. 4 (color online). Relative truncation errors for the new action, from discretization effects that break rotational symmetry. The
curves have the same meaning as in Fig. 3.
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Another lattice action achieves similar accuracy for
charmed quarks, namely, the highly improved staggered
quark (HISQ) action [37]. Our approach is computationally
more demanding than HISQ. Its advantage, however, is the
intriguing result that our discretization errors for bottom
quarks are smaller than for charmed quarks. That means
that experience with charmed hadrons and charmonium
can inform analogous calculation of properties of
b-flavored hadrons.

Finally, we note that there is tension between the most
accurate calculation of the Ds meson decay constant, fDs

[38], which uses HISQ, and experimental measurements
[39]. Our action is a candidate for the charmed quark in a
cross-check of the HISQ fDs

, because its discretization
errors can be expected to be small enough to strengthen
or dissipate the disagreement, while possessing different
systematic errors.
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APPENDIX A: FEYNMAN RULES

In this Appendix we present Feynman rules for the new
action needed to carry out the matching calculations of
Sec. IV. These are the quark and gluon propagators and
three- and four-point vertices. The corresponding Feynman
diagrams are shown in Fig. 5.
The quark propagator [Fig. 5(a)] is modified only

through c2, c1, z6, and c4. It reads

aS�1ðpÞ ¼ i�4 sinðp4aÞ þ i� � KðpÞ þ�ðpÞ � cosðp4aÞ;
(A1)

where

KiðpÞ ¼ sinðpiaÞ½
 � 2c2p̂
2a2 � c1p̂

2
i a

2�; (A2)
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p p′
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k
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l
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p p′
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l
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p
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p p′

4, a

k
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p ij

ij
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ij

ij
p′
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k

FIG. 5. Feynman rules for the action S given by Eqs. (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7).
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�ðpÞ ¼ 1þm0aþ p̂2a2
�
1

2
rs
 þ z6p̂

2a2
�

þ c4
X
i

ðp̂iaÞ4: (A3)

The tree-level mass shell is p4 ¼ iE, where the energy
satisfies

coshEa ¼ 1þ�2 þK2

2�ðpÞ : (A4)

Incoming external fermion lines receive factors
uð;pÞN ðpÞ or vð;pÞN ðpÞ, where

N ðpÞ ¼
�

L

�ðpÞ sinhE
�
1=2
; (A5)

uð;pÞ ¼ Lþ sinhE� i� � Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðLþ sinhEÞp uð; 0Þ; (A6)

vð;pÞ ¼ Lþ sinhEþ i� � Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðLþ sinhEÞp vð; 0Þ; (A7)

L ¼ �ðpÞ � coshE; �4uð; 0Þ ¼ uð; 0Þ, �4vð; 0Þ ¼
�vð; 0Þ. Outgoing external fermion lines receive fac-
tors N ðpÞ �uð;pÞ or N ðpÞ �vð;pÞ, where �uð;pÞ ¼
uyð;pÞ�4, �vð;pÞ ¼ vyð;pÞ�4.

The gluon propagator [Fig. 5(b)] is not easy to express in
closed form. We refer the reader to two papers of Weisz for
details [17] and a correction [18] for the propagator on
isotropic lattices. The improved vertex is in Ref. [18].

Now let us turn to vertices with one [Figs. 5(c) and 5(d)]
or two [Figs. 5(e)–5(g)] gluons attached to a quark line.
The new terms in the bilinear part of the action are all built
from difference and clover operators that already appear
in S0 þ SB þ SE. Consequently, the new terms in the
Feynman rules for these vertices can be obtained using
the chain rule.

The difference operators are given in Eqs. (3.8), (3.9),
and (3.10). To simplify notation, let us drop the subscript
‘‘lat’’ in this Appendix. One-gluon vertices need

D�;�
aðP; kÞ ¼ @D�

@Aa�ðkÞ ¼ g0t
a��� cos

��
Pþ 1

2
k

�
�
a

�
;

(A8)

4�;�
aðP; kÞ ¼ @4�

@Aa�ðkÞ

¼ g0t
a���ð2i=aÞ sin

��
Pþ 1

2
k

�
�
a

�
; (A9)

F��;�
aðkÞ ¼ @F��

@Aa�ðkÞ

¼ g0t
a cos

1

2
k�a½���iS�ðkÞ � ���iS�ðkÞ�:

(A10)

It is convenient to write out the chromomagnetic and
chromoelectric cases of Eq. (A10):

Bi;m
aðkÞ ¼ @Bi

@AamðkÞ ¼ �g0ta cos
�
1

2
kma

�
"mriiSrðkÞ;

(A11)

Ei;m
aðkÞ ¼ @Ei

@AamðkÞ ¼ g0t
a cos

�
1

2
kma

�
�miiS4ðkÞ; (A12)

Ei;4
aðkÞ ¼ @Ei

@Aa4ðkÞ
¼ �g0ta cos

�
1

2
k4a

�
iSiðkÞ; (A13)

since Bi ¼ 1
2"ijkFjk and Ei ¼ F4i appear in Eq. (3.1). Two-

gluon vertices need

D�;��
abðP; k; lÞ ¼ @2D�

@Aa�ðkÞ@Ab�ðlÞ
¼ g20

1

2
fta; tbg������ai

� sin

��
Pþ 1

2
K

�
�
a

�
; (A14)

4�;��
abðP; k; lÞ ¼ @24�

@Aa�ðkÞ@Ab�ðlÞ
¼ g20

1

2
fta; tbg������2

� cos

��
Pþ 1

2
K

�
�
a

�
; (A15)

where K ¼ kþ l. For the clover operator it is convenient
to introduce

C��ðk; lÞ ¼ 2 cos12ðkþ lÞ�a cos12l�a cos12ðkþ lÞ�a cos12k�a
� cos12k�a cos

1
2l�a: (A16)

Then one has (K ¼ kþ l)

F��;��
abðk; lÞ ¼ @2F��

@Aa�ðkÞ@Ab�ðlÞ
¼ g20½ta; tb�

�
ð������ � ������ÞC��ðk; lÞ

� 1

4
���a

2K̂�½���ðS�ðkÞ � S�ðlÞÞ

� ���ðS�ðkÞ � S�ðlÞÞ�
�
; (A17)
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Bi;mn
abðk; lÞ ¼ @2Bi

@AamðkÞ@AbnðlÞ
¼ g20½ta; tb�

�
"mniCmnðk; lÞ

� 1

4
�mn"mria

2K̂m½SrðkÞ � SrðlÞ�
�
; (A18)

Ei;mn
abðk; lÞ ¼ @2Ei

@AamðkÞ@AbnðlÞ
¼ g20½ta; tb�

1

4
�mn�mia

2K̂m½S4ðkÞ � S4ðlÞ�;
(A19)

Ei;4n
abðk; lÞ ¼ @2Ei

@Aa4ðkÞ@AbnðlÞ
¼ g20½ta; tb��niC4nðk; lÞ;

(A20)

Ei;44
abðk; lÞ ¼ @2Ei

@Aa4ðkÞ@Ab4ðlÞ
¼ �g20½ta; tb�

1

4
a2K̂4½SiðkÞ � SiðlÞ�: (A21)

The Feynman rules for one gluon are then

Figs : 5ðc; dÞ ¼ �g0taij��ðp0; pÞ; (A22)

with

�4ðp0; pÞ ¼ �4 cos

�
1

2
ðp0 þ pÞ4a

�
� i sin

�
1

2
ðp0 þ pÞ4a

�

þ i

2
cE
a� � SðkÞ cos

�
1

2
k4a

�
þ irEa

2�4�

� fSðkÞ � ½Sðp0Þ þ SðpÞ�g cos
�
1

2
k4a

�
� ðrE

� zEÞa2�4SðkÞ � ½Sðp0Þ � SðpÞ� cos
�
1

2
k4a

�

þ cEEa
2� � SðkÞ½S4ðp0Þ � S4ðpÞ� cos

�
1

2
k4a

�
;

(A23)

�mðp0; pÞ ¼ 
�m cos

�
1

2
ðp0 þ pÞma

�
� irs
 sin

�
1

2
ðp0 þ pÞma

�
� 1

2
cB
a"mri�iSrðkÞ cos

�
1

2
kma

�
� i

2
cE
a�mS4ðkÞ

� cos

�
1

2
kma

�
� irEa

2"mri�i�4S4ðkÞ½Srðp0Þ þ SrðpÞ� cos
�
1

2
kma

�
þ ðrE � zEÞa2�4S4ðkÞ½Smðp0Þ � SmðpÞ�

� cos

�
1

2
kma

�
� c2a

2

�
�m cos

�
1

2
ðp0 þ pÞma

�
ðbp02 þ p̂2Þ þ � � ½Sðp0Þ þ SðpÞ� dðp0 þ pÞm

�

� 1

2
c1a

2�m

�
cos

�
1

2
ðp0 þ pÞma

�
ðbp02

m þ p̂2
mÞ þ ½Smðp0Þ þ SmðpÞ� dðp0 þ pÞm

�
� c3a

2"mri�4�5SrðkÞ

� ½Siðp0Þ þ SiðpÞ� cos
�
1

2
kma

�
þ ðc3 � z3Þa2� � SðkÞ½Smðp0Þ � SmðpÞ� cos

�
1

2
kma

�
� ðc3 � z3Þa2�mSðkÞ

� ½Sðp0Þ � SðpÞ� cos
�
1

2
kma

�
� cEEa

2�mS4ðkÞ½S4ðp0Þ � S4ðpÞ� cos
�
1

2
kma

�
� iz6a

3 dðp0 þ pÞmðbp02 þ p̂2Þ

� ic4a
3 dðp0 þ pÞmðbp02

m þ p̂2
mÞ � ðz7 þ c5Þa3"mri�iSrðkÞðp̂02 þ p̂2Þ cos

�
1

2
kma

�
þ c5a

3"mri�iSrðkÞ

� ðp̂02
i þ p̂2

i Þ cos
�
1

2
kma

�
þ r5a

3"mri�iSrðkÞ½Siðp0ÞSiðpÞ� cos
�
1

2
kma

�
þ ðr7 � z07 � r5Þa3"mri�iSrðkÞ

� ½Sðp0Þ � SðpÞ� cos
�
1

2
kma

�
� r7a

3"mri½Siðp0Þ� � SðpÞ þ SiðpÞ� � SðpÞ�SrðkÞ cos
�
1

2
kma

�

þ iðr7 � r07Þa3½Smðp0ÞSðpÞ � SðkÞ � SmðpÞSðp0Þ � SðkÞ� cos
�
1

2
kma

�
: (A24)

In the r5 and z07 terms, Eq. (3.11) has been assumed. If
instead one prefers Eq. (3.12) then replace

½Sjðp0ÞSjðpÞ� ! ½cosð12kjaÞp̂0
jp̂j�:

Both choices have the same effect on Eq. (4.21).

The two-gluon rules are

Figs : 5ðe; f; gÞ ¼ �1
2g

2
0fta; tbgijaX��ðp; k; lÞ

� 1
2g

2
0½ta; tb�ijaY��ðp; k; lÞ; (A25)
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with

Xmnðp; k; lÞ ¼ i
�mn�m sinð12smaÞ � rs
�mn cosð12smaÞ � 2rEa"mni�4�i½cosð12snaÞ cosð12knaÞ cosð12kmaÞS4ðkÞ
� cosð12smaÞ cosð12lmaÞ cosð12lnaÞS4ðlÞ� þ iðrE � zEÞa2�4�mn sinð12smaÞ½SmðkÞS4ðkÞ þ SmðlÞS4ðlÞ�
þ 4ic2�m½cosð12smaÞ cosð12lmaÞ sinð12snaÞ cosð12knaÞ þ sinð12smaÞ sinð12lmaÞ cosð12snaÞ sinð12knaÞ�
þ 4ic2�n½sinð12smaÞ cosð12lmaÞ cosð12snaÞ cosð12knaÞ þ cosð12smaÞ sinð12lmaÞ sinð12snaÞ sinð12knaÞ�
þ 2ic2a�mn cosð12smaÞ� � ½Sðp0Þ þ SðpÞ� � ic2a

2�mn�m sinð12smaÞðbp02 þ p̂2Þ
þ ic1a�mn�mŝm½4 cosð12smaÞ cosð12kmaÞ cosð12lmaÞ � 1� þ 2ic3"mnr�4�5½sinðlraÞ cosð12smaÞ cosð12lmaÞ
� cosð12lnaÞ � sinðkraÞ cosð12snaÞ cosð12knaÞ cosð12kmaÞ� þ 2iðc3 � z3Þaf½�mn� � SðlÞ � �nSmðlÞ�
� sinð12smaÞ sinð12lmaÞ cosð12lnaÞ þ ½�mn� � SðkÞ � �mSnðkÞ� sinð12snaÞ sinð12knaÞ cosð12kmaÞg
� 8z6½sinð12smaÞ cosð12lmaÞ sinð12snaÞ cosð12knaÞ � cosð12smaÞ sinð12lmaÞ cosð12snaÞ sinð12knaÞ�
� 2z6a

2�mn cosð12smaÞðbp02 þ p̂2Þ � 2c4a
2�mnfcosð12smaÞðbp02

m þ p̂2
mÞ þ cos½12ðk� lÞma�ŝ2m � k̂ml̂mg

þ 2iðz7 þ c5Þa2�i½ŝn"mriSrðkÞ cosð12kmaÞ cosð12knaÞ þ ŝm"nriSrðlÞ cosð12lnaÞ cosð12lmaÞ�
þ 2ic5a
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where �Cmniðk; lÞ ¼ "mniCmnðk; lÞ � 1
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Y4mðp; k; lÞ ¼ �cE
�mC4mðk; lÞ � 2rEa"mri�4�i½Srðp0Þ þ SrðpÞ�C4mðk; lÞ � rEa
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APPENDIX B: DETAILS OF COMPTON AMPLITUDES

The parts of the Compton scattering amplitude not exhibited in Sec. IVD are shown here. First the color-symmetric
contributions:
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The color-antisymmetric contributions from Figs. 2(a)–2(c):
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The terms on the last line do not match, but we still must
add to Eqs. (B6)–(B10) the contribution of the diagram
with the three-gluon vertex [Fig. 2(d)], which is

N 2ðdÞ
�� ¼ �2iK�2½2���R:J � ðk0 � KÞ�J� � ðkþ KÞ�J��

þ ia2
1

3
���R�J� þ i

6
a2K�2½k�k�ðk0 � KÞ�J�

þ k0�k0�ðK þ kÞ�J�� (B11)
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and no M�� contribution. Here J� is the current of
Sec. IVB. The first lattice artifact cancels the last line of
Eq. (B10). The second lattice artifact vanishes upon con-
traction with the external-gluon polarization vectors.

APPENDIX C: IMPROVED GAUGE ACTION

In this Appendix we outline how to improve the gauge
action, when axis-interchange symmetry is given up. The
improvement program is the same as for anisotropic lat-
tices, which has been worked out [24] and summarized
[23]. Since it has not been published, we give the main
details here.

Table VI lists the interactions in the Symanzik LEL,
with and without axis-interchange symmetry. Without
axis-interchange symmetry there are eight operators.
Other operators can be written as linear combinations of
the operators in the table and total derivatives. For ex-
ample, previous work [17–19] used tr½ðD�F��ÞðD�F��Þ�,
but we find it easier to use tr½F��F��F���. With the

Bianchi identity D�F�� þD�F�� þD�F�� ¼ 0, one can

show that

1
2 tr½ðD�F��ÞðD�F��Þ� ¼ tr½ðD�F��ÞðD�F��Þ�

� 2 tr½F��F��F��� þ @; (C1)

where @ denotes the omission of total derivatives that make
no contribution to the action. Thus, only two of these three
operators are needed.

Table VI is laid out in a suggestive way: operators in the
right column clearly descend from those in the left. It is a
little harder to show that there are no more [24]. When
parity and charge conjugation are taken into account there
are 10 operators with two Ds and two Es and another ten
where the two Es are replaced with two Bs. Of these 2� 6
may be eliminated in favor of total derivatives and others,
leaving 2� 4 ¼ 8 of this type. Three of these may be
eliminated with the Bianchi identities

D �B ¼ 0; (C2)

D �E ¼ D4B: (C3)

One application of the second Bianchi identity is less than
obvious:

tr½ðD4BÞ � ðD4BÞ� ¼ 2 tr½B � ðE�EÞ�
� tr½ðD4EÞ � ðD� BÞ� þ @: (C4)

To find Eq. (C4) one uses Eq. (C3) for one factor of D4B,
and then integrates by parts. In the end, there are five
independent operators with two Ds and two Es or two Bs.
In addition, there are six operators with one each of D4,

D, E, and B; four may be eliminated in favor of total
derivatives, and another may be eliminated with a Bianchi
identity, leaving one. Finally, there are the two operators
tr½B � ðE�EÞ� and tr½B � ðB� BÞ�. Thus, the total is
eight, and the list in Table VI is complete.
There are three redundant interactions, corresponding to

the transformations in Eqs. (2.22), (2.23), and (2.24) that
only involve gauge fields. They change the LEL by

LSym � LSym þ a2
2

g2
f"A tr½ðD �EÞðD �EÞ�

þ ð"A þ �AÞ tr½ðD� BÞ � ðD� BÞ�
� ð2"A þ �A þ �EÞ tr½ðD4EÞ � ðD�BÞ�
þ ð"A þ �EÞ tr½ðD4EÞ � ðD4EÞ�g: (C5)

By appropriate choice of the parameters "A, �A, and �E,
one can remove tr½ðD �EÞðD �EÞ� and two of the other
three induced interactions from the LEL. Below we shall
see that it is most convenient to choose the redundant
directions as shown in the last three lines of Table VI.
To construct an improved gauge action, it is enough to

consider the eight classes of six-link loops shown in Fig. 1,
as well as plaquettes. Generalizing from Ref. [19], we label
sets of unoriented loops as in Table VII. Then let

Si ¼
X
C2Si

2Re tr½1�UðCÞ�; (C6)

whereUðCÞ is the product of link matrices around the curve
C. The gauge action is

TABLE VI. Dimension-6 gauge-field interactions that could
appear in the LEL.

With axis interchange Without axis interchangeP
� tr½ðD�F��ÞðD�F��Þ� tr½ðD4EÞ � ðD4EÞ�P

i tr½ðDiEiÞðDiEiÞ�P
j�k tr½ðDjBkÞðDjBkÞ�

tr½F��F��F��� tr½B � ðE�EÞ�
tr½B � ðB�BÞ�

tr½ðD�F��ÞðD�F��Þ� "A tr½ðD �EÞðD �EÞ� "A
tr½ðD�BÞ � ðD�BÞ� �A
tr½ðD4EÞ � ðD�BÞ� �E

TABLE VII. Unoriented loops on the lattice, up to length 6.

Set i Type of loop

0t Temporal plaquettes

0s Spatial plaquettes

1t Rectangles with temporal long side

1t0 Rectangles with temporal short side

1s Spatial rectangles

2t ‘‘Parallelograms’’ with two temporal sides

2s Spatial parallelograms

3t Bent rectangles with temporal bend edge

3t0 Bent rectangles with temporal sides, but spatial bend edge

3s Spatial bent rectangles
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SD2F2 ¼ 1

g20

X
i

ciSi; (C7)

where the ci are chosen so that SD2F2 	 0 and so that the
classical continuum limit is correct.

The classical continuum limit is needed not only to
determine the normalization of the ci, but also to deduce
which terms in the lattice action correspond to the redun-
dant operators of the LEL. The classical continuum limit
of the Si is easy to find with the procedure given in
Ref. [19]. For the plaquette terms we find

S0t ¼ � at
as

Z
x
tr½E �E� þ a3t

12as

Z
x
tr½ðD4EÞ � ðD4EÞ�

þ atas
12

Z
x

X
i

tr½ðDiEiÞðDiEiÞ�; (C8)

S0s ¼ �as
at

Z
x
tr½B �B� þ a3s

12at

Z
x

X
j�k

tr½ðDjBkÞðDjBkÞ�;

(C9)

where at and as are temporal and spatial lattice spacings,
respectively. HereZ

x
¼ ata

3
s

X
x

¼:
Z
d4x: (C10)

It is convenient to express the six-link loops through S0t
and S0s, plus further terms of order a2. The rectangles yield

S1t ¼ 4S0t þ a3t
as

Z
x
tr½ðD4EÞ � ðD4EÞ�; (C11)

S1t0 ¼ 4S0t þ atas
Z
x

X
i

tr½ðDiEiÞðDiEiÞ�; (C12)

S1s ¼ 8S0s þ a3s
at

Z
x

X
j�k

tr½ðDjBkÞðDjBkÞ�; (C13)

the ‘‘parallelograms’’

S2t ¼ 8S0t þ 4S0s � 4atas
Z
x
tr½B � ðE�EÞ� � 2atas

�
Z
x
tr½ðD4EÞ � ðD� BÞ� þ atas

Z
x
tr½ðD �EÞ

� ðD �EÞ� � atas
Z
x

X
i

tr½ðDiEiÞðDiEiÞ�; (C14)

S2s ¼ 4S0s � 4a3s
3at

Z
x
tr½B � ðB� BÞ� þ a3s

at

Z
x
tr½ðD� BÞ

� ðD�BÞ� � a3s
at

Z
x

X
j�k

tr½ðDjBkÞðDjBkÞ�; (C15)

and the bent rectangles

S3t ¼ 8S0t þ atas
Z
x
tr½ðD �EÞðD �EÞ�

� atas
Z
x

X
i

tr½ðDiEiÞðDiEiÞ�; (C16)

S3t0 ¼ 8S0t þ 8S0s � 2atas
Z
x

X
i

tr½ðD4EÞ � ðD� BÞ�;

(C17)

S3s ¼ 8S0s þ a3s
at

Z
x
tr½ðD�BÞ � ðD�BÞ�

� a3s
at

Z
x

X
j�k

tr½ðDjBkÞðDjBkÞ�: (C18)

We see immediately that the bent rectangles are the only
place that the redundant interactions appear, so one may set
c3t, c3t0 , and c3s at will, without sacrificing on-shell im-
provement. Indeed, the bent rectangles may be completely
omitted from the improved action.
To normalize the lattice gauge action to the classical

continuum limit, one must choose

c0t þ 4ðc1t þ c1t0 Þ þ 8c2t þ 8ðc3t þ c3t0 Þ ¼ 0; (C19)

c0s þ 8c1s þ 4ðc2t þ c2sÞ þ 8ðc3s þ c3t0 Þ ¼ �1
0 ; (C20)

where 0 is the bare anisotropy. At the tree level 0 ¼
as=at. The essence of Eqs. (C19) and (C20) is to trade c0t
and c0s for the bare coupling g

2
0 and the bare anisotropy 0.

To derive on-shell improvement conditions (at the
tree level), one must allow for the transformations in
Eqs. (2.23) and (2.24). We find on-shell improvement, at
the tree level, when

�1
0 c0t ¼ 5

3 � 12xt0 � 4xs � 4ð1þ �2
0 Þxt; (C21)

0c0s ¼ 5
3 � 4xt � 4ð4þ 20Þxs; (C22)

�1
0 c1t ¼ � 1

12 þ xt; (C23)

�1
0 c1t0 ¼ � 1

12 þ xt0 ; (C24)

0c1s ¼ � 1
12 þ xs; (C25)

c2t ¼ c2s ¼ 0; (C26)

�1
0 c3t ¼ xt0 ; (C27)

�1
0 c3t0 ¼ 1

2ðxs þ �2
0 xtÞ; (C28)

0c3s ¼ xs; (C29)

where xt, xt0 , and xs are free parameters.
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In the main text of the paper, we consider isotropic lat-
tices, but allow for the possibility that heavy-quark vacuum
polarization requires some asymmetry in the couplings,
starting at the one-loop level. Thus, we consider 0 ¼ 1
and xt ¼ xt0 ¼ xs ¼ x and recover [19]

c0t ¼ c0s ¼ 5
3 � 24x; (C30)

c1t ¼ c1t0 ¼ c1s ¼ � 1
12 þ x; (C31)

c2t ¼ c2s ¼ 0; (C32)

c3t ¼ c3t0 ¼ c3s ¼ x: (C33)

Positivity of the action requires x < 5=72 and is guaranteed
if jxj< 1=16 [19]. Beyond the tree level asymmetry in
these couplings may indeed arise. But the full freedom of
the three redundant directions remains, so one may still
choose c3t ¼ xt ¼ 0, c3t0 ¼ xt0 ¼ 0, and c3s ¼ xs ¼ 0.
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