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We have calculated the neutron electric dipole moment (EDM) in the presence of the CP violating �

term in lattice QCD with two-flavor dynamical clover quarks, using the external electric field method.

Accumulating a large number of statistics by the averages over 16 different source points and over forward

and backward nucleon propagators, we have obtained nonzero signals of neutron and proton EDM beyond

1 standard deviation at each quark mass in full QCD. We have investigated the quark mass dependence of

nucleon EDM in full QCD, and have found that nucleon EDM in full QCD does not decrease toward the

chiral limit, as opposed to the theoretical expectation. We briefly discuss possible reasons for this

behavior.
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I. INTRODUCTION

A requirement for renormalizability in QCD allows a
CP violating term with a free parameter �QCD, thus called
the � term,

L �CP ¼ �QCD
g2

32�2
G��

~G��; (1)

where G�� and ~G�� represent a gluon field strength and its

dual, and g is a coupling constant of QCD. If the CP
invariance is preserved in the strong interaction in nature,
�QCD must be zero in QCD. Indeed a current experimental

bound of the neutron electric dipole moment (NEDM) [1],

dN < 6:3� 10�13 e � fm; (2)

and the crude theoretical estimates [2–4], dN ¼
Oð10�2Þ�QCD, gives the constraint that �QCD &
Oð10�10Þ. �QCD must be very small or even zero.

In the presence of the electroweak interaction, however,
the above conclusion on �QCD is modified. In the

Weinberg-Salam model of the electroweak interaction,
the quark mass term generated through Yukawa couplings
by the spontaneous electroweak symmetry breaking is
given by

L m ¼ �qiLðMCKMÞijqjR þ H:c:; (3)

with a quark mass matrixMCKM and left- and right-handed
quark fields qR;L. In order to transform the quark mass

matrix to a real and diagonal form, U(1) as well as SUðNfÞ
chiral rotations are necessary, since MCKM is non-
Hermitian in general. Through the Adler-Bell-Jackiw
anomaly, this U(1) chiral transformation shifts �QCD in

Eq. (1) to

�� ¼ �QCD þ arg detMCKM: (4)

Therefore the experimental bound (2) on dN leads to �� &
Oð10�10Þ: A subtle cancellation between a parameter in
QCD (�QCD) and a phase of mass matrix in the Weinberg-

Salam model ( arg detMCKM) should be fulfilled to keep
the CP invariance in the strong interaction. This cancella-
tion seems unnatural and thus a new mechanism must exist
to explain the smallness of �� (’’strong CP problem’’).
The simplest solution to the strong CP problem is that

one of the quarks is massless, so that we can set �� ¼ 0 by
the chiral rotation of this quark without introducing com-
plex phases to other quark masses. Detailed analyses by
chiral perturbation theory [5] or lattice QCD [6], however,
strongly indicate that the up quark has a finite mass (1:5<
mu < 3:0 MeV [7]), therefore this solution is excluded. In
the Peccei-Quinn (PQ) mechanism [8], �� is promoted to a
scalar field associated with a new symmetry, called PQ
symmetry, which is slightly broken by the anomaly. The
spontaneous PQ symmetry breaking automatically picks
up a unique vacuum, in which �� vanishes. As a conse-
quence of the symmetry breaking, a very light new scalar
particle, called axion must exist in this mechanism. So far
the axion, which is also one of the candidates for the cold
dark matter, has not been observed yet, and both cosmo-
logical observations and accelerator experiments set a very
narrow allowed region of the axion mass such that 10�6 <
ma < 3� 10�3 eV [9].
An aim of our investigation in this paper is not to

propose a new solution to the strong CP problem, but is
to establish a reliable way of calculating the NEDM in
lattice QCD. For small ��, the NEDM is proportional to �� as

dN ¼ dð1ÞN
��þOð ��3Þ. Various model calculations [2,3] lead

to different estimates, ranging that jdð1ÞN j ¼ Oð10�2 �
10�3Þ e � fm, and even its sign has not been determined

yet. The lattice QCD has a potential to calculate dð1ÞN non-
perturbatively and in a model independent way. Once a
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method of calculating the NEDM is established in lattice
QCD for the case of a particular CP violating term given in
(1), it may become possible to extend NEDM calculations
to the case of new CP violating terms such as the chromo-
electric dipole moment [4] generated in supersymmetry
models at high energy [10].

Lattice calculations of dð1ÞN have remained to be notori-
ously difficult for a long time [11]. In our previous papers
[12,13] we have investigated two methods of calculating

dð1ÞN in quenched lattice QCD. In the first method [12], we
have calculated the NEDM form factor at nonzero momen-
tum transfer, which becomes the NEDM in the limit of zero
momentum transfer. In the second method, the NEDM has
been directly extracted from the energy shift in the pres-
ence of the external electric field. In both cases, we have
successfully obtained nonzero signals of EDM for neutrons
and protons. In this paper, we extend the calculation of the
NEDM to the case of two-flavor full QCD, using configu-
rations generated by the CP-PACS collaboration [14]. We
employ the second method, the direct calculation of the
NEDM with the external electric field, since no extrapola-
tion of momentum transfer is needed, as opposed to the
form factor method. This method, however, requires a large
number of configurations to reduce statistical errors.
Performing calculations at four different quark masses,
we discuss a quark mass dependence of the NEDM in
full QCD. In particular it is interesting to see whether the
NEDM vanishes or not at zero quark mass as theoretically
predicted. There exists a previous study of the NEDM in
lattice QCD with two-flavor dynamical domain-wall
quarks using the form factor method [15]. Unfortunately,
the signal of the NEDM is consistent with zero within a
large error, so that only an upper bound is obtained for a

value of dð1ÞN .
The organization of this paper is as follows. In Sec. II,

we give a definition of NEDM in the presence of uniform
and static electric fields. We then consider how this exter-
nal electric field is introduced on the lattice, and discuss a
violation of uniformity of the electric field due to bounda-
ries of the finite lattice. We also explain our method of
extracting the NEDM from the nucleon propagator. In
Sec. III, simulation parameters for dynamical configura-
tions are briefly summarized. Our main results are given in
Sec. IV. Summary and discussions of this paper are pre-
sented in Sec. V. In this paper, we set a ¼ 1 unless
necessary.

II. METHOD OF THE NEDM CALCULATION

A. Definition of the NEDM

In the presence of the constant and uniform electric field
~E, a change of energy for the nucleon state due to the �
term is denoted as

�ECP ¼ dð1ÞN � ~S � ~EþOð ~E3�; ~E�3Þ (5)

with the nucleon spin vector ~S. This leads to the following

extraction of dð1ÞN for ~E ¼ ð0; 0; EzÞ:
E �þðEzÞ � E��ðEzÞ ¼ dð1ÞN �Ez þOðE3

z�; Ez�
3Þ (6)

where E��ðEzÞ is an energy of the nucleon state with Sz ¼
�1=2 in the presence of the electric field ~E ¼ ð0; 0; EzÞ.
Hereafter we simply denote dð1ÞN as dN .

B. Introduction of the electric field on the lattice and a
boundary effect

On the lattice, an external electric field Ek is introduced
into linked variables via a replacement in the Wilson-Dirac
operator with

UkðxÞ ! eeqEktUkðxÞ � Uq
k ðE; xÞ;

Uy
k ðxÞ ! e�eqEktUy

k ðxÞ � �Uq
kðE; xÞ;

(7)

where eq is an electric charge of a quark flavor q. Note here

that a complex factor i does not appears in the exponent
since Ek is defined in the ‘‘Minkowski’’ space while t is the
time coordinate of the ‘‘Euclidean’’ lattice, and therefore
Uq

k ðE; xÞ is no more unitary.1 In our calculation we have

made this replacement of the link variables only for the
valence quark [13], while gauge configurations have been
already generated without this replacement in the quark
determinant. This ‘‘approximation’’ is equivalent to ignor-
ing the ‘‘disconnected’’ contribution from the electric field.
It is noted that, at the first order of the electric field, this
contribution vanishes for the three-flavor QCD with mu ¼
md ¼ ms, since the disconnected contribution does note
depend on the quark flavor in the flavor SU(3) limit, and
therefore is proportional to eu þ ed þ es ¼ 0 after sum-
ming over three flavors.
As discussed in Ref. [13], the introduction of the

Minkowski electric field destroys the periodic boundary
condition of link variable Uq

k ðE; xÞ, so that translational

invariance of the electric field is violated at the temporal
boundary. Indeed an effective electric field, defined by
EkðtEÞ¼ flnUq

k ðE;tEþ1Þ� lnUq
k ðE;tEÞg=eq with UkðtEÞ¼

1, becomes

EkðtEÞ ¼
�
Ek at tE ¼ 1; 2; � � �T � 1
�ðT � 1ÞEk at tE ¼ T

; (8)

where tE runs from one to T, so that tE ¼ T þ 1 is equal to
tE ¼ 1. A strong antielectric field is generated between
tE ¼ 1 and tE ¼ T in order to cancel the constant electric
field Ek, so that

P
T
tE¼1 EkðtEÞ vanishes. We denote the place

where the large gap exists as tGap, and tGap ¼ 0 in the above

case. Since the definition of the NEDM in (6) requires the

1With the electric field in the Minkowski space, however, the
energy difference (6) becomes real in the lattice calculation, so
that it can be extracted from the ratio nucleon propagators
between spin-up and spin-down [11].
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constant electric field, the NEDM should only be measured
far away from the boundary to avoid an effect of the
antielectric field. In this work we keep distances between
source/sink points and the boundary as large as possible. In
particular we fix jtGap � tsrc þ 1j ¼ T=2, where tsrc is the

time coordinate of the source point.
In the previous study [13] we found that the good

sampling of the topological charge is important for obtain-
ing the reliable signal of NEDM. At least an order of a few
thousands configurations was needed to realize the sym-
metric and Gaussian distribution in quenched QCD. On the
other hand, a number of full QCD configurations in this
study is limited to 700� 750 at each quark mass. We
therefore use several source points for each configuration
to increase statistics. In accordance with the change of the
source point, we shift the boundary point, keeping the
distance between the source point and the boundary as
large as possible, to avoid the boundary effect mentioned
above.

C. Spinor structure of the nucleon propagator and
EDM

In the presence of the electric field ~E and the CP violat-
ing � term, the explicit form of the nucleon propagator
becomes

hN�
�N�i�ð ~E; tÞ ¼ ZNðE2Þ

�
ð1þ ANðE2Þ� ~� � ~EÞ

� exp

�
�ENðE2Þt� dN�

2
~� � ~Et

��
��

þ � � � ; (9)

with an overall amplitude ZNðE2Þ, a coefficient ANðE2Þ,
and an energy ENðE2Þ.2 The ellipse represents OðE3�; �2Þ
terms and contributions from excited states. Here hOi�
represents a vacuum expectation value in the reweighting
method as

Z�hOi� ¼ Z�¼0hOei�Qi�¼0 (10)

with topological charge Q, which is evaluated by the
cooling method in our calculation [12,13].

In order to extract dN from the nucleon propagator in the
above equation, we consider the following ratio between
different spinor components:

R3ðE; t;�Þ ¼ Rnaive
3 ðE; t; �Þ

Rnaive
3 ðE ¼ 0; t; �Þ

Rnaive
3 ðE ¼ 0; t; � ¼ 0Þ
Rnaive
3 ðE; t;� ¼ 0Þ

’ 1þ �ANðE2ÞE
1� �ANðE2ÞE exp½�dN�Et�; (11)

where

Rnaive
3 ðE; t;�Þ ¼ hN1

�N1i�ðð0; 0; EÞ; tÞ
hN2

�N2i�ðð0; 0; EÞ; tÞ

¼ 1þ AN�ðE2ÞE
1� AN�ðE2ÞE exp½�dN�Et� þ � � � :

(12)

Three additional Rnaive
3 ’s in R3ðE; t;�Þ are introduced to

remove contamination coming from � ¼ 0 and/or E ¼ 0
terms due to the insufficient statistics. In addition, to
remove fictitious E2n� contribution, we construct the ratio

Rcorr
3 ðE; t; �Þ ¼ R3ðE; t;�Þ

R3ð�E; t; �Þ

¼ Rnaive
3 ðE; t; �Þ

Rnaive
3 ð�E; t;�Þ

Rnaive
3 ð�E; t; � ¼ 0Þ
Rnaive
3 ðE; t; � ¼ 0Þ

’
�
1þ �A1

NðE2ÞE
1� �A1

NðE2ÞE
�
2
exp½�2dN�Et�; (13)

with R3ðE; t;�Þ in Eq. (11). For later use we define the
‘‘effective dN’’ as

2dN�E ¼ ln

�
Rcorr
3 ðE; t� 1;�Þ
Rcorr
3 ðE; t; �Þ

�
; (14)

which is validated in large t where the nucleon asymptotic
state dominates.

III. SIMULATION PARAMETERS

In our calculation, we employ two-flavor dynamical
QCD configurations, generated by the CP-PACS collabo-
ration [14] with the renormalization group (RG)-improved
(Iwasaki) gauge action and the clover quark action on
243 � 48 lattice at � ¼ 2:1. The corresponding lattice
spacing, determined by the rho meson mass m	 ¼
768:4 MeV, is a�1 ’ 1:8 GeV (a ’ 0:11 fm).
The valence quark mass is chosen to be same with the

sea quark mass. The pion mass mPS becomes 1.13, 0.93,
0.76, and 0.53 GeV at Ksea ¼ 0:1357, 0.1367, 0.1374, and
0.1382, respectively. Table I lists lattice parameters used in
our simulation. Throughout this paper statistical errors are
estimated by the jackknife method, whose bin size is five
configurations, equivalent to 25 hybrid Monte Carlo
(HMC) trajectories. We employ a local sink and a smeared
source for all three quark propagators in the nucleon two-
point function, with the exponential smearing, fðrÞ ¼
Ae�Br. Parameters ðA;BÞ depend on the quark mass as
shown in Table I.
We take 16 different source points separated by three

lattice units in temporal direction and maximally separated
in spatial directions. Averaging these source points, a total
number of statistics is more than 10 000.
Throughout our study, the value of the electric field and

� are fixed to E ¼ 0:004 and � ¼ 0:025, which are the
most suitable choice to reduce statistical errors [13].

2Note that because of the acceleration for a charged particle
the energy of proton increases as a time increases [16]. However
this contribution is canceled out in the following ratio.
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IV. RESULTS

A. Topological charge distribution and nucleon mass

We measure the topological charge of each configura-
tion after 50 cooling steps, using the Oða2Þ improved
definition of the topological charge density given by

Qimproved ¼ 1

32�2
"����ða0 Tr½L1�1

�� L1�1
�� �

þ 2a1 Tr½L1�2
�� L1�2

�� �Þ (15)

with a0 ¼ 5=3 and a1 ¼ �1=12 [17,18], where L1�1
�� and

L1�2
�� are 1� 1 and 1� 2 Wilson loops, respectively. We

show the time history of the topological charge in Fig. 1
and its histogram in Fig. 2 at four quark masses. The
distributions of the topological charge is more or less
Gaussian at all quark masses. As the sea quark mass
decreases, the width of the Gaussian distribution becomes
narrower in accordance with the theoretical expectation.

The effective mass of the nucleon at four quark masses is
plotted in Fig. 3. The average over 16 sources gives enough

statistics to produce a clear plateau at all cases. We see that
the plateau for the nucleon state starts at t� tsrc þ 1 ¼ 6.
The global fit of the propagator from t� tsrc þ 1 ¼ 9 to 15
gives a value of the nucleon mass with a very small error, as
shown in Table I.

B. Signal of EDM

In the previous study we found that the influence due to
the gap of the electric field on the EDM signal disappears at
jtGap � tsrc þ 1j � 5 at a ¼ 0:1 fm in quenched QCD [13].

Since we fix jtGap � tsrc þ 1j ¼ T=2 ¼ 24 in this study, the

above condition is well satisfied. In this setup, the back-
ward propagation of the nucleon becomes identical to the
forward propagation in the infinite statistics, so that we can
take an average over both to increase statistics. In Fig. 4,
we compare the time dependence of R3ðE; t; �Þ between
forward and backward propagation for neutrons and pro-
tons. We have found that two results marginally agree with
each other at t� tsrc þ 1 	 10. Here we consider that the
difference at t� tsrc þ 1> 10 is caused by the statistical
noises, and thus the signal of EDM is obtained only at t�
tsrc þ 1 	 10. Therefore a fitting range should be chosen as

0 200 400 600 800
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-20

0
20
40

Q

0 200 400 600 800
-40
-20

0
20
40

Q

0 200 400 600 800
-40
-20

0
20
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Q

0 200 400 600 800

#configs.

-40
-20

0
20
40

Q

K=0.1357

K=0.1367

K=0.1374

K=0.1382

FIG. 1. Time histories of the topological charge at each sea
quark mass.

TABLE I. Table for the simulation parameters in this work. OðaÞ improved coefficient of the clover term cSW is chosen as cSW ¼
1:47. The column of ðA; BÞ denotes the smeared source parameters, and K denotes the hopping parameter for the degenerate up and
down quarks.

Lattice size Physical volume (fm3) Cutoff a�1 (GeV) K ðA;BÞ mPS=mV mNa

243 � 48 2:63 1.83 0.1357 (1.5,0.45) 0.81 1.1851(10)

0.1367 (1.5,0.43) 0.76 1.0224(11)

0.1374 (1.5,0.35) 0.69 0.8944(12)

0.1382 (1.5,0.25) 0.58 0.7167(14)
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FIG. 2. Histograms of the topological charge at each sea quark
mass. The solid line denotes the Gaussian distribution deter-
mined from hQi and hQ2i.
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6 	 t� tsrc þ 1 	 10. Since T � ðt� tGapÞ ¼ T=2� 9 ¼
15, the distance between the gap and the end point of the
fitting ranged at t� tsrc þ 1 ¼ 10, is much larger than five,
the gap of the electric field does not affect the EDM signal.

In Figs. 5–8, the time dependence of R3ðE; t;�Þ with
E ¼ �0:004 is plotted for the neutron and proton at each
quark mass. At all quark masses, the signal for nonzero
EDM can be seen at 6 	 t� tsrc þ 1 	 10, and the signal
changes its sign as E does. To estimate the size of nucleon
EDM, we consider an effective mass of Rcorr

3 ðE; t; �Þ de-
fined in Eq. (14), and plot it in Figs. 9–12. Although errors
and fluctuations are large, nonzero signals for both proton

1.20

1.25

1.00
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1.10
m

N
a

0.9

0.95

0 5 10 15 20 25
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FIG. 3. The nucleon effective mass as a function of time in
lattice unit without electric field. The average over 16 source sets
on each configuration is taken.
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FIG. 4 (color online). Comparison between forward and backward propagation of R3 for neutron as a function of time at E ¼
�0:004 and � ¼ 0:025. The average over 16 source sets (tsrc ¼ 3; 6; � � � ; 48) is taken.
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FIG. 5 (color online). R3 as a function of time at K ¼ 0:1357,
after averaging 16 source sets (tsrc ¼ 3; 6; � � � ; 48), with E ¼
�0:004 and � ¼ 0:025 for neutrons (top) and protons (bottom).
The different symbols denote the different signs of the electric
field.
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and neutron EDM have been observed in full QCD simu-
lations for the first time. By fitting Rcorr

3 ðE; t; �Þ with an

exponential function in Eq. (13) at 6 	 t� tsrc þ 1 	 10,

we obtain the value of dð1ÞN , which is given in Table II. Signs

of EDM are opposite between protons and neutrons. This
agrees with the quenched result [13] and with the chiral
perturbation theory prediction [3].

C. Mass dependence of the nucleon EDM

In Fig. 13, dN for neutrons and protons are plotted as a
function of pion mass squared, m2

PS, together with the

quenched results. Unfortunately, because of large statisti-
cal errors in full QCD results, it is hard to observe a
difference from the quenched results. Compared with the
model calculation [2], the central value is 10 times larger
although its errors are large.
Mass dependence of dN in full QCD does not show the

expected decrease toward the chiral limit. There are several
possible explanations. First, large statistical errors might
hide the actual decrease of dN toward the chiral limit.
Second, the quark mass in this full QCD simulation is still
too heavy to see the decrease. Third, dN does not vanish in
the chiral limit due to the lattice artifact that the chiral
symmetry is explicitly broken in the Wilson-type quark
action. Indeed the topological susceptibility, which is also
theoretically expected to vanish in the chiral limit, does not
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FIG. 6 (color online). Same as Fig. 5 at K ¼ 0:1367.
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FIG. 8 (color online). Same as Fig. 5 at K ¼ 0:1382.
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FIG. 9 (color online). The effective mass plot of Rcorr
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in Eq. (14) as a function of time in lattice unit at K ¼ 0:1357 for
neutron (top) and proton (bottom). The solid line denotes the
central value of the fitting result and the two dash lines indicate
an error band.
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FIG. 12 (color online). Same as Fig. 9 at K ¼ 0:1382.
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FIG. 11 (color online). Same as Fig. 9 at K ¼ 0:1374.
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show the decrease in full QCD configurations of this paper
[18]. In Fig. 14, dN is plotted as a function of the topo-
logical susceptibility instead of the pion mass squared.
Contrary to the case of the pion mass squared, the change
of the topological susceptibility is too little to observe a
possible decrease of dN with large statistical errors. This
suggests that the combination of the second and third
possibilities is a main reason for the mass dependence of
dN in Fig. 13.

We also present the results of the mass dependence for
the nucleon CP-odd phase factor in full QCD calculation.
As discussed in [12,13], the next-leading term in the nu-
cleon spinor structure contains additional phase factor fN1 ,

which arises from m�
Ne

if1N�
5 ¼ mNð1þ if1N�
5Þ þ
Oð�2Þ, as

hNð ~p; tÞ �Nð ~p; 0ÞQi ¼ jZNj2e�ENt
f1NmN

2EN


5; (16)

where ~p, ZN, EN denotes the nucleon momentum, ampli-
tude, and energy, respectively. This factor goes to zero
toward the massless limit because of the same reason as
NEDM does. In Fig. 15, f1N in full QCD is plotted as a
function of m2

PS, together with the quenched results.

Although the statistical errors are not so large compared
to the EDM results, it does not show the expected decrease
toward the chiral limit as well as the EDM case. This
observation suggests that it is unlikely that the correct
chiral behavior of the EDM is hidden in its large statistical
errors.

TABLE II. Results for neutron and proton EDM at each quark mass.

K mPS (GeV) Neutron EDM (e � fm) Proton EDM (e � fm)

0.1357 1.13 �0:014ð11Þ 0.049(21)

0.1367 0.93 �0:046ð16Þ 0.019(29)

0.1374 0.76 �0:031ð16Þ 0.060(28)

0.1382 0.53 �0:040ð28Þ 0.072(49)
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FIG. 13 (color online). EDM as a function of the pseudoscalar
meson mass squared m2

PS for neutrons (top) and protons (bot-

tom). The arrow shows the physical point of the pion mass
squared, m2

� ¼ 0:0195 GeV2, and the star symbol denotes the
result of the current algebra (C.A.) [2].
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FIG. 15 (color online). CP-odd phase factor of the nucleon
propagator f1N as a function of the pion mass squared.
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FIG. 14. Neutron EDM as a function of topological suscepti-
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V. SUMMARYAND DISCUSSION

In this paper, we present the evaluation of the NEDM in
full QCD simulation using the external electric field
method. After accumulating a huge number of statistics
with multiple sources and an average over forward and
backward propagation, we have obtained nonzero value of
the nucleon EDM for the first time in full QCD. Statistical
errors of the EDM in full QCD are still larger than in the
previous quenched case. The mass dependence of the
EDM, which is similar to the quenched one, does not
show the expected behavior in full QCD that it vanishes
towards the chiral limit. Besides the large statistical errors,
there may be two main reasons. One is that sea quark
masses used in this paper are still too heavy to see the
expected decrease, the other is that the explicit chiral
symmetry breaking of the Wilson-type quark action spoils
the expected chiral behavior. Indeed this chiral behavior of
the EDM is very similar to that of the topological
susceptibility.

Since it now becomes possible to calculate the EDM in
full QCD, we should proceed toward the precise evaluation
of the NEDM. First of all, we should further decrease the
sea quark mass to clearly observe the chiral behavior of
EDM. As reported in the recent advanced work in the
PACS-CS collaboration [19], 2þ 1 flavors dynamical con-

figurations are being generated at the quark mass close to
the physical point, and these configurations will be avail-
able soon. Second, we should decrease statistical errors of
the EDM. For this purpose, it may be better to switch to the
form factor method [12], though the zero momentum trans-
fer limit has to be taken in this case. From the previous
work [13] and this work, the good chiral behavior of the
quark action seems not so relevant to obtain the signal of
the EDM, and we are currently calculating the EDM form
factor using the clover quark action [20]. Finally, the effect
of disconnected loop diagram, ignored in our studies,
should also be included in the calculation. A preliminary
study shows that it is possible to include this effect with the
current available resources [20].
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