
Damping of forward neutrons in pp collisions

B. Z. Kopeliovich,1,2 I. K. Potashnikova,1 Ivan Schmidt,1 and J. Soffer3

1Departamento de Fı́sica y Centro de Estudios Subatómicos, Universidad Técnica Federico Santa Marı́a, Casilla 110-V,
Valparaı́so, Chile

2Joint Institute for Nuclear Research, Dubna, Russia
3Department of Physics, Temple University, Philadelphia, Pennsylvania 19122-6082, USA

(Received 3 June 2008; published 31 July 2008)

We calculate absorptive corrections to single pion exchange in the production of leading neutrons in pp

collisions. Contrary to the usual procedure of convolving the survival probability with the cross section,

we apply corrections to the spin amplitudes. The nonflip amplitude turns out to be much more suppressed

by absorption than the spin-flip one. We identify the projectile proton Fock state responsible for the

absorptive corrections as a color octet-octet 5-quarks configuration. Calculations within two very different

models, color-dipole light-cone description, and in hadronic representation, lead to rather similar

absorptive corrections. We found a much stronger damping of leading neutrons than in some of previous

estimates. Correspondingly, the cross section is considerably smaller than was measured at ISR. However,

comparison with recent measurements by the ZEUS collaboration of neutron production in deep-inelastic

scattering provides a strong motivation for challenging the normalization of the ISR data. This conjecture

is also supported by preliminary data from the NA49 experiment for neutron production in pp collisions at

SPS.
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I. INTRODUCTION

The pion is known to have a large coupling to nucleons,
therefore pion exchange is important in processes with
isospin one in the cross channel (e.g. pþ n ! nþ p).
However, the pion Regge trajectory has a low intercept
��ð0Þ � 0, and this is why it ceases to be important at high
energies in binary reactions, while other mesons, �, a2, etc.
take over.

Quite a different situation occurs in inclusive reactions
of leading neutron production. Inclusive reactions in gen-
eral are known to have (approximate) Feynman scaling,
and as a consequence the pion contribution to neutron
production remains nearly unchanged with energy. This
can be seen from the graphical representation of the cross
section of the inclusive reaction hþ p ! X þ n, depicted
in Fig. 1. Summing up all final states X at a fixed invariant
massMX and relying on the optical theorem, one arrives at
the total hadron-pion cross section at center-of-mass (c.m.)
energy MX. This cross section is a slowly varying function
of MX (restricted by the Froissart bound), and this is the
source for Feynman scaling. At the same time, the effective
interval of energy squared for pion exchange is less than s,
which is the c.m. energy squared for hp collisions. Indeed,
the effective energy squared interval s0 is given by the
multiperipheral kinematics of particle production as

s0

s0
¼ s

M2
X

� 1

1� z
; (1)

where s0 is the scale factor, usually fixed at 1 GeV2; and
z ¼ pþ

n =p
þ
p is the fraction of the proton light-cone mo-

mentum carried by the neutron, which is close to Feynman
xF at large z ! 1.
In fact, the pion exchange brings in a factor ð1� zÞ�2��

(��ðtÞ is the pion Regge trajectory) to the cross section,
which is independent of the collision energy s, if z is fixed.
Thus, the pion exchange contribution does not vanish with
energy, and this is in more detail the origin of the Feynman
scaling. From the point of view of dispersion relations, the
smaller the 4-momentum transfer squared t, the closer we
approach the pion pole, and the more important is its
contribution. The smallest values of t are reached in the
forward direction and at z ! 1. The latter condition, how-
ever, leads to the dominance of other Reggeons which have
higher intercepts. Indeed, the corresponding Regge factor
ð1� zÞ�2�IR for � and a2 Reggeons is about 1=ð1� zÞ
times larger than the one for pion. Although in general
these Reggeons are suppressed by an order of magnitude

FIG. 1. Graphical representation of the cross section of inclu-
sive neutron production in hadron-proton collisions, in the
fragmentation region of the proton.
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compared to the pion [1], they become equally important
and start taking over at z * 0:9.

Another important correction, which is the main focus of
this paper, is the effect of absorption, or initial/final state
interactions. The active projectile partons participating in
the reaction, as well as the spectator ones, can interact with
the proton target or with the recoil neutron, and initiate
particle production, which usually leads to a substantial
reduction of the neutron momentum. The probability that
this does not happen, called sometimes survival probability
of a large rapidity gap, leads to a suppression of leading
neutrons produced at large z. There are controversies re-
garding the magnitude of this suppression. Some calcula-
tions predict quite a mild effect, of about 10% [2–5], while
others [6–8] expect a strong reduction by about a factor of
2. See [8] for a discussion of the current controversies in
data and theory, for leading neutron production.

Usually absorptive corrections are calculated in a proba-
bilistic way, convolving the gap survival probability with
the cross section. We found, however, that the spin ampli-
tudes of neutron production acquire quite different sup-
pression factors, and one should work with amplitudes,
rather than with probabilities.

In Sec. II we introduce the spin amplitudes for inclusive
production of neutrons and calculate the cross section in
Born approximation of single pion exchange. Contrary to
the usual case in binary reactions, the spin nonflip term is
large and rises towards small z. Comparison with ISR
measurements [9] shows that the calculation overshoots
somewhat the data, albeit only by about 10%. Calculations
also result in a substantial rise of the cross section with
energy.

In Sec. III the absorptive corrections are introduced.
Assuming that the corrections factorize in impact parame-
ter space, the spin amplitudes are transformed to this
representation, and the general expression for the gap
survival amplitude is derived. We found that the main
Fock component of the incoming proton, which is respon-
sible for the absorptive corrections, is a 5-quark color
octet-octet state. Therefore it is not a surprise that the
resulting neutron damping at which we arrive is quite
strong. In order to figure out what was missed in previous
calculations which led to a weak absorption damping, in
Sec. III C we reformulated the current mechanism in terms
of Reggeon calculus.

We calculate the gap survival amplitude within two quite
different models. In Sec. IV we employ the well developed
phenomenology of light-cone color dipoles fitted to photo-
production and deep-inelastic scattering (DIS) data. We
use the saturated model for the dipole cross section, gen-
eralized recently to a partial dipole-proton amplitude.

Another model for the survival amplitude is presented in
Sec. V. Expanding the 5-quark Fock state over the full set
of hadronic states, we assumed that the �p pair containing
the 5 valence quark is the dominant term. The gap survival

amplitudes of pion and proton was extracted in a model-
independent way directly from data for elastic �p and pp
scattering. We found that the results of the two models,
based on dipole and hadronic representations, resulted in
rather similar gap survival amplitudes.
In Sec. VI we calculate the spin nonflip and flip contri-

butions to the cross section, and found that the inclusive
cross section of neutron production is about twice as small
as the original result of the Born approximation. We also
conclude that absorptive corrections practically terminate
the strong energy dependence that results from the Born
approximation. The ISR data support this observation.
Although the calculated shape of z-distribution is im-

proved by absorption and corresponds to the shape of the
ISR data at qT ¼ 0, the overall normalization is quite lower
than in the data. In Sec. VII B we compare the ISR data
with other measurements, in particular, with the recent
results of the ZEUS collaboration for inclusive neutron
production in the photo-absorption reaction �p ! Xn.
The two sets of data turn out to be not really consistent,
what makes questionable the normalization of the ISR
data.
We summarize the main results and observations in

Sec. VIII.

II. PION POLE

The Born approximation pion exchange contribution to
the amplitude of neutron production pp ! nX, depicted in
Fig. 2(a), in the leading order in small parameter mN=

ffiffiffi
s

p
has the form

AB
p!nð ~q; zÞ ¼ 1ffiffiffi

z
p ��n½�3~qL þ ~� � ~qT��p�

BðqT; zÞ; (2)

where ~� are Pauli matrices; �p;n are the proton or neutron

spinors; ~qT is the transverse component of the momentum
transfer;

~q L ¼ ð1� zÞmN: (3)

In the region of small 1� z � 1 the pseudoscalar am-
plitude �BðqT; zÞ has the triple-Regge form

FIG. 2. (a) Born graph with single pion exchange;
(b) illustration of absorptive corrections.
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�BðqT; zÞ ¼ �0
�

8
G�þpnðtÞ��ðtÞð1� zÞ���ðtÞ

� A�þp!XðM2
XÞ; (4)

where the 4-momentum transfer squared t has the form

t ¼ � 1

z
ð~q2L þ q2TÞ; (5)

and ��ðtÞ is the phase (signature) factor which can be
expanded near the pion pole as

��ðtÞ ¼ i� ctg

�
���ðtÞ

2

�
� iþ 2

��0
�

1

m2
� � t

: (6)

We assume a linear pion Regge trajectory ��ðtÞ ¼ �0
�ðt�

m2
�Þ, where �0

� � 0:9 GeV�2. The imaginary part in (6) is
neglected in what follows, since its contribution near the
pion pole is small.

The effective vertex function G�þpnðtÞ ¼
g�þpn expðR2

1tÞ includes the pion-nucleon coupling and

the form factor which incorporates the t-dependence of
the coupling and of the �N inelastic amplitude. We take
the values of the parameters used in [1], g2

�þpnðtÞ=8� ¼
13:85 and R2

1 ¼ 0:3 GeV�2. Notice that the choice of R1

does not bring much uncertainty, since we focus here at
data for forward production, qT ¼ 0, so t is quite small.

The amplitudes in (2)–(4) are normalized as

��þp
tot ðs0 ¼ M2

XÞ ¼
1

M2
X

X
X

jA�þp!XðM2
XÞj2; (7)

where different hadronic final states X are summed at fixed
invariant mass MX. Correspondingly, the differential cross
section of inclusive neutron production reads [10,11],

z
d�B

p!n

dzdq2T
¼ 1

s
jAB

p!nð ~qT; zÞj2

¼
�
�0
�

8

�
2jtjG2

�þpnðtÞj��ðtÞj2ð1� zÞ1�2��ðtÞ

� ��þp
tot ðs0 ¼ M2

XÞ: (8)

Since at z ! 1 the value of M2
X decreases, we rely on a

realistic fit to the experimental data [12] for �þp total
cross section.
The results of the Born approximation calculation,

Eq. (8), at
ffiffiffi
s

p ¼ 200, 62.7, and 30.6 GeV, are depicted
together with the ISR data [9], in Figs. 3 and 4.
The data are given at two energies

ffiffiffi
s

p ¼ 30:6 GeV and
62.7 GeV, and therefore we use these energies in our

FIG. 3. Born approximation (dashed curve) for leading neutron
production and ISR data [9], at

ffiffiffi
s

p ¼ 62:7 GeV and pT ¼ 0.
Two solid curves, the upper and bottom ones, show the effect of
absorptive corrections calculated in the dipole approach (�Sð5qÞ)
and in hadronic representation (�SðhadrÞ), respectively.

FIG. 4. Energy dependence of inclusive neutron production.
The three upper curves present the forward cross section atffiffiffi
s

p ¼ 30:6 GeV (solid line), 62.7 GeV (dashed line), and
200 GeV (dotted-dashed line), calculated in the Born approxi-
mation. The same cross sections, although corrected for absorp-
tion (�Sð5qÞ), are given by the three curves at the bottom. Data
at

ffiffiffi
s

p ¼ 30:6 GeV and 62.7 GeV [9] are depicted by squares and
inverse triangles, respectively.
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calculations. One can see that the Born approximation
considerably exceeds the data.

Notice that only at small 1� z�m�=mN one can ap-
proach the pion pole, i.e. the smallness of the pion mass is
important for Eq. (4). Otherwise t is large even at qT ¼ 0,
and the pion exchange gains a considerable imaginary part.
Besides, the spin-flip amplitude �BðqT; zÞ acquires a weak
dependence on qT at small scattering angles, q2T � ð1�
zÞ2m2

N .

III. ABSORPTIVE CORRECTIONS

Absorptive corrections, or initial/final state interactions,
illustrated in Fig. 2, look quite complicated in momentum
representation where they require multiloop integrations.
However, if they do not correlate with the amplitude of the
process �þp ! X, then these corrections factorize in im-
pact parameter and become much simpler. Therefore, first
of all, we should Fourier transform the amplitude equa-
tion (2) to impact parameter space.

A. Impact parameter representation

The partial Born amplitude at impact parameter ~b, cor-
responding to (2), has the form

fBp!nð ~b; zÞ ¼ 1ffiffiffi
z

p ��n

�
�3~qL	

B
0 ðb; zÞ � i

~� � ~b

b
	Bs ðb; zÞ

�
�p;

(9)

where

	B0 ðb; zÞ ¼
Z

d2qei
~b ~q�BðqT; zÞ

¼ NðzÞ
1� 
2�2

½K0ð�bÞ � K0ðb=
Þ�; (10)

	Bs ðb; zÞ ¼ 1

b

Z
d2qei

~b ~qð ~b � ~qÞ�BðqT; zÞ

¼ NðzÞ
1� 
2�2

�
�K1ð�bÞ � 1



K1ðb=
Þ

�
: (11)

Here

NðzÞ ¼ 1

2
g�þpnzð1� zÞ�0

�ðm2
�þ~q2L=zÞe�R2

1
~q2L=z

� A�p!XðM2
XÞ;

�2 ¼ ~q2L þ zm2
�; 
2 ¼ R2

1 � �0
�

lnð1� zÞ
z

:

(12)

To simplify the calculations we replaced here the Gaussian
form factor, expð�
2q2TÞ, by the monopole form 1=ð1þ

2q2TÞ, which is a good approximation at the small values
of qT we are interested in. At the same time we keep the
exact expression for the dependence on ~qL, which can be
rather large.

B. Survival amplitude of large rapidity gaps

At large z ! 1 the process under consideration is asso-
ciated with the creation of a large rapidity gap (LRG),
�y ¼ j lnð1� zÞj, where no particle is produced.
Absorptive corrections may also be interpreted as a sup-
pression related to the survival probability of LRG, which
otherwise can be easily filled by multiparticle production
initiated by inelastic interactions of the projectile partons
with the target. Usually the corrected cross section is
calculated as a convolution of the cross section with the
survival probability factor (see [8] and references therein).
This recipe may work sometimes as an approximation, but
only for qT-integrated cross section. Otherwise one should
rely on a survival amplitude, rather than probability.
Besides, the absorptive corrections should be calculated
differently for the spin-flip and nonflip amplitudes (see
below).
In impact parameter representation one can expand the

incoming proton over the Fock components, j3qi, j3qgi,
j4q �qi, etc. For every Fock state with fixed transverse
separations between the constituents the eikonal form is
exact. In the dipole representation the absorption corrected
amplitude can be written as

fp!nðb; zÞ ¼
X
l

Y
i

d2rid�iC
p
l ðfri; �igÞ

� ½~fBp!nðb; z; fri; �igÞ�leiflðb;z;frigÞ: (13)

Here we sum over Fock states containing a different num-
ber of partons of different species, having transverse posi-
tions ~ri and fractional light-cone momenta �i. The parton
distribution amplitudes Cp

l ðfri; �igÞ are normalized to the

probabilities Wl of having lth Fock state in the proton,RQ
id

2rid�ijCp
l ðfri; �igÞj2 ¼ Wl. We neglect the small

real part of the partial amplitude flðb; z; frigÞ of elastic
scattering of the partonic state jl; frigi on a nucleon, and
assume that it is pure imaginary and isotopic invariant
(Pomeron exchange).
Now we have to identify the Fock states responsible for

initial and final state interactions leading to absorptive
corrections. We start with Fig. 5(a), containing the ampli-
tude of the pion-proton inelastic collision �þ p ! X.
This is usually described as color exchange, leading to
the creation of two color-octet states with a large rapidity
interval � lnðM2

X=s0Þ (s0 ¼ 1 GeV2), as illustrated in
Fig. 5(b). Perturbatively, the interaction is mediated by
gluonic exchanges. Nonperturbatively, e.g. in the string
model, the hadron collision looks like intersection and
flip of strings. Hadronization of the color-octet dipole
(described, for example, by the string model) leads to the
production of different final states X.
According to Fig. 5(b) the produced color octet-octet

state can experience final state interactions with the recoil
neutron. On the other hand, at high energies multiple
interactions become coherent, and one cannot specify at
which point the charge-exchange interaction happens, i.e.
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both initial and final state interactions must be included.
One can rephrase this in terms of the Fock state decom-
position. The projectile proton can fluctuate into a 5-quark
color octet-octet before the interaction with the target. The
fluctuation lifetime, or coherence time (length), is given by

lc ¼
2Ep

M2
X �m2

N

; (14)

which rises with energy and at high energies considerably
exceeds the longitudinal size of the target proton.
Technically, one should integrate the amplitude over the
longitudinal coordinate l of the fluctuation point, weighted

with a phase factor eil=lc (see an example in [13]),
which effectively restricts the distances from the target to
�l & lc.

This leads to a different space-time picture of the pro-
cess at high energies, namely, the incoming proton fluc-
tuates into a 5-quark state jf3qg8f �qqg8i long in advance of
the interaction between the f �qqg8 pair and the target via
pion exchange, see Fig. 5(c). This is the general intuitive
picture which is supported by more formal calculations
[14,15]. Assuming only final state interactions one should
sum up the amplitudes of the process depicted in Fig. 5(b)
and of the double step collision in which the 5-quark state
is produced diffractively in the first collision pN !
jf3qg8f �qqg8iN, and then the 5-quark system experiences
charge-exchange scattering of another proton via pion
exchange. The resulting amplitude exposes both initial
and final state attenuation of the 5-quark state,

fp!nðb; zÞ ¼ fBp!nðb; zÞSðb; zÞ: (15)

Thus, the 5-quark component of the projectile proton
propagates through the target experiencing initial and final
state interactions. The effective absorption cross section is
the inelastic cross section of the jf3qg8f �qqg8i dipole on a
nucleon.

Of course, besides the five valence quarks, also gluons
can be radiated, which are essential for the energy depen-

dence of ��p
tot ðM2

XÞ. They are effectively included in the
following calculations.

C. Reggeon calculus

Previous calculations [4,8] proposed rather mild absorp-
tive corrections, corresponding to only a beam proton
experiencing multiple interactions in the target. This was
motivated by Reggeon graphs depicted in Fig. 6(a) and 6
(b) (we show only some of the interference terms).
Figure 6(a) presents multiple interactions of the projec-

tile proton and its remnants. Figure 6(b) includes interac-
tions of the multiparton states produced in �� p inelastic
collision (see Fig. 2). This term is proportional to the triple-
Pomeron coupling, which is assumed to be small, and for
this reason it was neglected in [4,5,8]. The third term Fig. 6
(c), overlooked in [4,5], has a different behavior1 since it
contains a 4-Reggeon vertex ��IPIP, and may not be
small. The structure of this vertex, as well as of the cut
Pomeron, are shown in Fig. 7.
The interaction of the radiated gluons (the rungs of the

Pomeron ladder) is indeed weak, as follows from the
smallness of the triple-Pomeron coupling. This is ex-
plained dynamically in [16] by the shortness of the trans-
verse separation between the radiated gluons and the

FIG. 5 (color online). (a) Born graph with single pion ex-
change and excitation of the projectile proton, pþ � ! X;
(b) inelastic proton-pion interaction, pþ � ! X, via color
exchange, leading to the production of two color-octet dipoles
which hadronize further to X; (c) Fock state representation of
the previous mechanism. A color octet-octet dipole which is a 5-
quark Fock component of the projectile proton, interacts with the
target proton via �þ exchange. This 5-quark state may experi-
ence initial and final state interaction via vacuum quantum
number (Pomeron) exchange with the nucleons (ladderlike
strips).

FIG. 6. Absorptive corrections due to the possibility of inelas-
tic interactions which can fill up the large rapidity gap.
(a) Interactions of the projectile proton and its remnants (see
Fig. 7) with the target; (b) triple-Pomeron interaction due to
interactions of produced particles (e.g. radiated gluons);
(c) interactions including the pion remnants (see Fig. 7). Only
some of the interference graphs are shown.

P

FIG. 7 (color online). Structure of the four-Reggeon vertex
��IPIP.

1This graph was considered in [8], but without detailed
analysis.
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source. There is no such a suppression, however, for the
interaction of the �qq8 pair, which is the pion remnant, as is
depicted in Fig. 7. Calculations performed below confirm
that the term shown in Figs. 6(c) and 7, missed in [4,8], is
large.

IV. ABSORPTIVE CORRECTIONS IN SATURATED
REGIME

Another way to estimate the absorption effects is to
consider directly the interaction of the 5-quark octet-octet
dipole with the proton target. Following the dual parton
model [17] approach, we replace the j3qi8 � j �qqi8 dipole
by two color-triplet dipoles, ðqqÞ � q and q� �q, as is
illustrated in Fig. 8. This approximation has an accuracy
1=N2

c , which is sufficient for our purposes.
Thus, the survival amplitude for such a 5-quark state can

be represented as a product,

Sð5qÞðbÞ ¼ Sð3qÞðbÞSðq �qÞðbÞ
¼ ½1� Im�ð3qÞpðbÞ�½1� Im�ð �qqÞpðbÞ�: (16)

similar to Eq. (34). The elastic amplitude �ð�33ÞpðbÞ of a
color f�33g dipole interacting with a proton is related to the
partial elastic amplitude

Im �ð�33Þpðb; zÞ ¼
Z

d2rW�33ðr;M2
XÞ Im f

�33
el ð ~b; ~r; s; �Þ;

(17)

where � is the fractional light-cone momentum carried by
the 3, or �3; r is the dipole transverse size; andW�33ðr;M2

XÞ is
the dipole size distribution function, which is specified
later, as well as the relation between � and z. Now we

concentrate on the partial dipole amplitude f
�33
el ð ~b; ~r; s; �Þ.

A. Generalized unintegrated gluon density and partial
dipole amplitude

The �qq-dipole-proton total cross section can be directly
fitted to data on the proton structure function measured in
DIS. The popular form [18] of the dipole cross section,
which describes quite well data at small Bjorken x, has a
saturated shape, i.e. the cross section levels off at large
dipole sizes. For soft reactions, such as the one we are
dealing with here, the c.m. energy rather than Bjorken x, is
the proper variable. A similar parametrization, with the
saturated shape fitted to data on DIS atQ2 not high and real

photo-absorption and photo-production of vector mesons,
led to the result [13],

� �qqðr; sÞ ¼ �0ðsÞ½1� e�r2=R2
0
ðsÞ�; (18)

where R0ðsÞ ¼ 0:88fmðs0=sÞ0:14 and s0 ¼ 1000 GeV2.
This cross section is normalized to reproduce the pion-
proton total cross section,

R
d2rj��ðrÞj2� �qqðr; sÞ ¼

��p
tot ðsÞ. The pion wave function squared integrated over

longitudinal quark momenta has the form

j��ð~rÞj2 ¼ 3

8�hr2chi�
exp

�
� 3r2

8hr2chi�
�
; (19)

where hr2chi� ¼ 0:44 fm2 [19] is the mean pion charge

radius squared. This normalization condition results in

�0ðsÞ ¼ ��p
tot ðsÞ

�
1þ 3R2

0ðsÞ
8hr2chi�

�
: (20)

For the numerical calculation we rely on one of the popular
parametrizations for the energy dependent total cross sec-
tions [12] (only the Pomeron part), ��p

tot ðsÞ ¼ �0 þ
�1ln

2ðs=s1Þ, where �0 ¼ 20:9 mb �1 ¼ 0:31 mb and
s1 ¼ 28:9 GeV2.
Just as the dipole-proton total cross section can be

calculated via the unintegrated gluon density in the proton

[18], one can calculate the partial amplitude fð ~b; ~rÞ via a
generalized transversely off-diagonal gluon distribution
[20],

Im fN�qqð ~b; ~r; 
Þ ¼
1

12�

Z d2qd2q0

q2q02
�sF ðx; ~q; ~q0Þei ~b�ð ~q� ~q0Þ

� ðe�i ~q� ~r
 � ei ~q� ~rð1�
ÞÞ
� ðei ~q0�~r
 � e�i ~q0� ~rð1�
ÞÞ: (21)

A model for the generalized unintegrated gluon density
was proposed recently [20], based on the saturated form of
the diagonal gluon density [18], and assuming a factorized
dependence on both ~q and ~q0. One gets

F ðx; ~q; ~q0Þ ¼ 3�0

16�2�s

q2q02R2
0ðxÞ

� exp

�
� 1

8
R2
0ðxÞðq2 þ q02Þ

�

� exp

�
� 1

2
BðxÞð ~q� ~q0Þ2

�
: (22)

This Bjorken x-dependent density, appropriate for hard
reactions, leads to an x-dependent partial amplitude [20].
Although in general it should not be used for soft pro-
cesses, one can switch from an x- to an s-dependence
keeping the same parametrization and adjusting the pa-
rameters to observables in soft reactions, as was done in
[13], see Eq. (18). Then the partial amplitude reads

FIG. 8 (color online). Inelastic pion-proton interaction, �þ
p ! X, in Fig. 5, leading to the production of two color-triplet
dipoles, q� �q and ð2qÞ � q.
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Im f �qq
el ð ~b; ~r; s; �Þ ¼

�0ðsÞ
8�BðsÞ

�
exp

�
�½ ~bþ ~rð1� �Þ�2

2BðsÞ
�

þ exp

�
�ð ~b� ~r�Þ2

2BðsÞ
�

� 2 exp

�
� r2

R2
0ðsÞ

� ½ ~bþ ð1=2� �Þ~r�2
2BðsÞ

��
:

(23)

This partial amplitude correctly reproduces the dipole
cross section Eq. (18),

2
Z

d2b Im f �qq
el ð ~b; ~r; s; �Þ ¼ � �qqðr; sÞ: (24)

Another condition that needs to be satisfied is reproduc-
ing the slope B�p

el ðsÞ of the elastic �p differential cross

section,

B�p
el ðsÞ ¼

1

2
hb2i 1

��p
tot

Z
d2b

Z 1

0
d�

�
Z

d2rj��ð ~r; �Þj2Im f �qq
el ð ~b; ~r; s; �Þ: (25)

This condition allows to evaluate the parameter BðsÞ in
(23). To simplify this calculation, we fix here � ¼ 1=2 in
the partial amplitude and arrive at

BðsÞ ¼ B�p
el ðsÞ � 1

3hr2chi� � 1
8R

2
0ðsÞ: (26)

In what follows we use a Regge parametrization for the
elastic slope, B�p

el ðsÞ ¼ B0 þ 2�0
IP lnðs=�2Þ, with B0 ¼

6 GeV�2, �0
IP ¼ 0:25 GeV�2, and �2 ¼ 1 GeV2.

In the case of a ð2qÞ � q dipole all relations are analo-
gous to Eqs. (18)–(26), but one should make the following
replacements: (i) ��p

tot ðsÞ ) �pp
tot ðsÞ with �0 ¼ 35:5 mb;

(ii) hr2chi� ) hr2chip ¼ 0:8 fm2 [21]; (iii) B�p
el ðsÞ ) Bpp

el ðsÞ
with B0 ¼ 8 GeV�2.

B. Survival amplitudes of dipoles

To proceed further with the calculation of the survival
amplitude, Eqs. (16) and (17), we have to specify the
dipole size distribution. One can get a hint from Figs. 5
(b) and 8 that the size distribution of the ð3qÞ8 � ð �qqÞ8
dipoles is actually given by the partial amplitude squared

of �� p elastic scattering at c.m. energy Ec:m: ¼ MX ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� zÞp

. Assuming a Gaussian dependence of this partial
amplitude on impact parameter, we get

W8�8ðr;M2
XÞ ¼

1

2�B�p
el ðM2

XÞ
exp

�
� r2

2B�p
el ðM2

XÞ
�
: (27)

Thus, the size of the q �q and q� 2q dipoles is z-dependent
and controlled by B�p

el ðM2
XÞ.

Performing the integration in (17) with this weight factor
and the partial dipole amplitude Eq. (23), we arrive at the
survival amplitude for a �q� q dipole,

Sð �qqÞðb; zÞ ¼ 1� �0ðsÞ
4�

�
1

B�ðs; zÞ exp
�
� b2

B�ðs; zÞ
�

þ 1

B1��ðs; zÞ exp
�
� b2

B1��ðs; zÞ
�

� 2

B1=2��ðs; zÞ½1þ B�p
el ðM2

XÞ=R2
0ðsÞ�

� exp

�
� b2

B1=2��ðs; zÞ
��
; (28)

where

B
ðs; zÞ ¼ 2BðsÞ þ 
2B�p
el ðM2

XÞ; (29)

and 
 equals either �, or 1� �, or 1=2� �. All other
quantities related to a �qq dipole are defined in Sec. IVA.
The same expressions Eqs. (28) and (29) can be used for

the survival amplitude Sð3qÞðbÞ of a baryon ð2qÞ � q dipole,
after making the same replacements of ��p

tot ðsÞ, hr2chi�, and

FIG. 9. Partial survival amplitude Sðb; zÞ at
ffiffiffi
s

p ¼ 60 GeV
and z ¼ 0:8. Survival amplitudes Sð2qÞðb; zÞ for a �q� q dipole,
and Sð3qÞðb; zÞ for a q� 2q dipole, are depicted by dot-dashed
and dashed curves, respectively. Their product, Sð5qÞðb; zÞ, is
shown by the solid curve.
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B�p
el ðsÞ, as is listed at the end of Sec. IVA (except ~B�p

el ðM2
XÞ

which should be kept as is).
The last variable to be specified is �, which is related to

z ¼ 1�M2
X=s via the relation for the invariant massMX of

the 5q system,

M2
X ¼ m2

3q þ k2T

1� �
þm2

�qq þ k2T
�

; (30)

where kT is the relative transverse momentum of ð �qqÞ8 and
ð3qÞ8. For the large values of M2

X � m2
p that we are

interested in,

� ¼ m2
T

M2
X

¼ m2
T

sð1� zÞ ; (31)

where we fix m2
T ¼ hm2

�qq þ k2Ti ¼ 1 GeV2, assuming that

hm2
�qqi � hk2Ti �m2

�.

The results for the 5q dipole survival probability
Eq. (16) calculated at

ffiffiffi
s

p ¼ 44:7 GeV and z ¼ 0:8, are
shown in Figs. 9 and 10.

V. SURVIVAL AMPLITUDE IN HADRONIC
REPRESENTATION

A. Expansion over multihadronic states

One can expand the 5-quark Fock state over the hadronic
basis,

jf3qg8f �qqg8i ¼ d0jpi þ d1jN�i þ d2jN2�i þ . . . : (32)

These components are associated with different suppres-
sion factors, which can be calculated via known hadron-
proton elastic amplitudes. Correspondingly, the absorption
corrected partial amplitude gets the form

fp!nðb; zÞ ¼ fBp!nðb; zÞSðhadrÞðbÞ; (33)

where SðhadrÞðbÞ is the survival amplitude averaged over
different hadronic components in (32).
Since the admixture of sea quarks in the proton is small,

the projection of the 5-quark state to the proton, the am-
plitude d0, must be small. The states that contribute consist
mainly of a nucleon accompanied by one or more pions
and other mesons, and therefore here we make the natural
assumption that the amplitude d1 is the dominant one,
since both states jf3qg8f �qqg8i and jN�i have the same
valence quark content. Then the survival amplitude of a
large rapidity gap mediated by pion exchange is related to
the amplitude of no-interaction of a p� � pair propagat-
ing through the target proton. Neglecting the difference in
impact parameters of the pion and proton, we get

SðhadrÞðbÞ ¼ S�pðbÞSppðbÞ
¼ ½1� Im�ppðbÞ�½1� Im��pðbÞ�: (34)

Here we expressed the hadron-nucleon survival amplitude
via the elastic partial amplitude �ðbÞ,

ShNðbÞ ¼ 1� Im�hNðbÞ: (35)

An implicit energy dependence is assumed in here and
further on, unless specified.
Nevertheless, the calculation of the partial amplitudes

�hNðbÞ is still a challenge, and different models and ap-
proximations are known. For instance, if the total cross
section �hN

tot and the elastic slope BhN
el are known, and one

assumes a Gaussian shape for the differential hadron-
proton cross section, one gets

Im �hN
ðGaussÞðbÞ ¼

�hN
tot

4�BhN
el

exp

�
� b2

2BhN
el

�
: (36)

At high energies, however, this is a poor approximation,
since the unitarity bound stops the rise of the partial
amplitude at small b, and the periphery becomes the
main source of the observed rise of the total cross sections
[22,23]. As a result, the shape of the b-dependence changes
with energy and cannot be Gaussian.
One has to incorporate unitarity corrections, and a popu-

lar way to do it is the eikonal approximation [24],

FIG. 10. Partial survival amplitude Sðb; zÞ at ffiffiffi
s

p ¼ 60 GeV
and z ¼ 0:8. The survival amplitude evaluated in hadronic
representation. Dot-dashed, dashed, and solid curves show the
pion and proton survival amplitudes and their product, respec-
tively.
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Im �hp
ðeikÞðbÞ ¼ 1� e�Im �hp

0
ðbÞ; (37)

where �hp
0 ðbÞ is an input, bare amplitude, which is actually

unknown. It can be compared with data only after the
unitarization (e.g. eikonalization) procedure.

The eikonal approximation cannot be correct, since
hadrons are not eigenstates of the interaction, and they
can be diffractively excited. To improve the eikonal ap-
proximation (37) one should include all possible inter-
mediate diffractive excitations [25]. This is a difficult
task, since there is no experimental information about
diffractive off-diagonal transitions between different ex-
cited states. So far this has been done only in a two-channel
toy-model [26,27].

Another way to include the higher order Gribov correc-
tions is the so-called quasieikonal model [28]. However, it
is based on an ad hoc recipe for higher order diffractive
terms, which is not supported by any known dynamics.

The dipole approach [24,29,30] allows to sum up the
Gribov corrections in all orders, for a given Fock state of
the projectile hadron. However, the inclusion of higher
Fock states is difficult and model dependent.

B. Partial elastic amplitude from data

Nevertheless, one can get reliable information about
�hpðbÞ extracting it directly from data for the elastic dif-

ferential cross section and the ratio of real-to-imaginary
amplitudes. We parametrize the imaginary and real parts of
the elastic scattering amplitude in momentum representa-
tion as

Im fhpðtÞ ¼ X3
i¼1

aie
bit; (38)

Re fhpðtÞ ¼ cedt; (39)

where ai, bi, c, d are the fitting parameters. The amplitudes
are related to the cross sections as

d�hp
el

dt
¼ ½Re fhpðtÞ�2 þ ½Im fhpðtÞ�2; (40)

�hp
tot ¼ 4

ffiffiffiffi
�

p
Im fhpð0Þ: (41)

We applied this analysis to data on the pp elastic dif-
ferential cross section [31]. To make the normalization of
data for the differential cross section more certain, first of
all we perform a common fit of the pp and �pp total cross
sections with the same Pomeron part, as a function of
energy. Then we adjust the normalizations of data for the
differential elastic cross sections to the optical points, i.e.
demand that 4

ffiffiffiffi
�

p P
ai ¼ �tot at each energy.

Data [32] for the ratio of real-to-imaginary parts of the
forward amplitude, �hpðsÞ ¼ Re fhpð0Þ=Im fhpð0Þ, were

FIG. 11. Imaginary part of the partial elastic amplitude extracted by a model-independent analysis of data on the elastic differential
cross section. Left: pp partial amplitude Im�ppðbÞ at c.m. energies

ffiffiffi
s

p ¼ 23:5 GeV and 546 GeV. Right: Im��pðbÞ at ffiffiffi
s

p ¼
13:7 GeV and 19.4 GeV.
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also used in the analysis. We fitted these data with a smooth
energy dependence and demanded c ¼ �

P
ai for each

energy included in the analysis of differential cross sec-
tions. The details of the fit to pp data can be found in [23].
Here we applied the same procedure to data for pion-
proton scattering, using the database from [33].

After the parameters in (38) and (39) are found, one can
calculate the partial amplitude in impact parameter repre-
sentation at each energy as

�hpðbÞ ¼ 1

2�3=2

Z
d2bei ~q� ~bfhpð�q2Þ; (42)

where ~q is the transverse component of the transferred
momentum, t � �q2. It is normalized according to (41).

Examples are depicted in Fig. 11 for the partial ampli-
tudes Im�ppðbÞ (left panel) and Im��pðbÞ (right panel).

One can see that at b ¼ 0 the amplitude nearly saturates
the unitarity limit and hardly changes with energy, while at
larger impact parameters the amplitude substantially
grows. This means that the corresponding LRG survival
amplitude is minimal for central collisions where it stead-
ily decreases with energy towards zero in the black disc

(Froissart) limit. Our results for SðhadrÞðb; zÞ are depicted in
Fig. 10 at

ffiffiffi
s

p ¼ 40 GeV and z ¼ 0:8, 0.9.

C. Extreme damping

Although the survival amplitudes for protons and pions
were extracted in a model-independent way directly from
data, we feel that the main assumption made above, that the
5-quark state can be represented by just a �N pair has a
rather shaky basis. Quite probably the higher Fock compo-
nent containing more pions might be important. Indeed,
either the color octet-octet state or the two triplet-
antitriplets representing its decay multiply produce had-
rons, mainly pions. Of course, it would be an exaggeration
to include all of these pions into the absorption damping
factor. This would be like interpreting the color transpar-
ency effect in hadronic representation by a sum of different
hadrons. Neglecting the off-diagonal transitions and inter-
ferences one arrives at the so-called Bjorken paradox [34]:
instead of color transparency one gets hadronic opacity.
The most economic way to include the interferences is to
switch to the color-dipole representation, as we did in
Sec. IV. However, it is useful to understand the magnitude
of a maximal suppression when all produced pions con-
tribute in the same footing to the absorption corrections.

Apparently the pion multiplicity should rise with M2
X.

Following the prescription of the dual parton model [17]
we replaced the octet-octet dipole, f3qg8 � f �qqg8, by two
color-triplet strings, q� �q and qq� q, which share the
c.m. energy MX in fractions of 1=3 and 2=3, respectively.
This is illustrated in Fig. 8.

The multiplicities of pions produced from the decay of
these strings are known from fits to data on eþe� annihi-
lation [35] and deep-inelastic scattering [36],

hn�iq� �q ¼ 4þ 0:72 lnðM2
X=9s0Þ; (43)

hn�iqq�q ¼ 0:45þ 0:135 lnð4M2
X=9s0Þ; (44)

where s0 ¼ 1 GeV. Since we need the full multiplicity, we
multiplied the number of charged pions by 3=2. The fit
equation (43) was performed for MX > 4:2 GeV, which,
for instance at

ffiffiffi
s

p ¼ 50 GeV, corresponds to z < 0:99. We
impose this restriction which is well within the interval of z
we are interested in.
Thus we can replace the jf3qg8f �qqg8i dipole by a nu-

cleon and multipion state. In the eikonal approach such a
maximal suppression corresponds to the absorptive sup-
pression factor,

SðhadrÞmax ðb; zÞ ¼ SNNðbÞ X
n�¼0

Wn�ðzÞSðn��ÞNðbÞ; (45)

where Wn�ðzÞ is the probability distribution of the number

of pions which we assume to have a Poisson shape,

Wn�ðzÞ ¼ ðhn�in�=n�!Þe�hn�i. The mean number of pions

hn�ðzÞi depends on z according to (43) and (44) and equals
to

hn�ðzÞi ¼ hn�iq� �q þ hn�iqq�q

¼ 2:76þ 0:855 lnðM2
X=s0Þ: (46)

The survival amplitude of a LRG for the target nucleon
interacting with a row of pions can be presented in the

eikonal form like in the Glauber model, i.e. Sðn��ÞNðbÞ ¼
½S�NðbÞ�n� . Then the maximal suppression factor Eq. (45)
gets the form

SðhadrÞmax ðb; zÞ ¼ SNNðbÞ expf�hn�ðzÞi½1� S�NðbÞ�g
¼ ½1� Im�NNðbÞ� exp½�hn�ðzÞiIm��NðbÞ�:

(47)

Later, in Sec. VII we will compare the effect of the maxi-
mal suppression equation (47) with the conventional ones.

VI. CROSS SECTION CORRECTED FOR
ABSORPTION

Now we can correct for absorption the Born partial
amplitudes Eq. (9) of neutron production,

	0;sðb; zÞ ¼ 	B0;sðb; zÞSðb; zÞ; (48)

where Sðb; zÞ is calculated either within the dipole ap-
proach, Eq. (16), or in the hadronic model, Eq. (34). In
Fig. 12 we compare the Born partial spin amplitudes with
the ones corrected for absorption, plotted as functions of
the impact parameter at z ¼ 0:8 and

ffiffiffi
s

p ¼ 44:7 GeV.
Now, it is straightforward to Fourier transform these

amplitudes back to momentum representation. The absorp-
tion modified equation (2) reads
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Ap!nð ~q; zÞ ¼ 1ffiffiffi
z

p ��n½�3~qL�0ðqT; zÞ þ ~� � ~qT�sðqT; zÞ��p;

(49)

where according to (10), (11), and (33),

�0ðqT; zÞ ¼ NðzÞ
2�ð1� 
2�2Þ

Z 1

0
dbbJ0ðbqTÞSðb; zÞ

�
�
K0ð�bÞ � K0

�
b




��
; (50)

qT�sðqT; zÞ ¼ NðzÞ
2�ð1� 
2�2Þ

Z 1

0
dbbJ1ðbqTÞSðb; zÞ

�
�
�K1ð�bÞ � 1



K1

�
b




��
: (51)

Eventually, we are in a position to calculate the differ-
ential cross section of inclusive production of neutrons
corrected for absorption,

z
d�p!n

dzdq2T
¼ �0ðz; qTÞ þ �sðz; qTÞ; (52)

where

�0ðz; qTÞ ¼ ~q2L
zs

j�0ðqT; zÞj2; (53)

�sðz; qTÞ ¼ q2T
zs

j�sðqT; zÞj2: (54)

The forward neutron production cross section corrected for
absorption is compared with data [9] in Fig. 3. The two
models for absorption, dipole and hadronic, give the upper
and bottom solid curves, respectively. The results of both

FIG. 12. Partial spin amplitudes, Eq. (9), for neutron produc-
tion, nonflip, 	0ðb; zÞ, and spin-flip, b	sðb; zÞ. Solid curves
show the result of Born approximation. Dashed and dot-
dashed curves include absorptive corrections calculated in the
dipole approach (�Sð5qÞðb; zÞ) and in the hadronic model
(�SðhadrÞðb; zÞ), respectively.

FIG. 13. Differential cross section of neutron production,
Eq. (52), at

ffiffiffi
s

p ¼ 200 GeV, z ¼ 0:7 (upper panel) and z ¼
0:9 (bottom panel). Contributions of the nonflip, Eq. (53), and
spin-flip, Eq. (54), processes are shown by dashed curves, and
their sum is depicted by solid curves.
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models are pretty close to each other, but substantially
underestimate the data (see further discussions). This is a
consequence of very strong absorptive corrections found
here compared to previous calculations [4,5], which never-
theless reported good agreement with data.

The energy dependence of the cross section is presented
in Fig. 4, at

ffiffiffi
s

p ¼ 30:6, 62.7, and 200 GeV. Apparently the
steep rise of the cross section with energy, observed in
Born approximation, is nearly compensated by the falling
energy dependence of the LRG survival amplitudes. Aside
from the normalization, the results for the z and energy
dependence agree quite well with the data.

We also calculate the qT dependence of the differential
cross section Eq. (52). The results for

ffiffiffi
s

p ¼ 200 GeV are
shown in Fig. 13 for z ¼ 0:6 (left panel) and z ¼ 0:9 (right
panel). The qT distribution shrinks towards larger z.
For instance, the slope calculated at q2T ¼ 0:1 GeV2

equals to Bðz ¼ 0:7Þ ¼ 12:3 GeV�2 and Bðz ¼ 0:9Þ ¼
17:3 GeV�2. At the same time, at small qT the spin-flip
term starts sticking out at large z, and the effective slope
measured at such small qT may become small, and even
negative.

Notice that the effective slope also rises with energy.
The qT distribution calculated at

ffiffiffi
s

p ¼ 50 GeV at the same
values of z demonstrates a similar pattern, but the slopes
are about two units of GeV�2 smaller.

VII. DISCUSSION

There are few points in the above presentation which
deserve more discussion.

A. Maximal suppression

Although our results presented in Figs. 3 and 4 for the
cross section calculated with the hadronic model are quite
below the ISR data, we think that we could only under-
estimate the strength of the absorptive damping. We rep-
resented the color octet-octet dipole by a �p pair, but
apparently the effective number of pions might be larger.
Of course this can only suppress the cross section further
down and worsen the disagreement with the ISR data. To
see the scale of possible effects we considered in Sec. VC
an extreme case of the mean number of pions correspond-
ing to hadronization of the octet-octet dipole. The result for
the cross section of neutron production is compared with
the �p hadronic model in Fig. 14. The effect of suppres-
sion caused by the extra pions is not strong at large z, since
the pion exchange partial amplitude is very peripheral,

while the suppression factor SðhadrÞmax is more central.
Correspondingly, the effect of extra suppression becomes
stronger towards smaller z.

B. Challenging the ISR data

The shape of both the z and energy dependence which
resulted from our calculations agree with data [9].

However, the predicted cross section, shown in Figs. 3
and 4, underestimates the data [9] by about a factor of 2.
Nevertheless, there are indications that the source of

disagreement may be the normalization of the data. A
strong evidence comes from the recent measurements by
the ZEUS collaboration [37] of leading neutron production
in semi-inclusive DIS and photo-production, that the nor-
malization of the ISR data [9] is overestimated by about a
factor of 2. Indeed, according to Regge factorization the
fraction of events with leading neutron production in
h-proton collision,

dN

dzdq2T
¼ 1

�hp
tot

d�hp!Xn

dzdq2T
; (55)

should be universal, i.e. independent of the particle h. Of
course this universality should be broken by absorption
corrections, and it is natural to expect that neutron damping
should be stronger in pp collisions than in photo-
production. However, a comparison of photo-production
and pp data performed in [37] demonstrated just the
opposite: the ratio equation (55) for pp is twice that for
photo-production. Moreover, Fig. 15 demonstrates that
even neutrons produced in DIS, where absorption effects
should be minimal, are quite more suppressed than in the
ISR data for pp collisions. Extrapolating to qT ¼ 0 the
ZEUS data for neutron production in DIS, within an angle

FIG. 14. Comparison of the effect of the cross section damping
caused by a �� p pair and by a nucleon accompanied by hn�i
pions (see Sec. VC for the details), represented by the upper and
bottom curves, respectively. Calculations are performed forffiffiffi
s

p ¼ 30 GeV and qT ¼ 0.
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0.8 mrad, we used the measured slope bðzÞ ¼ ð16:3z�
4:25Þ GeV�2.

Notice that the ZEUS results [37] also show that the ratio
equation (620) rises with Q2, demonstrating decreasing
absorptive corrections, in good accord with the above
expectations and in contradiction with the weak absorption
suggested by the ISR data.

Another evidence comes from the ratio of the pion-to-
proton structure functions measured at small x in [37].
Contrary to the natural expectation F�

2 ðxÞ=Fp
2 ðxÞ � 2=3,

it was found to be about 1=3. This shows that the absorptive
corrections reduce the cross section by a factor of 2 (like in
our calculations). As was already commented, absorptive
corrections in pp collisions should not be smaller than in
DIS.

Although the systematic uncertainty of the ISR data was
claimed in [9] to be 20%, it was probably underestimated.

One can find in [8] more comments on the current
controversies in the available data for leading neutron
production in hadronic collisions.

A firm support for our conjecture about an incorrect
normalization of the ISR data comes from preliminary
data from the NA49 experiment at CERN SPS [38] for

leading neutron production in pp collisions at Elab ¼
158 GeV. The measured cross section integrated over qT
was extrapolated to qT ¼ 0 assuming the same slope of qT
dependence as measured for proton production [38]. The
found fractional cross section plotted in Fig. 15 is about
twice as low as the ISR data, but agrees well with the ZEUS
DIS data.

C. Further corrections

Besides the pion pole, Fig. 2, other mechanisms which
were discussed in [1] can contribute. Isovector Reggeons,
� a2 and a1, also lead to neutron production. These
Reggeons contribute mostly to the spin-flip amplitude,
i.e. vanish in the forward direction where we compare
with data. These corrections to the cross section were
estimated in [1] to be about 10%, as well as the possibility
of additional pion production in the pion-nucleon vertex,
�p ! �n [1]. We neglect these corrections here, since
they are small and quite uncertain. The main focus of
this paper is the calculation of absorptive corrections.
Since the isovector Reggeon amplitudes are mainly

spin-flip, they are small in forward direction, but become
more important with rising qT . Thus, they should reduce
the value of the q2T slope of the differential cross section
calculated in Sec. VI. Indeed the slope measured in the
ZEUS experiment [39] is substantially smaller than is
suggested by the contribution of pion exchange.

VIII. SUMMARY

To summarize, we highlight some of the results.
(i) Pion exchange is usually associated with the spin-

flip amplitude. However, the amplitude of an inclu-
sive process mediated by pion exchange acquires a
substantial nonflip part which in many cases
dominates.

(ii) We applied absorptive corrections to the spin am-
plitudes. This is quite different from a convolution
of the LRG survival probability with the cross sec-
tion, as it has been done in many publications. We
found that the nonflip amplitude is suppressed by
absorption much more than the spin-flip one, there-
fore applying an overall suppression factor is not
correct.

(iii) We identified the projectile system which under-
goes initial and final state interactions as a color
octet-octet 5-quark state. Absorptive corrections
are calculated within two models, color-dipole
light-cone approach, and in hadronic representa-
tion. The two descriptions, being so different,
nevertheless lead to very similar results.

(iv) Since the projectile 5-quark state interacts with the
target stronger than a single nucleon, we predict a
much stronger damping of neutrons compared to
some of previous estimates.

FIG. 15. Number of events distribution, Eq. (55), for neutron
production. Open points: ISR data [9] for forward, qT ¼ 0,
neutron production divided by �pp

tot at
ffiffiffi
s

p ¼ 62:7 GeV [12]. The
overall normalization uncertainty is 20% [9]. Closed points:
number of events for neutron production in DIS (Q2 >
4 GeV2). The ZEUS data [37] are extrapolated to qT ¼ 0 as
is described in the text. Systematic errors related to the accep-
tance and energy scale uncertainties are added in quadrature. The
overall normalization uncertainty is 4% [37]. Asterisk points:
event number distribution for pp ! nX measured in the NA49
experiment at Elab ¼ 158 GeV and extrapolated to qT ¼ 0 [38].
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(v) Comparison of fractional cross sections of forward
neutron production in pp collisions [9] and in DIS
[37] show a substantial discrepancy which indicates
an incorrect normalization of ISR data. The prelimi-
nary data for neutron production in pp collisions
from the NA49 experiment at CERN SPS [38] are
about twice lower than the ISR data, once again
confirming that the latter has an incorrect normal-
ization. This explains why our results are signifi-
cantly lower than the ISR data. New data for
inclusive neutron production at RHIC, at

ffiffiffi
s

p ¼
200–500 GeV are expected soon [40].
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