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We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon

wave function using Monte Carlo integration. This approach extends the previous analytic studies of the

ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the

path integral over gluon field configurations. The new approach allows us to study the possible critical

behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing

function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to

quantitatively reproduce confinement using Gaussian vacuum wave functional.
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I. INTRODUCTION

A combination of analytical calculations, based on
Dyson-Schwinger equations [1–13] and lattice gauge
simulations [14–36], has given new insights into the be-
havior of QCD Green’s functions. In particular, it has been
found that in the Landau gauge at low momentum the ghost
propagator is enhanced while the gluon propagator is sup-
pressed. Dyson-Schwinger equations potentially admit so-
lutions that are critical in the infrared (IR), i.e. the ghost
propagator is divergent and the gluon propagator vanishes
at zero momentum. On the other hand, the interpretation of
lattice results is still somewhat controversial, since the IR
region is sensitive to finite-volume effects and possible
lattice artifacts in mapping between the continuum and
lattice definition of propagators [2,27–30]. One of the
original motivations for such studies follows from the
observation that for the physical spectrum to consist only
of color-singlet states it is necessary that the ghost and
gluon propagators are critical (in the sense defined above)
[37,38]. The absence of colored states in the physical
spectrum is often taken as a manifestation of confinement.
The relation between the IR behavior of the ghost and
gluon propagators and the expectation value of the color
charge is tied to the realization of the residual gauge
symmetry remaining after imposing the Landau gauge
condition [39]. The connection between remnant gauge
symmetries and confinement, however, remains an unset-
tled issue, therefore so does the relation between the IR
behavior of the propagators and confinement. The relation-
ship between the gluon and ghost propagators and confine-
ment can be investigated in other gauges, and the Coulomb
gauge can be particularly illuminating [40–45].

In the Coulomb gauge the time component of the vector
potential becomes constrained by the transverse gluon field
defined in the spatial directions alone. AaðxÞ satisfies, r �

Aa ¼ 0 for all color components, a ¼ 1 � � �N2
C � 1, lead-

ing to an instantaneous potential between color charges.
This potential depends on the inverse of the Faddeev-
Popov, or ghost, operator, M�1ðAÞ ¼ ½r � DðAÞ��1, with
DðAÞ being the covariant derivative in the adjoint repre-
sentation. It was postulated by Gribov [46] and by
Zwanziger [47] that gauge field configurations near the
boundary of the field space domain, the Gribov horizon,
dominate matrix elements and, since at the boundary the
Faddeev-Popov operator vanishes, the instantaneous
Coulomb potential is expected to be enhanced compared
to the value at zero field [46–50]. This could signal con-
finement. Furthermore, since for a state containing a static
quark-antiquark pair in the vacuum the Coulomb potential
provides an upper limit on the total energy, Zwanziger
concluded that a necessary condition for confinement is
that the expectation value of the Coulomb potential in such
a state is also confining [40]. From the point of view
that the energy spectrum is a direct probe of confinement,
it seems relevant to investigate matrix elements of the
inverse of the Faddeev-Popov operator. Analytical
calculations have been performed in, for example,
Refs. [42,44,45,51–55]. These typically start from an an-
satz for the vacuum wave functional and various approx-
imations are used to derive Dyson equations for
correlations functions. Since the Coulomb energy involves
fields at one time slice, only spatial correlations are
needed. Through a systematic study of the IR behavior of
the gluon-gluon correlation function and the Faddeev-
Popov operator it was shown that within the particular
set of approximations used to derive the Dyson equations,
all self-consistent solutions are IR finite, but close to being
critical. Most likely what this means is that the vacuum
wave functionals used in these calculations do not yet
account for all field configurations responsible for confine-
ment. Another way of seeing this is through the behavior of
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the spatial Wilson loops, for which such wave functionals
fail to reproduce the area law behavior. If and when miss-
ing configurations are properly accounted for one would
still face the question of reliability regarding the other
approximations used in deriving the Dyson equations.
These are typically based on the large-NC expansion and
examination of the IR and ultraviolet (UV) behavior of
higher order diagrams. To leading order this amounts to
summing the rainbow-ladder diagrams.

In this paper we confront the Dyson equations for the
Coulomb gauge correlators with direct evaluation of the
underlying matrix elements using Monte Carlo techniques
for the path integral over the transverse gluon fields. The
numerical techniques are close in spirit to those of lattice
gauge theory, and are detailed in Sec. III. We begin by
giving, in Sec. II, a short summary of the Coulomb gauge
and derivation of the Dyson equation. A summary and
conclusions are given in Sec. IV.

II. COULOMB GAUGE QCD

In the Schrödinger representation the degrees of freedom
of the Coulomb gauge Yang-Mills theory are: the trans-
verse gluon fields, AaðxÞ, which are the generalized
coordinates, and their conjugate momenta �aðxÞ ¼
�i�=�AaðxÞ, equal to the negative of the transverse chro-
moelectric field [56]. These satisfy the canonical commu-
tation relation,

½�i;aðxÞ; Aj;bðyÞ� ¼ �i�ab�
ij
T ðrxÞ�ðx� yÞ; (1)

where �ij
T is the transverse projector �ij

T ðrÞ ¼ �ij �
riri=r2. The canonical Hamiltonian is a function of the
generalized coordinates and momenta and is given by

H ¼ 1

2

Z
dx½J�1�aðxÞJ ��aðxÞ þBa2ðxÞ� þ V; (2)

where the chromomagnetic field B is given by

B aðxÞ ¼ r�AaðxÞ þ g

2
fabcAbðxÞ �AcðxÞ: (3)

As usual, repeated indices are summed over. In Eq. (2),
J ¼ detðMðAÞÞ represents the curvature of the Coulomb
gauge field domain and is given by the Jacobian of the
transformation from the A0 ¼ 0 (Weyl) gauge—which has
a flat field space—to the Coulomb gauge. Here, M is the
Faddeev-Popov operator,

Mabðx; yÞ ¼ ½�r2
x�

ab þ gfabcAc � rx��3ðx� yÞ: (4)

The Coulomb potential V is obtained by using the equa-
tions of motion to eliminate the longitudinal gauge field,
and can be written

V ¼ 1

2

Z
d3xd3yJ�1�aðxÞJKabðx; y;AÞ�bðyÞ; (5)

where, in the absence of quarks, the color charge density is
given by

�aðxÞ ¼ fabc�bðxÞ �AcðxÞ; (6)

and the Coulomb kernel KðAÞ is
KðAÞ ¼ gM�1ðAÞð�r2ÞgM�1ðAÞ: (7)

In the Abelian limit this kernel reduces to

Kabðx; yÞ ¼ g2�ab

4�jx� yj ; (8)

the familiar expression for the Coulomb potential between
charges located at points x and y. Denoting the vacuum
wave functional by �½A� ¼ hAj�i, the vacuum expecta-
tion value (vev) of an operatorO½A� in the Coulomb gauge
is given by

hOi ¼ h�jOj�i
h�j�i ; (9)

where

h�jOj�i ¼
Z
�
DAJ ½A�O½A�j�½A�j2; (10)

and the integral is restricted to the fundamental modular
region (FMR)� 2 �which is inside the Gribov region�.
The FMR is defined as the set of gauge fields AaðxÞ
corresponding to the absolute minima of the functionals
I½g� � R

dxðAagðxÞÞ2 minimized with respect to time-

independent gauge transformations g ¼ gðxÞ, while the
Gribov region � also includes local minima of I. It has
been argued by Zwanziger [57] that the bulk of the integral
measure is concentrated on the common boundary of FMR
and the Gribov region and in the Monte Carlo simulations
presented here only the restriction to � will be imple-
mented. The vev of the inverse of the Faddeev-Popov
operator, which in the Coulomb gauge plays the dual role
of the ghost propagator and the running coupling, is given
by

dðkÞ
k2

¼ 1

N2
c � 1

�ab
Z

dxeik�xh�jgM�1;abðx; 0Þj�i;
(11)

where dðkÞ is referred to as the ghost dressing function; at
tree level, dðkÞ ¼ 1. If the expectation value of the
Coulomb kernel is approximated by the square of the vev
of the ghost propagator then the momentum space
Coulomb potential between a color-singlet static quark-
antiquark pair becomes VðkÞ ¼ �CFd

2ðkÞ=k2 [41,42,44].
In general, however, one expects the two vevs to be differ-
ent and this difference can be accommodated via an addi-
tional form factor and results in the potential of the form
VðkÞ ¼ �CFd

2ðkÞfðkÞ=k2 [51,58]. It is clear that if the
ghost becomes IR enhanced, dðkÞ � 1 as k ! 0, the
Coulomb interactions between color charges becomes
stronger as the separation between charges increases. To
obtain a linearly rising potential, however, it would be
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necessary for the product d2ðkÞfðkÞ to be critical with
d2ðkÞfðkÞ ! k�2 as k ! 0.

A. Dyson equations

The set of coupled Dyson equations for the ghost dress-
ing function dðkÞ, the Coulomb dressing function fðkÞ, and
the gap equation, which determines the gluon-gluon corre-
lation function, were derived and extensively studied in
Refs. [45,51–55]. Here we only summarize the main fea-
tures of the ghost and gluon correlation functions. In these
studies the vacuum wave functional was parametrized as a
Gaussian

�½A� ¼ exp

�
� 1

2

Z d3k

ð2�Þ3 !ðkÞAaðkÞAað�kÞ
�
; (12)

with!ðkÞ being a parameter. It was shown in Refs. [52–55]
that, to leading order in the loop expansion, the effect of the
curvature J could be absorbed by a redefinition of ! with
the gap equation correlating the low-momentum behavior
of! and the curvature. In the subsequent derivations of the
Dyson equations we thus set J ¼ 1. The vacuum wave
functional can be optimized by minimizing the vacuum
energy density with respect to !ðkÞ. This leads to a gap
equation which after renormalization depends on the re-
normalized coupling grð�Þ and the boundary condition
!ðk ! 0Þ ¼ mg. As long as mg is finite one finds that

the solution of the gap equation is qualitatively insensitive
to grð�Þ and can be well described by

!ðkÞ ¼
�
mg if k < mg

k otherwise:
(13)

It should be noted that mg is a mass parameter introduced

by the ansatz wave functional and should not be confused
with the QCD scale introduced by renormalization. The
latter appears in the renormalized Dyson equation for the
ghost dressing function which, as mentioned earlier, can be
identified with the running coupling. In principle, mg ¼
mgðgrð�Þ; �Þ should be renormalization point invariant

and just like grð�Þ determined by a physical observable
e.g. the string tension. Within the set of truncations built in
the derivation of the Dyson series, most likely the renor-
malization group invariance of mg cannot be proven and

we shall consider mg as a free parameter. Given !ðkÞ the
Dyson series for the ghost dressing function can be
summed up and represented as a single integral equation
within the rainbow-ladder approximation, illustrated in
Fig. 1. All omitted diagrams have at least one vertex loop
correction (e.g. the last diagram in Fig. 1), which were
shown to be generally smaller than the self-energy loops
[51]. The diagrams shown in Fig. 1 represent functional
integrals over j�½A�j2 of polynomials of the A field orig-
inating from the expansion of the inverse Faddeev-Popov
operator

1

h�j�i
Z
�
DAg

gj�½A�j2
�r �D½A�

! g

�r2

�
1þ 1

hj�j�i
Z
�
DAgA� r

r2
gA� r

r2
þ � � �

�
;

(14)

where � refers to the color space. Neglecting the restric-
tion to the Gribov region enables one to perform the func-
tional integrals analytically, and neglecting contractions
that corresponds to vertex corrections makes it possible
to resum the series, resulting in

1

dðkÞ ¼
1

gð�Þ �NC

Z � dq

ð2�Þ32!ðqÞ
1� ðk̂ � q̂Þ2
ðk� qÞ2 dðjk� qjÞ:

(15)

The dependence of the bare coupling, g ¼ gð�Þ, and the
loop integral on the UV cutoff has been shown explicitly.
Instead of using the bare coupling and the UV cutoff as the
renormalization point, the equation can be renormalized at
a finite momentum scale through subtraction, which also
defines the renormalized coupling as grð�Þ � dðk ¼ �Þ
1

dðkÞ ¼
1

dð�Þ � NC

Z � dq

ð2�Þ3

�
�
1� ðk̂ � q̂Þ2
ðk� qÞ2

dðjk� qjÞ
2!ðqÞ � ðjkj ! �Þ

�
: (16)

As discussed above, the mass scale is brought in through
the function!, and in the case discussed here, it is given by
mg ¼ !ð0Þ. Thus from now on we will use the notation
~k � k=mg to denote dimensionless momenta. The solution

of the Dyson equation for the ghost propagator depends on
one more parameter, the value of dð ~�Þ at a single point, i.e.
at ~� ¼ �=mg ¼ 1. In Fig. 2 we plot the numerical solu-

tions of Eq. (16), as a function of momentum in units of

mg, for three choices of dð~k ¼ 1Þ. As dð1Þ is increased the

solutions become more IR enhanced until at, approxi-
mately, dð1Þ � 3:41 the solution becomes critical [51].
Above this critical point the Dyson equation has no solu-
tions, i.e. develops a Landau point at physical, k > 0
momentum. This is a sign that the functional integration

FIG. 1. Diagrammatic representation of the expansion of the
functional integral for the ghost propagator cf. Eq. (14).
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in Eq. (14) has crossed the Gribov horizon. The mass scale
dependence of the ghost propagator can be best understood
by using an angular approximation, to the integral in
Eq. (16),

jk� qj ! �ðk� qÞkþ �ðq� kÞq; (17)

which enables one to transform the integral equation to a
first order differential equation that can be solved analyti-
cally and further well approximated by [51],

dð~kÞ ¼ dð ~�Þ
½1þ �Ld

1=�ð ~�Þð~k� ~�Þ�� ;
~k � 1; (18)

dð~kÞ ¼ dð ~�Þ
½1þ �Hd

1=�ð ~�Þ logð ~k~�Þ��
; ~k 	 1; (19)

where � ¼ 1=2, �L ¼ ð5=6ÞðNC=3Þ=�2, and �H ¼
ðNC=3Þ=�2, i.e. �L � �H � 0:1 for NC ¼ 3. It clearly
follows that the ghost propagator is independent of the
renormalization scale � and depends on a single value of
dð ~�Þ at an arbitrarily chosen renormalization point.
Furthermore, from Eq. (18) it follows that a solution exists,
i.e. there is no Landau pole, as long as dð ~�Þ< 1=ð�L ~�Þ�.

As discussed above, the approximations leading to
Eq. (16) include eliminating all vertex corrections and
neglecting the restriction on the functional integral to be
contained within the Gribov horizon. In the following we
present results from a Monte Carlo simulation of the ghost
propagator that does not have these limitations.

III. MONTE CARLO CALCULATION

The evaluation of the functional integral in Eq. (10) is
usually performed analytically by expanding the operator
O in a power series over the gauge field A and truncating at
some order (cf. Eq. (14)). Here we avoid these approxima-

tions by evaluating the functional integral by Monte Carlo
integration using the model wave function (12) with the
approximate solution (13) for !ðkÞ.
The gluon configurations are generated on a Nd ¼ 3

dimensional momentum space grid. The gluon fields
Ac
i ðkÞ are Nd � ðN2

C � 1Þ complex numbers per lattice

site, where Aa
i ð�kÞ ¼ Aa


i ðkÞ. The momentum is discre-
tized on the lattice as

ki ¼ 2�ni
aNi

jni 2
�
�Ni

2
;
Ni

2

�
; (20)

i 2 f1; 2; 3g; (21)

where a denotes the lattice spacing. The gauge fields must
satisfy the position space Coulomb gauge condition

X3
i¼1

Aa
i ðxÞ � Aa

i ðx� a{̂Þ ¼ 0; (22)

which translates in the momentum space to

X3
i¼1

ð1� cosðakÞ þ i sinðakÞÞAa
i ðakÞ ¼ 0: (23)

From now on we will use the notation Âðk̂Þ � AðakÞ=a2,
etc. in reference to dimensionless quantities scaled with the
lattice spacing. The coupling is incorporated by generating

gÂa
i ðk̂Þ rather than Âa

i ðk̂Þ, which requires substituting !ðkÞ
with!ðkÞ=g2 in the model wave function. The gluon fields
are generated with the distribution

j�½A�j2 ¼ exp

�
� 1

N3
L

X
ni

XNd

i¼1

XN2
c�1

a¼1

Âa
i ðk̂ÞÂa

i ð�k̂Þ !̂ðk̂Þ
g2

�
:

(24)

This is accomplished by independently generating two of

the vector components, Âa
i , with a heatbath, then construct-

ing the third component such that the momentum space
Coulomb gauge condition, Eq. (23), is satisfied.
The calculation of the Jacobian is akin to the calculation

of the quark determinant in lattice QCD and in the present
work it is set to one. The Jacobian was included in Ref. [52]
in a certain truncation scheme. There it was found to lessen
the dependence of the Coulomb potential to the choice of
coupling.
As a first test we evaluate the gluon propagator,

g2Ĝðk̂Þ ¼ 1

N3
L

1

Nd � 1

1

N2
c � 1

� XNd�1

i¼1

XN2
C
�1

a¼1

Âa
i ðk̂ÞÂa

i ð�k̂Þ
�
:

(25)

The value of GðkÞ is analytically known to be GðkÞ ¼
1=2!ðkÞ. The numerical result, shown in Fig. 3 does in-
deed agree with the analytical one, where the numerical
statistics are improved by taking the Z3 average, that is,
averaging over the three equivalent directions in momen-

0.01 0.1 11 0
k

1

10

d(k)

d(1) = 2
d(1) = 3
d(1) = 3.35

~

~

FIG. 2. Comparison between the numerical solutions of the
Dyson equation for the ghost propagator and the approximate
analytical solutions of Eqs. (18) and (19). The solid (dashed)
lines represent the low (high) momentum behavior, respectively.
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tum space. Since k̂ ¼ m̂g
~k, the physical propagator in units

of mg is given by

mgGðkÞ ¼ m̂gĜðk̂Þ: (26)

We now proceed to computing the ghost dressing function.
The ghost propagator is expressed as the expectation value
of the inverse of the Faddeev-Popov (FP) operator,
Eq. (11). The discrete form of the FP operator was derived
in Ref. [47],

Mabðx̂; ŷÞ�̂bðŷÞ ¼ XNd

i¼1

�abð�̂bðŷþ {̂Þ þ �̂bðŷ� {̂Þ

� 2�̂ðŷÞÞ � fabcð�̂bðŷþ {̂ÞÂc
i ðŷÞ

� �̂bðŷ� {̂ÞÂc
i ðŷ� {̂ÞÞ;

which is real and symmetric. Note that the region of
integration in Eq. (10) is the Gribov region where M is
positive definite. Thus any gauge field configuration that
produces a Faddeev-Popov operator with negative eigen-
values must be discarded.

With periodic boundary conditions imposed on the lat-
tice, Mabðx; yÞ has N2

c � 1 trivial zero modes, making it
formally noninvertible. This problem is avoided by follow-
ing Ref. [22] and solving

Z
V
dyMabðx; yÞ�bðyÞ ¼ �ab

�
�ðxÞ � 1

V

�
: (27)

The position-color vectors are then Fourier transformed to
momentum space and the inverse of Mabðx; 0Þ recovered,

Z
V
dxe�ik�xh�aðxÞi ¼

Z
V
dxe�ik�xhðM�1Þaaðx; 0Þi

� 1

V

Z
V
dxdye�ik�xhðM�1Þaaðx; yÞi

¼ DðkÞ
g

� �ðkÞ
Z
V
dx

DðxÞ
g

; (28)

where DðkÞ � dðkÞ=k2. The average is taken over gauge
field configurations, and finally the ghost propagator is Z3

averaged. In the free case, M ! �r2 and the propagator
would be

D̂ðk̂Þ ¼ g

4
P

i sin
2ðk̂i=2Þ

� g

k2
; (29)

which defines an appropriate momentum variable. The
same philosophy is used in conventional lattice QCD stud-
ies of the gluon propagator [16,59,60].
With the model wave function (12), the coupling g is a

free parameter. The larger g is chosen to be, the broader the
Gaussian. This increases the fluctuations of the gauge
fields and M develops smaller eigenvalues, resulting in
the infrared enhancement of hM�1ðkÞi. With increasing
the value of g, the FP operator becomes likely to develop
negative eigenvalues. While this means that a (possibly
large) proportion of the generated gauge fields must be
rejected, it is necessary for the entire domain of the func-
tional integration to be sampled. The number of rejected
configurations grows rapidly when the value of g ap-
proaches certain critical value, which depends on the value
of mg used in the model for !ðkÞ of Eq. (13). This is easily
understandable, as a larger value of mg means the gluon

wave function is infrared enhanced in a larger interval of
momenta, yielding narrower Gaussian width over that
interval.
Each generated gauge configuration used in calculating

the ghost dressing function is checked to lay in the Gribov
region by calculating several eigenvalues of the FP opera-
tor to ensure their positivity. If the latter constrain is not
imposed, the resulting ghost propagators are dominated by
numerical fluctuations (resemble random noise) in the
region where the generated gauge configurations have a
large fraction laying outside of the Gribov region. For
example, for m̂g ¼ 1:5, the fraction of rejected configura-

tion ranges from nearly 0% for g < 1 to 100% for g > 1:1
with a sharp increase above g ¼ 1. For m̂g ¼ 5 this ‘‘criti-

cal’’ value of g increases to about 1.6. In our calculations
we restrict to the region of g, where the fraction of rejected
configurations does not exceed 20% to maintain moderate
computational time. The resulting ghost dressing function
is shown in Fig. 4 for a calculation with 1000 gluon
configurations on a 403 lattice with m̂g ¼ 1:25 and g ¼
0:7.
In order to relate the calculated ghost dressing function

to the physical region several issues should be resolved that

gk/m
0 1 2 3 4 5 6

)
g

G
(k

/m
2

g
g

m

0.2

0.4

0.6

0.8

1

1.2

1.4
 = 2,  g = 1.2gm,   3V=20

 = 1.25,  g = 1gm,   3V=30

 = 1,  g = 0.8gm,   3V=40

FIG. 3 (color online). The gluon propagator calculated on
1000 gauge field configurations with various parameters. The
analytic results are plotted as a continuous line, showing a good
agreement with simulations.
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would allow to draw a correspondence. Here we review the
most relevant ones.

A. Lattice artifacts

Discretization of space introduces several artifacts that
should be accounted for. These are errors introduced by
finite lattice volume, finite lattice spacing, which also
induces broken spatial rotational symmetry.

1. Finite lattice spacing

It is argued in Refs. [16,59,60] that using the redefined
lattice momentum variable of Eq. (29) allows one to avoid

the leading-order discretization errors arising from the
ultraviolet cutoff in momentum introduced by the finite
lattice spacing. Still, the errors from reducing the spatial
rotational symmetry Oð3Þ group down to discrete Zð3Þ are
unaccounted for. These manifest themselves as a large
spread in the ghost propagator. This spread occurs in a
characteristic pattern, as can be seen in Fig. 4, which
becomes more prominent with increased lattice volume.
These patterns can be easily understood by considering a
selection of subsets of the points plotted by using certain
criteria imposed on the momentum variable. The first
subset considered has the constraint that all three compo-
nents of the momentum are equal to each other (laying on
the diagonal direction of the lattice). This selection of the
data forms a smooth line through the upper part of the plot.
A subset including points with two of the momentum
components equal to each other and the third one set to
zero (along the diagonal direction of the cube’s side) forms
another smooth curve, this one going through the middle of
the plot. Finally, the subset with only one nonzero compo-
nent of momentum (along the side of the cube) forms a line
passing through the lowest part of the plot. These subsets
are shown in Fig. 5(a). Furthermore, if the constraints
described above are allowed to be violated by a few units
of minimum lattice momentum, the rest of the points in the
plot start to fall into these subgroups, as shown in Fig. 5(b).
Thus, for the further analysis of our data we will use only a
subset of points with momentum components not differing
from each other by more than one unit of minimum lattice
momentum. This is the ‘‘cylinder cut’’ introduced in
Refs. [16,59], which allows us to select the points least
affected by errors introduced by the broken rotational
symmetry and leaves a sufficient number of points for
statistical analysis.

2. Finite-volume effects

While a consistent treatment of the finite-volume effects
requires extensive investigation into discretization of the

gk/m
0 0.5 1 1.5 2 2.5

)
g

d(
k/

m

0.7

0.75

0.8

0.85

0.9

Lattice
Diag

FIG. 4 (color online). Ghost dressing function dðk=mgÞ versus
k=mg for m̂g ¼ 1:25 and g ¼ 0:7 on a lattice with 403 volume.

Here the crosses denote the full data set and open triangles
denote the subset of points with equal momenta components.

FIG. 5 (color online). Ghost dressing function for dðk=mgÞ versus k=mg for m̂g ¼ 1:25 and g ¼ 0:7 on a lattice with 403 volume.
Here the crosses denote the data points and the three lines connect the subsets of the points laying within 0 (a) and 7 (b) minimum
lattice momenta correspondingly of the edge, the side diagonal, and the diagonal directions of the momentum lattice cube.

MATEVOSYAN, SZCZEPANIAK, AND BOWMAN PHYSICAL REVIEW D 78, 014033 (2008)

014033-6



theory on the lattice, here we simply investigate this de-
pendence by comparing benchmark calculations on lattices
with different volumes. A set of calculations with four
different lattice volumes is shown in Fig. 6, which shows
that there are very small variations only in the low mo-
menta region for lattice volumes from 203 to 403. Thus we
choose to use a lattice volume of 203 for the further
calculations, which allows for both reasonable computa-
tional time and small errors.

B. Renormalization

The introduction of a finite momentum grid provides a
sharp cutoff for the regularization of the ultraviolet diver-
gences, i.e. it is equivalent to the role of � in Eq. (15). In
order to identify the ghost dressing function with the run-
ning coupling, for each lattice spacing it should be possible
to choose the lattice coupling, g in Eq. (24), so that the
results of simulations are independent of the lattice spac-
ing. In the simulation, explicit dependence on the lattice
spacing enters through dependence on m̂g ¼ amg, e.g.

when the lattice ghost dressing function is plotted against
~k ¼ k=mg ¼ k̂=m̂g the result should be independent of m̂g

and depend only on the value of the renormalized coupling.
In practice, we produce a series of simulations with differ-
ent values of g in the range between g ¼ 0:5–1:5 and m̂g in

the range of the accessible lattice momenta 2�=NLat �
m̂g �

ffiffiffi
3

p
�. We then compare with the scaling predicted

by the solutions of the Dyson equations given in Eqs. (18)
and (19), in the low and high momentum region, respec-

tively. In the high momentum regime, k=mg ¼ k̂=m̂g is

kept large by running simulations with small m̂g, i.e.

with m̂g * 2�=NLat. In this regime the constituent gluon

mass is close to the minimum accessible momentum scale
on the lattice and the gluon propagator is close to asymp-
totic while the nonperturbative effects are only present for
a few, lowest momentum points. This regime should be
described by Eq. (19),

dð~kÞ ¼ dð ~�Þ
½1þ �0

Hd
1=�0 ð ~�Þ logð ~k~�Þ��

0 ; (30)

where �0
H and �0 will be treated as fit parameters. For

Nd ¼ 20 each data set has 30 momentum points after the
imposed ‘‘diagonal’’ cut described above. We choose 6
data sets with m̂g 2 ½0:1; 1� and g 2 ½0:3; 0:75�, where
the 25 highest momentum points can be considered to be
in the asymptotic region. For each value of the coupling, g,
the value of dð ~�Þ is fixed by the data itself with ~� set equal

to the momentum cutoff, ~� ¼ ffiffiffi
3

p
�=m̂g. The formula in

Eq. (19) is fitted to all 150 data points by varying �0
H and

�0. The resulting remarkably good fits are shown in Fig. 7
with the best-fit value of �0

H ¼ 0:86ð2Þ and �0 ¼ 0:5ð2Þ.
The data deviate from the perturbative form at intermediate
momenta, which is to be expected.
On the other hand, in simulations with large m̂g, i.e. for

m̂g &
ffiffiffi
3

p
�, Eq. (18) should apply. Then the constituent

gluon mass is close to the largest accessible momentum
scale on the lattice. This regime is dominated by non-
propagating gluons induced by nonperturbative dressing.
Here we expect

gk/m
0 0.5 1 1.5 2 2.5

)
g

d(
k/

m

0.7

0.75

0.8

0.85

0.9
, NConf=10003V=12

, NConf=10003V=20

, NConf=10003V=30

, NConf=3003V=40

FIG. 6 (color online). Ghost dressing function dðk=mgÞ versus
k=mg for m̂g ¼ 1:25 and g ¼ 0:7. We show the influence of

varying the lattice volume V on the calculated data points with
momentum components not differing by more than two units of
lattice momentum, as described in the text. Here NConf
denotes the number of the sampled gluon configurations.

gk/m
1 2 3 4 5 6

)
g

d(
k/

m

0.6

0.7

0.8

0.9

1

1.1
 = 0.6,  g = 0.6gm

 = 0.8,  g = 0.65gm

 = 1,  g = 0.75gm

FIG. 7 (color online). Simultaneous fits to the ghost dressing
function dðk=mgÞ versus k=mg for m̂g * 2�=NLat.
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dð~kÞ ¼ dð ~�Þ
½1þ �0

Ld
1=�0 ð ~�Þð~k� ~�Þ��0 : (31)

In this region we select a total of 8 data sets composed of
m̂g 2 ½3; 5� and g 2 ½1; 1:4�, where the 15 lowest momen-

tum points can be considered to be in the nonperturbative
region. Here, dð ~�Þ is obtained from each data set itself, at
~� chosen, to avoid finite-volume effects, to be the second
lowest momentum point. In the low momentum range a
total of 120 data points was fitted varying �0

L while keep-
ing �0 ¼ 1=2 which was previously determined from the
high momentum fit. A sample of data points with the
corresponding fits are shown in Fig. 8 for the best-fit value
of �0

L ¼ 0:81ð2Þ. Again, the discrepancies in the higher
momentum region are expected as a consequence of devi-
ations from purely nonperturbative behavior set by the
asymptotic tail of the gluon propagator.

IV. CONCLUSIONS

We have computed the ghost correlation function by
direct Monte Carlo simulation of the functional integral
with a model Gaussian wave functional and compared it
with the solution of the corresponding Dyson equation. We
have found that the scaling behavior of the solution of the
Dyson equation is reproduced in the simulation. This con-
firms that the corrections to the rainbow-ladder approxi-
mation are both IR and UV finite, and do not change the
scaling properties. The � function obtained from simula-
tions is, however, an order of magnitude larger than the one
from the Dyson equation. This is to be expected, since the
Dyson equation does not properly take into account the
boundary of the field space integral, and thus it is expected
to overestimate the magnitude of the allowed field values
and thus of the critical coupling. The Monte Carlo simu-
lation still needs to have the Faddeev-Popov Jacobian
implemented, but that is not expected to qualitatively
change the results.
In our simulations we have found that positivity of the

Faddeev-Popov operator is not sufficient to produce critical
behavior. This needs to be investigated further, in particu-
lar, on larger volumes; nevertheless, since the simple
Gaussian vacuum wave functional does not probe topo-
logical configurations (e.g. of magnetic disorder) it is not
too surprising that the IR enhancement of the ghost corre-
lator or Coulomb form factor fails to quantitatively repro-
duce confinement. For this purpose a wave functional of
the type proposed in Ref. [61] should be tried.
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