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We study the production of electroweak gauge bosons at high energies in the framework of

kT-factorization QCD approach. The amplitude for production of a single W� or Z0 boson associated

with quark pair in the fusion of two off-shell gluons is calculated. Contributions from the valence quarks

are calculated using the quark-gluon interaction and quark-antiquark annihilation QCD subprocesses. The

total and differential cross sections (as a function of the transverse momentum and rapidity) are presented

and the ratio of cross sections for W� and Z0 boson production is investigated. The conservative error

analysis is performed. In the numerical calculations two different sets of unintegrated gluon distributions

in the proton are used: the one obtained from the Ciafaloni-Catani-Fiorani-Marchesini evolution equation

and the other from the Kimber-Martin-Ryskin prescription. Theoretical results are compared with

experimental data taken by the D0 and CDF collaborations at the Tevatron. We demonstrate the

importance of the quark component in parton evolution in description of the experimental data. This

component is very significant also at the LHC energies.
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I. INTRODUCTION

The theoretical and experimental studying of the vector
(W� and Z0) boson production at high energies provides
information about the nature of both the underlying elec-
troweak interaction and the effects of quantum chromody-
namics (QCD). In many respects these processes have
become one of the most important ‘‘standard candles’’ in
experimental high-energy physics [1–9]. At the Tevatron,
measurements of W� and Z0 inclusive cross sections are
routinely used to validate detector and trigger performance
and stability. Data from gauge boson production also pro-
vide bounds on parametrizations used to describe the non-
perturbative regime of QCD processes. At the LHC, such
measurements can serve as a useful tool to determine the
integrated luminosity and can also be used to normalize
measurements of other production cross sections (for ex-
ample, the cross section of W þ n-jets or diboson produc-
tion). Additionally, the studying of inclusive vector boson
production is the necessary starting point for investigations
of Higgs or top quark production where many signatures
can include these bosons.

At leading order (LO) of QCD, W� and Z0 bosons are
produced via quark-antiquark annihilation. Beyond the LO
Born process, the vector boson can also be produced by
qþ g interactions, so both the quark and gluon distribution
functions of the proton play an important role. Theoretical
calculations of the W� and Z0 production cross sections
have been carried out at next-to-leading order (NLO) and
next-to-next-to-leading order (NNLO) [10–14] of QCD.
The NLO cross section is�25% larger than the Born-level
cross section, and the NNLO cross section is an additional

�3% higher. However, these perturbative calculations are
reliable at high pT only since they diverge in the small
pT � m region with terms proportional to lnm=pT (ap-
pearing due to soft and collinear gluon emission). There-
fore, the soft gluon resummation technique [15–19] should
be used to make QCD predictions at low pT . The tradi-
tional calculations combine fixed-order perturbation theory
with analytic resummation and some matching criterion.
The analytic resummation can be performed either in the
transverse momentum space [20] or in the Fourier conju-
gate impact parameter space [21]. Differences between the
two formalisms are discussed in [22].
An alternative description can be provided by the

kT-factorization approach of QCD [23,24]. This approach
is based on the familiar Balitsky-Fadin-Kuraev-Lipatov
(BFKL) [25] or Catani-Ciafaloni-Fiorani-Marchesini
(CCFM) [26] gluon evolution equations and takes into
account the large logarithmic terms proportional to
ln1=x. This contrasts with the usual Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) [27] strategy where only
the large logarithmic terms proportional to ln�2 are taken
into account. The basic dynamical quantity of the
kT-factorization approach is the unintegrated (i.e.,
kT-dependent) parton distribution faðx;k2

T; �
2Þ which de-

termines the probability to find a type a parton carrying the
longitudinal momentum fraction x and the transverse mo-
mentum kT at the probing scale�

2. In this approach, since
each incoming parton carries its own nonzero transverse
momentum, the Born-level subprocess qþ �q0 ! W�=Z0

already generates the pT distribution of the produced vec-
tor boson. Similar to DGLAP, to calculate the cross sec-
tions of any physical process the unintegrated parton
density faðx;k2

T; �
2Þ has to be convoluted [23,24] with

the relevant partonic cross section which has to be taken*lipatov@theory.sinp.msu.ru
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off-mass shell (kT-dependent). The soft gluon resumma-
tion formulas are the result of the approximate treatment of
the solutions of the CCFM evolution equation [28]. Other
important properties of the kT-factorization formalism are
the additional contribution to the cross sections due to the
integration over the k2

T region above �2 and the broad-
ening of the transverse momentum distributions due to
extra transverse momentum of the colliding partons.1

The kT-factorization formalism has been already applied
[30] to calculate transverse momentum distribution of the
inclusive W� and Z0 production at Tevatron. The calcu-
lations [30] were based on the usual (on-mass shell) matrix
elements of the quark-antiquark annihilation subprocess
qþ �q0 ! W�=Z0 which embedded in precise off-shell
kinematics. However, an important component of the cal-
culations [30] is the unintegrated quark distribution in a
proton. At present these distributions are only available in
the framework of the Kimber-Martin-Ryskin (KMR) ap-
proach [31] since there are some theoretical difficulties in
obtaining the quark densities immediately from CCFM or
BFKL equations2 (see, for example, reviews [29] for more
details). As a result the dependence of the calculated cross
sections on the noncollinear evolution scheme has not been
investigated. This dependence in general can be significant
and it is a special subject of study in the kT-factorization
formalism. Therefore in the present paper we will try a
different and more systematic way. Instead of using the
unintegrated quark distributions and the corresponding
quark-antiquark annihilation cross section we calculate
the off-shell matrix element of the g� þ g� ! W�=Z0 þ
qþ �q0 subprocess and then operate in terms of the unin-
tegrated gluon densities only. In this scenario, at the price
of considering the 2 ! 3 rather than 2 ! 1 matrix ele-
ments, the problem of unknown unintegrated quark distri-
butions will reduce to the problem of gluon distributions.
However, since the gluons are only responsible for the
appearance of the sea but not valence quarks, the contri-
bution from the valence quarks should be calculated sepa-
rately. Having in mind that the valence quarks are only
important at large x, where the traditional DGLAP evolu-
tion is accurate and reliable, this contribution can be taken
into account within the usual collinear scheme based on the
qþ g� ! W�=Z0 þ q0 and qþ �q0 ! W�=Z0 matrix ele-
ments convoluted with the on-shell valence quark and/or
off-shell gluon densities.3 Thus, the proposed way enables
us with making comparisons between the different parton
evolution schemes and parametrizations of parton
densities.4

We should mention, of course, that this idea can only
work well if the sea quarks appear from the last step of the
gluon evolution—then we can absorb this last step of the
gluon ladder into a hard matrix element. However, this
method does not apply to the quarks coming from the
earlier steps of the evolution (i.e., from the second-to-
last, third-to-last, and other gluon splittings). But it is not
evident in advance, whether the last gluon splitting domi-
nates or not. The goal of our study is to clarify this point.
The outline of our paper is following. In Sec. II we recall

shortly the basic formulas of the kT-factorization approach
with a brief review of calculation steps and the uninte-
grated parton densities used. We will concentrate mainly
on the g� þ g� ! W�=Z0 þ qþ �q0 subprocess. The
evaluation of qþ g� ! W�=Z0 þ q0 and qþ �q0 !
W�=Z0 contributions is straightforward and, for the read-
er’s convenience, we only collect the main relevant for-
mulas in the appendix. In Sec. III we present the numerical
results of our calculations. The central point is discussing
the role of each contribution mentioned above to the cross
section. Special attention is put on the transverse momen-
tum distributions of theW� and Z0 boson measured by the
D0 [5,8,9] and CDF [4] collaborations. Section IV contains
our conclusions.

II. THEORETICAL FRAMEWORK

As the off-shell gluon-gluon fusion g� þ g� !
W�=Z0 þ qþ �q0 is calculated for the first time in the
literature, we find it reasonable to explain it in more detail.

A. Kinematics

We start from the kinematics (see Fig. 1). Let pð1Þ and
pð2Þ be the four-momenta of the incoming protons and p
the four-momentum of the produced W�=Z0 boson. The
initial off-shell gluons have the four-momenta k1 and k2
and the final quark q and antiquark �q0 have the four-
momenta p1 and p2 and the masses m1 and m2, respec-

FIG. 1. Kinematics of the g� þ g� ! W�=Z0 þ qþ q0 pro-
cess.

1For an introduction to kT-factorization, see, for example,
review [29].

2Unintegrated quark density was considered recently in [32].
3To avoid the double counting we have not considered here the

qþ �q0 ! W�=Z0 þ g subprocess.
4The similar scenario has been applied recently to the prompt

photon hadroproduction at the Tevatron [33].
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tively. In the p �p center-of-mass frame we can write

pð1Þ ¼
ffiffiffi
s

p
2
ð1; 0; 0; 1Þ; pð2Þ ¼

ffiffiffi
s

p
2
ð1; 0; 0;�1Þ; (1)

where
ffiffiffi
s

p
is the total energy of the process under consid-

eration and we neglect the masses of the incoming protons.
The initial gluon four-momenta in the high-energy limit
can be written as

k1 ¼ x1p
ð1Þ þ k1T; k2 ¼ x2p

ð2Þ þ k2T; (2)

where k1T and k2T are the transverse four-momenta. It is
important that k2

1T ¼ �k21T � 0 and k2
2T ¼ �k22T � 0.

From the conservation laws we can obtain the following
relations:

k1T þ k2T ¼ p1T þ p2T þ pT;

x1
ffiffiffi
s

p ¼ m1Te
y1 þm2Te

y2 þmTe
y;

x2
ffiffiffi
s

p ¼ m1Te
�y1 þm2Te

�y2 þmTe
�y;

(3)

where pT , mT , and y are the transverse momentum, trans-
verse mass, and center-of-mass rapidity of the produced
W�=Z0 boson, p1T and p2T are the transverse momenta of
final quark q and antiquark �q0, y1, y2, m1T , and m2T are
their rapidities and transverse masses, i.e.m2

iT ¼ m2
i þ p2

iT .

B. Off-shell amplitude of the
g� þ g� ! W�=Z0 þ qþ �q0 subprocess

There are eight Feynman diagrams (see Fig. 2) which
describe the partonic subprocess g� þ g� ! W�=Z0 þ
qþ �q0 at ��2

s order. Let �1, �2, and � be the initial gluon
and produced gauge boson polarization vectors, respec-
tively, and a and b the eightfold color indices of the off-
shell gluons. Then the relevant matrix element can be
presented as follows:

M1 ¼ g2 �uðp1Þta���� p̂1 � k̂1 þm1

m2
1 � ðp1 � k1Þ2

T�W;Z��

� k̂2 � p̂2 þm2

m2
2 � ðk2 � p2Þ2

tb����uðp2Þ; (4)

M2 ¼ g2 �uðp1Þtb���� p̂1 � k̂2 þm1

m2
1 � ðp1 � k2Þ2

T�W;Z��

� k̂1 � p̂2 þm2

m2
2 � ðk1 � p2Þ2

ta����uðp2Þ; (5)

M3 ¼ g2 �uðp1Þta���� p̂1 � k̂1 þm1

m2
1 � ðp1 � k1Þ2

tb����

� �p̂2 � p̂þm1

m2
1 � ð�p2 � pÞ2 T

�
W;Z��uðp2Þ; (6)

M4 ¼ g2 �uðp1Þtb���� p̂1 � k̂2 þm1

m2
1 � ðp1 � k2Þ2

ta����

� �p̂2 � p̂þm1

m2
1 � ð�p2 � pÞ2 T

�
W;Z��uðp2Þ; (7)

M5 ¼ g2 �uðp1ÞT�W;Z��
p̂1 þ p̂þm2

m2
2 � ðp1 þ pÞ2 t

b����

� k̂1 � p̂2 þm2

m2
2 � ðk1 � p2Þ2

ta����uðp2Þ; (8)

M6 ¼ g2 �uðp1ÞT�W;Z��
p̂1 þ p̂þm2

m2
2 � ðp1 þ pÞ2 t

a����

� k̂2 � p̂2 þm2

m2
2 � ðk2 � p2Þ2

tb����uðp2Þ; (9)

M 7 ¼ g2 �uðp1Þ��C���ðk1; k2;�k1 � k2Þ
� ����

ðk1 þ k2Þ2
fabctc

� �p̂2 � p̂þm1

m2
1 � ð�p2 � pÞ2 T

�
W;Z��uðp2Þ; (10)

FIG. 2. Feynman diagrams which describe the partonic sub-
process g� þ g� ! W�=Z0 þ qþ q0 at the leading order in �s
and �.

PRODUCTION OF ELECTROWEAK GAUGE BOSONS IN . . . PHYSICAL REVIEW D 78, 014025 (2008)

014025-3



M 8 ¼ g2 �uðp1ÞT�W;Z��
p̂1 þ p̂þm2

m2
2 � ðp1 þ pÞ2

� ��C���ðk1; k2;�k1 � k2Þ
� ����

ðk1 þ k2Þ2
fabctcuðp2Þ: (11)

In the above expressions C���ðk; p; qÞ and T�W;Z are related
to the standard QCD three-gluon coupling and the
W�=Z0-fermion vertexes:

C���ðk; p; qÞ ¼ g��ðp� kÞ� þ g��ðq� pÞ�
þ g��ðk� qÞ�; (12)

T�W ¼ e

2
ffiffiffi
2

p
sin�W

��ð1� �5ÞVqq0 ; (13)

T�Z ¼ e

sin2�W
��½IðqÞ3 ð1� �5Þ � 2eqsin

2�W�; (14)

where IðqÞ3 and eq are the weak isospin and the fractional

electric charge (in the positron charge e units) of the final-
state quark q, �W is the Weinberg mixing angle, and Vqq0 is

the Cabibbo-Kobayashi-Maskawa (CKM) matrix element.
Of course, in the case of Z0 production m1 equals m2. The
summation on theW�=Z0 polarization is carried out by the
covariant formula

X
��ðpÞ���ðpÞ ¼ �g�� þ p�p�

m2
: (15)

In the case of the initial off-shell gluon we use the BFKL
prescription [23,24]:

X
��ðkiÞ���ðkiÞ ¼ k�iTk

�
iT

k2
iT

: (16)

This formula converges to the usual expressionP
����� ¼ �g�� after azimuthal angle averaging in the

kT ! 0 limit. The evaluation of the traces in (4)–(11) was
done using the algebraic manipulation system FORM [34].
We would like to mention here that the usual method of
squaring of (4)–(11) results in enormously long output.
This technical problem was solved by applying the method
of orthogonal amplitudes [35].
The gauge invariance of the matrix element is a subject

of special attention in the kT-factorization approach.
Strictly speaking, the diagrams shown in Fig. 2 are insuffi-
cient and have to be accompanied with the graphs involv-
ing direct gluon exchange between the protons (these
protons are not shown in Fig. 2). These graphs are neces-
sary to maintain the gauge invariance. However, they vio-
late the factorization since they cannot be represented as a
convolution of the gluon-gluon fusion matrix element with
unintegrated gluon density. The solution pointed out in
[24] refers to the fact that, within the particular gauge
(16), the contribution from these unfactorizable diagrams
vanish, and one has to only take into account the graphs
depicted in Fig. 2. We have successfully tested the gauge
invariance of the matrix element (4)–(11) numerically.5

C. Cross section for the inclusive W�=Z0 production

According to the kT-factorization theorem, the inclusive
W�=Z0 production cross section via two off-shell gluon
fusion can be written as a convolution

	ðpþ �p! W�=Z0 þ XÞ ¼ X
q

Z dx1
x1

fgðx1;k2
1T;�

2Þdk2
1T

d
1

2�
�

Z dx2
x2

fgðx2;k2
2T;�

2Þdk2
2T

d
2

2�
d	̂ðg� þ g�

! W�=Z0 þ qþ �q0Þ; (17)

where 	̂ðg� þ g� ! W�=Z0 þ qþ �q0Þ is the partonic cross section, fgðx;k2
T; �

2Þ is the unintegrated gluon distribution in
a proton, and 
1 and 
2 are the azimuthal angles of the incoming gluons. The multiparticle phase space
�d3pi=2Ei�

ð4ÞðP pin �P
poutÞ is parametrized in terms of transverse momenta, rapidities, and azimuthal angles:

d3pi
2Ei

¼ �

2
dp2

iTdyi
d
i

2�
: (18)

Using the expressions (17) and (18) we obtain the master formula:

	ðpþ �p! W�=Z0 þ XÞ ¼ X
q

Z 1

256�3ðx1x2sÞ2
j �Mðg� þ g� ! W�=Z0 þ qþ �q0Þj2

� fgðx1;k2
1T; �

2Þfgðx2;k2
2T;�

2Þdk2
1Tdk

2
2Tdp

2
1Tp

2
2Tdydy1dy2

d
1

2�

d
2

2�

d 1

2�

d 2

2�
; (19)

5At the preliminary stage of the work we have made a cross-check of the matrix elements which have been calculated independently
by M. Deak and F. Schwennsen.
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where j �Mðg� þ g� ! W�=Z0 þ qþ �q0Þj2 is the off-mass
shell matrix element squared and averaged over initial
gluon polarizations and colors,  1 and  2 are the azimuthal
angles of the final-state quark and antiquark, respectively.
We would like to point out again that j �Mðg� þ g� !
W�=Z0 þ qþ �q0Þj2 strongly depends on the nonzero
transverse momenta k2

1T and k2
2T . If we average the ex-

pression (19) over 
1 and 
2 and take the limit k2
1T ! 0

and k2
2T ! 0, then we recover the expression for the

W�=Z0 production cross section in the collinear ��2
s

approximation.
The multidimensional integration in (19) has been per-

formed by means of the Monte Carlo technique, using the
routine VEGAS [36]. The full C++ code is available from
the authors upon request.

D. The KMR unintegrated parton distributions

In the present paper we have tried two different sets of
unintegrated parton densities in a proton. The first of them
is the Kimber-Martin-Ryskin set.

The KMR approach [31] is the formalism to construct
parton distributions faðx;k2

T;�
2Þ unintegrated over the

parton transverse momenta k2
T from the known conven-

tional parton distributions xaðx;�2Þ, where a ¼ g or a ¼
q. This formalism is valid for a proton as well as a photon
and can embody both DGLAP and BFKL contributions. It
also accounts for the angular ordering which comes from
coherence effects in gluon emission. The key observation
here is that the � dependence of the unintegrated parton
distributions faðx;k2

T; �
2Þ enters at the last step of the

evolution, and therefore single scale evolution equations
(pure DGLAP) can be used up to this step. In this approxi-
mation, the unintegrated quark and gluon distributions are
given by the expressions [31]

fqðx;k2
T; �

2Þ ¼ Tqðk2
T; �

2Þ�sðk
2
TÞ

2�

�
Z 1

x
dz

�
PqqðzÞ xz q

�
x

z
;k2

T

�
�ð�� zÞ

þ PqgðzÞ xz g
�
x

z
;k2

T

��
; (20)

fgðx;k2
T; �

2Þ ¼ Tgðk2
T; �

2Þ�sðk
2
TÞ

2�

�
Z 1

x
dz

�X
q

PgqðzÞ xz q
�
x

z
;k2

T

�

þ PggðzÞ xz g
�
x

z
;k2

T

�
�ð�� zÞ

�
; (21)

where PabðzÞ are the usual unregulated leading-order
DGLAP splitting functions, and qðx;�2Þ and gðx;�2Þ are
the conventional quark and gluon densities.6 The theta

functions which appear in (20) and (21) imply the
angular-ordering constraint � ¼ �=ð�þ jkTjÞ specifi-
cally to the last evolution step to regulate the soft gluon
singularities. For other evolution steps, the strong ordering
in transverse momentum within the DGLAP equations
automatically ensures angular ordering. It is important
that the parton distributions faðx;k2

T;�
2Þ are extended

now into the k2
T > �2 region. This fact is in clear contrast

with the usual DGLAP evolution.7

The virtual (loop) contributions may be resummed to all
orders by the quark and gluon Sudakov form factors

lnTqðk2
T; �

2Þ ¼ �
Z �2

k2
T

dp2
T

p2
T

�sðp2
TÞ

2�

Z zmax

0
dzPqqðzÞ;

(22)

lnTgðk2
T;�

2Þ ¼ �
Z �2

k2
T

dp2
T

p2
T

�sðp2
TÞ

2�

�
nf

Z 1

0
dzPqgðzÞ

þ
Z zmax

zmin

dzzPggðzÞ
�
; (23)

where zmax ¼ 1� zmin ¼ �=ð�þ jpTjÞ. The form factors
Taðk2

T; �
2Þ give the probability of evolving from a scale k2

T

to a scale �2 without parton emission. In accordance with
(22) and (23) Taðk2

T; �
2Þ ¼ 1 in the k2

T > �2 region.
Note that such definition of the faðx;k2

T; �
2Þ is correct

for k2
T > �2

0 only, where �0 � 1 GeV is the minimum

scale for which DGLAP evolution of the collinear parton
densities is valid. Everywhere in our numerical calcula-
tions we set the starting scale �0 to equal �0 ¼ 1 GeV.
Since the starting point of this derivation is the leading-
order DGLAP equations, the unintegrated parton distribu-
tions must satisfy the normalization condition

aðx;�2Þ ¼
Z �2

0
faðx;k2

T; �
2Þdk2

T: (24)

This relation will be exactly satisfied if one defines [31]

faðx;k2
T;�

2Þjk2
T<�

2
0
¼ aðx;�2

0ÞTað�2
0; �

2Þ: (25)

E. The CCFM unintegrated gluon distribution

The CCFM gluon density has been obtained [38] from
the numerical solution of the CCFM equation. The func-
tion fgðx;k2

T; �
2Þ is determined by a convolution of the

nonperturbative starting distribution fð0Þg ðxÞ and the CCFM
evolution kernel denoted by ~Aðx;k2

T; �
2Þ:

fgðx;k2
T; �

2Þ ¼
Z dx0

x0
fð0Þg ðx0Þ ~A

�
x

x0
;k2

T; �
2

�
: (26)

6Numerically, we have used the standard GRV (LO) parame-
trizations [37].

7We would like to note that cutoff � can be taken � ¼
jkT j=�; also in [31]. In this case the unintegrated parton dis-
tributions given by (20) and (21) vanish for k2

T > �2 in accor-
dance with the DGLAP strong ordering in k2

T .
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In the perturbative evolution the gluon splitting function
PggðzÞ including nonsingular terms is applied, as it was

described in [39]. The input parameters in fð0Þg ðxÞ were
fitted to reproduce the proton structure functions
F2ðx;Q2Þ. An acceptable fit to the measured F2 values
was obtained [38] with 
2=ndf ¼ 1:83 using statistical
and uncorrelated systematic uncertainties (compare to

2=ndf� 1:5 in the collinear approach at NLO).

III. NUMERICAL RESULTS

We are now in a position to present our numerical
results. First we describe the theoretical uncertainties of
our consideration.

Besides the unintegrated parton distributions in a proton
fqðx;k2

T;�
2Þ, there are several parameters which deter-

mined the overall normalization factor of the calculated
W�=Z0 cross sections: the quark massesm1 andm2 and the
factorization and renormalization scales �F and �R (the
first of them is related to the evolution of the parton
distributions, the other is responsible for the strong cou-
pling constant). In the numerical calculations the masses of
light quarks were set to be equal to mu ¼ 4:5 MeV, md ¼
8:5 MeV, ms ¼ 155 MeV and the charmed quark mass
was set to mc ¼ 1:5 GeV. We have checked that uncer-
tainties which come from these quantities are negligible in
comparison to the uncertainties connected with the scale
and/or the unintegrated parton densities. As is often done,
we choose the renormalization and factorization scales to
be equal: �R ¼ �F ¼ � ¼ �mT (transverse mass of the
produced vector boson). In order to investigate the scale
dependence of our results we vary the scale parameter �
between 1=2 and 2 about the default value � ¼ 1. For
completeness, we set mW ¼ 80:403 GeV, mZ ¼
91:1876 GeV, sin2�W ¼ 0:231 22 and use the LO formula
for the strong coupling constant �sð�2Þ with nf ¼ 4 active

quark flavors at �QCD ¼ 200 MeV (so that �sðM2
ZÞ ¼

0:1232). Note that we use a special choice �QCD ¼
130 MeV in the case of the CCFM gluon (�sðM2

ZÞ ¼
0:1187), as was originally proposed in [38].

Before we proceed to the numerical results, we would
like to comment on the effect of the higher order QCD
contributions [30]. It is well known that the leading-order
kT-factorization approach naturally includes a large part of
them.8 It is corrections which are kinematic in nature
arising from the real parton emission during the evolution
cascade. Another part of high-order contributions comes
from the logarithmic loop corrections which have already
been included in the Sudakov form factors (22) and (23).
However, there are also the nonlogarithmic loop correc-
tions, arising, for example, from the gluon vertex correc-
tions to Fig. 2. To take into account these contributions we
will use the approach proposed in [30]. It was demon-

strated that the main part of the nonlogarithmic loop cor-
rections can be absorbed in the so-called K-factor given by
the expression

Kðqþ �q0 ! W�=Z0Þ ’ exp

�
CF

�sð�2Þ
2�

�2

�
; (27)

where the color factor CF ¼ 4=3. A particular choice

�2 ¼ p4=3
T m2=3 has been proposed [22,30] to eliminate

subleading logarithmic terms. We choose this scale to
evaluate the strong coupling constant �sð�2Þ in (27).
We begin the discussion by presenting a comparison

between the different contributions to the W�=Z0 total
cross section. The solid, dashed, and dotted histograms in
Figs. 3–6 represent the g� þ g� ! W�=Z0 þ qþ �q0, qþ
q� ! W�=Z0 þ q0, and qþ �q0 ! W�=Z0 contributions to
the rapidity distributions of the gauge boson calculated at
the Tevatron (Figs. 3 and 4) and LHC conditions (Figs. 5
and 6). It is important that in the last two subprocesses we
take into account only the valence quarks within the usual
collinear approximation. For illustration, we used here the
KMR unintegrated gluon density. We found that the role of
the gluon-gluon fusion subprocess is greatly increased at
the LHC energy: it contributes only about 2% or 3% of the
valence quark component at the Tevatron and more than
40% at the LHC. Moreover, in the last case it dominates
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FIG. 3. Different contributions to the inclusive W� boson
production at the Tevatron conditions. The solid, dashed, and
dotted histograms correspond to the g� þ g� ! W� þ qþ �q0,
qþ g� ! W� þ q0, and qþ �q0 ! W� subprocesses. In the last
two cases only the valence quarks are taken into account. The
dash-dotted histogram represents the contribution from the
quarks coming from the earlier steps of the evolution. The thick
solid histogram represents the sum of all contributions. The
KMR unintegrated parton densities in a proton are used.8See, for example, review [29] for more details.
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over the valence contributions at the central rapidities. The
contribution of the valence quark-antiquark annihilation
subprocess is important at the Tevatron and gives only a
few percents at the LHC energy. As expected, the contri-
bution of the qþ g� ! W�=Z0 þ q0 subprocess is signifi-
cant in the forward rapidity region, jyj> 2. At this point,

we can conclude that the gluon-gluon fusion becomes an
important production mechanism at high energies and
therefore should be taken into account in the calculations.
However, we would like to note that there is an additional
contribution which is not included in the simple decom-
position scheme proposed above. As was mentioned above,
in this scheme it was assumed that sea quarks appear only
at the last gluon splitting and there is no contribution from
the quarks coming from the earlier steps of the evolution
(and we absorb the last step of the gluon ladder into the
hard matrix element g� þ g� ! W�=Z0 þ qþ �q0). It is
not clear in advance whether the last gluon splitting domi-
nates or not. In order to model this additional component,
we have repeated the calculations using the KMR uninte-
grated quark densities (20) and the quark-antiquark anni-
hilation qþ �q0 ! W�=Z0 matrix element. But in these
evaluations we omitted the last term and keep only the
sea quark in the first term of (20). Thus, we switch off the
pure gluon component of the sea quark distributions and
remove the valence quarks from the evolution ladder. In
this way only the contributions to the fqðx;k2

T;�
2Þ origi-

nating from the earlier (involving quarks) evolution steps
are taken into account. So, the dash-dotted histograms in
Figs. 3–6 represent the results of our calculations. We have
found the significant (by about of 50%) enhancement of the
cross sections at both the Tevatron and LHC conditions.
Therefore in all calculations below we will consider this
mechanism as an additional production one. Finally, taking
into account all described above components, we can con-
clude that the gluon-gluon fusion contributes about �1%
to the total cross section at the Tevatron and up to�25% at
LHC energies.
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FIG. 4. Different contributions to the inclusive Z0 boson
production at the Tevatron conditions. Notations of histograms
are the same as in Fig. 3.
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FIG. 5. Different contributions to the inclusive W� boson
production at the LHC conditions. Notations of histograms are
the same as in Fig. 3.
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FIG. 6. Different contributions to the inclusive Z0 boson
production at the LHC conditions. Notations of histograms are
the same as in Fig. 3.
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Now we turn to the transverse momentum distributions
of the W� and Z0 bosons. The experimental data for the
transverse momentum distributions come from both the D0

[8,9] and CDF [4] collaborations at the Tevatron. These
data were obtained at the center-of-mass energy

ffiffiffi
s

p ¼
1800 GeV. Measurements were made for W ! l� and
Z! lþl� decays, so that we should multiply our theoreti-
cal predictions by the relevant branching fractions fðW !
l�Þ and fðZ! lþl�Þ. These branching fractions were set

FIG. 7. Transverse momentum distribution of the W� boson
production. The solid and dashed histograms correspond to the
results obtained with the CCFM and KMR unintegrated gluon
densities in a proton, respectively. The dotted histograms were
obtained by using the quark-antiquark annihilation matrix ele-
ment convoluted with the KMR unintegrated quark distributions.
The cross sections times branching fraction fðW ! l�Þ are
shown. The experimental data are from D0 [9].

FIG. 8. Transverse momentum distribution of the Z0 boson
production. Notations of histograms are the same as in Fig. 7.
The cross sections times branching fraction fðZ! lþl�Þ are
shown. The experimental data are from D0 [8].

FIG. 9. Transverse momentum distribution of the Z0 boson
production. Notations of histograms are the same as in Fig. 7.
The cross sections times branching fraction fðZ! lþl�Þ are
shown. The experimental data are from CDF [4].

FIG. 10. Transverse momentum distribution of the W� boson
production. Notations of histograms are the same as in Fig. 7.
The cross sections times branching fraction fðW ! l�Þ are
shown. The experimental data are from D0 [9].
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to fðW ! l�Þ ¼ 0:1075 and fðZ! lþl�Þ ¼ 0:033 66
[40]. In Figs. 7–9 we display a comparison of the calcu-
lated differential cross sections d	=dpT of theW� and Z0

boson production with the experimental data [4,8,9] in the
low pT region, namely pT < 20 GeV. Next, in Figs. 10–
12, we demonstrate the W� and Z0 transverse momentum

distributions in the intermediate and high pT regions.
Additionally, in Figs. 13 and 14, we plot the normalized
differential cross section ð1=	Þd	=dpT of the W� boson
production. The solid and dashed histograms correspond to
the results obtained with the CCFM and KMR unintegrated
gluon densities, respectively. All contributions discussed
above are taken into account. The dotted histograms were
obtained using the quark-antiquark annihilation matrix

FIG. 11. Transverse momentum distribution of the Z0 boson
production. Notations of histograms are the same as in Fig. 7.
The cross sections times branching fraction fðZ! lþl�Þ are
shown. The experimental data are from D0 [8].

FIG. 12. Transverse momentum distribution of the Z0 boson
production. Notations of histograms are the same as in Fig. 7.
The cross sections times branching fraction fðZ! lþl�Þ are
shown. The experimental data are from CDF [4].

FIG. 13. Normalized transverse momentum distribution of the
W� boson production. Notations of histograms are the same as
in Fig. 7. The earlier experimental data are from D0 [5].

FIG. 14. Normalized transverse momentum distribution of the
W� boson production. Notations of histograms are the same as
in Fig. 7. The earlier experimental data are from D0 [5].
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element convoluted with the KMR unintegrated quark
distributions in a proton (in this case the transverse mome-
tum of the produced vector boson is defined by the trans-
verse momenta of the incoming quarks). We found an
increase in the cross section calculated in the proposed
decomposition scheme (where only the unintegrated gluon
densities were used). In this scheme, we obtain that both
the CCFM and KMR gluon distributions reproduce well
the Tevatron data within the uncertainties, although the
KMR gluon tends to slightly underestimate the data in
the low pT region. The difference between the solid and
dashed histograms in Figs. 7–14 is due to different behav-
ior of the CCFM and KMR gluon densities. The predic-
tions based of the quark-antiquark annihilation subprocess
lie below the experimental data but agree with them in
shape. This observation coincides with the one from [30]
where an additional factor of about 1.2 was introduced to
eliminate the visible disagreement between the data and
theory.9

An additional possibility to distinguish the two calcu-
lation schemes comes from the studying of the ratio of the
W� and Z0 boson cross sections. In fact, sinceW� and Z0

production properties are very similar, as the transverse
momentum of the vector boson becomes smaller, the ra-
diative corrections affecting the individual distributions
and the cross sections of the hard process are factorized
and canceled in this ratio. Therefore the results of the
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FIG. 15. Ratio of the differential cross section for W� to Z0

production. Notations of histograms are the same as in Fig. 7.
The experimental data are from D0 [8].

FIG. 16. The total cross section of the inclusive W� boson
production as a function of

ffiffiffi
s

p
. The solid and dotted histograms

correspond to the results obtained with the CCFM and KMR
unintegrated gluon densities, respectively. The upper and lower
dashed histograms correspond to the scale variations in the
CCFM gluon density as it was described in the text. The cross
sections times branching fraction fðW ! l�Þ are shown. The
experimental data are from UA1 [1], UA2 [2], D0 [6,7], and
CDF [3].

FIG. 17. The total cross section of the inclusive Z0 boson
production as a function of

ffiffiffi
s

p
. Notations of histograms are the

same as in Fig. 16. The cross sections times branching fraction
fðZ! lþl�Þ are shown. The experimental data are from UA1
[1], UA2 [2], D0 [6,7], and CDF [3].

9In Ref. [30] authors have explained the origin of this extra
factor by the fact that the input parton densities (used to
determine the unintegrated ones) should themselves be deter-
mined from data using the appropriate noncollinear formalism.
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calculation of this ratio in the decomposition scheme
(where the Oð��sÞ and Oð��2

sÞ subprocesses are taken
into account) and the predictions based on theOð�Þ quark-
antiquark annihilation should differ from each other at
moderate and high pT values. This fact is clearly illustrated
in Fig. 15 where the ratio ofW� and Z0 cross sections as a
function of the transverse momentum is displayed. As was
expected, there is practically no difference between all
plotted histograms in the low pT region.

As a final point of our study, we discuss the scale
dependence of our results. In Figs. 16 and 17 we show
the total cross section of the W� and Z0 boson production
as a function of the total center-of-mass energy

ffiffiffi
s

p
. Here,

the solid and dotted histograms correspond to the results
obtained with the CCFM and KMR unintegrated gluon
densities, respectively. The upper and lower dashed histo-
grams correspond to the scale variations in the CCFM
gluon density as it was described above. We find that the
scale uncertainties are the same order approximately as the
uncertainties coming from the unintegrated gluon distribu-
tions. This fact is the typical one for the leading-order
kT-factorization calculations. Our predictions for the W�
and Z0 boson total cross section agree well with the data in
a wide

ffiffiffi
s

p
range.

IV. CONCLUSIONS

We have studied the production of electroweak gauge
bosons in hadronic collisions at high energies in the
kT-factorization approach of QCD. Our consideration is
based on the scheme which provides solid theoretical
grounds for adequately taking into account the effects of
initial parton momentum. The central part of our derivation
is the off-shell gluon-gluon fusion subprocess g� þ g� !
W�=Z0 þ qþ �q0. At the price of considering the corre-
sponding matrix element rather than the qþ �q0 ! W�=Z0

one, we have reduced the problem of unknown uninte-
grated quark distributions to the problem of gluon distri-
butions. This way enables us with making comparisons
between the different parton evolution schemes and pa-
rametrizations of parton densities. Since the gluons are
only responsible for the appearance of the sea, but not
the valence quarks, the contribution from the valence
quarks has been calculated separately. Having in mind
that the valence quarks are only important at large x, where
the traditional DGLAP evolution is accurate and reliable,
we have calculated this contribution within the usual col-
linear scheme based on qþ g� ! W�=Z0 þ q0 and qþ
�q0 ! W�=Z0 partonic subprocesses and on-shell parton
densities.

We have studied in detail the different production
mechanisms of W� and Z0 bosons. We find that the off-
shell gluon-gluon fusion gives �1% and �25% contribu-
tions to the inclusive W�=Z0 production cross sections at
the Tevatron and LHC. Specially we simulate the contri-

bution from the quarks involved into the earlier steps of the
evolution cascade (i.e., into the second-to-last, third-to-
last, and other gluon splittings) and find that these quarks
play an important role at both the Tevatron and LHC
energies. It was demonstrated that corresponding correc-
tions should be taken into account in the numerical calcu-
lations within the kT-factorization approach.
We have calculated the total and differentialW� and Z0

production cross sections and have made comparisons with
the Tevatron data. In the numerical analysis we have used
the unintegrated gluon densities obtained from the CCFM
evolution equation and from the KMR prescription. Our
numerical results agree well with the experimental data.
When the present paper was ready for publication, we

have learned about the results obtained by M. Deak and
F. Schwennsen [41], who used the same theoretical ap-
proach, but focused attention on slightly different aspects
of the problem. These authors concentrate on the associ-
ated W�=Z0 production with heavy quark pairs (mainly
on the Zb �b final state), where the gluon-gluon fusion
subprocess dominates. In additional to that, we consider
quark subprocesses, which are important for inclusive
W�=Z0 production. We show that the experimental data
can be described with taking quark contributions into
account.
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APPENDIX: A

Here we present the compact analytic expressions for the
cross section of the W�=Z0 production via the qþ �q0 !
W�=Z0 subprocess in the kT-factorization approach. Let us
define the transverse momenta and azimuthal angles of the
incoming quark q and antiquark �q0 as k1T and k2T and 
1

and 
2, respectively. The produced vector boson has the
transverse momentum pT (pT ¼ k1T þ k2T) and center-
of-mass rapidity y. The W�=Z0 production cross section
can be written as
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	ðpþ �p! W�=Z0 þ XÞ ¼ X
q

Z 2�

ðx1x2sÞ2
j �Mðqþ �q0 ! W�=Z0Þj2

� fqðx1;k2
1T; �

2Þfqðx2;k2
2T; �

2Þdk2
1Tdk

2
2Tdy

d
1

2�

d
2

2�
; (A1)

where fqðx;k2
T; �

2Þ is the unintegrated quark distributions
given by (20). In the high-energy limit the fractions x1 and
x2 of the initial proton’s longitudinal momenta are given by

x1
ffiffiffi
s

p ¼ mTe
y; x2

ffiffiffi
s

p ¼ mTe
�y; (A2)

where mT is the transverse mass of the vector boson. The
squared matrix element j �Mðqþ �q0 ! W�Þj2 summed
over final polarization states and averaged over initial
ones is

j �Mðqþ �q0 ! W�Þj2

¼ � e2

72m2
Wsin

2�W
½ðm2

1 �m2
2Þ2 þm2

Wðm2
1 þm2

2Þ � 2m4
W�;

(A3)

wherem1 andm2 are the masses of incoming quarks. In the
case of Z0 boson production, the squared matrix element
j �Mðqþ �q! Z0Þj2 summed over final polarization states
and averaged over initial ones is

j �Mðqþ �q! Z0Þj2

¼ 2e2

9sin22�W
� ½ðm2

Z �m2Þ½IðqÞ3 �2 þ 2eqð2m2 þm2
ZÞ

� sin2�Wðeqsin2�W � IðqÞ3 Þ�; (A4)

where m, eq, and IðqÞ3 are the mass, fractional electric
charge, and weak isospin of the incoming quark. Note
that there is no obvious dependence on the transverse
momenta of the initial quark and antiquark. However,
this dependence is present because the true off-shell kine-
matics is used. In particular, the incident parton momentum
fractions x1 and x2 have some kT dependence. If we take
the limit k2

1T ! 0 and k2
2T ! 0, then we recover the rele-

vant expression in the standard collinear approximation of
QCD.

APPENDIX: B

Here we present the analytic expressions for the cross
section of the W�=Z0 production via the qþ g� !
W�=Z0 þ q0 subprocess in the kT-factorization approach.
Let us define the transverse momenta and azimuthal angles
of the incoming quark and off-shell gluon as k1T and k2T

and 
1 and 
2, respectively. In the following, ŝ, t̂, and û
are usual Mandelstam variables for the 2 ! 2 subprocess.
The W�=Z0 production cross section can be written as
follows:

	ðpþ �p! W�=Z0 þ XÞ ¼ X
q

Z 1

16�ðx1x2sÞ2
j �Mðqþ g� ! W�=Z0 þ q0Þj2

� fqðx1;k2
1T; �

2Þfgðx2;k2
2T; �

2Þdk2
1Tdk

2
2Tdp

2
Tdydy

0 d
1

2�

d
2

2�
; (B1)

where y0 is the rapidity of the final quark q0. The fractions
x1 and x2 of the initial proton’s longitudinal momenta are
given by

x1
ffiffiffi
s

p ¼ mTe
y þm0

Te
y0 ; x2

ffiffiffi
s

p ¼ mTe
�y þm0

Te
�y0 ;
(B2)

where mT and m0
T are the transverse masses of the vector

boson and final quark q0. If we take the limit k2
1T ! 0 and

k2
2T ! 0, then we recover the relevant expression in the

usual collinear approximation. The squared matrix ele-
ments j �Mðqþ g� ! W� þ q0Þj2 and j �Mðqþ g� !
Z0 þ qÞj2 summed over final polarization states and aver-
aged over initial ones are

j �Mðqþ g� ! W� þ q0Þj2 ¼ e2g2

192sin2�W

FW
ðm2

1 � ŝÞ2ðm2
2 � t̂Þ2m2

W

; (B3)

j �Mðqþ g� ! Z0 þ qÞj2 ¼ 2e2g2

3sin22�W

FZ
ðm2 � ŝÞ2ðm2 � t̂Þ2m2

Z

; (B4)

where
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FW ¼ �8ðm8
1ð3m2

2 � t̂Þ þm6
1ðm4

2 þm2
2ð2m2

W � 5ŝ� 7t̂Þ þ t̂ðŝþ 2t̂ÞÞ þm4
1ðm6

2 þm4
2ð8m2

W � 3ðŝþ t̂ÞÞ
þm2

2ð�6m4
W þ 3ŝ2 þ 13ŝ t̂þ5t̂2 � 6m2

Wðŝþ t̂ÞÞ � t̂ð�2m4
W � 2m2

Wŝþ ðŝþ t̂Þ2ÞÞ
þm2

1ð3m8
2 þm6

2ð2m2
W � 7ŝ� 5t̂Þ þm4

2ð�6m4
W þ 5ŝ2 þ 13ŝ t̂þ3t̂2 � 6m2

Wðŝþ t̂ÞÞ
þm2

2ð4m6
W � ŝ3 � 11ŝ2t̂� 11ŝt̂2 � t̂3

þ 6m4
Wðŝþ t̂Þ þ 6m2

Wðŝ2 þ t̂2ÞÞ þ t̂ð�4m6
W þ 2m4

Wŝþ ŝðŝþ t̂Þ2 � 2m2
Wð2ŝ2 � ŝ t̂þt̂2ÞÞÞ

þ ŝð�m8
2 þm6

2ð2ŝþ t̂Þ þ 2m2
Wt̂ð2m4

W þ ŝ2 þ t̂2 � 2m2
Wðŝþ t̂ÞÞ þm4

2ð2m4
W þ 2m2

Wt̂� ðŝþ t̂Þ2Þ
þm2

2ð�4m6
W þ 2m4

Wt̂þ t̂ðŝþ t̂Þ2 � 2m2
Wðŝ2 � ŝ t̂þ2t̂2ÞÞÞ þ ðm8

1 þm8
2 þm6

1ðm2
W � 2ðŝþ t̂ÞÞ

þm6
2ðm2

W � 2ðŝþ t̂ÞÞ
þm4

2ð�2m4
W � 2m2

Wt̂þ ðŝþ t̂Þ2Þ þm2
2m

2
Wð5ŝ2 þ 4ŝ t̂þt̂2 þm2

Wð�8ŝþ 4t̂ÞÞ
� 2m2

Wð2ŝ t̂ðŝþ t̂Þ þm2
Wðŝ2 � 4ŝ t̂þt̂2ÞÞ þm4

1ð�2m4
2 � 2m4

W � 2m2
Wŝþ ðŝþ t̂Þ2 þm2

2ðm2
W þ 2ðŝþ t̂ÞÞÞ

þm2
1ðm2

Wðŝ2 þ 4m2
Wðŝ� 2t̂Þ þ 4ŝ t̂þ5t̂2Þ þm4

2ðm2
W þ 2ðŝþ t̂ÞÞ

þm2
2ð8m4

W � 6m2
Wðŝþ t̂Þ � 2ðŝþ t̂Þ2ÞÞÞð�k2

2TÞ þ 4m2
Wðm2

1 � ŝÞðm2
2 � t̂Þk4

2TÞ;
FZ ¼ �2eqI

ðqÞ
3 m2

Zsin
2�Wð6m8 � ŝ t̂ð2m4

Z þ ŝ2 þ t̂2 � 2m2
Zðŝþ t̂ÞÞ �m4ð2m4

Z þ 3ŝ2 þ 14ŝ t̂þ3t̂2 � 2m2
Zðŝþ t̂ÞÞ

þm2ðŝ3 � 8m2
Zŝ t̂þ7ŝ2t̂þ 7ŝt̂2 þ t̂3 þ 2m4

Zðŝþ t̂ÞÞÞ þ 2e2qm
2
Zsin

4�Wð6m8 � ŝ t̂ð2m4
Z þ ŝ2 þ t̂2 � 2m2

Zðŝþ t̂ÞÞ
�m4ð2m4

Z þ 3ŝ2 þ 14ŝ t̂þ3t̂2 � 2m2
Zðŝþ t̂ÞÞ þm2ðŝ3 � 8m2

Zŝ t̂þ7ŝ2 t̂þ 7ŝt̂2 þ t̂3

þ 2m4
Zðŝþ t̂ÞÞÞ þ ½IðqÞ3 �2ð�4m10 þm8ð�6m2

Z þ 8ðŝþ t̂ÞÞ �m2
Zŝ t̂ð2m4

Z þ ŝ2 þ t̂2 � 2m2
Zðŝþ t̂ÞÞ

þm6ð6m4
Z � 5ŝ2 � 14ŝ t̂�5t̂2 þ 6m2

Zðŝþ t̂ÞÞ þm4ð�2m6
Z þ ŝ3 þ 7ŝ2 t̂þ 7ŝt̂2 þ t̂3 � 4m4

Zðŝþ t̂Þ
�m2

Zð3ŝ2 þ 2ŝ t̂þ3t̂2ÞÞ þm2ð�2m4
Zŝ t̂þ2m6

Zðŝþ t̂Þ � ŝ t̂ðŝþ t̂Þ2 þm2
Zðŝ3 þ ŝ2 t̂þ ŝt̂2 þ t̂3ÞÞÞ

þm2
Zð2eqIðqÞ3 sin2�Wð2m4ðm2

Z � ŝ� t̂Þ � 2ŝ t̂ðŝþ t̂Þ �m2
Zðŝ2 � 4ŝ t̂þt̂2Þ � 2m2ð�4ŝ t̂þm2

Zðŝþ t̂ÞÞÞ
þ 2e2qsin

4�Wð2ŝ t̂ðŝþ t̂Þ þ 2m4ð�m2
Z þ ŝþ t̂Þ þm2

Zðŝ2 � 4ŝ t̂þt̂2Þ þ 2m2ð�4ŝ t̂þm2
Zðŝþ t̂ÞÞÞ

þ ½IðqÞ3 �2ð�2m6 þ 2ŝ t̂ðŝþ t̂Þ
þm2

Zðŝ2 � 4ŝ t̂þt̂2Þ þm4ð�2m2
Z þ 4ðŝþ t̂ÞÞ þm2ð�3ŝ2 � 4ŝ t̂�3t̂2 þ 2m2

Zðŝþ t̂ÞÞÞÞð�k2
2TÞ

� 2m2
Zðm2 � ŝÞð½IðqÞ3 �2 � 2eqI

ðqÞ
3 sin2�W þ 2e2qsin

4�WÞðm2 � t̂Þk4
2T: (B5)
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