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We study screening correlators of quark-antiquark composites at T ¼ 2Tc, where Tc is the QCD phase

transition temperature, using overlap quarks in the quenched approximation of lattice QCD. As the lattice

spacing is changed from 1=4T to a ¼ 1=6T and 1=8T, we find that screening correlators change little, in

contrast with the situation for other types of lattice fermions. All correlators are close to the ideal gas

prediction at small separations. The long distance falloff is clearly exponential, showing that a parame-

trization by a single screening length is possible at distances z � 1=T. The correlator corresponding to the

thermal vector is close to the ideal gas value at all distances, whereas that for the thermal scalar deviates at

large distances. This is examined through the screening lengths and momentum space correlators. There is

strong evidence that the screening transfer matrix does not have reflection positivity.
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I. INTRODUCTION

Current experiments at the Brookhaven RHIC and an-
other to be started soon at the CERN LHC are engaged in
creating and understanding the phase of matter called the
quark gluon plasma. The existence of this phase was
predicted by lattice QCD, and this technique has been
used to study many properties of the plasma. In spite of
this, much remains to be done. One of the major questions,
that which concerns us here, is the nature of the interac-
tions between quasiparticle excitations.

Decisive information on flavored quasiparticles has
come from a recent study of the linkage between quantum
numbers [1]. A rapid and clear change in the linkage
between quantum numbers was seen across the QCD phase
transition. In the high temperature phase flavor quantum
numbers such as baryon number, charge, strangeness etc.,
are linked to each other in ways that suggest that the light
flavored excitations at finite temperature QCD include
quarks.

At the same time it is clear that the interactions between
these quasiparticles cannot be small. At length scales of
order 1=T, the QCD coupling, g, is of order 1 [2], leading
to well-known problems. For example, the Debye screen-
ing length of gluons is more complicated than one expects
in perturbation theory [3] and contains pieces which are
entirely nonperturbative [4]. The nonperturbative pieces
have been isolated and studied on the lattice [5].
Interestingly, when one studies the screening of glueball-
like quantities, i.e., spatial correlations of color singlet
operators made out of gauge fields, then a surprising

simplicity arises above about 1:25Tc. Taking two quantum
number channels which can be constructed by a minimum
of two and three gluon operators, the ratio of the screening
masses is seen to be close to 3=2 [6].
There are parallels in the study of hadronlike screening

correlators in the QCD plasma. Parity doubling was seen in
the high-temperature phase of QCD in the first study of
these correlators using staggered quarks [7]. Further, this
first study already showed that the screening mass from the
baryonlike correlator was 3=2 times the screening mass
from some of the mesonlike correlators. A finite size
scaling study using staggered quarks [8] showed that a
particular combination of the vector and axial-vector mes-
onlike correlators was very close to the free-field theory
(i.e., ideal gas) predictions. This behavior is generic, being
seen in quenched [9] and dynamical QCD with two [10]
and four [11] flavors of staggered quarks as well as with
Wilson quarks [12]. Extrapolation to the continuum using
staggered quarks [13] showed that the remaining screening
masses approached their ideal-gas values. However, the
correlators differed strongly from the ideal-gas correlators
at small distances. This was also seen in a later study of
screening correlators with Wilson quarks [14].
Overlap quarks [15] have the advantage of preserving all

chiral symmetries on the lattice for any number of massless
flavors of quarks [16]. This is in contrast to other formu-
lations, such as Wilson’s, which break all chiral symme-
tries, or the staggered, which break them partially. Since
the number of pions and their nature is intimately related to
the actually realized chiral symmetry on the lattice, one
expects any realization of chiral quarks on the lattice to
provide insight into this question.
In our earlier study of screening correlators using over-

lap quarks [17] with lattice spacing a ¼ 1=4T, the corre-
lation functions were found to decay exponentially at large
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separation, and showed none of the fine structure that
plague staggered and Wilson quarks. As a result, the
screening mass was a good parametrization of the screen-
ing correlator at large distances. The screening masses in
all channels were closer to the expected weak-coupling
continuum limit for overlap quarks than staggered and
Wilson. However, that from the (would be zero-
temperature) scalar and pseudoscalar was lower by about
10% than the others.

In this paper we extract complete information on meson-
like screening correlators by extending the analysis of
[6,18] to overlap quarks. At the same time, we extend the
analysis towards the continuum limit by using lattice spac-
ings of a ¼ 1=6T and 1=8T. With these two inputs we are
able to resolve all the currently outstanding questions on
screening correlators. Parts of these results were presented
in [19].

II. SYMMETRIES

We study correlation functions of color singlet operators
constructed with a quark and an antiquark—

C�ðzÞ ¼ hM�ð0ÞMy
�ðzÞi;

where M�ðzÞ ¼ 1

NtN
2
s

X
xyt

� ðtxyzÞ� ðtxyzÞ;
(1)

 is a Dirac spinor, � is a Dirac matrix, the angular
brackets denote averaging over gauge configurations and
the quark bilinearM� is projected to zero momentum in the
slice orthogonal to z by the summation. By choosing differ-
ent Dirac matrices, �, one explores different quantum
numbers, and the usual nomenclature is explained in
Table I. Note that the correlators projected on zero mo-
mentum (kx ¼ ky ¼ kt ¼ 0) have mass dimension 3, and

hence the quantity a3CðzÞ is dimensionless.
Since we work at finite temperature, the Dirac operator

is defined with antiperiodic boundary conditions on t (1 �
t � Nt). We chose to impose periodic boundary conditions
in the spatial directions (1 � x, y � Ns and 1 � z � Nz
with Ns � Nz). Later we shall have occasion to use the
aspect ratio � ¼ Nz=Ns (note that this is different from the
often used aspect ratio Ns=Nt). The sum over x, y and t in
Eq. (1) accomplishes a projection on to zero total momen-
tum in these three directions. Note that there is yet another
aspect ratio, Ns=Nt, which needs to be large in the thermo-
dynamic limit.

Because of the inequivalence of the spatial directions x
and y with the Euclidean time direction t at finite tempera-
ture, a slice of the lattice orthogonal to the z direction differ
at zero and finite temperature. These are part of the sym-
metries of the transfer matrix.1 Therefore the classification

of operators M� differ at zero and finite temperature. This
is described below and summarized in Table I.
At T ¼ 0 in the continuum one has the full rotational

symmetryOð3Þ and the discrete symmetries of parity P and
charge conjugation C. States corresponding to the irreduc-
ible representations (irreps) of Oð3Þ � Z2ðPÞ � Z2ðCÞ are
labeled by JPC. On the lattice this group is broken to the
discrete subgroup which is the cubic group Oh. The 0PC

states (S/PS) become the APC1 of the cubic group and the

1PC states (V/AV) become the three dimensional irrep FPC1
(sometimes called the TPC1 ) [20]. The 2PC breaks into a

three dimensional irrep called the FPC2 (or TPC2 ) and a two

dimensional irrep called the EPC.
For T � 0, the continuum theory has a Oð2Þ rotational

symmetry in the xy plane and a Z2ðT Þ symmetry
(Euclidean time reversal) in the Euclidean time direction.
This constitutes the cylinder group, Oð2Þ � Z2ðT Þ, which
is a subgroup ofOð3Þ � Z2ðPÞ. On the lattice this is broken
to the dihedral group Dh

4 ¼ D4 � Z2ðT Þ (where D4 is the

group of symmetries of a square), which is also a subgroup
of Oh, as is to be expected [21].

The JPC irreps of T ¼ 0 break up into MTC irreps at
finite temperature, whereM ¼ Jz (since the cylinder group
is Abelian, its complex irreps are one-dimensional). The
reduction under the lattice symmetries is shown in Table I.
The group theory is the most general. However, it does not
restrict special cases in which some of the independent
representations may become identical for dynamical rea-
sons. We discuss these next.
Note that the T ¼ 0 vector breaks into two irreps for

T > 0. This group theory need not contradict our intuition
that at sufficiently low, but finite, temperature, the screen-
ing spectrum should be very similar to the T ¼ 0 hadron
spectrum, and therefore the thermal 0� and 1þ should be
nearly degenerate. When the screening mass, �, is suffi-
ciently small (i.e., �=T � 1), then the effect of the
boundaries must be exponentially small. The approximate
symmetry Oh is broken to Dh

4 via terms that are exponen-

TABLE I. The break up of irreps under the successive break-
ings of the symmetries of the transfer matrix. The A�

1 compo-

nents of the V/AV correspond to the t polarization and the E� to
the x and y polarizations. All states also carry a label for charge
conjugation, C. This has been dropped in this paper since we
consider only the C ¼ 1 states.

T ¼ 0 T > 0
continuum lattice continuum lattice

Oð3Þ � Z2ðPÞ Oh Oð2Þ � Z2ðT Þ Dh
4

S 0þ Aþ
1 0þ Aþ

1

PS 0� A�
1 0� A�

1

V 1þ Fþ
1 0� A�

1

1þ Eþ
AV 1� F�

1 0þ Aþ
1

1� E�

1The remaining symmetries are flavor symmetries. For stag-
gered quarks the analysis is complicated [18] by the mixing of
flavor and spacetime symmetries.
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tially small, leading to near-degeneracy of the components
of T1 (the splitting can only be observed with exponentially
large statistics). After all, the situation is not different from
the T ¼ 0 theory defined with various different boundary
conditions—they are equivalent as long as mL� 1 where
L is the size of the box in which the theory is defined.

However, this resolution raises another problem—can
the masses of the two 0� states, one obtained from the
reduction of the PS and the other from the V be equal? If
the mass of the latter becomes equal to that of the 1þ at low
temperature, do we predict that the PS and V states must be
degenerate, contrary to previous knowledge? The answer
must be negative, the resolution being that the 0� coming
from the V cannot have overlap with the eigenvector of the
transfer matrix with the smallest eigenvalue. This argu-
ment predicts that the screening masses in the V and PS
channel (and similarly in the S and AV channels) must be
different, although the naive transfer matrix argument
gives a different result.

The correlator identities

CSðzÞ ¼ �CPSðzÞ CVðzÞ ¼ �CAVðzÞ (2)

can be proven for overlap quarks by neglecting the effects
of instantons. This shows parity doubling. As can be seen
from Table I, there is no group theoretical reason behind
parity doubling. If there were, then that would force chiral
symmetry at all T.

Gauge field configurations which give rise to chiral zero
modes of the overlap Dirac operator (called instantons)
have interesting consequences. Since these modes are lo-
calized, one recovers translation invariance by averaging
over many such configurations. At high temperatures it is
observed that these configurations are rather improbable.
Hence, to take their effects properly into account one must
either use truly astronomical statistics or consider the zero
momentum correlators, ��, i.e., correlators such as those in
Eq. (1) summed over 1 � z � Nz. These have been ana-
lyzed in [17] and various identities were checked. One
should note that any configuration with a chiral zero
mode breaks the identity CSðzÞ ¼ �CPSðzÞ. Configu-
rations with zero modes of both positive and negative
chirality break the identity CVðzÞ ¼ CAVðzÞ. Thus, generic
ensembles of gauge configurations including instantons
would realize only the irreps in Table I. Parity doubling,
represented in Eq. (2) involves the disappearance of chiral
zero modes. It has been noted [17] that these do not
disappear at the QCD phase transition but only gradually
with increasing T. Hence parity doubling in the high
temperature phase is an approximate statement, and ex-
tremely high statistics studies will be able to see the break-
ing of this approximate symmetry.

III. FREE OVERLAP QUARKS

The overlap Dirac operator (D) can be defined [22] in
terms of the Wilson-Dirac operator (Dw) by the relation

D ¼ 1�DwðDy
wDwÞ�1=2: (3)

When the gauge fields are translation invariant, Dw can be
diagonalized in the Fourier basis. In free field theory, one
can write

Dw ¼ cþ i��b�; where c ¼ 1þ s�X
�

sin2ðp�=2Þ;

b� ¼ � sinp�; (4)

where s is the (negative) mass parameter, and, at finite T,
the momenta are p0 ¼ 2�ðnþ 1=2Þ=Nt and pi ¼
2�n=Ns. SinceD

yD ¼ c2 þ b � b, and therefore diagonal,
the overlap Dirac operator is

D ¼ �þ i����; where � ¼ 1� cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ jbj2p ;

�� ¼ b�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ jbj2p ;

(5)

where jbj2 ¼ b � b. Clearly the eigenvalues of D lie on the
unit circle centered on the real axis at (1, 0).
Writing the eigenvalues of Dw as �ðDwÞ ¼ r expði	Þ,

with r2 ¼ c2 þ jbj2 and 	 ¼ tan�1ðjbj=cÞ, it is easy to see
that the eigenvalues of D are given by �ðDÞ ¼ 
 expði�Þ
where 
2 ¼ 2ð1� cos	Þ ¼ 2ð1� c=rÞ and � ¼
ð�� 	Þ=2. It is easy to check that in the limit Nt ! 1
the minimum eigenvalue is obtained by taking p0 ¼ �=Nt
and pi ¼ 0. This gives


 ¼ �

ð1þ sÞNt þO
�
�

Nt

�
3

(6)

� ¼ �

2
þO

�
�

Nt

�
: (7)

The factor of 1þ s in the denominator is usually absorbed
into a redefinition of the fermion fields, thus giving the
correct Matsubara frequency in the continuum limit.
A massive overlap operator, DðmÞ, and the correspond-

ing quark propagator, GðmÞ, are defined by

DðmÞ ¼ mþ ð1�m=2ÞD; and GðmÞ ¼ K�1ðmÞ;
where KðmÞ ¼ ½1�D=2�D�1ðmÞ; (8)

and m is the bare quark mass in lattice units [22]. The
massive overlap propagator can, therefore, be written in the
form
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Gðp;mÞ ¼ fðp;mÞ þ i��h�ðp;mÞ;
where fðp;mÞ ¼

�
1� 


2
cos�

��
1þm

2

�
cos�

þ 


�
1�m

2

�
sin2�;

h�ðp;mÞ ¼
��

1þm

2
cos�

�



�
�
1�m

2
cos�

��
1� 


2
cos�

��

� sin���:

(9)

As m! 0, we recover the usual massless propagator.
The screening correlator at external momentum q is then

given by

C�ðqÞ ¼
X
p

trGðpþ q;mÞ�Gyðp;mÞ�: (10)

After performing the traces, one finds

C�ðqÞ ¼ 4
X
p

½fðpþ q;mÞfðp;mÞ þ ���h�ðpþ qÞh�ðpÞ�;

(11)

where the tensor ��� is g�� for S and 2g��g�� � g��g��
for the � polarization of V. The tensors ��� for the PS and

AV satisfy the correlator identities for overlap quarks.
Define CV to be the sum over three polarizations of the
vector, then with the Euclidean metric one finds T�� ¼

�g�� � 2gzz. As a result,

CVðqÞ þ CSðqÞ ¼ �12
X
p

gzðpþ qÞgzðpÞ; (12)

which is generically nonzero.
In Fig. 1 we show some of the results of a numerical

computation of some of the mesonlike correlators in free
field theory on lattices of various sizes. One sees a gradual
convergence of the results when plotted in terms of the
scaling variables zT ¼ az=N and CðzTÞ=T3 ¼
a3Cðaz=NÞ=N3

. Several features of the free field theory
are interesting enough that we list them explicitly.
(1) The correlator identities of Eq. (2) are satisfied. This

is expected, since free field theory has no topologi-
cal features which lead to localized zero modes. As
noted before, these identities are stronger than the
general feature expected from the group theoretical
analysis, since they allow us to equate the Aþ

1 com-
ing from PS to the A�

1 coming from the S, etc.
(2) The correlators in the Eþ and A�

1 irreps coming
from the V have completely different behavior.
Consistent with this, the E� and the Aþ

1 correlators
coming from the AV are quite different from each
other. However, the E� and the A�

1 are identical.
(3) The A�

1 correlator from the V changes sign at z ’
2=T. The point at which the change of sign occurs is
almost independent of Nz and Nx;y. This is clear

evidence that a three dimensional effective theory

FIG. 1 (color online). Correlators computed in a free field theory of overlap quarks on lattice sizes 4� 102 � 16, 6� 142 � 24
8� 202 � 32, 12� 302 � 48, and 16� 402 � 64. The Aþ

1 correlator coming from S (first panel), the Eþ correlator coming from V

(second panel) and the A�
1 correlator coming from V (third panel) are shown. The value of N increases from top to bottom at zT ¼ 2.

The missing segments of the correlators in the last case correspond to the negative sign.
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which describes these screening correlators cannot
have reflection positivity.

(4) The A�
1 coming from the V and AV are not degen-

erate with the A�
1 coming from the PS or the S, in

agreement with the analysis of the previous section.
(5) The A�

1 correlators from the PS and S are identical

to the E� correlators from the Vand AV. There is no
group theoretical reason for this, and we shall ex-
amine later whether this holds in the interacting
theory.

IV. COMPUTATIONAL DETAILS

Our numerical work was done in quenched QCD with
overlap valence quarks. We have computed all 8 compo-
nents of the correlators (one each for S and PS and three
polarizations each for the V and AV). Extensive finite size
scaling studies were reported earlier [17] on lattices with
a ¼ 1=4T. We have extended this finite size scaling study
here, but the main emphasis is on studying the variation
with lattice spacing and taking the continuum limit. To this
end we have used a ¼ 1=6T and 1=8T, at the temperature
T ¼ 2Tc, where Tc is the critical temperature for pure SU
(3) gauge theory.

The computation of propagators using the overlap Dirac
operator of Eq. (5) needs a nested set of two matrix
inversions for its evaluation (each step in the numerical

inversion of D involves the inversion of Dy
wDw). This

squaring of effort makes a study of QCD with dynamical
overlap quarks very expensive. As before, we therefore
chose to work with quenched overlap quarks.

We generated quenched QCD configurations at tempera-
tures of T=Tc ¼ 2 on 4� 102 � 16, 6� 142 � 24 and 8�
182 � 32 lattices (see Table II). The corresponding cou-
plings are respectively � ¼ 6:0625, 6.3384 and 6.55. Note
that these are the known critical couplings on Nt ¼ 8, 12
and 16 lattices. For the latter, no infinite volume extrapo-
lation was available, unlike the first two. Our choice was
motivated by the 2-loop �-function, and consistency with
the finite volume results. In each case, the configurations
were separated by 1000 sweeps of a Cabibbo-Marinari
update.

For the matrixM ¼ Dy
wDw, and a given source vector b,

we computed y ¼ M�1=2b by using the Zolotarev algo-

rithm [23]:

M�1=2b ¼ XNO
l¼1

�
cl

Mþ dl
b

�
; (13)

where the coefficients cl and dl are computed with Jacobi
elliptic functions once one has the order of approximation
NO and the ratio � ¼ �max=�min where �max and �min are
the boundaries of the domain where we apply the approxi-
mation. In our implementation of the algorithm [24], we
first compute the lowest and highest eigenvalues ofM and
then choose �max and �min so that the domain of applica-
bility of the Zolotarev approximation is 10% larger than
the domain spanned by the eigenvalues. The order NO is
defined by requiring a precision �=2 for the approximation
of 1=

ffiffiffi
z

p
in the entire domain. With these parameters, one

calculates the approximation in Eq. (13) by a multishift
CG-inversion at the precision �=2.
On each gauge configuration we computed G on 12

point sources (3 colors and 4 spins) for 8 quark masses
from m=Tc ¼ 0:008 to 0.8 using a multimass inversion of
DyD. The (negative) Wilson mass term inDw, i.e., 1þ s in
Eq. (4), which is an irrelevant regulator, was set to 1.8. The
tolerance ranged from � ¼ 10�5 to 10�7 in the inner CG
and 10�3 to 10�5 in the outer CG, with most of the work
done using the larger values of �. We remark on the choice
in a later section. Typical NO needed was about 7–8.
For most configurations we found that the spectrum of

DyD starts well away from zero. However, very occasion-
ally (one each forNt ¼ 4 and 8) we found a zero mode, i.e.,
an unpaired eigenvalue& 10�2. As discussed in the litera-
ture, such zero modes have to be subtracted off to obtain
averages of physical quantities such as the correlation
functions. We showed elsewhere that our determination
of the eigenvectors and eigenvalues is precise enough
that we can subtract out the zero mode contribution in
the chiral condensate. The resultant subtracted condensate
(or correlators) is well within the statistical distribution of
the measurement obtained in the sample without zero
modes, at all the couplings and lattice sizes studied. We
therefore chose not to include the zero mode contributions
below. Furthermore, we show below results for our lowest
quark mass m=Tc ¼ 0:008, as the main features are essen-
tially quark mass independent.

V. RESULTS

A. Symmetry realization

We have checked that the sum of the S and PS correla-
tors vanishes within errors in all our measurements, in
agreement with the correlator identities for overlap quarks.
For the V and AV correlators we checked that the differ-
ence of the x and y polarization correlators vanish within
errors, thus verifying that they lie in the same irrep of the
symmetry group, as indicated by Table I.
In Fig. 2 we show the screening correlator obtained from

various polarizations of the V. The t-direction polarization

TABLE II. Coupling � for temperature 2Tc, the lattice size,
and the number of configurations (separated by 1000 sweeps)
used for analysis (N).

� Lattice Size N

6.0625 4� 102 � 16 19

6.3384 6� 142 � 24 20

6.55 8� 182 � 32 26

6.0625 4� 123 23

6.3384 6� 143 16
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gives the A�
1 and the x and y directions give the Eþ. In the

figure we show the correlator from the sum of the x and y
polarizations. We also show the corresponding correlator
obtained from a free field theory (FFT) computation. Note
the close agreement between the Eþ correlator in the
quenched theory and the FFT results, over 6 orders of
magnitude change in the correlator. We will examine this
in more detail later.

The disagreement between the FFT and the full theory
for the A�

1 correlator shown in Fig. 2 requires further
analysis. When the tolerance in the fermion inversion
was decreased, the Eþ correlator changed only marginally,
whereas the A�

1 correlator changed sign at zT > 3=2 on
some gauge configurations. However, further work is re-
quired to check whether these correlators also turn negative
as the tolerance is decreased further.

In the past the sum of the three polarizations of the T ¼
0 vector have been analyzed together. Strictly speaking,
this is incorrect, since it mixes the E� and A	

1 irreps.

However, the screening correlator in the latter irrep is
almost an order of magnitude smaller than that in the
former. As a result, the screening masses extracted by the
older method is a fairly accurate measure of the screening
mass in the E� channel. In fact, we find that the screening
mass from the Eþ correlator atNt ¼ 8 is a�Eþ ¼ 0:798ð4Þ
whereas that from the mixed representation is a�V ¼
0:816ð4Þ. The two screening masses are compatible with
each other at the 3� level.

With this caveat in mind, in the remainder of this paper
we shall report results obtained with the older method of
analysis, where the V correlator sums over all the polar-
izations. It has the advantage that the results are directly
comparable with earlier results, and is not far removed
from the quantitatively correct results which would be
obtained by following the theoretically correct method.

B. Correlations as functions of spatial separation

In Fig. 3 we compare the measured correlation functions
in the S and V channels. It is noteworthy that the V
correlator agrees rather well with the ideal-gas correlation
functions from z ¼ 0 all the way to Nz=2, when the corre-
lator itself falls by 6–7 orders of magnitude. To make this
spectacular point more forcefully, we have plotted in Fig. 4
the ratio of the measured correlator with the ideal gas. It is
clear that the V (Eþ) correlator differs from the ideal gas
by no more than 10%–20% everywhere except (possibly)
near the center of the lattice.
The situation is somewhat different for the S (Aþ

1 )
correlator. This agrees well with the ideal gas up to a
distance z ’ 1=T. At distances larger than this, the S
channel correlator falls significantly slower than the
ideal-gas result (Fig. 3). This is shown again in Fig. 4,
where it becomes clear that the ratio of the correlators
changes by a factor of about 5 when the correlators them-
selves have changed by about 6 orders of magnitude.

FIG. 2 (color online). The A�
1 and the Eþ correlators coming

from the V correlator on an 8� 182 � 32 lattice at T ¼ 2Tc.
Also shown are the results of a free field theory (FFT) compu-
tation.

FIG. 3 (color online). Screening correlators in the S and V
channels compared with the corresponding ideal-gas results on a
6� 142 � 24 lattice (first panel) and an 8� 182 � 32 lattice
(second panel) at T ¼ 2Tc. The lines are single cosh fits.
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C. Correlations as functions of momentum

In some applications the momentum space correlator is a
more direct input, giving emphasis to the small z region.
Our lattice data can be exhibited in momentum space by a
Fourier transformation of the separation z. The periodic
boundary conditions give rise to a Brillouin zone structure
as usual, and only momenta in the range 0 � kz � �TNt
are independent.

We show the momentum space correlators in Fig. 5. It
turns out that the ideal-gas result needs to be multiplied by
a constant (independent of kz) in order to describe the data
well. However, after this normalization, which we choose
to fix the correlator at kz ¼ �TNt, the shapes of the corre-
lators are in rough agreement with the ideal-gas results,
except at small kz. From Fig. 5 another interesting feature
which is visible is that the correlators at two different
lattice spacings, a ¼ 1=6T and 1=8T, after the scaling by
a3, show no significant dependence on lattice spacing at
kz ¼ �=4a, �=2a, 3�=4a, and �=a. However, there are
small differences visible at low momenta, kz < �T, for
both the S and V correlators. With decreasing a, these
residual a-dependent effects go in the direction of slightly
improving the agreement with free field theory for V, and
of making matters slightly worse for S.

The small disagreements with free field theory can be
better exhibited by displaying the ratio of the correlator and
its ideal-gas counterpart- C�ðkzÞ=Cfree

� ðkzÞ. These ratios are
shown in the V and S channels for the 8:182:32 lattice in
Fig. 6. The ratio shows clear structure. Near the center of
the Brillouin zone, kz 
 4�T, the ratios go to a momentum
independent constant. However, this constant is different
from unity, and also different in the two channels. For kz <
2�T the ratio is clearly momentum dependent. In the S
channel, the ratio decreases with kz whereas in the V
channel it increases. To the best of our knowledge there
is no prediction or understanding of such structures in
weak coupling theory.

FIG. 4 (color online). The ratio of the measured and ideal-gas
screening correlators in the S and V channels.

FIG. 5 (color online). Momentum space correlators at two
different lattice spacings compared with the ideal-gas results,
normalized to fit the high-momentum data, for the S (first panel)
and V (second panel) channels.

FIG. 6 (color online). The ratio of the measured and ideal-gas
screening correlators in the S and V channels, on the 8:182:32
lattice.

SCREENING CORRELATORS WITH CHIRAL FERMIONS PHYSICAL REVIEW D 78, 014502 (2008)

014502-7



D. Screening masses

One can extract screening masses from the correlators in
two different ways. One is by fitting a single cosh to the
long distance part of the screening correlator. The other
method is to use the ratio CðzÞ=Cðzþ 1Þ and the assump-
tion that at distance between z and zþ 1 is described by a
single cosh to extract a distance dependence effective
mass, mðzÞ. If there is a clear plateau in the effective
mass as a function of z, which agrees with the fitted value,
then one could reliably talk of a screening mass and its
value.

In Fig. 7 we exhibit the result of such a test. It is clear
that there is a stable plateau over almost half the available
distances, and the local mass in this region (z > 1=T)
agrees well with the results of a fit over the same range.
This is quite different from earlier studies of staggered and
Wilson quarks, where a stable plateau in the local masses
was not observed. Note also the need for aspect ratios � ¼
Nz=Ns > 1 in order to stabilize the local masses at their
asymptotic value.

Notice the nonmonotonicity of the local masses at the
smallest distance. If the correlation function could be ex-
pressed in the spectral form—

CðzÞ ¼ X
i

Ai½expð�mizÞ þ expð�mifNz � zgÞ�; (14)

with all the Ai � 0, i.e., the correlation function came from
a transfer matrix satisfying reflection positivity, then the
local masses would be a nonincreasing function of distance
for z < Nz=2. Clearly, therefore, the data shows that this
condition is violated. Such behavior has been observed
with both staggered and Wilson quarks earlier. Note also
the lack of convexity of the screening correlators in Fig. 3,
which is also a consequence of the violation of reflection
positivity.

In Fig. 8 we plot the ratio of screening masses extracted
in quenched QCD to that in a free field theory of overlap
quarks on the same lattice, �=�free, as a function of
1=N2

t / a2 at fixed T ¼ 2Tc. �free was also obtained by
both fitting the free correlator and applying the local mass
technique to the free correlator in the same z-interval as for
the interacting case. The results presented are for the z
range of 9–14 (8–12) for Nt ¼ 8ð6Þ. The results are stable
for small variation of this z-range. The values of the screen-
ing masses are collected in Table III. In the V channel the
ratio is consistent with unity. In the S channel, however, the
ratio differs from unity at the 95% confidence level but is
almost independent of the lattice spacing.
We have shown results for two values of the aspect ratio,

� ¼ 1 and 1.7. At the smallest lattice spacing we have only
� ¼ 1:7. It would be useful to extend these computations to
larger � . In view of our results, it is interesting to ask
whether it is possible that at some larger value of Nt there
is a cross over to a regime where �S is closer to �free. If
such were the case, then one should be able to identify the

FIG. 7 (color online). Effective masses extracted on the 8�
182 � 32 lattice, compared with the results of the fits to a single
cosh indicated by the horizontal lines.

FIG. 8 (color online). The ratio of the screening mass in
quenched QCD to that in a theory of free overlap quarks on
the same lattice for the S and V channels at T ¼ 2Tc. Results for
two aspect ratios, � ¼ 1 and 1.7, are shown.
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physics of such a cross over. There is only one such piece
of physics, and that is the scale of nonlocality of the over-
lap Dirac operator. This has been studied in [25], where it
was shown that the scale of nonlocality varies smoothly
towards zero as the lattice cutoff decreases. This allows us
to rule out a crossover from the observed behavior of�S to
trivial physics.

A direct comparison of the screening masses in the S and
V channels is shown in Fig. 9. Although the errors are
large, one sees a trend towards increase in the ratio with
increasing � . From this figure it is clear that these two
masses differ from each other at the 95% confidence limit
at the smallest lattice spacing that we use, and show no
tendency to move towards equality. Since the ratio �S=�V

is within 5% of unity, an explanation within a weak cou-
pling expansion seems possible. However, there is no such
explanation available at this time.

VI. SUMMARY

We have performed a group theoretical analysis of the
screening transfer matrix at finite temperature. Quark bi-
linear operators, in the C ¼ þ1 sector, which are classified

as S, PS, V, and AVat zero temperature can be decomposed
at finite temperature as shown in Table I. The thermal state
A�
1 is obtained in the decomposition of both the PS and V.

Parity doubling is not a consequence of the group theory,
but arises dynamically. Some identities which can be
proven for the topologically trivial sector of overlap
quarks, Eq. (2), show parity doubling. We presented an
argument that if the PS and V are not to be degenerate at
low temperatures, then they cannot be degenerate at any
temperature. The theory of free overlap quarks is consistent
with the converse, since it gives a degeneracy between the
PS and Vat all temperatures. As a result, this theory cannot
be an accurate representation of all aspects of QCD at finite
temperature.
We have demonstrated—
(1) The correlation function in the Eþ sector (V) is very

close to that in free field theory. In the Aþ
1 sector (S)

there is a significant difference at large distances,
i.e., for z > 1=T. However, the magnitude of such
differences are small compared to the observed fall
of the correlation function by 6 orders of magnitude
over the distances involved.

(2) Both the S and V correlators are very close to the
prediction of free field theory at distance less than T.

(3) The screening mass of the V is consistent with the
free field theory of overlap quarks, whereas that of
the S is lighter by about 5% at the 95% confidence
limit. This behavior persists into the continuum
limit.

(4) The S and V correlators in momentum space agree
with free field theory of overlap quarks, after an
overall normalization, only near the center of the
Brillouin zone. The part with kz < �T differs from
free field theory for both the S and the V.

(5) There is evidence that the screening transfer matrix
does not have reflection positivity. This implies that
screening in finite temperature QCD cannot be
equivalent to the zero-temperature physics of a tem-
perature dependent Hamiltonian. This statement is
not controversial, since screening phenomena at
finite temperature crucially involve a mixed state
density matrix, whereas correlations at zero tem-
perature involve pure quantum states.

None of these features depend upon topological nontrivial-
ity of the gauge field ensemble, since the one that has been
used in these computations has vanishing topology.
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TABLE III. Screening masses in lattice units for various lattice
sizes at T ¼ 2Tc.

Lattice size a�S a�V a�free

4� 102 � 16 1.41(1) 1.49(1) 1.55(1)

6� 142 � 24 1.00(4) 1.07(4) 1.08(1)

8� 182 � 32 0.77(3) 0.84(3) 0.83(1)

4� 123 1.52(1) 1.63(1) 1.72(1)

6� 143 1.05(1) 1.13(1) 1.21(2)

FIG. 9 (color online). The ratio of the screening mass in the S
and V channels in quenched QCD are shown as a function of
1=N2

t / a2 for T ¼ 2Tc. Results for two aspect ratios, � ¼ 1
and 1:7, are shown.
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